Параллельное и последовательное соединение закон ома: Закон ома параллельное и последовательное соединение проводников

Содержание

Закон ома параллельное и последовательное соединение проводников

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Сопротивление проводников. Параллельное и последовательное соединение проводников.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему [1] . Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

Последовательное соединение проводников

По закону Ома, напряжения U1 и U2 на проводниках равны

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

где R – электрическое сопротивление всей цепи. Отсюда следует:

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы:

Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно,I = I1 + I2.

Параллельное соединение проводников

Записывая на основании закона Ома

где R – электрическое сопротивление всей цепи, получим

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны вомах (Ом)

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением. В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным. Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

С помощью такой же схемы можно установить значение эквивалентного сопротивления. С этой целью в электрическую цепь добавляется вольтметр. Это позволяет измерить напряжение при параллельном соединении, сила тока при этом остается такой же. Здесь также имеются точки пересечения проводников, соединяющих обе лампы.

В результате измерений общее напряжение при параллельном соединении составит: U = U1 = U2. После этого можно рассчитать эквивалентное сопротивление, условно заменяющее все элементы, находящиеся в данной цепи. При параллельном соединении, в соответствии с законом Ома I = U/R, получается следующая формула: U/R = U1/R1 + U2/R2, в которой R является эквивалентным сопротивлением, R1 и R2 – сопротивления обеих лампочек, U = U1 = U2 – значение напряжения, показываемое вольтметром.

Следует учитывать и тот фактор, что токи в каждой цепи, в сумме составляют общую силу тока всей цепи. В окончательном виде формула, отражающая эквивалентное сопротивление будет выглядеть следующим образом: 1/R = 1/R1 + 1/R2. При увеличении количества элементов в таких цепях – увеличивается и число слагаемых в формуле. Различие в основных параметрах отличают друг от друга и источников тока, позволяя использовать их в различных электрических схемах.

Параллельное соединение проводников характеризуется достаточно малым значением эквивалентного сопротивления, поэтому сила тока будет сравнительно высокой. Данный фактор следует учитывать, когда в розетки включается большое количество электроприборов. В этом случае сила тока значительно возрастает, приводя к перегреву кабельных линий и последующим возгораниям.

Законы последовательного и параллельного соединения проводников

Данные законы, касающиеся обоих видов соединений проводников, частично уже были рассмотрены ранее.

Для более четкого их понимания и восприятия в практической плоскости, последовательное и параллельное соединение проводников, формулы следует рассматривать в определенной последовательности:

  • Последовательное соединение предполагает одинаковую силу тока в каждом проводнике: I = I1 = I2.
  • Закон ома параллельное и последовательное соединение проводников объясняет в каждом случае по-своему. Например, при последовательном соединении, напряжения на всех проводниках будут равны между собой: U1 = IR1, U2 = IR2. Кроме того, при последовательном соединении напряжение составляет сумму напряжений каждого проводника: U = U1 + U2 = I(R1 + R2) = IR.
  • Полное сопротивление цепи при последовательном соединении состоит из суммы сопротивлений всех отдельно взятых проводников, независимо от их количества.
  • При параллельном соединении напряжение всей цепи равно напряжению на каждом из проводников: U1 = U2 = U.
  • Общая сила тока, измеренная во всей цепи, равна сумме токов, протекающих по всем проводникам, соединенных параллельно между собой: I = I1 + I2.

Для того чтобы более эффективно проектировать электрические сети, нужно хорошо знать последовательное и параллельное соединение проводников и его законы, находя им наиболее рациональное практическое применение.

Смешанное соединение проводников

В электрических сетях как правило используется последовательное параллельное и смешанное соединение проводников, предназначенное для конкретных условий эксплуатации. Однако чаще всего предпочтение отдается третьему варианту, представляющему собой совокупность комбинаций, состоящих из различных типов соединений.

В таких смешанных схемах активно применяется последовательное и параллельное соединение проводников, плюсы и минусы которых обязательно учитываются при проектировании электрических сетей. Эти соединения состоят не только из отдельно взятых резисторов, но и довольно сложных участков, включающих в себя множество элементов.

Смешанное соединение рассчитывается в соответствии с известными свойствами последовательного и параллельного соединения. Метод расчета заключается в разбивке схемы на более простые составные части, которые считаются отдельно, а потом суммируются друг с другом.

Закон Ома для участка цепи. Закон Джоуля — Ленца. Работа и мощность электрического тока. Виды соединения проводников.

Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: 

Последовательное соединение.

1. Сила тока во всех последовательно соединенных участках цепи одинакова:

I1=I2=I3=…=In=…

2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке:

U=U1+U2+…+Un+…

3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка:

R=R1+R2+…+Rn+…

Если все сопротивления в цепи одинаковы, то:

R=R1. N

При последовательном соединении общее сопротивление увеличивается (больше большего).

Параллельное соединение.

1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках.

I=I1+I2+…+In+…

2. Напряжение на всех параллельно соединенных участках цепи одинаково:    

U1=U2=U3=…=Un=…

 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):

Если все сопротивления в цепи одинаковы, то: 

При параллельном соединении общее сопротивление уменьшается (меньше меньшего).

4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+…+An+…  

т.к.  A=I2Rt=I2(R1+R2+…+Rn+…)t.

5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+…+Pn+…  

6. Т.к. силы тока во всех участках одинаковы, то:       U1:U2:…:Un:…  = R1:R2:…:Rn:…

Для двух резисторов:  — чем больше сопротивление, тем больше напряжение.

4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+…+An+…   

т.к.     .

 

5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+…+Pn+…  

6. Т.к. напряжения на всех участках одинаковы, то:

I1R1= I2R2=…= I3R3=…

Для двух резисторов:  — чем больше сопротивление, тем меньше сила тока.

Элеком37, Закон Ома. Последовательное и параллельное соединение проводников.

Закон Ома. Последовательное и параллельное соединение проводников.

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. 10 класс. Физика. — Объяснение нового материала.

Комментарии преподавателя

Закон Ома для участка цепи

Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Ома оказался справедливым не только для металлов, но и для растворов электролитов. Сформулированный закон имеет место для так называемого однородного участка цепи – участка, не содержащего источников тока.

Математическая запись закона Ома проста, как и его формулировка, но экспериментально подтвердить эту зависимость очень трудно. Сила тока, протекающая по участку цепи, мала. Поэтому используют достаточно чувствительные приборы. Г. Ом изготовил чувствительный прибор для измерения силы тока, а в качестве источника тока использовал термопару. Действие амперметра и вольтметра основано на применение закона Ома для участка цепи. Угол поворота стрелки прибора пропорционален силе тока.

Из математической записи закона Ома:

 

можно выразить напряжение :

и сопротивление проводника:

.

Таким образом, закон Ома связывает три параметра, характеризующих постоянный электрический ток, проходящий по проводнику, и позволяет находить любой из них, если известны два других.

Закон Ома имеет границы применимости и выполняется только в том случае, когда при прохождении тока температура заметно не меняется. На вольт–амперной характеристике лампы накаливания видно, что график сильно искривляется при напряжении выше 10В, значит, закон Ома выше этого напряжения применять нельзя.

Также нельзя говорить, что сопротивление проводника зависит от напряжения и силы тока в цепи. Сопротивление участка цепи зависит от свойств проводника: длины, площади поперечного сечения и материала, из которого состоит проводник.

где l-длина проводника, s-его площадь поперечного сечения.

ρ –удельное сопротивление проводника – это физическая величина, характеризующая зависимость сопротивления проводника от материала, из которого он изготовлен.

Удельное сопротивление показывает, каким сопротивлением обладает сделанный из этого вещества проводник длиной 1м и площадью поперечного сечения 1м2 .

Из формулы видно, что единицей измерения в системе СИ является Ом·м. Но так как площадь поперечного сечения проводника достаточно мала, используют единицы измерения

при вычислении площадь поперечного сечения проводника следует выражать в мм2.

В заключении хочется заметить, что Ом начал свои опыты, когда был учителем физики в гимназии. В своих экспериментах Ом брал куски проволоки одинакового диаметра, но разного материала и изменял их длину таким образом, чтобы в цепи сила тока имела одинаковое значение. Находящаяся рядом магнитная стрелка отклонялась при прохождении тока в цепи. Установив связь между напряжением и силой тока, Г. Ом вывел один из основных законов постоянного тока.

Последовательное соединение проводников

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного приёмника электрического тока, а из нескольких различных, которые могут быть соединены между собой по-разному. Зная сопротивление каждого и способ их соединения, можно рассчитать общее сопротивление цепи.

На рисунке а изображена цепь последовательного соединения двух электрических ламп, а на рисунке б — схема такого соединения. Если выключать одну лампу, то цепь разомкнётся и другая лампа погаснет.

Рис. Последовательное включение лампочек и источников питания

Мы уже знаем, что при последовательном соединении сила тока в любых частях цепи одна и та же, т. е.

I = I1 = I2

А чему равно сопротивление последовательно соединённых проводников?

Соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

Последовательное соединение проводников

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):

R = R1 + R2

Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома:

U1 = IR1, U2 = IR2.

Из приведённых равенств видно, что напряжение будет большим на проводнике с наибольшим сопротивлением, так как сила тока везде одинакова.

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

U = U1 + U2.

Это равенство вытекает из закона сохранения энергии. Электрическое напряжение на участке цепи измеряется работой электрического тока, совершающейся при прохождении по участку цепи электрического заряда в 1 Кл. Эта работа совершается за счёт энергии электрического поля, и энергия, израсходованная на всём участке цепи, равна сумме энергий, которые расходуются на отдельных проводниках, составляющих участок этой цепи.

Все приведённые закономерности справедливы для любого числа последовательно соединённых проводников.

Пример 1. Два проводника сопротивлением R1 = 2 Ом, R2 = 3 Ом соединены последовательно. Сила тока в цепи I = 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Запишем условие задачи и решим её.


ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

 

Расчет параметров электрической цепи
при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов
во всех параллельно соединенных участках

2. напряжение на всех параллельно соединенных участках цепи одинаково


3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению :

( R — сопротивление проводника,
1/R — электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

( при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков,
равна сумме работ на отдельных участках:

A=A1+A2

5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков,
равна сумме мощностей на отдельных участках:

P=P1+P2

Для двух сопротивлений:

т.е. чем больше сопротивление, тем меньше в нём сила тока.

Домашняя работа.

Задание 1. Ответить на вопросы.

  1. Какое соединение проводников называют последовательным? Изобразите его на схеме.
  2. Какая электрическая величина одинакова для всех проводников, соединённых последовательно?
  3. Как найти общее сопротивление цепи, зная сопротивление отдельных проводников, при последовательном соединении?
  4. Как найти напряжение участка цепи, состоящего из последовательно соединённых проводников, зная напряжение на каждом?
  5. Какое соединение проводников называют параллельным? Изобразите его на схеме.
  6. Какая из электрических величин одинакова для всех проводников, соединённых параллельно?
  7. Как выражается сила тока в цепи до её разветвления через силы токов в отдельных ветвях разветвления?
  8. Как изменяется общее сопротивление разветвления после увеличения числа проводников в разветвлении?
  9. Какое соединение проводников применяется в жилых помещениях? Какие напряжения используются для бытовых нужд?

Задание 2.Решите задачи.

1. Две лампочки соединены последовательно. Сила тока на первой лампочке 2А. Найдите общее напряжение и напряжение на каждой из ламп, если сопротивление на первой лампе 3Ом, а на второй 4Ом.

2. Две лампочки соединены параллельно. Напряжение на второй лампочке10В. Найдите силу тока в цепи и на каждой из ламп, если сопротивление на первой лампе 1Ом, а на второй 2Ом.

К занятию прикреплен файл  «Это интересно». Вы можете скачать файл в любое удобное для вас время.

Использованные источники:

  • http://www.tepka.ru/
  • http://class-fizika.narod.ru
  • http://www.youtube.com/watch?v=cVKE9NItreo
  • http://znaika.ru/catalog/10-klass/physics/
  • http://www.youtube.com/watch?v=NB7hOVYe7h0
  • https://www.youtube.com/watch?v=cVKE9NItreo
  • https://www.youtube.com/watch?v=0hFWeR8ybxs
  • http://www.youtube.com/watch?v=EDI8DzWSSWY
  • http://www.youtube.com/watch?v=bH_-qGnjJqc
     

 


 

 

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников


Напряжение, сила тока и сопротивление — физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик Ом. Закон Ома звучит так: Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка: I = U / R. Причиной сопротивления металлического проводника является взаимодействие электронов при их движении с ионами кристаллической решетки. В электрических цепях чаще всего проводники (потребители электрической энергии) соединяются последовательно (например, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы).

При последовательном соединении (рис. 1) сила тока в обоих проводниках (лампочках) одинакова: I = I1 = I2, напряжение на концах рассматриваемого участка цепи складывается из напряжения на первой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротивлений лампочек R = R1 + R2.

При параллельном соединении (рис. 2) резисторов напряжение на участке цепи и на концах резисторов одинаково: U = U1 = U2. Сила тока в неразветвленной части цепи равна сумме сил токов в от­дельных резисторах: I = I1 + I2. Общее сопротивление участка меньше сопротивления каждого резистора. Если сопротивления резисторов одинаковы (R1 = R2), то общее сопротивление участка R= R1 /2 = R2/2. Параллельно соединяются сетевые потребители, которые рассчитаны на напряжение, равное напряжению сети.


Закон ома для параллельного соединения резисторов

Здравствуйте, уважаемые читатели сайта sesaga.ru. Очень часто в практике радиолюбителя при повторении или наладке радиоэлектронных устройств не всегда под рукой оказывается резистор с нужным сопротивлением, хотя резисторов с другими сопротивлениями имеются в достаточном количестве.

В такой ситуации поступают просто: берут несколько резисторов (два или три) с разными сопротивлениями и, соединяя их последовательно или параллельно, подбирают нужное сопротивление.

В этой статье Вы узнаете, как применяя то или иное соединение можно подобрать необходимое сопротивление.

Последовательное соединение резисторов.

Последовательным называют соединение, при котором резисторы следуют друг за другом и образуют электрическую цепь из нескольких элементов, в которой конец одного резистора соединен с началом другого и т.д.

В последовательной цепи электрической ток поочередно протекает по всем резисторам и преодолевает сопротивление каждого из них. При этом ток в этой цепи одинаков. И если последовательно соединить два резистора R1 и R2, их общее (полное) сопротивление Rобщ будет равно сумме их сопротивлений. Это условие справедливо для любого числа резисторов, где:

Например.
При соединении двух резисторов с номиналами R1 = 150 Ом и R2 = 330 Ом их общее сопротивление составит Rобщ = 150 + 330 = 480 Ом.

При соединении трех резисторов R1 = 20 кОм, R2 = 68 кОм и R3 = 180 кОм их общее сопротивление составит Rобщ = 20 + 68 + 180 = 268 кОм.

Запомните. Из нескольких соединенных последовательно резисторов их общее сопротивление Rобщ определяет тот, у которого сопротивление больше по отношению к другим резисторам в этой цепи.

Параллельное соединение резисторов

При параллельном соединении резисторов соединяются их одноименные выводы: начальные выводы соединяются в одной точке, а конечные выводы в другой. Такой способ включения облегчает прохождение электрическому току, потому что он разветвляясь, одновременно протекает по всем соединенным таким образом резисторам.

При параллельном соединении резисторов складываются не сопротивления, а их электрические проводимости (величины, обратные сопротивлениям, т.е. 1/R), поэтому общее (полное) сопротивление Rобщ уменьшается и всегда меньше сопротивлений любого резистора в этой цепи. Формула для определения полного сопротивления имеет вид:

Если параллельно включены два резистора с сопротивлениями R1 и R2, тогда основную формулу немного упрощаем и получаем:

При включении трех резисторов расчет общего сопротивления будет таким:

Например.
При соединении двух резисторов с номиналами R1 = 47 кОм и R2 = 68 кОм их общее сопротивление составит Rобщ = 47•68 / (47 + 68) = 27,8 кОм.

При соединении трех резисторов R1 = 10 Ом, R2 = 15 Ом и R3 = 33 Ом их общее сопротивление равно Rобщ = 10•15•33 / (15•33) + (10•33) + (10•15) = 5,07 Ом.

На заметку. При соединении двух резисторов с одинаковыми номиналами их общее сопротивление Rобщ равно половине сопротивления каждого из них.

Из приведенных примеров можно сделать вывод, что если необходим резистор с большим сопротивлением, применяют последовательное соединение. Если же резистор необходим с меньшим сопротивлением, применяют параллельное соединение.

Ну вот, в принципе, и все, что хотел сказать о последовательном и параллельном соединении резисторов. И в дополнение к статье предлагаю еще рассмотреть и смешанное соединение.
Удачи!

Зависимость между величинами, характеризующими электрическую цепь, т. е. между э.д.с, током и сопротивлением, устанавливается законом Ома. Этот закон формулируется так: ток в замкнутой неразветвленной цепи прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению цепи

,

Е – э. д. с. источника электрической энергии, В;

R- сопротивление внешнего участка цепи, Ом; r — сопротивление внутреннего участка цепи, Ом.

Эта формула может быть представлена и в таком виде: E=I(R+r)=IR+Ir, т. е. электродвижущая сила, создаваемая ис­точником электрической энергии, равна току, умноженному на об­щее сопротивление цепи, и складывается из двух слагаемых, из которых первое слагаемое IR представляет собой разность потенциалов на зажимах внешнего сопротивления (называется на­пряжением на зажимах внешней цепи) и обозна­чается через с7, а второе слагаемое носит название падения напряжения на внутреннем участке цепи.

Для внешней цепи и для отдельных ее участков закон Ома обычно представляют в следующем виде: I=U/R, т. е. ток прямо пропорционален напряжению и обратно пропорционален сопротивлению данного участка цепи.

Различные резисторы в электрическую цепь можно включить последовательно, параллельно и смешанным способом (рис. 156).

Последовательным соединением резисторов называют такое соединение, когда конец одного резистора сое­диняют с началом второго, конец второго — с началом третьего и так далее, а конец последнего и начало первого резистора подклю­чаются к зажимам источника тока (рис. 156, а). Основным свойст­вом последовательного соединения является то, что при таком соединении сила тока во всех резисторах внешней и вну­тренней цепи одинакова и согласно закону Ома U=I x (R1+R2+R3+R4+. )

Общее сопротивление последовательной цепи равно сумме всех соединенных резисторов, т. е. R = R1+R2+Rз+R4+.

Напряжение на зажимах источника тока при последователь­но соединенных резисторах равно произведению тока на соп­ротивление внешнего участка цепи. Обозначив через U1 U2 U3 U4 напряжения на концах каждого резистора, получим: U1 =IR1 U2=IR2 U3 = IR3; U4 = IR4а следовательно, U= u1+u2+u3+u4.

Напряжение на полюсах источника тока при последователь­ном соединении резисторов равно сумме напряжений на от­дельных участках цепи.

Параллельным соединением резисторов называется такое соединение, при котором -начала всех резисторов соединяются в один общий узел, а концы — в другой. При этом зажимы источника тока включаются к узлам цепи А и В (рис. 156, б).

Если напряжение между точками А и В равно U, то такое же напряжение будет между началом и концом каждого резистора. Тогда для каждого участка цепи по закону Ома можно за­писать:

= или

т. е. при параллельно соединенных резисторах ток будет больше там, где меньше сопротивление.

Основным свойством параллельного соединения является то, что в каждом разветвлении цепи устанавливается свой ток, обрат­но пропорциональный сопротивлению данного участка цепи.

В точке В ток разветвляется в нескольких направлениях (на несколько ветвей), а в сумме он равен I. Поэтому при парал­лельном соединении нескольких резисторов ток, подведенный к этим резисторам, равен сумме токов во всех резисторах;

Для определения общего сопротивления параллельной цепи пользуются следующим соотношением: общая проводимость (обратная величина сопротивления) параллельной цепи равна сумме проводимостей отдельных разветвлении цепи, т. е.

Если в электрической цепи часть резисторов включена последовательно, а часть .параллельно, то такое соединение называется смешанным. На рис. 156, в резисторы R1 и R2 соединены после­довательно, а R3 и R4— параллельно.

Не нашли то, что искали? Воспользуйтесь поиском:

Физика > Параллельное соединение резисторов

Чему равно сопротивление резисторов при параллельном соединении: общее сопротивление цепи, схема параллельного соединения, формула закона Ома, расчет.

В параллельной цепи полное сопротивление достигает суммы инверсии каждого.

Задача обучения

  • Определить общее сопротивление.

Основные пункты

  • В параллельном соединении полное сопротивление меньше, чем наименьшее из отдельных.
  • Каждый резистор наделен одним напряжением.
  • Параллельные резисторы получают общее количество тока, но и делят его.

Термины

  • Параллельность – расположение электрических составляющих так, чтобы ток протекал вдоль двух или более путей.
  • Сопротивление – противодействие потоку электрического тока.

Обзор

Резисторы в электрической схеме цепи могут располагаться последовательно или параллельно. Полное сопротивление зависит от индивидуальных значений и метода связи.

Параллельное соединение

Мы сталкиваемся с параллельным соединением резисторов, если каждый резистор подключается к источнику напряжения индивидуально. Поэтому каждый обладает полным напряжением. Ниже представлена схема параллельного соединения резисторов в электрической цепи.

Параллельное соединение резисторов

Резисторы используют столько тока, как если бы они были единственными в цепи. Это применяют в доме, чтобы обеспечить независимую работу прибора.

Закон Ома в параллельном подключении

У каждого резистора есть полное напряжение. Тогда закон Ома будет выглядеть как:

Суммарный ток будет приравниваться к результату сложения отдельных:

Три резистора в параллельном соединении с батареей и эквивалентным сопротивлением

Подставим выражение для отдельных токов: I = V/R1 + V/R2 + V/R3 или I = V (1/R1 + 1/R2 + 1/R3).

Мы видим, что общее сопротивление в параллельном подключении достигает суммы инверсии каждого отдельного. Поэтому выходим на формулу:

Подобное соотношение выводит на суммарное сопротивление, которое уступает наименьшему из индивидуальных. При параллельном подключении больше тока протекает от источника, чем поток для каждого по отдельности, поэтому сопротивление ниже.

Каждый резистор обладает полным напряжением источника, но и разделяют общий ток. Например, у нас есть батарея 1.5В. В последовательном подключении две лампочки будут гореть также ярко, как если бы это была всего одна. Однако батарея расходуется быстрее, потому что гарантирует полную энергию сразу для двух лампочек.

Закон Ома для участка цепи, последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля – Ленца, закон Кулона

§ 3. Электродинамика

3.1. Основные понятия и законы электростатики Закон Кулона:
сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

где ε0 = 8, 85 · 10−12 Ф/м (электрическая постоянная).

Точечными зарядами называют такие заряды, расстояния между которыми гораздо больше их размеров.
 Электрические заряды взаимодействуют между собой с помощью электрического поля. Для качественного описания электрического поля используется силовая характеристика, которая называется «напряжённостью электрического поля» (E). Напряжённость электрического поля равна отношению силы, действующей на пробный заряд, помещённый в некоторую точку поля, к величине этого заряда:

 Направление вектора напряжённости совпадает с направлением силы, действующей на положительный пробный заряд. [E]=B/м. Из закона Кулона и определения напряжённости поля следует, что напряжённость поля точечного заряда

где q — заряд, создающий поле; r — расстояние от точки, где находится заряд, до точки, где создаётся поле.
 Если электрическое поле создаётся не одним, а несколькими зарядами, то для нахождения напряжённости результирующего поля используется принцип суперпозиции электрических полей: напряжённость результирующего поля равна векторной сумме напряжённостей полей, созданных каждым из зарядов — источников в отдельности:

Работа электрического поля при перемещении заряда: найдём работу перемещения положительного заряда силами Кулона в однородном электрическом поле. Пусть поле перемещает заряд q из точки 1 в точку 2:


 В электрическом поле работа не зависит от формы траектории, по которой перемещается заряд. Из механики известно, что если работа не зависит от формы траектории, то она равна изменению потенциальной энергии с противоположным знаком:

Отсюда следует, что

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Запишем работу поля в виде

Здесь U = ϕ1 − ϕ2разность потенциалов в начальной и конечной точках траектории. Разность потенциалов называют также напряжением

 Часто наряду с понятием «разность потенциалов» вводят понятие «потенциал некоторой точки поля». Под потенциалом точки подразумевают разность потенциалов между данной точкой и некоторой заранее выбранной точкой поля. Эту точку можно выбирать в бесконечности, тогда говорят о потенциале относительной бесконечности.
Потенциал поля точечного заряда подсчитывается по формуле

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

3.2. Электроёмкость. Конденсаторы. Энергия электрического поляЭлектроёмкостью тела называют величину отношения

 Формула для подсчёта ёмкости плоского конденсатора имеет вид:

где S — площадь обкладок, d — расстояние между ними.
 Конденсаторы можно соединять в батареи. При параллельном соединении ёмкость батареи C равна сумме ёмкостей конденсаторов:

Разности потенциалов между обкладками одинаковы, а заряды прямо пропорциональны ёмкостям.
 При последовательном соединении величина, обратная ёмкости батареи, равна сумме обратных ёмкостей, входящих в батарею:

 Заряды на конденсаторах одинаковы, а разности потенциалов обратно пропорциональны ёмкостям.
 Заряженный конденсатор обладает энергией. Энергию заряженного конденсатора можно подсчитать по любой из следующих формул:

3.3. Основные понятия и законы постоянного токаЭлектрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

Коэффициент пропорциональности R, называемый электрическим сопротивлением, является характеристикой проводника [R]=Ом. Сопротивление проводника зависит от его геометрии и свойств материала:

где l — длина проводника, ρ — удельное сопротивление, S — площадь поперечного сечения. ρ является характеристикой материала и его состояния. [ρ] = Ом·м.
 Проводники можно соединять последовательно. Сопротивление такого соединения находится как сумма сопротивлений:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

 Для того чтобы в цепи длительное время протекал электрический ток, в составе цепи должны содержаться источники тока. Количественно источники тока характеризуют их электродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесённого заряда:

 Если к зажимам источника тока подключить нагрузочное сопротивление R, то в получившейся замкнутой цепи потечёт ток, силу которого можно подсчитать по формуле

Это соотношение называют законом Ома для полной цепи.

 Электрический ток, пробегая по проводникам, нагревает их, совершая при этом работу

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.

Закон Джоуля-Ленца:

3.4. Основные понятия и законы магнитостатики  Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
 Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции.

 Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Единица магнитной индукции называется тесла (1 Тл)

Магнитным потоком Φ через поверхность контура площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь этой поверхности и на косинус угла между вектором магнитной индукции ➛B и нормалью к поверхности ➛n:

Единицей магнитного потока является вебер (1 Вб).
 На проводник с током, помещённый в магнитное поле, действует сила Ампера

Закон Ампера:
на отрезок проводника с током силой I и длиной l, помещённый в однородное магнитное поле с индукцией ➛B , действует сила, модуль которой равен произведению модуля вектора магнитной индукции на силу тока, на длину участка проводника, находящегося в магнитном поле, и на синус угла между направлением вектора ➛B и проводником с током:

 Направление силы Ампера определяется с помощью правила левой руки:
если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца указывали бы направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
 На электрический заряд, движущийся в магнитном поле, действует сила Лоренца. Модуль силы Лоренца, действующей на положительный заряд, равен произведению модуля заряда на модуль вектора магнитной индукции и на синус угла между вектором магнитной индукции и вектором скорости движущегося заряда:

 Направление силы Лоренца определяется с помощью правила левой руки: если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда, то отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряд. Для отрицательно заряженной частицы сила Лоренца направлена против направления большого пальца.

3.5. Основные понятия и законы электромагнитной индукции  Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Знак «−» связан с направлением индукционного тока. Оно определяется по правилу Ленца:
индукционный ток имеет такое направление, что его действие противодействует причине, вызвавшей появление этого тока.
 Магнитный поток, пронизывающий контур, прямо пропорционален току, протекающему в этом контуре:

Коэффициент пропорциональности L зависит от геометрии контура и называется индуктивностью, или коэффициентом самоиндукции этого контура. [L] = 1 Гн

Энергию магнитного поля тока можно подсчитать по формуле

где L — индуктивность проводника, создающего поле; I — ток, текущий по этому проводнику

3.6. Электромагнитные колебания и волныКолебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Если в LC-контур последовательно с L, C и R включить источник переменного напряжения, то в цепи возникнут вынужденные электрические колебания. Такие колебания принято называть переменным электрическим током
 В цепь переменного тока можно включать три вида нагрузки — конденсатор, резистор и катушку индуктивности.

 Конденсатор оказывает переменному току сопротивление, которое можно посчитать по формуле

 Ток, текущий через конденсатор, по фазе опережает напряжение на π/2 или на четверть периода, а напряжение отстаёт от тока на такой же фазовый угол.

 Катушка индуктивности оказывает переменному току сопротивление, которое можно посчитать по формуле

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Если K > 1, трансформатор понижающий, если K

3.2: Закон Ома, Закон Джоуля и последовательные / параллельные формулы

Закон Ома

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V. Немецкий физик Георг Симон Ом (1787–1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению : I V.

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием.Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение увеличивает ток, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или I.

Так, например, при удвоении сопротивления ток уменьшается вдвое. Объединение отношений тока к напряжению и тока к сопротивлению дает I =.

Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единицей измерения сопротивления является Ом и обозначается символом Ω (заглавная греческая омега). Перестановка I = дает R = , и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер: 1 Ом = 1.

На рисунке показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор.Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R.

Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Интерактивный или медиа-элемент был исключен из этой версии текста.Вы можете просмотреть его онлайн здесь: http://pressbooks.oer.hawaii.edu/buildingmaint/?p=150

Установление соединений: Соединения в реальном мире

Закон Ома (V = IR) — это фундаментальная зависимость, которая может быть представлена ​​линейной функцией, в которой наклон линии представляет собой сопротивление. Сопротивление представляет собой напряжение, которое необходимо приложить к резистору для создания в цепи тока 1 А. График (на рисунке ниже) показывает это представление для двух простых схем с резисторами, которые имеют разное сопротивление и, следовательно, разные наклоны.

На рисунке показано соотношение между током и напряжением для двух разных резисторов. Наклон графика представляет значение сопротивления, которое составляет 2 Ом и 4 Ом для двух показанных линий.

Материалы, которые подчиняются закону Ома и имеют линейную зависимость между напряжением и током, известны как омические материалы. С другой стороны, некоторые материалы демонстрируют нелинейную зависимость напряжения от тока и, следовательно, известны как неомические материалы.На рисунке ниже показаны соотношения между текущим напряжением для двух типов материалов.

Рисунок №. Показано соотношение между напряжением и током для омических и неомических материалов.

Очевидно, что сопротивление омического материала (показанного на (а)) остается постоянным и может быть рассчитано путем определения наклона графика, но это неверно для неомического материала (показанного на (b)).

Сопротивление варьируется на много порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом или более.Сопротивление сухого человека может составлять 105 Ом, тогда как сопротивление человеческого сердца составляет около 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

Дополнительные сведения можно получить, решив I = для V, что дает V = IR.

Это выражение для V можно интерпретировать как падение напряжения на резисторе, создаваемое током I.Фраза IR drop часто используется для обозначения этого напряжения. Например, фара в примере имеет падение ИК-излучения 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия.Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку PE = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. Рисунок.)

Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Создание соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

Интерактивный или медиа-элемент был исключен из этой версии текста.Вы можете просмотреть его онлайн здесь: http://pressbooks.oer.hawaii.edu/buildingmaint/?p=150

Последовательные и параллельные резисторы

Большинство схем имеет более одного компонента, называемого резистором, который ограничивает поток заряда в цепи. Мера этого предела для потока заряда называется сопротивлением. Простейшие комбинации резисторов — это последовательное и параллельное соединение, показанное на рисунке. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

Изображение показывает (а) Последовательное соединение резисторов. (б) Параллельное соединение резисторов.

При параллельном подключении резисторов от источника протекает больше тока, чем протекает по любому из них по отдельности, поэтому общее сопротивление ниже.

Закон Джоуля

Энергия у многих людей ассоциируется с электричеством. Зная, что мощность — это скорость использования или преобразования энергии, каково выражение для электроэнергии? На ум могут прийти линии электропередач.Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт. (См. Рисунок (a).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает.Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — это перемещенный заряд, а V — это напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна P = =.

Учитывая, что ток равен I = (, обратите внимание, что Δt = t здесь), выражение для мощности принимает вид P = IV.

Электрическая мощность ( P ) — это просто произведение тока на напряжение. Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность выражается в джоулях в секунду или ваттах. Таким образом, 1 A⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства. Эти розетки могут быть рассчитаны на 20 А, так что цепь может выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт.В некоторых приложениях электрическая мощность может выражаться в вольт-амперах или даже киловольт-амперах 1 кА⋅В = 1 кВт.

Чтобы увидеть отношение мощности к сопротивлению, мы объединяем закон Ома с P = IV. Подстановка I = V / R дает P = () V = V 2 / R . Аналогично, замена V = IR дает P = I (IR) = I 2 R . Для удобства здесь собраны три выражения для электроэнергии:

P = IV

P = V 2 / R

P = I 2 R.

Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.)

Из трех различных выражений для электроэнергии можно сделать разные выводы.Например, P = V 2 / R означает, что чем меньше сопротивление, подключенное к данному источнику напряжения, тем больше мощность. Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет около 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

Закон

Ома упрощен для последовательных параллельных цепей

Добро пожаловать в Закон Ома, упрощенный для последовательных параллельных цепей. К концу этого курса студенты будут знакомы с расчетами напряжения, тока, сопротивления и мощности для последовательных параллельных цепей. Подробно объясняется решение проблемы общего сопротивления, а также то, как использовать «математический» подход или «правило» для определения ответов.

Закон Ома выражает взаимосвязь между напряжением, током и сопротивлением в электрической или электронной цепи. Зная любые два значения: напряжение и ток, напряжение и сопротивление или ток и сопротивление, третье значение может быть вычислено математически. Понимание математики, лежащей в основе этих отношений, может значительно улучшить ваше понимание и диагностический мыслительный процесс.

Цепи серии используются, когда требуется напряжение ниже источника или батареи , или когда вы хотите, чтобы компоненты совместно использовали напряжение источника.

Параллельные схемы используются, когда мы хотим, чтобы каждое устройство получало полное напряжение источника. В автомобильных цепях большинство из них параллельны, потому что чаще всего желательно, чтобы каждый компонент получал полное напряжение батареи или источника.

Параллельные цепи серии используются, когда мы хотим, чтобы одно устройство, например коммутатор, управляло несколькими устройствами, или когда мы хотим снизить напряжение, доступное для группы устройств. Примером может служить использование резистора в последовательной части цепи для уменьшения напряжения, доступного для фар, которые включены параллельно, чтобы обеспечить работу дневных ходовых огней.Дневные ходовые огни (ДХО) используются для того, чтобы другие водители могли лучше видеть автомобиль в условиях дневного света.

Демонстрационные видеоролики с использованием лампочек и переключателей предоставляются в конце курса, чтобы помочь вам укрепить ваше понимание последовательного параллельного интерфейса.

Этот курс предназначен для студентов, изучающих автомобилестроение, начинающих студентов-электронщиков и тех, кто хочет сделать это самостоятельно, которые хотят иметь прочную основу и понимание последовательных параллельных цепей. Этот курс делает больше, чем просто показывает вам формулу и рассказывает о концепции , он проводит вас через мыслительный процесс, шаги и доводы, стоящие за ними.

Этот курс содержит практические примеры и подробные объяснения того, как рассчитывались и определялись ответы.

Понимание математики закона Ома в сочетании с основами электротехники может помочь учащимся понять неправильные измерения напряжения и улучшить поиск и устранение неисправностей, а также диагностику электрооборудования.

Приступим!

Расчет тока в последовательно-параллельных цепях

Расчет тока в последовательно-параллельных цепях


Рисунок 1. Резисторы последовательно-параллельные.

В цепи с резисторами, включенными как последовательно, так и параллельно, рассматривать схему как комбинацию параллельных частей и последовательных части.

Используйте формулы сопротивления для определения общего сопротивления серийных и параллельных частей. Затем используйте закон Ома, чтобы вычислить напряжение падает поперек и токи через каждую часть.

В схеме на Рисунке 1 сначала используйте параллельное сопротивление формула для определения эквивалентного сопротивления R 123 .

Тогда формула последовательного сопротивления говорит нам: R TOT = R 123 + R 4 . Итак, закон Ома дает полный ток цепи:

I TOT равно как текущий I 4 через R 4 и текущий I 123 вход / выход из параллельной части. Используя закон Ома:

Итак, зная значение В 123 , снова применим закон Ома, чтобы найти ток I 1 через параллельный резистор R 1 :

и аналогично для I 2 и I 3 .

Пример

Для схемы на рисунке 1 предположим, что E = 9 В, R 1 = 500 Ом, R 2 = 1,0 кОм, R 3 = 1,5 кОм и R 4 = 220 Ом. Тогда R 123 = 273 Ом и R TOT = 493 Ом, поэтому

и, следовательно,

Аналогично для I 2 и I 3 .

Примечание: Важно осторожно обращаться с единицами измерения с метрическими префиксами. Выше мы отрегулировали десятичную точку и единицы измерения так, чтобы наша формула для тока давала вольт / Ом = ампер.

ТОПОЛОГИЯ ЦЕПЕЙ И ЗАКОНЫ — Прикладное промышленное электричество

На этой странице мы изложим три принципа, которые вы должны понимать в отношении последовательных цепей:

Ток : величина тока одинакова для любого компонента в последовательной цепи.

Сопротивление : Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

Напряжение : Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы. Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:

Рисунок 3.1

Первый принцип, который нужно понять о последовательных цепях, заключается в следующем:

Величина тока в последовательной цепи одинакова для любого компонента в цепи.

Общий ток серии

[латекс] \ tag {3.1} I_ {Total} = I_1 = I_2 = … = I_n [/ latex]

Это связано с тем, что в последовательной цепи есть только один путь для прохождения тока. Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость мрамора) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.

По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к 2, к 3 к 4 и обратно к 1.Однако у нас есть один источник напряжения и три сопротивления. Как мы можем использовать здесь закон Ома?

Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу в терминах одних и тех же двух точек в цепи. Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.

Использование закона Ома в простой цепи с одним резистором

В схеме с одной батареей и одним резистором мы можем легко вычислить любое количество, потому что все они относятся к одним и тем же двум точкам в цепи:

[латекс] I \: = \ frac {E} {R} [/ латекс]

[латекс] I \: = \ frac {9V} {3k \ Omega} [/ латекс]

[латекс] \ pmb {I = 3 мА} [/ латекс]

Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4.Поскольку мы знаем, что между точками 1 и 4 (непосредственно через батарею) имеется электродвижущая сила в 9 вольт, и поскольку точка 2 является общей для точки 1, а точка 3 — общей для точки 4, мы также должны иметь 9 вольт между точками 2. и 3 (прямо через резистор).

Следовательно, мы можем применить закон Ома ( I = E / R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все термины (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.

Использование закона Ома в схемах с несколькими резисторами

В схемах, содержащих более одного резистора, мы должны соблюдать осторожность при применении закона Ома. В приведенном ниже примере схемы с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию R 1 , R 2 и R . 3 . Однако мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, чтобы попытаться найти значение тока, потому что мы не знаем, сколько напряжения присутствует на любом из этих резисторов по отдельности.

Значение 9 вольт составляет всего величин для всей цепи, тогда как цифры 3 кОм, 10 кОм и 5 кОм представляют собой отдельных величин для отдельных резисторов. Если бы мы включили цифру для общего напряжения в уравнение закона Ома с цифрой для отдельного сопротивления, результат не будет точно соответствовать какой-либо величине в реальной цепи.

Для R 1 закон Ома будет связывать величину напряжения на R 1 с током через R 1 , учитывая сопротивление R 1 , 3 кОм:

[латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ latex] или [латекс] E_ {R1} = I_ {R1} {(R_1)} [/ latex]

Но, поскольку нам неизвестно напряжение на R 1 (только полное напряжение, подаваемое батареей на комбинацию из трех последовательно соединенных резисторов), и мы не знаем ток через R 1 , мы можем ‘ t делать какие-либо расчеты по любой из формул.То же самое касается R 2 и R 3 : мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие количества между одними и теми же двумя точками в цепи.

Итак, что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации R 1 , R 2 и R 3 , и мы знаем сопротивление каждого резистора, но поскольку эти величины не входят в В том же контексте мы не можем использовать закон Ома для определения тока в цепи.Если бы мы только знали, что такое общее сопротивление для цепи: тогда мы могли бы вычислить общий ток с нашим значением для всего напряжения ( I = E / R ).

Объединение нескольких резисторов в эквивалентный общий резистор

Это подводит нас ко второму принципу последовательной схемы:

Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

[латекс] \ tag {3.2} R_ {total} = R_1 + R_2 + … + R_n [/ латекс]

Это должно иметь интуитивный смысл: чем больше последовательно подключенных резисторов, через которые должен протекать ток, тем труднее будет протекать ток.

В примере задачи у нас были последовательно подключены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:

[латекс] R_ {total} = R_1 + R_2 + R_3 [/ латекс]

[латекс] R_ {total} = 3 \ text {k} \ Omega + 10 \ text {k} \ Omega + 5 \ text {k} \ Omega [/ latex]

[латекс] \ pmb {R_ {total} = 18 \ text {k} \ Omega} [/ latex]

По сути, мы вычислили эквивалентное сопротивление R 1 , R 2 и R 3 вместе взятых.Зная это, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R 1 , R 2 и R 3 :

Расчет тока цепи с использованием закона Ома

Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):

[латекс] I_ {total} \: = \ frac {E_ {total}} {R_ {total}} [/ латекс]

[латекс] \: = \ frac {9V} {18k \ Omega} [/ латекс]

[латекс] \ pmb {I_ {total} = 500 мкА} [/ латекс]

Расчет напряжений компонентов по закону Ома

Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:


Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома для определения падения напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):

[латекс] E_ {R1} = I_ {R1} {R_1} [/ латекс]

[латекс] = (500 мкА) {(3кОм)} [/ латекс]

[латекс] \ pmb {E_ {R1} = 1.5V} [/ латекс]

[латекс] E_ {R2} = I_ {R2} {R_2} [/ латекс]

[латекс] = (500 мкА) {(10 кОм)} [/ латекс]

[латекс] \ pmb {E_ {R2} = 5V} [/ латекс]

[латекс] E_ {R3} = I_ {R3} {R_3} [/ латекс]

[латекс] = (500 мкА) {(5 кОм)} [/ латекс]

[латекс] \ pmb {E_ {R3} = 2.5V} [/ латекс]

Обратите внимание на падение напряжения на каждом резисторе, и как сумма падений напряжения (1,5 + 5 + 2,5) равна напряжению батареи (источника питания): 9 вольт.

Это третий принцип последовательных цепей:

Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Общее последовательное напряжение

[латекс] E_ {total} = E_1 + E_2 + … E_n \ tag {3.3} [/ latex]

Анализ простых последовательных цепей с помощью «табличного метода» и закона Ома

Однако метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания.Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:

Таблица 3.1


Правило для такой таблицы — применять закон Ома только к значениям в каждом вертикальном столбце. Например, E R1 только с I R1 и R 1 ; E R2 только с I R2 и R 2 ; и т.д. Вы начинаете свой анализ с заполнения тех элементов таблицы, которые даны вам с самого начала:

Таблица 3.2


Как видно из расположения данных, мы не можем подать 9 вольт ET (полное напряжение) ни на одно из сопротивлений (R 1 , R 2 или R 3 ) в любая формула закона Ома, потому что они находятся в разных столбцах. Напряжение батареи 9 В составляет , а не , приложенное непосредственно к R 1 , R 2 или R 3 . Однако мы можем использовать наши «правила» для последовательных цепей, чтобы заполнить пустые места в горизонтальном ряду. В этом случае мы можем использовать правило ряда сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:

Таблица 3.3


Теперь, введя значение общего сопротивления в крайний правый столбец («Всего»), мы можем применить закон Ома I = E / R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА. :

Таблица 3.4


Затем, зная, что ток распределяется поровну между всеми компонентами последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что рассчитанного значения тока:

Таблица 3.5.

Наконец, мы можем использовать закон Ома для определения падения напряжения на каждом резисторе, по столбцу за раз:

Таблица 3.6

Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: все компоненты имеют одинаковый ток; сопротивления складываются, чтобы равняться большему общему сопротивлению; а падение напряжения в сумме дает большее общее напряжение. Все эти правила находят корень в определении последовательной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

  • Компоненты в последовательной цепи имеют одинаковый ток:

[латекс] I_ {Всего} = I_1 = I_2 = I_3 =… = I_n [/ latex]

  • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений:

[латекс] R_ {Всего} = R_1 + R_2 + … + R_n [/ латекс]

  • Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения:

[латекс] E_ {Всего} = E_1 + E_2 + … + E_n [/ латекс]

В этом разделе мы изложим три принципа, которые вы должны понимать в отношении параллельных цепей:

Напряжение: Напряжение одинаково на всех компонентах параллельной цепи.

Ток: Полный ток цепи равен сумме токов отдельных ответвлений.

Сопротивление: Отдельные сопротивления уменьшают , чтобы получить меньшее общее сопротивление, а не , прибавляя , чтобы получить общее.

Давайте взглянем на несколько примеров параллельных цепей, демонстрирующих эти принципы.

Начнем с параллельной схемы, состоящей из трех резисторов и одной батареи:

Рисунок 3.5
Напряжение в параллельных цепях

Первый принцип для понимания параллельных цепей заключается в том, что напряжение одинаково на всех компонентах в цепи . Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, и напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени.

[латекс] E_ {Total} = E_1 = E_2 = … = E_n \ tag {3.4} [/ latex]

Следовательно, в приведенной выше схеме напряжение на R 1 равно напряжению на R 2 , которое равно напряжению на R 3 , которое равно напряжению на батарее.

Это равенство напряжений можно представить в другой таблице для наших начальных значений:

Таблица 3.7
Применение закона Ома для простых параллельных схем

Как и в случае с последовательными цепями, применимо то же предостережение для закона Ома: значения напряжения, тока и сопротивления должны быть в одном контексте, чтобы вычисления работали правильно.

Однако в приведенной выше примерной схеме мы можем немедленно применить закон Ома к каждому резистору, чтобы найти его ток, потому что мы знаем напряжение на каждом резисторе (9 вольт) и сопротивление каждого резистора:

[латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ латекс]

[латекс] \: = \ frac {(9V)} {(10kΩ)} [/ latex]

[латекс] \ pmb {I_ {R1} \: = 0.9mA} [/ латекс]

[латекс] I_ {R2} \: = \ frac {E_ {R2}} {R_2} [/ латекс]

[латекс] \: = \ frac {(9V)} {(2kΩ)} [/ latex]

[латекс] \ pmb {I_ {R2} \: = 4,5 мА} [/ латекс]

[латекс] I_ {R3} \: = \ frac {E_ {R3}} {R_3} [/ латекс]

[латекс] \: = \ frac {(9V)} {(1kΩ)} [/ latex]

[латекс] \ pmb {I_ {R3} = 9mA} [/ латекс]

Таблица 3.8

На данный момент мы все еще не знаем, каков полный ток или полное сопротивление для этой параллельной цепи, поэтому мы не можем применить закон Ома к крайнему правому столбцу («Всего»). Однако, если мы внимательно подумаем о том, что происходит, должно стать очевидным, что общий ток должен равняться сумме всех токов отдельных резисторов («ответвлений»):

Рисунок 3.6

По мере того, как полный ток выходит из положительной (+) клеммы батареи в точке 1 и проходит по цепи, часть потока разделяется в точке 2, чтобы пройти через R 1 , еще часть разделяется в точке 3, чтобы уйти. через 2 рандов, а оставшаяся часть идет через 3 рандов.Подобно реке, разветвляющейся на несколько более мелких ручьев, общий расход всех потоков должен равняться расходу всей реки.

То же самое происходит, когда токи через R 1 , R 2 и R 3 соединяются, чтобы течь обратно к отрицательному выводу батареи (-) к точке 8: поток тока из точки 7 к точке 8 должна равняться сумме токов (ответвлений) через R 1 , R 2 и R 3 .

Это второй принцип параллельных цепей: полный ток цепи равен сумме токов отдельных ветвей .

Используя этот принцип, мы можем заполнить место ИТ на нашей таблице суммой I R1 , I R2 и I R3 :

Таблица 3.9
Как рассчитать полное сопротивление в параллельных цепях

Наконец, применив закон Ома к крайнему правому столбцу («Всего»), мы можем вычислить полное сопротивление цепи:

Таблица 3.10

Уравнение сопротивления в параллельных цепях

Обратите внимание на кое-что очень важное.Общее сопротивление цепи составляет всего 625 Ом: на меньше , чем у любого из отдельных резисторов. В последовательной цепи, где общее сопротивление было суммой отдельных сопротивлений, общее сопротивление должно было быть на больше , чем у любого из резисторов по отдельности.

Здесь, в параллельной цепи, наоборот: мы говорим, что отдельные сопротивления уменьшают , а не прибавляют , чтобы получить общее количество .

Этот принцип завершает нашу триаду «правил» для параллельных цепей, точно так же, как было обнаружено, что у последовательных цепей есть три правила для напряжения, тока и сопротивления.

Математически соотношение между общим сопротивлением и отдельными сопротивлениями в параллельной цепи выглядит следующим образом:

Уравнение сопротивления в параллельных цепях

[латекс] R_ {total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} \ tag {3.5 } [/ latex]

Три правила параллельных цепей

Таким образом, параллельная цепь определяется как цепь, в которой все компоненты подключены между одним и тем же набором электрически общих точек.Другими словами, все компоненты подключены друг к другу через клеммы.

Из этого определения следуют три правила параллельных цепей:

Все компоненты имеют одинаковое напряжение.

Сопротивления уменьшаются до меньшего общего сопротивления.

Токи ответвления в сумме равняются большему общему току.

Как и в случае с последовательными цепями, все эти правила находят корень в определении параллельной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

  • Компоненты в параллельной цепи имеют одинаковое напряжение:

[латекс] E_ {Всего} = E_1 = E_2 = … = E_n [/ латекс]

  • Общее сопротивление в параллельной цепи на меньше , чем любое из отдельных сопротивлений:

[латекс] R_ {Total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} [/ латекс]

  • Полный ток в параллельной цепи равен сумме токов отдельных ответвлений:

[латекс] I_ {Всего} = I_1 + I_2 +.2R} [/ латекс]

Этим легко управлять, добавив еще одну строку в нашу знакомую таблицу напряжений, токов и сопротивлений:

Таблица 3.11 Мощность

для любого конкретного столбца таблицы может быть найдена с помощью соответствующего уравнения закона Ома ( соответствует , исходя из того, какие цифры представлены для E, I и R в этом столбце).

Интересное правило для общей мощности по сравнению с индивидуальной мощностью состоит в том, что она является аддитивной для любой конфигурации схемы : последовательной, параллельной, последовательной / параллельной или другой.Мощность — это мера скорости работы, и поскольку рассеиваемая мощность должна равняться полной мощности, приложенной источником (источниками) (в соответствии с Законом сохранения энергии в физике), конфигурация схемы не влияет на математику.

  • Мощность суммируется в любой конфигурации резистивной цепи:

[латекс] P_ {Всего} = P_1 + P_2 + … + P_n [/ латекс]

Напоминания при использовании закона Ома

Одна из наиболее распространенных ошибок, которые делают начинающие студенты-электронщики при применении законов Ома, — это смешивание контекстов напряжения, тока и сопротивления.Другими словами, ученик может ошибочно использовать значение I (ток) через один резистор и значение E (напряжение) через набор соединенных между собой резисторов, полагая, что они придут к сопротивлению этого резистора.

Не так! Помните это важное правило: переменные, используемые в уравнениях закона Ома, должны быть , общими для одних и тех же двух точек в рассматриваемой цепи. Я не могу переоценить это правило. Это особенно важно в последовательно-параллельных комбинированных схемах, где соседние компоненты могут иметь разные значения для падения напряжения и тока .

При использовании закона Ома для вычисления переменной, относящейся к отдельному компоненту, убедитесь, что напряжение, на которое вы ссылаетесь, относится только к этому отдельному компоненту, а ток, который вы указываете, проходит исключительно через этот единственный компонент, а сопротивление, на которое вы ссылаетесь, равно исключительно для этого единственного компонента. Аналогичным образом, при вычислении переменной, относящейся к набору компонентов в цепи, убедитесь, что значения напряжения, тока и сопротивления относятся только к этому полному набору компонентов!

Хороший способ запомнить это — обратить пристальное внимание на две точки , завершающие анализируемый компонент или набор компонентов, убедившись, что напряжение, о котором идет речь, находится в этих двух точках, что рассматриваемый ток является потоком электрический заряд от одной из этих точек до другой точки, что рассматриваемое сопротивление эквивалентно одному резистору между этими двумя точками, и что рассматриваемая мощность — это полная мощность, рассеиваемая всеми компонентами между этими двумя точками .

Примечания к «табличному» методу анализа цепей

«Табличный» метод, представленный как для последовательных, так и для параллельных цепей в этой главе, является хорошим способом сохранить контекст закона Ома правильным для любой конфигурации цепи. В таблице, подобной приведенной ниже, вам разрешено применять уравнение закона Ома только для значений одного вертикального столбца за раз:

Таблица 3.12

Получение значений по горизонтали по столбцам допускается в соответствии с принципами последовательных и параллельных цепей:

Таблица 3.13

Таблица 3.14

«Табличный» метод не только упрощает управление всеми соответствующими величинами, но также облегчает перекрестную проверку ответов, облегчая поиск исходных неизвестных переменных другими методами или работая в обратном направлении для определения исходных данные значения из ваших решений. Например, если вы только что решили для всех неизвестных напряжений, токов и сопротивлений в цепи, вы можете проверить свою работу, добавив строку внизу для расчета мощности на каждом резисторе, чтобы посмотреть, добавляются ли все отдельные значения мощности до полной мощности.Если нет, значит, вы где-то ошиблись! Хотя в этой технике «перекрестной проверки» вашей работы нет ничего нового, использование таблицы для упорядочивания всех данных для перекрестной проверки (-ий) приводит к минимуму путаницы.

  • Примените закон Ома к вертикальным столбцам в таблице.
  • Примените правила последовательного / параллельного горизонтального ряда в таблице.
  • Проверьте свои расчеты, работая «в обратном направлении», чтобы попытаться прийти к первоначально заданным значениям (из ваших первых рассчитанных ответов), или решив величину, используя более одного метода (из разных заданных значений).

Что такое закон напряжения Кирхгофа (KVL)?

Принцип, известный как Закон Кирхгофа (открытый в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать так:

«Алгебраическая сумма всех напряжений в контуре должна равняться нулю»

[латекс] E_ {T} = E_1 + E_2 + … + E_n = 0 [/ латекс]

Под алгебраическим я подразумеваю учет знаков (полярностей), а также величин.Под loop я имею в виду любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи и, наконец, обратно в исходную точку.

Демонстрация закона напряжения Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на нашу примерную последовательную схему, на этот раз пронумеровав точки в цепи для опорного напряжения:

Рис. 3.7.

. Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, измеритель зарегистрировал бы +45 вольт.Обычно знак «+» не отображается, а скорее подразумевается для положительных показаний на дисплеях цифровых счетчиков. Однако для этого урока очень важна полярность показаний напряжения, поэтому я буду явно показывать положительные числа: E 2-1 = + 45V

Если напряжение указано с двойным нижним индексом (символы «2-1» в обозначении «E 2-1 »), это означает напряжение в первой точке (2), измеренное относительно второй точки. (1). Напряжение, указанное как «E cd », будет означать напряжение, указанное цифровым измерителем с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно «D».

Рисунок 3.8.

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего измерителя на точке впереди и черным измерительным проводом на точке сзади, получим следующие показания:

[латекс] E_ {3-2} = -10V [/ латекс]

[латекс] E_ {4-3} = -20 В [/ латекс]

[латекс] E_ {1-4} = -15 В [/ латекс]

Рис. 3.9.

. Мы уже должны быть знакомы с общим принципом для последовательных цепей, согласно которому отдельные падения напряжения в сумме составляют общее приложенное напряжение, но при измерении падений напряжения таким образом и обращении внимания на полярность (математический знак) показаний обнаруживается другое. аспект этого принципа: все измеренные напряжения в сумме равны нулю:

В приведенном выше примере петля образована следующими точками в следующем порядке: 1-2-3-4-1.Не имеет значения, с какой точки мы начинаем или в каком направлении идем, отслеживая петлю; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем подсчитать напряжения в контуре 3-2-1-4-3 той же цепи:

Это может иметь больше смысла, если мы перерисуем наш пример последовательной схемы так, чтобы все компоненты были представлены в виде прямой линии:

Рисунок 3.10

Это все та же последовательная схема, только с компонентами, расположенными в другой форме.Обратите внимание на полярность падения напряжения на резисторе по отношению к батарее: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторе ориентированы в другую сторону: положительное слева и отрицательное справа. Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толчок», оказываемый резисторами против потока электрического заряда , должен быть в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, черный провод слева и красный провод справа, как показано горизонтально:

Рисунок 3.11

Если бы мы взяли тот же вольтметр и считали напряжение по комбинациям компонентов, начиная с единственного R 1 слева и продвигаясь по всей цепочке компонентов, мы увидим, как напряжения складываются алгебраически (до нуля):

Рисунок 3.12

Тот факт, что последовательные напряжения складываются, не должен быть загадкой, но мы заметили, что полярность этих напряжений сильно влияет на то, как складываются цифры. При считывании напряжения на R 1 —R 2 и R 1 —R 2 —R 3 (я использую символ «двойное тире» «-» для обозначения серии соединение между резисторами R 1 , R 2 и R 3 ), мы видим, как измеряемые напряжения последовательно увеличиваются (хотя и отрицательные) величины, потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (положительный левый , отрицательный справа).Сумма падений напряжения на R 1 , R 2 и R 3 равна 45 вольт, что соответствует выходу батареи, за исключением того, что полярность батареи противоположна падению напряжения на резисторе (отрицательный слева, положительный справа), поэтому мы получаем 0 вольт, измеренный на всей цепочке компонентов.

То, что мы должны получить ровно 0 вольт на всей струне, тоже не должно быть тайной. Глядя на схему, мы видим, что крайний левый угол струны (левая сторона R 1 : точка номер 2) напрямую соединен с крайним правым уголком струны (правая сторона батареи: точка номер 2), так как необходимо для завершения схемы.Поскольку эти две точки подключены напрямую, они имеют электрически общих друг с другом. И, как таковое, напряжение между этими двумя электрически общими точками должно быть равно нулю .

Демонстрация закона напряжения Кирхгофа в параллельной цепи

Закон Кирхгофа о напряжении (иногда обозначаемый для краткости KVL ) будет работать для любой конфигурации цепи вообще, а не только для простой серии. Обратите внимание, как это работает для этой параллельной цепи:

Рисунок 3.13

В параллельной схеме напряжение на каждом резисторе такое же, как и напряжение питания: 6 вольт. Суммируя напряжения вокруг контура 2-3-4-5-6-7-2, получаем:

Обратите внимание, как я обозначил конечное (суммарное) напряжение как E 2-2 . Поскольку мы начали нашу пошаговую последовательность в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E 2-2 ), которое, конечно, должно быть равно нулю. .

Действие закона Кирхгофа о напряжении независимо от топологии цепи

Тот факт, что эта схема является параллельной, а не последовательной, не имеет ничего общего с правомерностью закона Кирхгофа о напряжении. В этом отношении схема может быть «черным ящиком» — конфигурация ее компонентов полностью скрыта от нашего взгляда, с набором открытых клемм для измерения напряжения между ними — и KVL все равно останется верным:

Рис. 3.14.

Попробуйте выполнить любой порядок шагов с любого терминала на приведенной выше диаграмме, возвращаясь к исходному терминалу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

Более того, «петля», которую мы отслеживаем для KVL, даже не обязательно должна быть реальным током в прямом смысле этого слова. Все, что нам нужно сделать, чтобы соответствовать KVL, — это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между следующей и последней точкой. Рассмотрим этот абсурдный пример, отслеживая «петлю» 2-3-6-3-2 в той же параллельной цепи резистора:

Рисунок 3.15

Использование закона напряжения Кирхгофа в сложной цепи

KVL можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вокруг определенного «контура».В качестве примера возьмем следующую сложную схему (фактически две последовательные цепи, соединенные одним проводом внизу):

Рисунок 3.16

Чтобы упростить задачу, я опустил значения сопротивления и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют общий провод между собой (провод 7-8-9-10), что позволяет измерять напряжение между двумя цепями.

Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение KVL с напряжением между этими точками как неизвестным:

[латекс] E_ {4-3} + E_ {9-4} + E_ {8-9} + E_ {3-8} = 0 [/ латекс]

[латекс] E_ {4-3} + 12 В + 0 В + 20 В = 0 В [/ латекс]

[латекс] E_ {4-3} + 32V = 0 [/ латекс]

[латекс] \ pmb {E_ {4-3} = -32V} [/ латекс]

Рисунок 3.17 Рисунок 3.18 Рисунок 3.19 Рисунок 3.20

Обходя контур 3-4-9-8-3, мы записываем значения падения напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с помощью красного измерительного провода на острие впереди и черного измерительного провода на точка позади, когда мы продвигаемся по петле. Следовательно, напряжение от точки 9 до точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» — в точке 4. Напряжение от точки 3 до точки 8 является положительным (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» — в точке 8.Напряжение от точки 8 до точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения от точки 4 до точки 3 — отрицательное (-) 32 вольта, что говорит нам, что точка 3 на самом деле положительна по отношению к точке 4, именно то, что цифровой вольтметр показал бы красным проводом в точке 4. и черный отрыв в точке 3:

Рис. 3.21

Другими словами, первоначальное размещение наших «выводов счетчика» в этой проблеме KVL было «задом наперед».«Если бы мы сгенерировали наше уравнение KVL, начиная с E 3-4 вместо E 4-3 , шагая по той же петле с противоположной ориентацией измерительных проводов, окончательный ответ был бы E 3-4 = + 32 вольта:

Рис. 3.22

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

  • Закон Кирхгофа о напряжении (KVL): «Алгебраическая сумма всех напряжений в контуре должна равняться нулю»

Что такое действующий закон Кирхгофа ?

Закон Кирхгофа о течениях, часто сокращаемый до KCL, гласит, что «алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю».

Этот закон используется для описания того, как заряд входит и покидает точку соединения или узел на проводе.

Вооружившись этой информацией, давайте теперь рассмотрим пример применения закона на практике, почему он важен и как он был получен.

Обзор параллельной цепи

Давайте внимательнее рассмотрим эту последнюю параллельную схему примера:

Рисунок 3.23 Таблица 3.15

Решение для всех значений напряжения и тока в этой цепи:

На данный момент мы знаем значение тока каждой ветви и полного тока в цепи. Мы знаем, что полный ток в параллельной цепи должен равняться сумме токов ответвления, но в этой цепи происходит нечто большее, чем просто это.Взглянув на токи в каждой точке соединения проводов (узле) в цепи, мы должны увидеть кое-что еще:

Рисунок 3.24

3.7. 3 тока на входе и выходе из узла

В каждом узле положительной «шины» (провод 1-2-3-4) у нас есть разделение тока от основного потока к каждому последующему резистору ответвления. В каждом узле на отрицательной «шине» (провод 8-7-6-5) у нас есть ток, сливающийся вместе, чтобы сформировать основной поток от каждого последовательного резистора ответвления.Этот факт должен быть довольно очевиден, если вы подумаете об аналогии контура водопровода с каждым ответвлением, действующим как тройник, разделением или слиянием потока воды с основным трубопроводом, когда он движется от выхода водяного насоса к обратному каналу. резервуар или отстойник.

Если мы внимательно рассмотрим один конкретный узел «тройник», такой как узел 6, мы увидим, что ток, входящий в узел, равен по величине току, выходящему из узла:

Рисунок 3.25

Сверху и справа у нас есть два тока, входящие в соединение проводов, обозначенное как узел 6.Слева у нас есть единственный ток, выходящий из узла, равный по величине сумме двух входящих токов. Обратимся к аналогии с водопроводом: пока в трубопроводе нет утечек, поток, поступающий в фитинг, должен также выходить из фитинга. Это верно для любого узла («подгонки»), независимо от того, сколько потоков входит или выходит. Математически мы можем выразить это общее соотношение как таковое: [латекс] I_ {существующий} = I_ {ввод} [/ латекс]

Действующий закон Кирхгофа

г.Кирхгоф решил выразить его в несколько иной форме (хотя и математически эквивалентной), назвав его Текущий закон Кирхгофа (KCL):

.

[латекс] I_ {ввод} = -I_ {существующий} = 0 [/ латекс]

Текущий закон Кирхгофа, кратко изложенный в одной фразе, гласит:

«Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»

[латекс] I_ {T} = I_1 + I_2 + … + I_n = 0 [/ латекс]

То есть, если мы присвоим каждому току математический знак (полярность), обозначающий, входят ли они (+) или выходят (-) из узла, мы можем сложить их вместе, чтобы гарантированно получить в сумме ноль.

Взяв наш пример узла (номер 6), мы можем определить величину тока, выходящего слева, задав уравнение KCL с этим током в качестве неизвестного значения:

[латекс] I_2 + I_3 + I_ {2 + 3} = 0 [/ латекс]

[латекс] 2 мА + 3 мА + I_ {2 + 3} = 0 [/ латекс]

[latex] \ text {… решение для I …} [/ latex]

[латекс] I = -2 мА-3 мА [/ латекс]

[латекс] \ pmb {I = -5mA} [/ латекс]

Отрицательный (-) знак на значении 5 миллиампер говорит нам, что ток на выходе из узла , в отличие от токов 2 миллиампер и 3 миллиампер, которые оба должны быть положительными (и, следовательно, входит в узел) .Независимо от того, обозначает ли отрицательное или положительное значение текущий вход или выход, совершенно произвольно, если они являются противоположными знаками для противоположных направлений и мы остаемся последовательными в наших обозначениях, KCL будет работать.

Вместе законы напряжения и тока Кирхгофа представляют собой замечательную пару инструментов, полезных при анализе электрических цепей. Их полезность станет еще более очевидной в следующей главе («Сетевой анализ»), но достаточно сказать, что эти законы заслуживают того, чтобы их запомнил изучающий электронику не меньше, чем закон Ома.

  • Текущий закон Кирхгофа (KCL): «Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»

Инструменты и задачи обслуживания (интерактивные)

Закон Ома

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V. Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению : I ∝ V.

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R.Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или I.

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Объединение отношений тока к напряжению и тока к сопротивлению дает I =.

Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален.Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единицей измерения сопротивления является Ом и обозначается символом Ω (заглавная греческая омега). Перестановка I = дает R = , и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер: 1 Ом = 1.

На рисунке показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R.

Простая электрическая цепь, в которой замкнутый путь прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Установление соединений: Соединения в реальном мире

Закон Ома (V = IR) — это фундаментальная зависимость, которая может быть представлена ​​линейной функцией, в которой наклон линии представляет собой сопротивление. Сопротивление представляет собой напряжение, которое необходимо приложить к резистору для создания в цепи тока 1 А. График (на рисунке ниже) показывает это представление для двух простых схем с резисторами, которые имеют разное сопротивление и, следовательно, разные наклоны.

На рисунке показана взаимосвязь между током и напряжением для двух разных резисторов. Наклон графика представляет значение сопротивления, которое составляет 2 Ом и 4 Ом для двух показанных линий.

Материалы, которые подчиняются закону Ома, имея линейную зависимость между напряжением и током, известны как омические материалы. С другой стороны, некоторые материалы демонстрируют нелинейную зависимость напряжения от тока и, следовательно, известны как неомические материалы. На рисунке ниже показаны соотношения между текущим напряжением для двух типов материалов.

Рисунок №. Показано соотношение между напряжением и током для омических и неомических материалов.

Очевидно, что сопротивление омического материала (показанного на (а)) остается постоянным и может быть рассчитано путем определения наклона графика, но это неверно для неомического материала (показанного на (b)).

Сопротивления варьируются от многих порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом или более.Сопротивление сухого человека может составлять 105 Ом, тогда как сопротивление человеческого сердца составляет около 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

Дополнительное понимание можно получить, решив I = для V, что дает V = IR.

Это выражение для V можно интерпретировать как падение напряжения на резисторе, создаваемое током I.Фраза IR drop часто используется для обозначения этого напряжения. Например, фара в примере имеет падение ИК-излучения 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия.Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку PE = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. Рисунок.)

Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Установление соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

Последовательные и параллельные резисторы

Большинство схем имеет более одного компонента, называемого резистором, который ограничивает поток заряда в цепи.Мера этого предела для потока заряда называется сопротивлением. Простейшие комбинации резисторов — это последовательное и параллельное соединение, показанное на рисунке. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

Изображение показывает (а) Последовательное соединение резисторов. (б) Параллельное соединение резисторов.

При параллельном подключении резисторов от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

Закон Джоуля

У многих людей власть ассоциируется с электричеством. Зная, что мощность — это скорость использования или преобразования энергии, каково выражение для электроэнергии? На ум могут прийти линии электропередач. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт. (См. Рисунок (a).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт.Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — это перемещаемый заряд, а V — это напряжение (или, точнее, разность потенциалов, через которую проходит заряд).Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна P = =.

Учитывая, что ток равен I = (, обратите внимание, что Δt = t здесь), выражение для мощности становится P = IV.

Электрическая мощность ( P ) — это просто произведение тока на напряжение. Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность выражается в джоулях в секунду или ваттах. Таким образом, 1 A⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства.Эти розетки могут быть рассчитаны на 20 А, так что цепь может выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт. В некоторых приложениях электрическая мощность может выражаться в вольтах. амперы или даже киловольт-амперы 1 кА⋅В = 1 кВт.

Чтобы увидеть отношение мощности к сопротивлению, мы объединяем закон Ома с P = IV. Подстановка I = V / R дает P = () V = V 2 / R . Аналогично, замена V = IR дает P = I (IR) = I 2 R .Для удобства здесь собраны три выражения для электроэнергии:

P = IV

P = V 2 / R

P = I 2 R.

Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.)

Из трех различных выражений для электроэнергии можно сделать разные выводы. Например, P = V 2 / R означает, что чем меньше сопротивление, подключенное к данному источнику напряжения, тем больше мощность. Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет около 100 Вт, что приводит к ее перегоранию.Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

Закон Джоуля

резисторов серии

Электрические цепи используются в авиакосмической технике, от систем управления полетом до приборов в кабине и двигателей системы управления, чтобы аэродинамическая труба приборостроение и эксплуатация. Самая простая схема включает в себя один резистор и источник электрического потенциала или напряжения .Электроны проходят через схема вырабатывает тока электричества. Сопротивление, напряжение и ток связаны друг с другом соотношением Закон Ома. Обычно в практической схеме используется более одного резистора. При анализе сложной схемы мы часто можем группировать компоненты вместе и разработать схему замещения . При анализе схем с несколько резисторов, мы должны определить, подвержены ли резисторы какое-то напряжение или такой же ток.Несколько резисторов в параллельная цепь подвергаются одинаковому напряжению. Несколько резисторов в Цепь серии подвергаются одинаковому току. На этой странице мы обсуждаем эквивалентную схему для резисторов последовательно.

На рисунке изображена схема, состоящая из источника питания и трех резисторов. соединены последовательно. Если обозначить сопротивление R , ток и , а напряжение В , то закон Ома гласит, что для каждого резистора в цепи:

V = i R

я = V / R

Если рассматривать каждый резистор по отдельности, каждый резистор имеет свой ток. ( i1 , i2 и i3 ), сопротивление ( R1 , R2 и R3 ), и напряжение ( V1 , V2 и V3 ).Резисторы соединены между собой в узлах . Узлы обозначены маленькие кружочки на фигуре. Для этой схемы есть четыре узла, соединяющие три резистора и источник питания. В каждом узле ток, поступающий в узел должен равняться току, выходящему из узла, согласно закону Фарадея . При таком расположении резисторов есть только один провод, входящий и выходящий. каждый узел. Следовательно, ток через каждый резистор должен быть одинаковым.

я = я1 = я2 = я3

Падение напряжения на каждом резисторе определяется законом Ома:

V1 = i R1

V2 = я R2

V3 = i R3

Сумма падений напряжения на каждом резисторе должна равняться подаваемому напряжению. по источнику питания:

V = V1 + V2 + V3

Теперь мы знаем напряжение, сопротивление и ток в каждой части цепи.

Если бы мы построили эквивалентную схему, как показано в правом нижнем углу, мы бы имеют одинаковое напряжение В , такой же ток от источника питания ie = i , и один эквивалентный резистор Re . Для нашей эквивалентной схемы закон Ома указывает, что:

V = i Re

Мы можем определить значение Re , используя развитые выше соотношения и немного алгебры:

я Re = я R1 + я R2 + я R3

Re = R1 + R2 + R3

Мы можем использовать эти знания о цепи последовательного резистора для анализа Мост Уитстона схема, которая используется для контроля температуры в аэродинамической трубе баланс сил используя электронные тензодатчики.


Навигация ..

Руководство для начинающих Домашняя страница
Серия

и параллельная — AP Physics 1

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

.

Добавить комментарий

Ваш адрес email не будет опубликован.