Переменный резистор — Циклопедия
Переменный резисторПеременные резисторы — это разновидность резисторов, электрическое сопротивление которых регулируется с помощью механического воздействия на регулировочный орган.
Посредством соответствующих регулировок переменные резисторы позволяют производить перестройку параметров аппаратуры в процессе её эксплуатации, а так же удерживать в поле допуска выходные параметры аппаратуры, изменяющиеся в процессе старения элементов или воздействия внешних факторов.
[править] Виды переменных резисторов
Переменные резисторы предназначены для регулирования напряжения и тока в электрических цепях или подстройки их сопротивления к заданному значению.
- Потенциометр — переменный резистор, который управляет напряжением;
- Прецизионный потенциометр — потенциометр повышенной точности.
- Реостат — переменный резистор, управляющий силой тока[1];
[править] Классификация переменных резисторов
[править] По функциональному назначению
- Регулировочные резисторы
- Подстроечные резисторы предназначены для разовой или периодической настройки сопротивления. Ресурс их работы — не менее 500 циклов.
[править] По конструктивному исполнению
- Одноэлементные переменные резисторы.
- Многоэлементны пепеременные резисторы. Регулирование сопротивления резистивных элементов в многоэлементном резисторе может быть синхронным или независимым.
- сдвоенные
- строенные
- Переменные резисторы, совмещённые с выключателем.
По типу подвижной системы резистора:
- с круговым перемещением подвижного контакта
- с прямолинейным перемещением подвижного контакта
- однооборотные и многооборотные
- с фиксацией и без фиксации
По конструктивному исполнению резистивного элемента:
- Проволочные (резистивный элемент выполнен из проволоки на основе сплавов с высоким удельным сопротивлением)
- Непроволочные
- Плёночные (тонкослойные). Резистивный элемент представляет собой плёнку толщиной не более 50 мкм, нанесённую на поверхность изоляционного основания.
- Объёмные. Резистивный элемент имеет толщину более 0,1 мм.
По климатическому исполнению :
- Обычное.
- Тропическое.
[править] По способу монтажа
- Для печатного монтажа.
- Для навесного монтажа. Имеют выводы в виде лепестков.
Конструкция резистора может предусматривать фиксацию корпуса.
[править] Системы обозначения резисторов
[править] Системы обозначения, применявшиеся в СССР
[править] Ранние системы обозначения
До 1968 года в СССР не существало стандартизированной системы обозначений резисторов. В основу обозначений брались различные конструктивные признаки и технические особенности.
Примеры обозначений
- ППБ — проволочные переменные бескаркасные;
- СПО — сопротивления переменные объёмные;
- СП-I — СП-IV — переменные композиционные плёночные;
[править] ГОСТ 12453-68
Классификация введена начиная с 1968 года.
Обозначения переменных резисторов состоят из двух букв —
Наименование резистора | Вид резистивного элемента |
СП2 | Металлоплёночный или полупроводниковый тонкослойный металлоокисный |
СП3 | Плёночный композиционный |
СП4 | Объёмный композиционный |
СП5 | Проволочный |
Резисторы в тропическом исполнении маркируются буквой Т и разделяются на категории:
- А — для аппаратуры, предназначенной для работы на открытом воздухе;
- Н — для аппаратуры, предназначенной для работы в открытых производственных помещениях, защищённых от дождя и прямых солнечных лучей;
Виды функциональной характеристики переменных резисторов условно обозначаются буквами:
- А — линейная. (Допуск на функциональную характеристику составляет 10 — 30%, для прецизионных потенциометров — 0,05 — 1%.)
- Б — логарифмическая
- В — обратнологарифмическая
- С — s-образная
- Е — сопротивление резисторов типа Е имеет близкое к нулю постоянное значение при повороте подвижной системы по часовой стрелке из начального положения в среднее, а затем при дальнейшем вращении из среднего положения в крайнее нелинейно возрастает до полного сопротивления резистора.
- И — сопротивление резисторов типа И при повороте подвижной системы по часовой стрелке из начального положения в среднее нелинейно уменьшается от полного сопротивления резистора до сопротивления, близкого к нулю, постоянное значение , а затем при дальнейшем вращении из среднего положения в крайнее имеет постоянное малое значение.
Резисторы переменного сопротивления
Резисторы переменного сопротивления или, как их часто называют, переменные резисторы, применяют для регулирования силы тока и напряжения в электрических цепях. По конструктивному исполнению переменные резисторы бывают: одинарные, сдвоенные и т.д.; однооборотные и многооборотные; с выключателем и без выключателя.
По назначению переменные резисторы подразделяются на подстроечные, предназначенные для разовой или периодической подстройки аппаратуры, и регулировочные, применяющиеся при многократных регулировках в процессе эксплуатации. Подвижная ось подстроечных резисторов обычно выводится под шлиц.
По материалу резистивного элемента различают проволочные и непроволочные переменные резисторы. Последние, в свою очередь, подразделяются на композиционные, керметные.
Непроволочные переменные резисторы бывают с резистивным элементом поверхностного и объемного типов.
Переменные резисторы изготовляются с номинальными сопротивлениями, соответствующими ряду Е6. Более предпочтительные являются значения 1; 2,2 и 4,7 этого ряда. Допуски для непроволочных переменных резисторов установлены ±10, ±20, ±30%, а для проволочных – еще и ±5%. Конструкция переменного непроволочного резистора показана на рис. 7.
Рис. 7. Конструкция переменного непроволочного резистора: 1-резистивный элемент; 2-заклепка; 3, 11, 12-выводные лепестки; 4-основание из пластмассы; 5-токосъемник; 6-контактная щетка; 7-щеткодержатель; 8-ось; 9-втулка; 10-металлическая крышка.
Основные параметры резисторов
Помимо основных параметров, присущих резисторам постоянного сопротивления, переменные резисторы можно охарактеризовать еще и некоторыми другими, например, полным сопротивлением, минимальным сопротивлением, начальным скачком сопротивления, износоустойчивостью, дополнительными контактными шумами, формой функциональной характеристики.
Полным сопротивлением переменного резистора называют сопротивление между выводами неподвижного (11) и подвижного (12) контактов при максимальном угле поворота αм подвижной системы. Начальным или минимальным сопротивлением Rмин называют сопротивление между этими же выводами при начальном положении подвижной системы при (α=0).
Начальный скачок сопротивления – это та минимальная величина, с которой начинается плавное изменение сопротивления резистора при перемещении подвижного контакта по резистивному элементу.
Начальный скачок обычно составляет 1-2% полного сопротивления для резисторов с логарифмической функциональной характеристикой и 5-10% для резисторов с линейной характеристикой.
Износоустойчивость
характеризует способность резистора сохранять свои
параметры при многократных вращениях
подвижной системы и оценивается числом
циклов перемещения подвижной системы
в течение срока службы при сохранении
параметров в пределах установленных
норм. Износоустойчивость подстроечных
резисторов обычно не превышает 1000
циклов, регулировочных резисторов
общего применения – 0,5∙10
Дополнительные контактные шумы возникают между резистивным элементом и подвижным контактом как при вращении подвижной системы (шумы вращения), так и при фиксированном положении последней. Уровень шумов вращения значительно превышает уровень тепловых и токовых шумов резистора.
Функциональная характеристика изменения сопротивления, т.е. зависимость изменения сопротивления R между выводами неподвижного и подвижного контактов резистора от угла α поворота подвижной системы, зависит от способа изготовления резистивного элемента. Чаще всего применяются резисторы с линейной (группа А), обратно логарифмической (группа Б) и логарифмической (группа В) функциональными характеристиками (рис. 8).
Рис. 8. Функциональные характеристики переменных резисторов: 1 – линейная; 2 – логарифмическая; 3 – обратно логарифмическая; 4 – S-образная
Встречаются резисторы с функциональными характеристиками и других видов,
например, в приводах различных устройств используются резисторы с синусоидальной, косинусоидальной и другими характеристиками.
Относительное сопротивление резисторов группы А линейно зависит от относительного угла поворота подвижной системы R=Rмин+ψRм, где ψ= α/αм – относительное смещение подвижного контакта; Rмин – начальное сопротивление резистора; Rм – его полное сопротивление.
Для резисторов группы В логарифм относительного изменения сопротивления пропорционален относительному смещению подвижного контакта ψ:
Применяя такой резистор в усилителе в качестве регулятора громкости, можно обеспечить изменение громкости звука (в децибелах) на выходе усилителя, пропорционально углу поворота регулятора.
Обратно логарифмическая функциональная характеристика (кривая 3 на рис. 8) представляет собой кривую 2, повернутую на 180° в плоскости рисунка, и отличается более плавным изменением сопротивления при больших углах поворота. Резисторы с обратно логарифмической функциональной характеристикой применяют обычно в регуляторах тембра приемных и усилительных устройств.
Резисторы переменные, постоянные вся истина!
Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для новой статьи. Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот этот самый радиолюбительский блог, так что добро пожаловать!
В прошлой статье мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить что представляет собой электричество. В помощь применял некие «сантехнические аналогии».
Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих радиолюбителей- электронщиков, так что дальше будет больше — [urlspan]не пропустите.[/urlspan]
Содержание статьи
Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих могут вызвать массу вопросов. А отсутствие ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.
Что такое сопротивление?
Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.
Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.
Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.
Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.
В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.
Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.
Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.
Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?
При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.
Как выглядит резистор?
В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.
Постоянные резисторы.
Само название говорит о том, что они обладают постоянным фиксированным сопротивлением. Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.
Рассеиваемая мощность — это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).
Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?
Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24
Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.
На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.
Переменные резисторы
Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?
Многие регуляторы и различные «крутилки»представляют собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.
Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора. Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.
Более того, бывают еще и сдвоенные , строенные , счетверенные и так далее переменные резисторы. Обычно их применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.
Условное графическое изображение резистора на электрических схемах. |
Подстроечные резисторы.
Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?
Переменный резистор нам в этом не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.
Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.
Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.
Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.
Условное графическое изображение подстроечного резистора |
Формулы и свойства
При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.
Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.
И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.
Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.
Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе , новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора 🙂
Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А. Мощность которая будет рассеиваться на резисторе будет равняться
Видите какие грабли могут подстерегать на пути. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.
Последовательное соединение резисторов
А давайте теперь посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят последовательно три резистора с различным сопротивлением.
Попробуем определить какой ток протекает в цепи.
Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один. Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет , то ясно, что ток будет один.
Для определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме.
Здесь я приведу формулу полного сопротивления при последовательном расположении резисторов. |
Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА
Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.
Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.
Кликните для увеличения
На изображении видно как меняется напряжение между разными точками -потенциалами.
Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.
Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт. Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.
Сейчас я вам покажу какая мощность будет для резисторов имеющих разное сопротивление.
Кликните для увеличения
Мощность потребляемая всей цепочкой, изображенной на рисунке, будет равняться P=I*U=0.09A*10В=0,9Вт.
Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;
Для резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;
Для резистора R3: P=I*U=0.09A*9В=0,81Вт.
Из этих наших расчетов становится понятной закономерность:
- Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
- Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.
Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.
Параллельное соединение резисторов
С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.
Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.
Итак суть заключается в том что последовательная схема соединения резисторов является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.
Рассмотрим это подробнее.
Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала — земле. Маршрут тока будет : Точка10В —>>точка А—>>точка В—>>Земля.
На участке пути Точка 10 —Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.
Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току на самом первом отрезке (от источника питания до точки А).
Давайте рассчитаем эту схему и узнаем значение тока на каждом участке.
Для начала узнаем сопротивление участка цепи резисторов R2, R4
Значение резистора R3 нам известен и равен 100Ом.
Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:
Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.
Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.
Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.
Теперь ток на участке до разветвлений (участок Точка 10В —>>Точка А) мы сможем найти по формуле Ома.
I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера. Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.
Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.
Оно как уже известно будет меньше напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.
Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.
Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.
Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.
Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.
В тоже время напряжение между точками А и В, будет относиться к каждому из параллельных участков (напряжение U=9.66В мы использовали для расчетов и там и там ).
Здесь хочется сказать как напряжение и ток распределяются по схеме.
Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.
Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится в I как было и в самом начале, получаем I=I1+I2+I3.
Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение AC), не равна напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).
Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу 🙂
Преобразование звезды в треугольник и обратно
Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть последовательное соединение а где параллельное. И как же с этим быть?
Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.
Для преобразования треугольника в звезду считать будем по формулам:
Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:
С вашего позволения я не буду приводить конкретные примеры, все что требуется это только подставить в формулы конкретные значения и получить результат.
Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.
Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.
Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах «Искусство схемотехники» и «Занимательная микроэлектроника», так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.
P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно [urlspan]подпишитесь на обновления.[/urlspan]
Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.
А на этом у меня действительно все, я желаю вам успехов во всем , прекрасного настроения и до новых встреч.
С н/п Владимир Васильев.
Конструктор ЗНАТОК 320-Znat «320 схем»
Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.
Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.
Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.
Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:
Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.
Переменное сопротивление — это… Что такое Переменное сопротивление?
- Переменное сопротивление
-
Мощный тороидный реостат
Реоста́т (потенциометр, переменное сопротивление, переменный резистор, от греч. ρηος — поток и греч. στατος — стоящий) — электрический аппарат, служащий для регулировки и получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.
Изменением сопротивления цепи, в которую включен реостат, возможно достичь изменения величины тока или напряжения. При необходимости изменения тока или напряжения в небольших пределах реостат включают в цепь последовательно. Для получения значений тока и напряжения от нуля до максимального значения применяется потенциометрическое включение реостата, являющего в данном случае регулируемым делителем напряжения.
Использование реостата возможно как в качестве электроизмерительного прибора, так и прибора в составе электрической или электронной схемы.
Основные типы реостатов
- Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление.
- Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с подсоединённым к нему контактом слой окалины соскабливается, и электричество идёт из проволоки на ползунок. Чем больше витков от одого контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе.
Резистивные датчики угла поворота
В принципе, любой переменный резистор является таким датчиком по определению. Нормируется только функция угла, линейная или экспоненциальная. Кроме того, существуют прецизионные резистивные датчики угла поворота с разрешением лучше угловой минуты.
Ссылки
Wikimedia Foundation. 2010.
- Переменная типа Дельты Щита
- Переменные
Смотреть что такое «Переменное сопротивление» в других словарях:
переменное сопротивление — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN variable resistance … Справочник технического переводчика
переменное сопротивление — kintamoji varža statusas T sritis fizika atitikmenys: angl. variable resistance vok. veränderlicher Widerstand, m rus. переменное сопротивление, n pranc. résistance variable, f … Fizikos terminų žodynas
переменное напряжение — Напряжения, переменные во времени, возникающие в элементах конструкции под действием нагрузок, переменных по величине или направлению, а также нагрузок, перемещающихся относительно рассматриваемого элемента.… … Справочник технического переводчика
Сопротивление среды — (мех.) окружающей движущееся тело, представляет собой совокупность сил, противодействующих движению тела и образуемых ударами частиц среды и трением их о поверхность тела. Полной и точной теории С. среды мы не имеем; немногие теоретические выводы … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Ч3-33 — Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… … Википедия
ГОСТ Р 53682-2009: Установки нагревательные для нефтеперерабатывающих заводов. Общие технические требования — Терминология ГОСТ Р 53682 2009: Установки нагревательные для нефтеперерабатывающих заводов. Общие технические требования оригинал документа: 3.2 анкер (anchor, tieback): Металлическое или огнеупорное приспособление, которое фиксирует расположение … Словарь-справочник терминов нормативно-технической документации
ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ — общее название разнообразных приборов, действие к рых основано на свойствах полупроводников, однородных (табл. 1) и неоднородных, содержащих p n переходы (см. ЭЛЕКТРОННО ДЫРОЧНЫЙ ПЕРЕХОД) и гетеропереходы (табл. 2, 3). В П. п. используются разл.… … Физическая энциклопедия
Реостат — Мощный тороидный реостат Реостат (потенциометр, переменное сопротивление, переменный резистор; от др. греч … Википедия
Переменный резистор — Мощный тороидный реостат Реостат (потенциометр, переменное сопротивление, переменный резистор, от греч. ρηος поток и греч. στατος стоящий) электрический аппарат, служащий для регулировки и получения требуемой величины сопротивления. Как… … Википедия
Потентиометр — Мощный тороидный реостат Реостат (потенциометр, переменное сопротивление, переменный резистор, от греч. ρηος поток и греч. στατος стоящий) электрический аппарат, служащий для регулировки и получения требуемой величины сопротивления. Как… … Википедия