Открыл переменный ток: Недопустимое название — Циклопедия

Содержание

История изобретений. Как Никола Тесла изменил мир и умер в одиночестве

Во многом наш электрический мир своим нынешним технологическим состоянием обязан ученому из Сербии. За годы своей бурной изобретательской деятельности он получил более 300 патентов, разработал двигатели переменного тока, подтолкнувшие промышленную революцию, и немного не дожил до признания своего вклада в открытие радио. Onliner.by рассказывает о человеке, который изобрел 21-й век.

Никола Тесла родился 10 июля 1856 года в деревушке Смилян (приграничный район тогдашней Австрийской империи) в семье местного приходского священника. Отец надеялся, что парень продолжит его трудовую карьеру, однако с самого детства Николу интересовало совсем другое. Сперва он мастерил рогатки и занимался всеми шалостями, присущими детям.

Тесла был левшой, но в школе его, конечно же, переучили. Однако гений впоследствии одинаково хорошо управлялся обеими руками.

До конца жизни Тесла вспоминал, как впервые познакомился с электричеством. В возрасте шести лет его главным другом был черный кот, вместе с которым они противостояли дворовому гусю. Однажды Никола игрался с котом в вечерних сумерках. Мальчик гладил животное по спине, когда «кошачья спина окуталась легким голубым сиянием», а от прикосновений появлялся целый сноп искр. Факт того, что это электричество, живущее в устрашающих молниях, поразил Теслу до глубины души.

Позже его семья переехала из деревни в город, а сам Никола стал ходить в среднюю школу. В своей автобиографии относительно этого периода жизни он писал о своих едва ли не сверхъестественных способностях, которые помогали ему решать математические и физические задачки. В голове Теслы словно возникала доска с описанием задачи, а за ним появлялось и ее решение. А потому на вопросы учителя он отвечал устно спустя минуту-другую.

Даже не успевал записать решение. К тому же ученого до глубокой старости сопровождали «световые явления», которые возникали в его голове в моменты озарения новыми идеями.

Сказать, что Тесла был странным — не сказать ничего. Он терпеть не мог женские серьги, один вид жемчужины был для него оскорбительным, а при взгляде на персик его бросало в жар. Со временем во взрослом возрасте к этим странностям добавлялись новые. Взглянув однажды на микробов под микроскопом, Никола приобрел привычку заказывать в ресторанах по 18 салфеток, чтобы лично протирать все приборы. Муха, севшая в процессе обеда на стол, могла вынудить Теслу и его спутников пересесть за новый.

Ко всему этому изобретатель был крайне эрудированным полиглотом. У него была фотографическая память, он наизусть цитировал «Фауста» Гёте и разговаривал на восьми языках: сербско-хорватском, чешском, английском, французском, немецком, венгерском, итальянском и латинском. Несмотря на то что юный Никола был зубрилой, асоциальным типом назвать его было сложно.

В студенческие годы будущий ученый подсел на азартные игры: бильярд, шахматы и карты. За игровым столом Тесла мог проводить по несколько суток без перерыва. Такую же работоспособность он проявлял и позже, трудясь в своих лабораториях.

Схема на песке

Тесла придумал, как на практике использовать вращающееся магнитное поле. Это случилось в 1882 году во время прогулки по Будапешту и цитирования «Фауста» Гёте. До этого на протяжении нескольких месяцев ученого мучила странная болезнь, природой которой, скорее всего, являлось крайнее истощение организма ввиду переутомления.

«Муха, садившаяся на стол в комнате, порождала в моем ухе глухой звук, напоминавший падение тяжелого тела», — писал изобретатель в своей автобиографии. Лишь прогулки и занятия гимнастикой под надзором приятеля помогли ученому выкарабкаться из затуманенного состояния.

Во время одной из таких прогулок Николу в буквальном смысле озарило. В одно мгновение он понял, как будет работать его двигатель, и принялся чертить прямо на песке схему. Она изменила и судьбу самого Теслы, и мир, в котором мы живем.

AC/DC

В те годы улицы городов освещали газовыми фонарями либо электрическими дуговыми лампами. Ни первый, ни второй способ не подходил для света в замкнутых жилищах простых обывателей. Электрический свет пришел в дома только в 1879 году, когда Томас Эдисон усовершенствовал лампочку до коммерчески выгодных параметров.

В Нью-Йорк Тесла прибыл в 1884 году. До этого он несколько лет трудился в парижском региональном отделении компании Эдисона. В негласной столице США Никола продолжил более тесное сотрудничество со своим будущим соперником. Он пытался заговорить с «королем света» о преимуществах переменного тока, но Эдисон был непреклонен — будущее он видел за безопасным постоянным током.

Здесь стоит объяснить, что в США тех лет электростанции Томаса Эдисона передавали постоянный ток (DC) низкого напряжения. Но эффективной передача была только на короткие расстояние. Точнее, на очень короткие расстояния — до двух километров от генератора.

Чем дальше шли провода, тем больше энергии терялось по пути, что с коммерческой стороны было крайне невыгодно.

Тесла же ратовал за переменный электрический ток (AC), который особо не зависел от протяженности проводов. Проблема была только в модулировании напряжения на входе и выходе с электрических проводов для подачи безопасного тока в жилища. Эту задачу решил инженер Уильям Стенли: генератор производит переменный ток низкого напряжения, трансформатор повышает напряжение до нужной величины, ток передают на огромное расстояние, а другой трансформатор уже понижает его.

В 1887 году, после ухода с фабрики Томаса Эдисона, Николе пришлось перебиваться трудом чернорабочего, пока он не встретил двух компаньонов, вместе с которыми организовал компанию «Тесла Электрик». Ученый получил собственную лабораторию.

Адепты переменного тока упирались в одну важную деталь — отсутствие надежных электродвигателей, которые могли бы крутить на заводах и фабриках различные станки. Лампочки в домах потребителей в данном случае выступали скорее как PR-компания всего электричества вместе взятого.

Изобретатель работал над всей системой оборудования для передачи переменного тока сразу: генераторы, счетчики, трансформаторы. И над двигателями переменного тока. Мотор Теслы как раз использовал вращение электромагнитного поля. На полюса электродвигателя подавались два различных переменных тока, отличавшихся друг от друга сдвигом по фазе. Это и вызывало вращение магнитного поля. Оно увлекало за собой обмотку ротора. Никола принялся развивать идею двухфазного тока, отметив при этом, что количество фаз может быть и большим. В 1888 году он получил первые патенты на двигатели переменного тока.

Разработка Теслы приглянулась магнату Джорджу Вестингаузу, который в пику Эдисону работал с освещением на переменном токе. Он выкупил патенты и нанял самого Николу на работу в качестве консультанта. С наработками выдающегося серба компания рванула вперед, испугав Эдисона, который развернул «черный пиар» против переменного тока. Результатом этого в некотором роде стало и создание электрического стула. На нем преступников казнили именно переменным током. Таким образом Эдисон пытался доказать его опасность.

Пожар

Разбогатев, Тесла перебрался в собственную лабораторию, где продолжал работать над самыми различными изобретениями. Так, в начале 90-х годов он демонстрировал изумленной публике лампу без нити накаливания, которая не была подсоединена ни к одному проводу, но все равно светилась. Это было подобие гейслеровской газоразрядной лампы, внесенной в переменное электромагнитное поле высокой частоты. Позже Тесла наполнит эти лампы люминоформами, сделав прообраз современных люминесцентных ламп. Эдисону конкурент его ламп накаливания не понравился. Он называл его мертвым белым светом, опасным для глаз.

13 марта 1895 года изобретателя постиг серьезный удар. Его лаборатория в Нью-Йорке на Пятой авеню полностью сгорела. Видимо, из-за короткого замыкания в здании начался пожар, который за несколько часов полностью уничтожил труды всей жизни Теслы: приборы, все экспериментальные установки, чертежи и документы, записи в дневниках инженера.

Под натиском репортеров Никола держался достойно. Он заявил, что все удастся восстановить, кроме писем его близких.

Несмотря на феноменальную память Теслы, эти слова звучали скорее как бравада для журналистов. Частично восстановить наработки удалось бы, вот только для этого нужна была новая лаборатория. Сгоревшая же оценивалась в $250 тыс. И где достать такие деньги, Тесла не знал. Газеты называли пожар не личной потерей ученого, а трагедией для целого мира.

Дом не был застрахован, оборудование принадлежало «Вестингауз электрик», компании, которая многим была обязана Тесле. Никола практически спас ее основателя, когда в кризис отказался от своих патентных выплат: Вестингауз обязался платить по $2,5 за каждую проданную лошадиную силу его моторов. К 1905 году это были бы $17,5 млн. Но компания Вестингауза находилась в плачевном состоянии, и основатель поставил Теслу перед выбором: либо мы несем ваши моторы и переменный ток в мир, либо выплачиваем вам деньги и закрываемся.

Утверждается, что изобретатель на глазах Вестингауза разорвал тот договор.

Когда же сам Тесла оказался в беде, сотрудники «Вестингауз электрик» выставили ему счет за уничтоженное оборудование и не предоставили никаких отсрочек по платежам за новое. Почему молчал сам основатель компании, непонятно.

Но Никола к тому времени был уже всемирно знаменит и получил меценатскую помощь от американского предпринимателя. Ему предлагали создать совместную компанию, доработать то же изобретение радио до коммерческого образца, однако изобретатель видел перспективы в работе над высокочастотным током. Биографы ученого называют это главной ошибкой Теслы, негативно повлиявшей на его жизнь.

Рентген

Тесла вполне мог претендовать и на открытие X-лучей, впервые о которых рассказал Вильгельм Конрад Рентген в 1895 году. Еще в 1887-м серб проводил опыты с электровакуумными трубками. Внося их в поле токов высокой частоты, Никола регистрировал два вида излучения: видимый свет и ультрафиолетовое излучение. Но были и совершенно особые лучи, которые оставляли на металлических экранах странные отпечатки.

Спустя шесть лет во время публичной лекции Тесла вернулся к этим лучам, отметив их свойство проникать через предметы, что позволяло узреть находящиеся в ящиках объекты. Но из-за крайней занятости и распыленности ученого на различные объекты изучение лучей дальше не продвинулось. Только открытие Рентгена раскрыло глаза Николе, который, впрочем, не претендовал на первенство. Однако он крепко вцепился в тему, выпустил десяток научных статей о природе лучей и усовершенствовал рентгеновскую установку.

Тесла сканировал все и всех подряд: собак, своих коллег и самого себя. При этом для получения некоторых снимков приходилось сидеть под установкой по часу, во время чего исследователь частенько засыпал. Сперва он считал, что излучение совершенно безвредно: облучал голову, глаза, руки. Пока у него не появились первые ожоги.

Машина землетрясений Теслы

Позже Тесла потерял интерес к излучению и приступил к работе с ультразвуком, о чем соседи его лаборатории узнали самым неприятным образом — ученый буквально вызвал землетрясение в Нью-Йорке. По крайней мере, он, а позже его биографы рассказывали об этом происшествии.

С лабораторией Николы соседствовали полицейский участок, различные фабрики и жилые дома итальянцев. Весенним утром 1898 года полицейский участок начал ходить ходуном: тряслась мебель, ставни и двери сами собой открывались и хлопали. В панике население района выбежало на улицу, предполагая разрушительные толчки землетрясения. Полицейские же бросились прямиком к Тесле, которого считали виновником всех громких событий.

Ученого они нашли в лаборатории с кувалдой в руках. Ею он лупил по некому прибору, прикрепленному к опоре здания. Последний удар, и прибор рассыпался, землетрясение прекратилось. Это был осциллятор Теслы — генератор механических колебаний сверхвысокой частоты, вырабатывавший ультразвук. Эти колебания вызывали внутренний резонанс в предметах, когда совпадали с частотой их собственных колебаний. В этих принципах Никола видел огромную разрушительную силу. При достаточном объеме динамита изобретатель обещал расколоть Землю надвое.

Конечно, эти рассказы для репортеров оказались всего лишь рассказами. Позднейшие эксперименты с машиной поставили под сомнение ее всемогущие способности.

Радио Теслы

Еще в 1890 году Тесла предрекал появление аппарата, который позволит его владельцу слушать музыку, песни и человеческую речь в море или на земле на огромном расстоянии от источника звука. «Точно так же могут быть переданы любая картина, рисунок, знак или текст», — добавлял ученый. В некотором роде Никола стал первым предвестником интернета.

Что касается радио, то Тесла не только разглагольствовал, но и проводил некие эксперименты. В частности, сын одного из его ассистентов спустя много лет рассказывал о демонстрации того, что называлось «радио». В эксперименте участвовали передатчик и приемник, от обоих к потолкам шли длинные провода, которые являли собой, судя по всему, антенны. Сообщения передавались от 5-киловаттного искрового передатчика на гейслеровскую трубку приемника на расстоянии 9 метров. О том, что Тесла в 1893 году проводил подобные эксперименты, говорил и Александр Попов. В частности, он отмечал «использование мачты» для приема и передачи сигналов электрических колебаний.

Но итальянец Маркони был куда более ушлым дельцом, чем Тесла. Со второй попытки ему удалось оспорить американские патенты серба на «Систему передачи электрической энергии» и на соответствующий аппарат (US 645576 и US 649621). Тем самым он оставил Николу без патентных выплат и без славы, получив Нобелевскую премию. Стоит отметить, что вклад Маркони в продвижение радио неоценим. Однако судебные тяжбы между ним и Теслой продолжались еще не одно десятилетие. Последний считал, что Маркони его попросту обворовывает. И только после смерти обоих изобретателей Верховный суд США поставил точку в первенстве, восстановив патенты серба на электрическую связь без проводов.

Радиоуправление

О первенстве Теслы говорит хотя бы тот факт, что в 1893 году он приступил к разработке дистанционно управляемых машин. Ученый писал, что упорно работал над ними пару лет и даже создал несколько механизмов, но приснопамятный пожар отбросил его далеко назад. Первая публичная демонстрация состоялась в 1898 году на выставке, где свои дистанционные мины представлял ненавистный Николе Маркони.

Гвоздем мероприятия стал показ изобретения Теслы — радиоуправляемой лодки, посреди которой торчал металлический стержень, а на носу и корме находились лампочки. У серба же в руках был дистанционный пульт управления. Меняя сигналы с пульта, Никола заставлял лодку двигаться вперед и назад, выполнять различные маневры.

Сказать, что демонстрация вызвала сенсацию — не сказать ничего. Тесле предлагали переработать кораблик в подводную лодку и, загрузив динамитом, отправить на подрыв испанских судов. С этой страной США были в те годы не в ладах. Но военные эксперты не разглядели в этом дел ближайшего будущего.

Угасание гения

Но Теслу мало волновало мнение военных. Он был уверен, что в ближайшее время сможет передавать энергию без проводов. Идея фикс поразила ученого, и он отправился в Колорадо-Спрингс ставить эксперименты. Биографы Николы отмечают, что с этой поездкой наступил третий — заключительный и бесславный — период в жизни инженера. Великие изобретения остались позади, Тесла вошел в историю, и оставшаяся половина его жизни представляет собой медленный закат, о котором ученый пока не догадывается.

В Колорадо-Спрингс по заказу изобретателя построили 60-метровую антенну, с помощью которой Никола собирался экспериментировать с беспроводной передачей электричества. Но пока его башня, на которую с подозрением и опаской смотрели местные, только генерировала молнии — толщиной в руку и длиной более четырех метров.

На этой же станции Тесла, по его утверждению, зарегистрировал странные сигналы, которые могли быть радиопередачей с Марса или Венеры. Репортеры, естественно, выдали это за сенсацию. Никаких доказательств связи Николы с инопланетянами так и не было представлено. Ученого подняли на смех и за этот прокол, и за его дикую концепцию передачи электричества без проводов — он так и не смог объяснить, как же этого добиться на практике. Пока же выходили только молнии.

Несмотря на весь негатив, Тесла получил инвестиции под проект глобальной сети радио, хотя планировал заниматься энергией. На выделенные бизнесменом Морганом деньги Никола построил новую лабораторию и башню в Уорденклифе, которая стала известной на весь мир. Ее строительство, начавшееся в 1901 году, тут же вызвало претензии со стороны инвестора: он не понимал, зачем тратить деньги на башню, без которой Маркони сумел передать сигнал практически через всю Атлантику. Морган стал что-то подозревать и урезал финансирование.

Тесла раскрыл перед ним все карты. Бизнесмен планировал занять лидирующие позиции на рынке радио, но по факту выбросил огромную сумму денег на фантастические планы серба. Ученый на протяжении года писал ему письма отчаяния, однако после пары отказов его уже попросту игнорировали. Кредиторы осаждали Николу, участок вокруг башни пришлось продавать по кусочкам, а здание буквально по кирпичикам разбирали мародеры.

Крушение последних надежд Теслы повлияло на его характер. Он стал больше работать языком, а не головой, рассказывая о своих новых изобретениях, которые вскоре перевернут мир. Именно эти мистификации от самого серба поспособствовали созданию вокруг него ореола таинственности: космические лучи, загадка тунгусского метеорита, шпионские следы СССР и Германии. В биографии инженера осталось много таинственных пятен, которые напрямую не относятся к его настоящим изобретениям.


Никола Тесла умер в возрасте 86 лет. Это произошло между 5 и 7 января 1943 года в номере 3327 отеля «Нью-Йоркер» на 33-м этаже. Ученый не оставил после себя безутешной вдовы, детей и внуков, так как всю жизнь прожил в одиночестве.

Портативные радиостанции в каталоге Onliner.by

Читайте также:

Перепечатка текста и фотографий Onliner.by запрещена без разрешения редакции. [email protected]

Первые электродвигатели. Переменный ток. Уитстон и Тесла

В прошлом номере мы напомнили предысторию создания электродвигателя: в 1820 г. X. Эрстед и Д. Ф. Араго обнаружили взаимодействие магнитного поля с электрическим током, в 1821 г. Ж. Б. Био и Ф. Савар установили его закономерности, в 1827 А. Ампер разработал теорию электродинамики, в 1831 г. М. Фарадей и Дж. Генри открыли явление электромагнитной индукции — вращение проводника с током вокруг магнита, или магнита вокруг проводника.

В 1833 г. У. Риччи создал прообраз электрического мотора с вращательным, а не возвратно-поступательным, как у парового, принципом. В 1834 г. Б. С. Якоби создал действующий электродвигатель и в 1837 г. испытал его в сложных условиях на Неве. В 1860 г. А. Пачинотти изобрёл двигатель с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом, удобной схемой возбуждения и коллектором почти современного типа.

Все эти агрегаты работали от постоянного тока, использование гальванических батарей делало их неэкономичными, а эффективный генератор придумали много позже.

Тем временем велись исследования переменного тока и попытки создания электромоторов с его применением.

Конструкция такого двигателя должна была быть особой — чтобы предотвратить возникновение вихревых токов, порождённых частым периодичным перемагничиванием его электромагнитов, которые разогревают его и снижают мощность.

Первой реализацией такой конструкции в 1841 году была синхронная модель Чарльза Уитстона. Она состояла из кольцеобразного многополюсного магнита, полярность которого менялась под действием переменного тока, и из звездообразного постоянного электромагнита, который вращался на валу при переключении полярности питающего его постоянного тока с помощью специального коммутатора. При включении через цепь сначала пускался постоянный ток, и мотор начинал работать как двигатель постоянного тока, а после набора скорости, соответствовавшей синхронному ходу, коммутатор уже не переменял направление в роторе, и двигатель работал как синхронный переменного тока.

Система требовала для запуска разгонный двигатель, при перегрузке синхронность хода нарушалась, магниты начинали тормозить вращение вплоть до полной остановки. Поэтому широкого распространения синхронные двигатели не получили.

В основу идеи асинхронного (он же индукционный) двигателя был положен опыт Д.-Ф. Араго (1824 г): в лёгком медном кружке, соосном вращающемуся вокруг вертикали подковообразному магниту, наводятся индукционные токи, образованное ими магнитное поле взаимодействует с магнитом, и кружок так же начинает вращаться.

В 1879 г. У. Бейли сконструировал мотор, в котором два электромагнита с четырьмя крестообразно расположенными полюсами он намагничивал, с разной полярностью, с помощью выключателя. Подвешенный над ними медный кружок вращался без подведения к нему (как ротору) тока, в отличие от двигателей постоянного тока или синхронных переменного.

Понятно, что мощность и КПД такого устройства чрезвычайно малы, а заменивший выключатель коллектор был чрезвычайно сложен.

Но до реализации идеи оставался только шаг. Он был сделан с развитием техники многофазных токов, которая, собственно, и появилась-то благодаря разработке электродвигателей переменного тока.

В 1888 г. итальянский физик Галилео Феррарис и изобретатель из Хорватии, работавший в США, Никола Тесла открыли явление вращающегося электромагнитного поля. Оно создаётся двумя или более неподвижными катушками, расположенными под углом друг к другу, в которых протекают одинаковые по величине, но сдвинутые друг относительно друга по фазе переменные токи. В результате возникает тот же эффект перемены магнитных полюсов (по кругу), которого добился в своем двигателе У. Бейли — но без всяких коммутаторов и скользящих контактов: перемагничиванием управляет сам ток.

На основе этого эффекта Н. Тесла сконструировал двухфазный асинхронный двигатель.

Чтобы получить двухфазный ток из однофазного, Н. Тесла построил генератор, который сразу давал два переменных тока с разностью фаз в четверть периода. В нём между полюсами магнита вращались две взаимно перпендикулярные катушки, и когда витки одной находились под полюсами и в них индуцировался максимальный ток, витки другой находились между полюсами и ЭДС в них была равна нулю — вот вам и сдвиг фаз на 90 . Трёхфазный ток можно получить аналогично, используя три катушки под углом 60 друг к другу.

Двигатель Тесла оказался лучше и надёжней всех существовавших. Обмотка статора была выполнена в виде катушек, насаженных на выступающие полюса, концы их выведены на кольца, расположенные на валу. Ротор — в виде барабана с двумя взаимно перпендикулярными, замкнутыми на себя катушками.

Кстати, Г. Феррарис тоже построил двухфазный двигатель с медным сплошным ротором и сосредоточенной обмоткой на статоре, мощностью в несколько ватт, КПД 50 %. Но сам считал идею неперспективной.

Между тем, уже в 1889 г. Вестингауз Электрик Компани выпустила в продажу первую партию электромоторов Тесла. Это ознаменовало начало новой эры в электротехнике.

А вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован Михаилом Осиповичем Доливо Добровольским — об этом в следующем номере.

Кто придумал переменный электрический ток.

Переменный ток. Радио и дистанционное управление

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый — американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие — было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

В школе нам рассказывали о знаменитых войнах, которые меняли ход истории. Все мы знаем о Столетней войне между Францией и Англией, хотя она закончилась еще в середине XV века. А вот о другом столетнем конфликте, завершившемся в конце ноября 2007 года, мало кто знает. Отчасти потому, что он разворачивался в США — и отнюдь не на полях сражений.

Драмы науки: неизвестная «война токов»

Проницательные читатели уже догадались, что речь пойдет о так называемой «Войне токов» — War of the Currents или Battle of Currents . Так стали называть противостояние между Томасом Эдисоном (1847-1931) и Джорджем Вестингаузом (1846-1914) за использование постоянного и переменного тока. Неизвестно точно, кто и когда первым использовал это определение — в газетах конца XIX века оно не встречается. Спор, начатый двумя американскими изобретателями и бизнесменами еще в 1880-е годы, окончательно завершился в конце ноября 2007 года, когда Нью-Йорк, электрифицированный 125 лет назад Эдисоном, окончательно перешел с постоянного тока на переменный.

Это была война за столь огромный рынок, как Соединенные Штаты Америки, которую вели две крупнейшие корпорации, Edison General Electric (в начале 1890-х годов она стала называться General Electric ) и Westinghouse Electric . Первоначально в США стали использоваться стандарт постоянного тока. Патент на предоставление этого вида услуг имел Эдисон, поэтому он отстаивал право передавать электрическую энергию таким способом.

Однако при передаче постоянного тока, в котором электроны летят в одном направлении, на большие расстояния значительное количество электроэнергии теряется. Ток с электростанций Эдисона, вырабатывавших напряжение 110 вольт, эффективно передавался лишь на расстояние чуть более полутора километров. Ликвидировать этот недостаток можно было, используя медные провода очень большого сечения или строя множество локальных электростанций. Обе перспективы оказались не слишком радужными из-за их сложности и дороговизны.

Когда Джордж Вестингауз узнал про планы Эдисона, он выступил за ток переменный. К тому времени уже появились недорогие трансформаторы, работавшие на высоких мощностях. Передавать электричество на большие расстояния с минимальными потерями можно было при помощи высоковольтных линий. Кроме того, выпускник высшего технического училища в Граце и Пражского университета, серб-эмигрант Никола Тесла, в течение года успешно работавший на фирму Эдисона, в 1885 году оказался у Вестингауза — на предыдущем месте ему опрометчиво отказались повысить зарплату. Уже в 1888 году Тесла запатентовал работавший на переменном токе индукционный двигатель.

Казалось, у Эдисона не было никаких шансов победить. Тогда предприниматель в Эдисоне взял верх над изобретателем и физиком. Он подал дюжину исков, обвиняя Вестингауза в плагиате, но сутяге Эдисону во всех случаях было отказано. И тогда отец фонографа решил создать своему противнику имидж злокозненного изобретателя — посредством черного пиара представить Вестингауза зловещим мистером Хайдом, скрывавшимся под личиной добренького доктора Джекила.

Как-то раз в результате несчастного случая погиб человек. Его убило переменным током от пробитого трансформатора, стоявшего у него в подвале. Происшествие широко освещалось в прессе, что сыграло на руку Эдисону. Вдобавок Эдисон в 1903 году заснял казнь слонихи Топси — она была приговорена к убийству электрическим током за то, что растоптала троих людей, в том числе и жестокого дрессировщика.

При помощи электричества стали отправлять в лучший мир не только слонов. Первым преступником, казненным в США на электрическом стуле, стал некий Уильям Кеммлер, убивший жену топором. В 1890 году через тело Кеммлера пропустили два мощных разряда переменного тока напряжением 1,3 тысяч вольт каждый. А уже на следующий день появилась статья с громким заголовком «Вестингауз казнил Кеммлера». Казнь выглядела настолько мерзко, что сам Вестингауз мрачно заметил: «Топором бы у них вышло лучше». В итоге он отказался поставлять генераторы переменного тока для казни на электрическом стуле.

Однако победа Эдисона на поверку оказалась пирровой. Несмотря на то, что уже в 1892 году на Манхэттене появилась первая в США работающая на постоянном токе электростанция и количество потребителей увеличивалось год от года, законы рынка, как водится, были неумолимы.

Уже в 1893 году Вестингауз и Тесла выиграли тендер на освещение Всемирной ярмарки в Чикаго, а три года спустя смонтировали на Ниагарском водопаде первую гидросистему для питания переменным током второго по величине города штата Нью-Йорк — Буффало. В то же время Эдисону спешно пришлось объединить свою компанию с Thomson-Houston Electric Company , занимавшейся производством продукции для инфраструктуры энергоснабжения переменным током.

Персональный спор двух деловых людей завершился к 1896 году, его результат определили соображения экономической выгоды от использования переменного тока. Все дела в General Electric Эдисон передал в руки профессиональных менеджеров. Скрепя сердце он вынужден был признать поражение и назвал свое выступление в поддержку постоянного тока самой большой ошибкой в своей карьере.

В конце 19 – начале 20 века в истории электротехники был период, который часто называют «Война токов». Её смысл заключался в борьбе между сторонниками сетей постоянного и сетей переменного тока, или же борьбой между Томасом Эдисоном и Николой Тесла. В ходе борьбы на Теслу и его единомышленников происходило как финансовое, так и моральное давление типа чёрного пиара и клеветы.

Патент № 447921 – генератор переменного тока, который датируется 10 марта 1891 года. Соответственно Никола Тесла продвигал идеи использовать для электроснабжения переменный ток – это было экономически выгоднее, поскольку за счёт преобразования величин напряжений с помощью трансформаторов удавалось уменьшить нагрузку на длинных линиях, например, между городами. Это позволяло использовать провода меньшего сечения, что значительно снижало стоимость развития инфраструктуры. Если говорить кратко, то переменное напряжение одержало победу в войне, однако в США последний потребитель постоянки был отключен аж в 2007 году. Кстати первую большую электростанцию построили на Ниагарском водопаде в 1894 году, где были установлены 10 трёхфазных генераторов общей мощностью 75 МВт. Это было детищем тандема Тесла-Вестингауз. Там же установлен памятник великому ученному.

Катушка Теслы

Первое что приходит в голову, когда звучит фамилия этого изобретателя – это катушка Теслы. Она активно используется в любительских электронных самоделках и демонстрациях на разнообразных выставках. Внешне представляет собой столб с расширением на конце, из которого извлекаются электрические разряды или молнии.

Никола Тесла использовал это устройство для генерации тока высокой частоты и передачи его на расстояния. Фактически её устройство напоминает трансформатор, где есть две обмотки и генератор высокой частоты.

Башня Вондерклифф

Эта конструкция была собрана для беспроводной передачи данных и электричества. Однако идея не была воплощена, а инвесторы прекратили финансирование, когда стало известно, что создатель вложил в изобретении идеи бесплатной электрификации. Конструкция представляла собой 47 метровую деревянную башню с медной полусферой на вершине. Деньги перестали выделяться уже на финальных этапах строительства из-за чего выдающийся инженер остался на грани банкротства и остановил строительство.

По одной из версий башня создавалась чтобы стать частью всемирной системы беспроводной передачи данных. Тем не менее проект не удалось реализовать полностью и довести до практического применения. Из-за этого открытия ученного иногда называют предсказателем или отцом беспроводных сетей.

Интересно! Сторонники теории заговора и любители занимательных историй связывают падение тунгусского метеорита с опытами Теслы либо на башне Вондерклифф, либо с опытами с лучом смерти.

Радио и дистанционное управление

Исторически сложилось так, что открытие радио принадлежит итальянцу Гульельмо Маркони (патент на изобретение – 1905 год, а первая связь между материками – 1901 год) и русскому инженеру Попову. Однако в 1897 году был Николой Теслой запатентован первый радиоприёмник и передатчик. Итальянский инженер взял за основу его разработки и в 1904 году Теслу лишают права на изобретение.

Биографы связывают это с конфронтацией изобретателя с Томасом Эдисоном и Эндрю Карнеги, которые не признавали его открытия и идеи, всячески пытаясь опорочить изобретения. Интересно что первый преступник, казнённый электричеством, был казнён переменным током, таким образом конкуренты-популяризаторы постоянного тока Эдисон и Карнеги «бросили камень в огород» сторонникам переменного тока Тесле, Вестингаузу и другим. К 1943 году верховный суд США признал вклад гения в разработку радио.

Тем не мене на электротехнической выставке Мэдисон-Сквер-Гарден в 1898 Никола Тесла представил подводную лодку, управляемую дистанционно.

Двигатель переменного тока

К открытиям и изобретениям Николы Теслы относится и первый асинхронный двигатель переменного тока. В отличии от асинхронных машин используемым в наше время, тот работал от двух фаз, а не от трёх. Патент датирован 1888 годом. Позже права на его производство были куплены одним из спонсоров ученного – Джорджем Вестингаузом.

Изобретённый двигатель инженер планировал использовать как альтернативу ДВС, но тогда к вопросам замещения топливных двигателей электрическими мало кто относился серьёзно. Тем не менее попытки разработать автомобиль на его основе были. Современный электромобиль Tesla не имеет ничего общего с великим изобретателем.

Это лучше рассматривать как отсылку к истории. Никола Тесла в 1931 году изобрёл электромобиль. За основу был взят Pierce Arrow 1931 года. Учёный на нём около недели ездил по Нью-Йорку, но основной загадкой был вопрос откуда двигатель берёт энергию – ни проводов, ни видимых аккумуляторов больших размеров не было. Лишь была небольшая черная коробочка, а автор изобретения ссылался на то, что автомобиль берёт энергию из эфира.

Также ему принадлежит и ряд других отрытий, изобретений и патентов на электродвигатели разнообразных конструкций, в том числе и на якорь электрических машин.

Интересно! Исследователи утверждают, что в записях великого учёного ничего не сказано о двигателе работающем от эфира.

Рентгеновские лучи

По официальной версии Вильгельм Рентген в 1895 году отрыл излучение, которое в последствии получило его имя. Но еще в 1887 году Никола Тесла проводил опыты с вакуумными трубками, тогда ученный фиксировал особые лучи способные просвечивать предметы. В том числе были опыты, связанные с фотографированием костей, на рисунке ниже вы видите пример его фотографий.

Свободная энергия и лучи космоса

Никола Тесла предполагал, что вокруг нас витает масса частиц, энергию которых можно улавливать и использовать в полезных целях. Получив таким образом неограниченную энергию. Частью этих проектов была башня Вондерклифф, катушка Теслы и другие устройства по большей мере связанные с использованием катушек индуктивности.

На видео более подробно рассматривается данный вопрос:

Наши современники и сейчас пытаются добывать энергию из эфира, у них есть тематические форумы и клубы. Тем не менее в Африке до сих пор проблемы с водой, а тарифы на коммунальные услуги только растут. Видимо все современные разработки бесполезны и часто основаны на простом улавливании радиоволн и преобразовании их в электричество.

Заключение

В научном мире, в нашем случае в физике, честь учёным и инженерам отдают, назвав какое-либо явление или величину его именем. Так и произошло с Николой Теслой, не смотря на все его изобретения, вклад в науку и гениальный ум его именем названа лишь единица измерения индукции магнитного поля – Тесла (Тл). Однако выше приведён не полный список открытий великого учёного, к этому следует отнести различные выступления и демонстрации, где Никола Тесла зажигал лампочки, пропуская ток через себя или опыты с «холодным огнём», который был призван заменить воду и банные процедуры.

Из-за подобных демонстраций в наше время возникают домыслы и суждения о его вкладе и открытиях в электричестве, которые нельзя доказать. Его современные фанаты уверено утверждают о незаслуженном забытие и банкротстве автора беспроводной передачи электричества. Связывают это с давлением спецслужб, правящих кланов того времени и прочим. В связи с отсутствием финансирования изобретателя в те годы большинство открытий осталось утраченными, а часть того что изобрёл Тесла его фанаты считают засекреченными.

Вот мы и рассмотрели все величайшие открытия и изобретения Николы Тесла. Напоследок рекомендуем посмотреть видео, на котором наглядно демонстрируются наиболее важные творения изобретателя:

Материалы по теме:

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество» .

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаметитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным , а второе — отрицательным .

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

На заре человеческих открытий в области электричества и первых попыток его бытового применения разгорелся жаркий спор о том, какой ток лучше использовать для удовлетворения человеческих потребностей: постоянный или переменный? Все зависит от источников потребления. Сегодня это понятно всем. А в восьмидесятых годах девятнадцатого века из-за вопросов, какой ток лучше и как выгоднее передавать электрическую энергию, развязалась 125-летняя война (закончившаяся лишь в конце ноября 2007 года) между конкурирующими фирмами – «Edison Electric Light Company» и «Westinghouse Electric Corporation». Итак, с чего же все началось?

В 1878 году Томас Эдисон основал компанию «Edison Electric Light», в будущем ставшую всемирно известной под именем «General Electric». Вскоре компания разбогатела и завоевала уважение американцев, в том числе и стремлением, как говорил сам Эдисон, «сделать электричество таким дешевым, чтобы жечь свечи смогли только богачи». За девять лет своего существования компания построила более сотни электростанций постоянного тока, работавших на трёхпроводной системе Эдисона. Постоянный ток Эдисона отлично работал с лампами накаливания и первыми электродвигателями – единственными на тот момент предметами, нуждавшимися в электроэнергии. Изобретенный Эдисоном счетчик также работал только на постоянном токе. Однако столь мощного наступления одной компании не могли допустить его конкуренты, которые пытались противопоставить постоянному току Эдисона переменный. Одним из таких конкурентов оказался ведущий ученый-инженер и по совместительству успешный бизнесмен Джордж Вестингауз.

Ознакомившись с патентом Эдисона, Джордж Вестингауз сразу же заметил слабое звено в его электростанциях постоянного тока — большие потери мощности в проводах. Однако даже знание недостатка эдисоновской системы не позволили ему разработать нечто прорывное, способное на равных конкурировать с предложением Эдисона.

Разберемся, в чем же заключались основные плюсы и минусы конкурирующих систем. Основной проблемой постоянного тока Эдисона, как было отмечено выше, явилась проблема передачи тока на большие расстояния, а точнее сопутствующая передаче потеря мощности в проводах, т.к. при увеличении расстояния растет сопротивление проводов. Чтобы снизить потери мощности при передаче, необходимо либо делать провод толще (т.е. снижать его сопротивление), либо повышать напряжение (что приведет к снижению силы тока). Поскольку способов эффективно повысить напряжение постоянного тока на тот момент науке известно не было, то в электростанциях Эдисона использовалось напряжение близкое к нуждам потребителя, т. е. колеблющееся в диапазоне от ста до двухсот вольт. Основанные на этих расчетах электростанции не позволяли передать потребителю большей мощности необходимой, скажем, для промышленных предприятий.

Таким образом, эффективно использовать генерируемую электроэнергию могли потребители, расположенные на расстоянии, не превышающем порядка полутора километров от электростанции. Преодолеть подобный барьер расстояния можно было сложными и дорогими мерами. Например, введением в эксплуатацию толстых проводов или строительством целой сети местных электростанций, что не мог себе позволить ни один бюджет даже богатейших штатов.

Напряжение переменного тока довольно просто изменялось при помощи изобретенного Павлом Николаевичем Яблочковым в 1876 году трансформатора. Это давало возможность передавать ток на сотни километров, как по магистральным линиям высокого напряжения, так и создавать линии меньшего напряжения для поставки электроэнергии непосредственно потребителям.

Однако на тот момент (да и сейчас) никто не оспаривал факт, что лампочки (самый распространенный электроприбор) лучше работают именно на постоянном токе. Подходящих двигателей переменного тока на момент появления в США электрических сетей и вовсе не существовало, что делало использование постоянного тока единственно возможным. Кроме того, использование переменного тока для передачи энергии на расстояние гораздо более тяжело осуществимое, контролируемое, прогнозируемое, в сравнении с передачей электроэнергии при помощи постоянного тока.

Подобный расклад сил в пользу постоянного тока Эдисона существовал вплоть до того момента когда Тесла, еще будучи сотрудником эдисоновской фирмы, успешно проработав 1885 год, не получил прибавку к зарплате. Это привело к тому, что Тесла отказался поддерживать использование постоянного тока и продолжать работать на Эдисона.

Так, в 1887 году Вестингауз познакомился с Николой Тесла и его изобретениями. Тесла, работая на пределе человеческих сил, очень быстро получил патенты на несколько аппаратов переменного тока. В деловом мире началась борьба за сотрудничество с обладателем прав на наиболее эффективную систему переменного тока. У Теслы наметилось несколько конкурентов, и главными из них являлись Уильям Стенли, занимавшийся усовершенствованием аппарата Голара Гиббса (более современного трансформатора) в компании Джорджа Вестингауза, и Илайхью Томсон из «Томсон Хьюстон электрик компани».

В финальном противостоянии между Томсоном и Теслой на знаменитой лекции в Американском институте инженеров-электриков в мае 1888 года победу одержал последний. Сербский изобретатель, представив свою систему, доказал, что она способна транспортировать электроэнергию на сотни миль от источника ее получения, в то время как проект его соперника позволял осуществлять электропередачу на расстояние не более мили. Поскольку второй конкурент Теслы в области изучения переменного тока г-н Стенли также фактически ничего не смог противопоставить, то сербский ученый стал единоличным автором идеи самого передового двигателя переменного тока. Именно после этого события Джордж Вестингауз сумел склонить молодого ученого к взаимовыгодному сотрудничеству.

За два года доходы компании Вестингауза выросли в четыре раза, и успешный бизнесмен смог предложить Тесле немаленькую сумму за его патенты. За годы сотрудничества Теслы и Вестингауза сербский ученый выручил свыше 100 тысяч долларов, что в пересчете на современные деньги составило бы несколько миллионов. Получив стабильное финансирование, Тесла еще в 1888 году переехал из своего дома в Нью-Йорке в лучшую гостиницу Питтсбурга, и с тех пор ученый более не жил в своем частном доме, предпочтя его жизни в гостинице.

Итак, двигатель Теслы совершил настоящую революцию в передаче энергии. Так, было положено начало Войне токов. Многие сводят данную войну к простому противостоянию Теслы и Эдисона, или компаний последнего и Вестингауза. Однако, реально заинтересованных, а самое главное замешенных в этой войне лиц на поверку в несколько раз больше. В противостоянии постоянного и переменного тока можно увидеть борьбу не только различных североамериканских фирм, но и их заатлантических конкурентов.

Как американские, так и европейские компании начали широкомасштабную войну за завоевание рынка электроснабжения США. Несмотря на то, что изобретения Теслы все же перевесили чащу весов в пользу переменного тока, Томас Эдисон и его сторонники вовсе не собирались сдаваться. Эдисон начал открытую пиар-войну против Вестингауза и Теслы публично демонстрируя убийства животных переменным током. Более того, на руку Эдисону сыграла трагическая смерть некоего г-на Поупа, произошедшая по причине неисправности трансформатора стоявшего у него в подвале. Смерть этого человека была широко освещена в прессе и, по всей видимости, родила в голове финансируемого Эдисоном инженера Брауна идею казни приговоренных к смерти заключенных электрическим током. Браун решил воспользоваться данной идеей в интересах компании Эдисона, предложив приводить приговор в исполнение не «безопасным» постоянным током, а «опасным» переменным. Ход оказался как нельзя удачным: доход компании Вестингауза серьезно сократился, а люди попросту боялись использовать переменный ток.

В 1891 году трехфазная система переменного тока, разработанная Теслой, была представлена на выставке в Франкфурте-на-Майне. По всей видимости, фурор, произведенный данной системой, помог компании Вестингауза выиграть тендер на строительство крупнейшей на ту пору электростанции на Ниагарском водопаде. Переменный ток и Тесла снова одерживали вверх. Еще одним фактом в пользу переменного тока послужила покупка Эдисоном компании Томсон-Хьюстон, занимающейся изучением и строительством агрегатов, основанных на переменном токе. Однако, Эдисон не собирался отказываться от своего детища – постоянного тока и от черного пиара по отношению к переменному. Так Эдисон заснял и затем широко распространил в прессе кадры казни переменным током слонихи, затоптавшей трех людей в 1903 году.

Электроснабжение постоянным током неохотно сдавало свои позиции. Хотя уже в начале XX века большинство электростанций выдавало переменный ток, существовало немало потребителей постоянного тока. Переменный ток для них преобразовывался в постоянный с помощью ртутных выпрямителей. Электростанции постоянного тока в США строились вплоть до 1920-х годов. В Европе переменный ток одержал полную победу гораздо быстрее чем в США. Вероятно, это связано с тем, что в Европе позиции эдисоновской General Electric были вовсе незначительными, и люди проводили электрификацию, в большей мере основываясь на доводах ученых-физиков, а не трюков черного пиара Эдисона. Так в скандинавских странах окончательно перешли на переменный ток в 40-60-х годах XX века. Тем не менее, в США вплоть до 90-х годов существовало 4,6 тыс. разрозненных потребителей постоянного тока, и в 1998 году начались попытки перевести их на переменный ток.

С исчезновением последнего потребителя постоянного тока, в ноябре 2007 года главный инженер компании «Консолидейтед Эдисон», которая предоставляла электроснабжение постоянным током, перерезал символический кабель. Это и положило конец Войне токов.

Никола Тесла (1856-1943) — выдающийся изобретатель, физик, инженер сербского происхождения, автор свыше сотни изобретений, многие из которых кардинально изменили жизнь человечества. Наибольшую известность получил за создание устройств функционирующих на переменном токе, а также последовательное отстаивание идеи существования эфира. Имя изобретателя носит единица измерения плотности магнитной индукции.

«Я не тружусь более для настоящего, я тружусь для будущего».

«Действие даже самого крохотного существа приводит к изменениям во всей вселенной».

«Великие тайны нашего бытия еще только предстоит разгадать, даже смерть может оказаться не концом».

Никола Тесла родился в хорватском селе Смилян (тогда Австро-Венгрия) 10 июля 1856 года. Его родители Милутин и Георгина были далеки от науки — отец служил священником, а мать, по нынешним меркам, была домохозяйкой. Свое раннее детство мальчик провел на малой родине, там же окончил первый класс начальной школы.

Затем отцу присвоили новый духовный сан и многодетная семья, в которой было пятеро детей, переехала в город Госпич. К тому времени погиб старший брат Николы Дане. В Госпиче будущий физик получил дальнейшее образование, завершив сначала обучение в трех классах начальной школы, а в 1870 году получив аттестат реальной гимназии.

Тесла в юности

Обучение в гимназии открыло дорогу в Высшее реальное училище (ныне Технический университет Граца), которое находилось в городе Карловац. Туда и отправился юноша, где проживал на квартире у родной тети. Учебе чуть не помешала тяжелая болезнь (вероятно, холера), избавиться от которой Никола не мог целых 9 месяцев. Из-за этого отец даже хотел запретить дальнейшее обучение на инженера, но сын настаивал и проявил такую волю к жизни, что вскоре пошел на поправку.

Находясь в Граце, Тесла с головой окунулся в электротехнику и вскоре понял, что машины постоянного тока несовершенны. За это он подвергся публичной «порке» от профессора Я. Пешля, демонстративно прочитавшего перед всем курсом лекцию о невозможности использовать переменный ток в электродвигателях. Но в жизни Тесла были люди, которые оставили в его душе неизгладимый след. Среди них был его преподаватель по физике М. Секулич, который однажды продемонстрировал свое изобретение — обернутую в оловянную фольгу лампочку, интенсивно вращавшуюся под действием статической машины. Никола позднее вспоминал, что каждый раз это явление отражалось эхом в его сознании.

Но был в это время в жизни студента Теслы и неприятный эпизод. На третьем курсе он начал играть в азартные игры, проигрывая в карты крупные суммы. В редкие моменты побед он раздавал выигранное проигравшим и, неудивительно, что вскоре за сербом стал числиться огромный долг, который помогла погасить его мать. Но это стало хорошим уроком для него, после чего карты навсегда исчезли из жизни Теслы.

Самостоятельная жизнь

После смерти отца Никола стал преподавать в своей родной гимназии в Госпиче, но эту работу он особенно не любил. Денег все время не хватало и только при поддержке дядей Павла и Петара он смог переехать в Прагу, поступив на философский факультет местного университета. Но и здесь хроническое безденежье дало о себе знать и после первого семестра молодой человек устроился инженером-электриком в телеграфную компанию в Будапеште. Она занималась прокладкой телефонных коммуникаций и возведением телефонных станций. В 1882 году Тесла догадался о возможности применения вращающегося магнитного поля в электродвигателе, но работа в телеграфной компании мешала осуществить планы, что вынудило начинающего ученого перейти в Континентальную компанию .

В это время он работает в Париже и Страсбуре. В последнем он участвовал в постройке электростанции для местного железнодорожного вокзала. Именно в Страсбуре Тесла разработал модель ассинхронного электродвигателя, который опробовал в деле прямо в мэрии города. После завершения работы над электростанцией, Никола возвратился в Париж, ожидая причитающейся ему премии 25 тыс. долларов, но вскоре понял тщетность своих намерений и уволился.

Новый поворот судьбы

Поначалу Тесла хотел отправиться в Россию, где в это время работала целая плеяда научных светил — , и другие. Но один из коллег по Континентальной компании Ч. Белчор убедил его поехать в США и даже написал рекомендательное письмо Т. Эдисону. В июне 1884 года ученый приезжает в Нью-Йорк и устраивается в компанию Edison Machine Works инженером по ремонту электротехнического оборудования, параллельно продолжая заниматься изобретательской деятельностью.

Зная о большом научном азарте Теслы и не сильно доверяя его идеям, Эдисон дал задание своему коллеге — усовершенствовать электромашины постоянного тока, пообещав за это фантастическую по тем временам сумму в 50 тыс. долларов. Никола с головой окунулся в работу и в кратчайшие сроки представил 24 варианта оптимизации машины, а вместе с ними новый регулятор и коммутатор. Томас одобрил все разработки, но денег не выдал, сославшись на плохой английский Теслы и его непонимание американского юмора. В ответ обиженный изобретатель предпочел уволиться.

Мечты сбываются

Уйдя от Эдисона, Тесла прекрасно понимал, что больше не может рассчитывать на протекцию своей родни, но к этому времени у него появилось нечто более ценное — авторитет в научных кругах и уверенность в правильности собственных идей. Весной 1885 года вместе с известным специалистом в патентном праве Л. Сюррелом, он подает первую заявку на патент, связанный с дуговой лампой, которая источает однородный свет. После этого авторские изобретения стали появляться с завидной регулярностью.

Позже он заключил партнерское соглашение с бизнесменами из Нью-Джерси, которые согласились финансировать проекты ученого и дали ему денег. На эти средства Тесла создал компанию и вроде бы жизнь стала налаживаться. Однако горе-предприниматели обманули наивного Теслу и забрали фирму себе, «поделившись» с ним частью акций. Никола оказался разорен и вынужден был вспомнить о былой нищете. Чтобы выжить, он занимался рытьем канав, получая за это всего 2 доллара.

Ученый с большой буквы

Судьба вознаградила его за терпение и в 1887 году Никола при помощи коллег создает свое новое детище «Тесла арк лайт компани», которая быстро стала серьезным конкурентом империи Эдисона. Пресса остроумно называла это противостояние «войной токов» и на поле «битвы» серб не раз переигрывал маститого американца. В 1888 году в Американском институте инженеров-электриков Тесла сообщил о генераторе переменного тока и тут же получил предложение от миллионера Джорджа Вестингауза уступить ему изобретение за 1 миллион долларов. В итоге он приобрел патенты на технологии передачи и распределения многофазных токов и использовал эти идеи в ходе возведения ГЭС на Ниагарском водопаде.

На протяжении последующих семи лет до 1895 года Тесла активно работал в своей лаборатории над теорией магнитных полей и высоких частот. В результате было получено множество патентов, среди которых электрогенераторы высокой и сверхвысокой частоты, волновой радиопередатчик, а также резонансный трансформатор. Кроме того, ученому удалось догадаться о физиологическом влиянии токов высокой частоты.

Тесла не переставал удивлять научный мир. В 1892 году, выступая в Королевской академии Великобритании, он поразил присутствующих горящими лампочками, которые «сумасшедший серб» держал в своих руках. При этом они не были присоединены к источнику тока. За это после выступления его усадили в кресло самого Фарадея. Работая над теорией радиоволн, Тесла придумал «телеавтомат» — самоходное устройство, которые управлялись на расстоянии.

Казалось, что перед Николой нет никаких преград и сама природа послушно выполняла указания ученого. Но в мае 1895 года в лаборатории случился пожар, поглотивший уже созданные разработки и новейшие проекты, в том числе способ трансляции сообщений на расстоянии и механический осциллятор. Тогда упорно ходили слухи, что причиной возгорания стал поджег конкурентов, а некоторые и вовсе называли конкретного виновника — Эдисона.

Передача данных на расстояние

Теслу спасла феноменальная память, благодаря которой он восстановил свои записи, а «Компания Ниагарских водопадов» выписала ему 100 тыс. долларов на создание новой лаборатории. Результат не заставил себя ждать — в 1896 году ученому удалось передать сигал без помощи проводов на 48 км.

В 1899 году по приглашению электрической компании, Тесла создает лабораторию Колорадо-Спрингс, которая работала над изучением гроз. Для этого серб создал специальный трансформатор с заземленным концом первичной обмотки. Второй конец был присоединен к металлическому шару, из которого выходил стержень. Вторичная обмотка была подключена к устройству, интегрированному с записывающим прибором. Эта конструкция позволила ученому понять динамику меняющегося потенциала планеты. После этого он провел еще один эксперимент, в ходе которого сумел доказать возможность создания стоячей электромагнитной волны.

После впечатляющих успехов изобретатель вернулся в Нью-Йорк и задумал возвести станцию для передачи данных и энергии на расстояние в любое место планеты. Для этого он приобрел на Лонг-Айленде небольшой земельный участок, а архитектор В. Грой разработал проект деревянной башни. К 1902 году это сооружение под названием «Уорденклифф» высотой 47 метров было построено, но дальше дело не пошло. Обещавший финансировать проект Д. Морган, в последний момент отказал Тесле из опасений разорения собственного бизнеса. Впрочем, ученого это не остановило и в ближайшие годы он продолжил оттачивать технологию, проведя множество экспериментов.

«Засекреченные» изобретения Теслы

Но не только башней прославился Тесла — он не останавливал работу над другими изобретениями. В начале XX века Никола создал электросчетчик и частотомер, усовершенствовал паровые турбины, вел разработки локомотива, летательного аппарата, автомобиля и токарного станка.

«Летательный аппарат» Николы Теслы

«Это будут летательные аппараты на совершенно новых принципах — без газовых баллонов, крыльев или воздушных винтов. На высоких скоростях они будут перемещаться в любых направлениях независимо от погоды, воздушных ям и нисходящих потоков».

Есть версии, что в лаборатории ученого создавалось мощное разрушительное оружие. Известно, что во время проведения эксперимента, связанного с изучением автоколебаний, в помещении начался сильный резонанс, заставивший Тесла прекратить действо. Возможно, это и было испытание оружия. Правда, некоторые утверждают, что в это время в городе случилось «Большое Нью-Йоркское землетрясение», но приобретение правительством США всех чертежей и последующее их засекречивание наводит на определенные мысли.

Незадолго до кончины гениальный ученый объявил о сенсации — он создал «луч смерти», способный передавать на расстояние невероятный объем энергии, который мог уничтожить 10 тысяч самолетов. В 1931 году он показал публике свой электрокар с двигателем переменного тока, передвигавшийся без подзарядки в течение всей экспериментальной недели. По заявлению автора машина могла разгоняться до 150 км/ч.

Последние годы жизни

Незадолго до смерти, Никола Тесла попал под колеса автомобиля и получил перелом ребер. На фоне осложнений началось воспаление легких и он слег в постель. Ученый глубоко переживал за судьбу родины, оккупированной в годы II мировой фашистами, и пытался поддерживать тех, кто вел борьбу за ее независимость. Даже будучи глубоко больным, Тесла никого к себе не пускал и находился в своем гостиничном номере один. Так он и умер в одиночестве от сердечной недостаточности в ночь на 8 января 1943 года. Обнаружили тело лишь спустя двое суток после смерти.

Как и многие талантливые люди, Никола Тесла слыл чудаком и во многих рядовых житейских ситуациях был странен. Но он мог как никто другой на невероятном уровне чувствовать метафизику и понимать законы природы. Результатом этого стали гениальные изобретения, двинувшие вперед развитие всего человечества.

  • Когда Никола было лет десять он гладил пушистую кошку и заметил, что между пальцами и волосами животного проскакивают искры, особенно заметные в темноте. Мальчик поинтересовался у отца о природе этого явления, на что тот искренне ответил о родстве этих искр с молниями. Его ответ Никола помнил до конца жизни — оказывается электричество можно приручить как домашнюю кошку, хотя, с другой стороны, оно может выступать как грозная стихия (молния).
  • После тяжелой болезни, перенесенной в юношестве, Тесла стал страдать фобией, связанной с боязнью заразиться инфекцией. Он по многу раз мыл руки, а если во время пребывания в ресторане на его тарелку садилась муха ученый сразу делал новый заказ.
  • Никола хорошо знал «Фауста» Гете и нередко читал наизусть отрывки из этого произведения. Однажды во время прогулки по парку он предался любимому занятию, после чего неожиданно стал чертить загадочные схемы, в которых за передачу энергии отвечали две электроцепи. В результате родилось поистине революционное изобретение, позволившее передавать электричество на большие расстояния.
  • Эдисон отчаянно спорил с Теслой о постоянном и переменном токе, утверждая об опасности последнего. Чтобы доказать свою правоту он публично убил собаку переменным током, но на оппонента это не произвело никакого впечатления.
  • По мнению некоторых любителей мифов, проводившиеся в знаменитой башне Теслы «Уорденклифф» эксперименты, могли спровоцировать появление Тунгусского метеорита над Россией в 1908 году.
  • Во взрослые годы Тесла был нелюдим и боялся солнечного света, поэтому ему приписывали родство с самим Дракулой. На самом деле из-за постоянного воздействия электромагнитных полей у него развилось редкое отклонение — ученый стал хорошо видеть в темноте и практически ничего не различал при солнечном свете из-за сильной рези в глазах.
  • Способности великого ученого не знали границ. Он писал стихи, во сне предсказал смерть родной сестры, а также сумел спасти друзей от катастрофы, не пустив их на поезд.
  • В ходе одного из экспериментов с радиоволнами серб услышал странные сигналы и заявил, что они пришли из космоса. Так родился очередной миф, утверждающий, что изобретения ему помогают создавать инопланетяне.

«Мой мозг только приемное устройство. В космическом пространстве существует некое ядро откуда мы черпаем знания, силы, вдохновение. Я не проник в тайны этого ядра, но знаю, что оно существует».

Видео

Документальный фильм «Никола Тесла. Властелин мира».
Автор сценария и режиссер: Виталий Правдивцев
Редактор: Лариса Коваленко
Продюсер: Алексей Горовацкий

Документальный фильм «Никола Тесла. Видение современного мира».

Истоия откытия — переменный ток

       Конец XIX века можно однозначно назвать началом электрической эры. Именно тогда было сделано множество изобретений, которые можно считать прототипами современных устройств и приборов.
Начало электрической эры

       Из курса физики известно, что работа, которая совершается в электрической цепи, если в ней протекает переменный электрический ток, полностью превращается в тепло, если цепь имеет только активное сопротивление. Этот принцип лежит в основе работы всем известной электрической лампочки, запатентованной Томасом Эдисоном в 1879 году.

      В конце XIX века начали проводиться первые попытки внедрения электричества в повседневную жизнь: совершенствовались электрические генераторы, строились первые линии электропередач. Использовать электрический ток первоначально предполагалось для освещения в качестве альтернативы свечам, керосиновым лампам и газовым фонарям.
«Война токов» и ее победители

    Наличие в арсенале потребителей электрического тока только устройств для освещения заметно сужало массовость их применения. Постепенно назревала необходимость в надежном устройстве, способном преобразовывать электрическую энергию в механическую. Этот период теперь характеризуют как «Война токов». Дело в том, что первоначально распространение получил постоянный электрический ток. Именно он использовался в построенной Эдисоном схеме производства и потребления электроэнергии, которая была рассчитана на целый городской район и соединяла нужным образом электролампы, провода, электрогенераторы, розетки, вилки и т.п.

В противоположность Эдисону известный хорватский ученый Никола Тесла был по сути создателем переменного электрического тока и долгое время работал над созданием устройств его генерирующих и потребляющих. Какое-то время он даже работал в производственной компании Эдисона, но будучи сторонником идей, не признаваемых своим руководителем, вскоре был вынужден сменить место работы. В результате долгих теоретических изысканий и экспериментов ему удалось создать трансформатор, в котором переменный ток трансформировался до более высокого напряжения при сравнительно малой силе тока. В таком виде его можно было передавать на большие расстояния без существенных потерь. Для потребителей ток вновь понижался трансформатором до определенных значений. Таким образом, была заложена основа всех современных централизованных систем электроснабжения.

Такое преобразование возможно только в цепях переменного тока. В случае использования постоянного тока построение эффективной системы электроснабжения невозможно. Поэтому в электрических схемах Эдисона, использовавших постоянный ток, планировалось строительство электростанций в каждом городском районе во избежание больших потерь. Кроме того, Тесла открыл вращающееся магнитное поле и стал применять несколько электрических фаз. Эти открытия легли в основу созданного Никола Тесла в 1884 году асинхронного двигателя, который достаточно широко распространен в наше время и является одним из самых основных потребителей переменного электрического тока.Таким образом «Война токов» была, бесспорно, выиграна Никола Тесла, а вместе с ним выиграли и все мы, получив возможность пользоваться многочисленными удобствами, основой многих из которых стали изобретения великого ученого.

Кто создал переменный ток. Кто изобрел переменный ток

«Человек, который изобрёл 20 век!» — так Теслу называют современные биографы, и делают они это без каких-либо преувеличений. Свою известность он получил благодаря прогрессивным взглядам и умению доказывать их состоятельность. Тесла проводил опаснейшие эксперименты во имя науки, и в определённых кругах считается фигурой, связанной с мистикой. В последнем случае, скорее всего, мы имеем дело с домыслами, но что известно точно, так это то, что изобретения Николы Теслы способствовали прогрессу во всём мире.

Наследие Николы Теслы

Сначала рассмотрим важные с научной точки зрения изобретения, но редко встречающиеся в повседневной жизни современного человека.

Речь пойдёт об одном из самых известных и зрелищных изобретений Николы. Катушка Теслы является разновидностью резонансной трансформаторной схемы. Использовалось это приспособление для производства высокого напряжения высокой частоты .


Катушка Теслы была одним из инструментов изучения природы электрического тока и возможностей его использования

Тесла задействовал катушки во время проведения инновационных экспериментов в области:

  • электрического освещения;
  • фосфоресценции;
  • рентгеновской генерации;
  • высокочастотного переменного тока;
  • электротерапии;
  • радиотехники;
  • передачи электрической энергии без проводов.

Кстати, Никола Тесла был одним из тех людей, кто предсказал появление Интернета и современных гаджетов.

Катушка Теслы является ранним предшественником (наряду с индукционной катушкой) более современного устройства, называемого трансформатором обратного хода. Он обеспечивает напряжение, необходимое для питания электронно-лучевой трубки телевизоров и компьютерных мониторов. Версии этой катушки широко используются сегодня в радио, телевидении и другом электронном оборудовании.

В всей красе катушку можно увидеть в научных музеях или на специальных шоу.

Катушка Теслы в действии – это всегда зрелище:

Эта конструкция, известная также как Башня Теслы, была построена с целью осуществления беспроводной телекоммуникации и демонстрации возможности передачи электроэнергии без проводов .

По задумке Теслы Башня Ворденклиф должна была стать шагом к созданию Всемирной беспроводной системы . В его планах было установить несколько десятков приемо-передающих станций по всему миру. Таким образом, отпала бы необходимость использования высоковольтных линий электропередач. То есть фактически мы получили бы одну всемирную электростанцию. К слову, Тесле удавалось передавать электричество «по воздуху» от одной катушке к другой, так что его амбиции были небезосновательны.

Сегодня Ворденклиф – закрытый объект

Проект Ворденклиф требовал больших капиталовложений и на начальных этапах получил поддержку влиятельных инвесторов. Однако, когда работа над строительством башни была практически завершена, Тесла лишился финансирования и оказался на гране банкротства. А всё потому, что Ворденклиф могла быть предпосылкой к бесплатным поставкам электричества по всему миру, а это могло разорить некоторых инвесторов, чей бизнес был завязан на продаже электроэнергии.

Любители различных теорий заговоров связывают падение Тунгусского метеорита в Сибири и эксперименты Теслы с Башней.

Рентгеновские лучи

Вильгельм Рентген 8 ноября 1895 года официально открыл излучение, названное в честь его. Но фактически это явление первым наблюдал Никола Тесла. Ещё в 1887 году он начал проводить исследования с использованием вакуумных трубок. В ходе экспериментов Тесла фиксировал «особые лучи», способные «просвечивать» предметы . Поначалу учёный не предавал особого значения этому явлению, учитывая, что длительное воздействие рентгеновских лучей опасно для человека.


Никола Тесла первым обратил внимание на опасность рентгеновского излучения

Однако Тесла продолжал исследования в этом направлении и даже провел несколько экспериментов до открытия Вильгема Рентгена, включая фотографирование костей его руки.

К сожалению, в марте 1895 года в лаборатории Теслы произошёл пожар, и записи об этих исследованиях были утрачены. После открытия Рентгена, Никола, используя устройство с вакуумными трубками, сделал снимок своей ноги и отправил коллеге вместе с поздравлениями. Рентген похвалил Теслу за качественную фотографию.


Тот самый снимок ноги в ботинке

Вопреки расхожему мнению, Вильгем Рентген не был знаком с работами Теслы и к своему открытию пришёл самостоятельно, чего не скажешь о Гульельмо Маркони…

Радио и дистанционное управление

Инженеры разных стран работали над технологией радиосвязи, при этом исследования были независимыми друг от друга. Самый яркий пример: советский физик Александр Попов и итальянский инженер Гульельмо Маркони, которые в своих странах считаются изобретателями радио. Однако Маркони получил большую мировую известность, впервые установив радиосвязь между двумя материками (1901 г.) и получив патент на изобретение (1905 г.). Поэтому считается, что он в развитие радиосвязи внёс наибольший вклад. Но причём тут Тесла?

Радиоволны сегодня повсюду

Как выяснилось, первым природу радиосигналов выявил именно он и в 1897 году запатентовал передатчик и приёмник . Маркони взял за основу технологию Теслы и совершил свою знаменитую демонстрацию в 1901 году. Уже в 1904 году Патентное бюро лишает патента на радио Николу, а через год присуждает его Маркони. Судя по всему, тут не обошлось без финансового влияния Томаса Эдисона и Эндрю Карнеги, которые были в конфронтации с Теслой.

В 1943 году, уже после смерти Николы Теслы, Верховный суд США разобрался в ситуации и признал более значительный вклад этого учёного в качестве изобретателя радиотехнологий.

Отмотаем немного назад. В 1898 году на электротехнической выставке в Мэдисон-Сквер-Гарден Тесла продемонстрировал изобретение, которое он назвал «телеавтоматикой». Фактически это была модель лодки, перемещением которой можно управлять дистанционно через пульт.

Так выглядела радиоуправляемая лодка Теслы

Никола Тесла на деле показал возможности использования технологии передачи радиоволн. Сегодня дистанционное управление сплошь и рядом, начиная от телевизионного пульта и заканчивая полётами беспилотников.

Асинхронный двигатель и электромобиль Теслы

В 1888 году Тесла получил патент на электрическую машину, в которой под воздействием переменного тока создаётся вращение.

Не будем вдаваться в технические особенности работы асинхронного двигателя – те, кому это интересно, могут ознакомиться с соответствующим материалом на Википедии . О чём нужно знать, так это о том, что двигатель имеет простую конструкцию, не требует высоких затрат на изготовление и надёжен в эксплуатации.

Тесла намеревался использовать своё изобретение как альтернативу двигателям внутреннего сгорания . Но так уж случилось, что в этот период никто в подобных инновациях не был заинтересован, да и финансовое положение самого учёного не позволяло ему особо разгуляться.

Интересный факт! В Силиконовой долине великому изобретателю установлен памятник. Символично, что он раздаёт бесплатный Wi-Fi.

Нельзя не упомянуть и об окутанном тайной электромобиле Теслы . Именно из-за сомнительности этой истории не будем выводить её отдельным пунктом. Тем более, что тут не обошлось без электродвигателя.

1931 год, Нью-Йорк. Никола Тесла провёл демонстрацию работы автомобиля, в котором якобы вместо двигателя внутреннего сгорания был установлен двигатель переменного тока мощностью 80 л.с. Учёный колесил на нём около недели, разгоняясь до 150 км/ч. А загвоздка в следующем: двигатель работал без видимого источника питания , да и на подзарядку машина якобы никогда не ставилась. Единственное, к чему мотор был подключён, это коробочка, собранная из лампочек и транзисторов, которые Тесла купил в ближайшем магазине радиоэлектроники.


Для демонстрации был использован автомобиль Pierce Arrow1931 года

На все расспросы Никола отвечал, что энергия берётся из эфира. Газетные скептики начали обвинять его чуть ли не в чёрной магии, и раздосадованный гений, забрав свою коробочку, вообще отказался что-либо комментировать и объяснять.

Подобное событие в биографии Теслы действительно имеет место, но всё же эксперты ставят под сомнение, что он нашёл способ получать энергию для авто из «воздуха». Во-первых, в записях учёного нет и намёка на двигатель, работавший от эфира, а во-вторых, есть предположения, что Никола таким образом одурачил общественность, чтобы привлечь внимание к самой идее электрических автомобилей. А непосредственно для передвижения данного прототипа мог использоваться либо скрытый аккумулятор, либо ДВС с модернизированной системой выхлопа.

Трёхфазный ток – вид сигнала, идущий минимум по трём проводам, причём частота по каждой ветке одинакова, а фазы равноудалены друг от друга (на 120 градусов).

Сложный путь трёхфазного тока

Общеизвестно, что теорию Араго о вращающемся магнитном поле первым сумел реализовать на практике Никола Тесла. Озарение пришло внезапно, во время прогулки с товарищем на природе. Взяв патент, Тесла одновременно заложил в документ вето на использование любого количества фаз, большего единицы. Потому русский учёный Доливо-Добровольский, добровольно сбежавший в немецкую компанию AEG, не смог приобрести патент на собственный трёхфазный двигатель…

Этот исторический экскурс сделан, чтобы читающий понял, насколько неисповедимы пути Господни. Как витиевато пролегла судьба молодого Теслы, подарившего – и это сказано без преувеличения – миру переменный, включая трёхфазный, ток. А вдобавок – очертил примерные области изменения частоты и напряжения. Без гения Теслы, возможно, сегодня продолжалось бы использование аккумуляторов. Понятно, что технический прогресс без переменного тока не представлялся возможным.

Араго и вращающееся магнитное поле

Большинство современных изобретений базируется на открытиях, сделанных англичанами и французами в первой половине XIX века. Метрическая система задумана Лапласом, занимавшим важный пост в Академии ещё до Бонапарта. В основу СИ заложена длина, составляющая десятимиллионную долю от четверти Парижского меридиана (дуга, проходящая через магнитные Земли, расположение истинных оставалось неизвестным).

Выполняя эту задачу, Араго отправился первоначально в Испанию, чтобы вести измерения. Сделаем акцент на простом факте: времена стояли неспокойные. Ко времени путешествия Араго относится факт сдачи в плен на территории Испании 22-х-тысячной армии под командованием Дюпона. В разрез с условиями капитуляции сыны Аррагона отправили французов – после долгих мытарств – на безлюдный остров, где содержали в ужасающих условиях. В итоге, на родину вернулась лишь четверть, а Дюпона император Наполеон заточил в замок, ужаснейшую тюрьму Франции.

Араго многократно за непродолжительный срок длительностью в три года оказывался на волосок от смерти и неизменно терпеливо продолжал выполнять работы по измерению меридиана. Нюанс – Лаплас доказал изменение размеров Земного шара согласно движению Луны. Нельзя в точности считать общепринятый ныне метр (от греч. – эталон, мера) научно объяснённой мерой длины. А копии из специального сплава хранятся в особенных условиях. Однако в США, Британии и ряде прочих странах поныне используется ярд, точное происхождение единицы доподлинно неизвестно.

Араго одним из первых признает величественность работ в электричестве Эрстеда и Вольты, в общих словах утверждая, что указанные два человека заложили фундамент для постройки нового здания на протяжении веков. Сообразуясь с идеями Лапласа, подхваченными Швейггером, Араго начинает экспериментировать с первыми и быстро находит новое направление. Речь идёт об индукции. Предстоит прожить 8 лет до опытов Майкла Фарадея, а Араго совместно с Фуко демонстрирует Академии взаимное влияние стрелки компаса и вращающегося медного диска – металла, не относящегося к железу и сплавам.

Значит, первый асинхронный двигатель появился задолго до патентования 1 мая 1888 году (US381968 A) Николой Тесла синхронной машины переменного тока. Араго открыл вихревые токи Фуко, давшие грядущим поколениям сотни идей. Майкла Фарадея считают отцом коллекторных двигателей. О последнем читайте в заметке о . Вначале кажется, что двигатель у Фарадея синхронный, поскольку используется постоянный магнит, но мнение ошибочно. В дальнейшем развитие идеи привело к появлению скользящих контактов, меняющих полярность полюсов обмоток, что уже прямиком ведёт к распределительному коллектору.

Никола Тесла и переменный ток

Изложение событий, связанных с Николой Тесла, ведётся по Первой отечественной биографии в авторстве Ржонсницкого. Как свидетельствует писатель, на исходе 1881 года изобретателя поразил неизвестный недуг, сопровождающийся необычными симптомами:

  1. Чувства обострились настолько, что Тесла слышал движение повозки по улице и ощущал производимые в доме вибрации.
  2. Лёгкое прикосновение казалось ударом.
  3. Зрение позволяло видеть даже в ночное время.
  4. Шёпот казался криком.

В описанное время сознание инженера (связная компания в Будапеште) работало над задачей создания двигателя переменного тока. Как предполагалось, избавление от симптоматики произошло внезапно, причина осталась необъяснимой. Выздоравливая, февральским вечером Тесла прогуливался в парке с бывшим одноклассником Сцигети, цитировал любимых поэтов, к примеру, Гёте, вместе любовались картинами природы, закатом. Произнеся очередной куплет запомнившегося стихотворения, Никола осознал, что сложная техническая задача решена.

Причём в довесок подсознание подсказало ему методику реверса вала. В автобиографии Тесла отмечал, что быстро сделал набросок будущей конструкции. Таким образом, изобретение относится к 1882 году.

Не полагаясь на бытующее мнение, что Доливо-Добровольский внёс большой вклад в развитие трёхфазного тока, это не слишком соответствует истине. В доказательство по тексту обзора приводится кастомизированное изображение из патента Николы Тесла. Видно, что на статоре и роторе по шесть полюсов. Доливо-Добровольский отметил превосходство трёх фаз над двумя. В этом большая заслуга учёного, как и изобретение «беличьей клетки» ротора асинхронного двигателя. Но трёхфазный ток и число фаз, превышающее единицу, введены в жизнь Николой Тесла. Аналогичным занимался Вестингауз к середине 80-х, но успех последнему не сопутствовал.

Хотя работа в будапештском телеграфе отнимала много сил, Тесла едва успевал заносить в блокнот новые конструкции синхронного двигателя переменного тока. На исходе 1882 года Николу ждал перевод на должность инженера по наладке электрических установок. Путешествуя по Европе, сербский гений постоянно сталкивался с детищами Томаса Эдисона и хорошо изучил принцип действия. Талантливый Тесла предложил немало улучшений для имеющегося оборудования и быстро завоевал уважение в профессиональной среде.

Работы в Страсбурге застопорились, Теслу пригласили вывести замерший состав из тупика. В 1883 году изобретатель попадает во Францию, где принимается за работу. На базе мастерских одновременно с наладкой оборудования Эдисона молодой человек конструирует первый синхронный двигатель переменного тока. Успех пришёл со скоростью присоединения последнего провода. Баузен, исполнявший обязанности мэра, после единственной демонстрацией новинки стал горячим поклонником таланта изобретателя.

Французские предприниматели, видя достоинства переменного тока, не рискнули вложить средства, не существовало на тот момент традиции использования нескольких фаз – к установке потребовалось бы купить источник питания. Тем временем Тесла блестяще выполнил поручение компании и уже ожидал оговорённой заранее, но не закреплённой контрактом, награды. Обретённые средства, по замыслу Николы, стали бы начальным капиталом для выпуска двигателей переменного тока.

Но до Эдисона, видимо, дошли слухи о демонстрации двухфазного двигателя переменного тока. Вероятно, некий предприниматель донёс до американца последние сведения по телеграфу. Континентальная компания Эдисона начала перенаправлять Теслу от чиновника к чиновнику. Последний послал Николу вновь к первому, а первый – вновь ко второму. Круг замкнулся. Поняв, что его одурачили на солидную сумму в 25000 долларов, Тесла с указанного времени решил изменить род занятий.

Путешествие трёхфазного тока в Америку

Уязвлённый молодой Никола задумал поискать счастья за пределами страны. Уже избрав новым местом пребывания Россию, Никола слышит совет Чарльза Бэчлора дойти до Эдисона лично и предложить собственные услуги. Так судьба направила Теслу в США. Одновременно Бэчлор доверительно сообщил, что в России происходит беспорядок с наукой – по указанной причине Яблочков оказался вынужден доводить опыты до конца во Франции.

Доброй души человек, Чарльз дал рекомендательное письмо Тесле, чтобы молодого учёного приняли радушно за океаном. В Париже любитель поэзии остался обобран местными жуликами, любившими шансон. Мелочи в карманах хватило на самый дешёвый билет до Гавра. Голодный и замёрзший Тесла сидел в каюте, но счастливым образом привлёк внимание капитана судна. Тот пригласил учёного в каюту и, услышав историю горемыки, не отказал в гостеприимстве.

Неожиданная потасовка на палубе заставила Теслу, обладавшего хорошими навыками кулачного боя, отбиваться, и заметивший драку капитан сменил милость на равнодушие. По счастью, недалеко оставалось до Нью-Йорка, поклонник Гёте ступил, наконец, на берег, где быстро заработал первые деньги, оказав помощь владельцу местной мастерской.

С Эдисоном Тесле помогло увидеться рекомендательное письмо. Ирония судьбы – без указанного клочка бумаги изобретатели бы не встретились. Эдисон равнодушно выслушал идеи о переменном токе. Что заставляет внести предположение о его заблаговременной осведомлённости. Тесла уже был известен Континентальной компании, её служащие отказали Николе ранее в вознаграждении. Американцы дали возможность европейцу вновь прочувствовать цену собственных обещаний.

Эдисон за очередное улучшение своих машин пообещал Тесле теперь уже 50000 долларов. Что составляло состояние по тем временам. Работавший по 20 часов в сутки Тесла внёс ряд новшеств, одновременно создав новый тип источника питания, выполнив свою часть устно заключённого соглашения. Как в прошлый раз, награда составила нуль – Эдисон заявил, что удачно пошутил по-американски.

Весной 1885 года разорвав отношения с Континентальной компанией, Тесла пускается в одинокое плавание. Впрочем, местные дельцы уже знали изобретателя в качестве талантливого инженера: он создал дуговую лампу под цели освещения улиц. Но вместо платы получил… некие трудно продаваемые акции. Три раза Тесла получал урок прежде, чем осознал, что с воротилами нужно держать ухо востро.

Проработав грузчиком, подсобным рабочим, вырыв неизвестное количество канав, Никола охладел к Америке. Но в апреле 1887 года на пути попался Обадайя Браун. Прораб быстро осознал преимущества идей Теслы и предложил познакомиться с братом Альфредом, работавшим инженером телеграфной компании. Разговор состоялся подшофе, но наутро оба двинулись в нужном направлении.

Уговор состоял в том, чтобы на базе лаборатории Брауна разработать нечто (на усмотрение Теслы) для демонстрации перед адвокатом Чарльзом Пеком. Кружащееся в магнитном поле солидных размеров металлическое яйцо смотрелось действительно потрясающе (так состоялся первый в мире асинхронный двигатель). Появились деньги на развитие концепции переменного, в том числе и трёхфазного, тока.

Изобретатель в своей экспериментальной лаборатории в Калорадо-Спринс, 1899г.

В Brooklyn Eagle Тесла объявил 10 июля 1931 г., что «Я запряг космические лучи и заставил их управлять (двигать) движущимся прибором». Далее, в той же статье он пишет: «более 25 лет назад я начал свои усилия, чтобы запрячь космические лучи и сейчас я могу заявить, что я достиг успеха». В 1933 он делает то же заявление в статье для New York American, от 1 ноября под заголовком «Устройство для использования космической энергии заявлено Теслой».

Тесла пишет:

«Эта новая энергия для управления машинным оборудованием мира будет извлечена из энергии, которая движет вселенной, космической энергии, центральным источником которой для Земли является Солнце и которая присутствует везде в неограниченных количествах».

Такой отсчет «более чем 25 лет тому назад» от 1933 г. должен означать, что устройство, о котором говорит Тесла, должно было быть построено перед 1908 г. Более точная информация доступна через библиотеку Колумбийского Университета (Columbia University Library’s collection).

10 июня 1902 г. в письме своему другу Robert U. Johnson, редактору Century Magazine, Тесла прилагает вырезку из недавней New York Herald о Clemente Figueras «инженере деревьев и леса» в Las Palmas — столице Канарских Островов, который изобрел устройство производящее электричество без сжигания топлива. Что случилось дальше с Figueras и его генератором топлива неизвестно, но это объявление в газете побудило Теслу в его письме к Джонсону заявить о том, что им уже создано такое устройство и раскрыть физические законы, на которых оно основано.

Прибор, который наиболее соответствует ожидаемому эффекту можно найти в патенте Тесла «Прибор для Утилизации Лучистой Энергии» № 685,957, что был заявлен и удовлетворен 21 марта 1901. Концепция на более старом техническом языке выглядит просто. Изолированная металлическая пластина поднимается в воздух на столько высоко, на сколько это возможно. Другая металлическая пластина помещается в землю. Провод протягивается от металлической пластины к одной стороне конденсатора и второй провод идет от земли на другой конец конденсатора.

Это на вид очень простой конструкции устройство кажется должно удовлетворять его заявлению о создании безтопливного генератора, питаемого космическими лучами, но в 1900 г. Тесла написал, что он считает наиболее важной своей статьей ту, в которой он описывает самоактивирующуюся машину, которая могла бы извлекать мощность из окружающего пространства; это безтопливный генератор, который отличается от его Устройства Лучистой Энергии. Статья называется «Проблема Увеличения Человеческой Энергии — Через Использование Солнца» была опубликована его другом Robert Johnson в The Century Illustrated Monthly Magazine в июне 1900 вскоре после того, как Тесла, вернулся из Colorado Springs, где он провел интенсивную серию экспериментов от июня 1899, до января 1900.

Точное заглавие главы, где он обсуждает этот прибор стоит того, чтобы воспроизвести его полностью.

«Отход от известных методов — возможность «самодвижущегося» двигателя или машины, неподвижного, но способного, как живое существо, к извлечению энергии из окружающей среды — идеальный способ получения движущей силы».

Тесла заявил, что он сперва начал думать об идее, когда прочитал заявление Лорда Кельвина, который сказал, что невозможно самоохлаждающееся устройство поддерживающее свою работу за счет тепла поступающего извне. В качестве мысленного эксперимента Тесла представил очень длинную связку металлических проводов протянутых от земли во внешний космос. Так как земля теплее, чем окружающий космос, вместе с теплом, которое будет подниматься вверх, по проводам потечет ток. Потом, все, что нужно будет сделать, взять длинный энергетический шнур, чтобы присоединить два конца металлических решеток к мотору. Мотор будет продолжать работать до тех пор, пока земля не охладится до температуры окружающего пространства. «Это была бы неподвижная машина, которая, к всей очевидности, должна охлаждать часть среды ниже температуры окружения, и действовать получаемым теплом, это то, что производит энергию прямо из окружающей среды без «потребления какого бы то ни было материала».

Тесла продолжает в статье описывать как он работал над созданием такого энергетического устройства и здесь он делает некоторою определяющую работу, чтобы сосредоточиться на одном из его изобретений. Он писал, что он сперва начал размышление об извлечении энергии из окружающего пространства когда был в Париже в течение 1883 г., но там он не мог посвятить много времени этой идее, так как несколько лет должен был заниматься коммерческими вопросами связанными с его переменным током и моторами. Это продолжалось до 1889, когда он снова вернулся к идее самодвижущейся машины.

Та же самая форма появляется в другом патенте на этот раз он называется «Динамоэлектрическая Машина». Этот патент был подан и одобрен в том же самом году, в котором Тесла говорил, что он вернулся к работе над «самодействующей» машиной, в 1889. Динамо состоящее из металлических дисков вращалось между магнитами производя электрический ток.

В сравнении с его генератором переменного тока эта «динамомашина» представляет некую любопытную аналогию ко дням ранних экспериментов Фарадея с медным диском и магнитом. Тесла делает некое усовершенствование установки Фарадея используя магниты, которые целиком покрывают вращающиеся металлические диски и он, также, добавляет кромку к наружной части дисков, так что ток может сниматься более легко — все это делает его генератор более совершенным, чем у Фарадея. По первому впечатлению трудно понять, почему Тесла запатентовал такую анахроническую машину в этот период своей работы.

Катушки Тесла

Было бы странно, если бы военные не заинтересовались запредельными технологиями серба-американца. В 30-е годы Тесла занимался в корпорации RCA секретными проектами под кодовым названием N.Terbo (фамилия его матери до замужества). В эти проекты входила и беспроводная передача энергии для поражения противника, и создание резонансного оружия, и попытки управления временем. Существует множество версий относительно этих работ, и сейчас практически невозможно отделить правду от вымыслов.
Гений скончался в 1943-м, в своей лаборатории. И в полнейшей нищете. Миллионы, которые у него были в период работы с Вестингаузом, без остатка ухнули в несостоявшийся проект «Ворденклиф». Похоже, мир не был готов к его открытиям. В тридцатых годах Тесла отказался принять Нобелевскую премию, присуждённую ему совместно с Эдисоном. Он до конца жизни не мог простить «королю изобретателей» его малодушного обмана и «чёрного пиара» против переменного тока.

Тесла отчаянно нуждался в престиже, который позволил бы ему найти деньги для исследований, и, отказавшись от премии, сам нанёс себе смертельный удар. Множество его выдающихся работ потеряны для потомков, а большинство дневников и рукописей исчезли при невыясненных обстоятельствах. Некоторые считают, что Никола сжёг их сам в начале Второй мировой войны, убедившись, что знания, заключённые в них, слишком опасны для неразумного человечества…

Изобретения Теслы серьезно заинтересовали правительство США лишь после смерти ученого. В отеле «Нью-Йоркер”, где он умер, был проведен тотальный обыск. ФБР изъяло все бумаги, связанные с научной деятельностью физика. Доктор Джон Трамп, руководивший Национальным комитетом обороны, ознакомился с ними и сделал экспертное заключение, что «эти записи спекулятивны и умозрительны, они носят исключительно философский характер и не подразумевают никаких принципов или методов их реализации”.

Однако через 15 лет после этого Агентство высокотехнологических оборонных исследований (DARPA) реализовало сверхсекретный проект «Качели” в Лаборатории имени Лоуренса Ливермура. На него ушло 10 лет и 27 млн. долларов, причем, несмотря на то, что очевидно провальные результаты этих экспериментов засекречены до сих пор, все ученые сходятся в одном — в 1958 году американцы пытались создать легендарные «лучи смерти” Теслы.

Известно, что незадолго до смерти Тесла объявил, что изобрел «лучи смерти», которые способны уничтожить 10000 самолетов с расстояния в 400 км. О секрете лучей – ни звука. В 60-е годы и Соединенные Штаты и Россия в полной мере воспользовались плодами исследований Теслы. Одна из технологий, разработанных гениальным ученым, привлекла к себе наибольшее внимание военных специалистов и стала предметом секретных разработок. Тесла называл это изобретение осциллятором радиочастот, оно применялось, в частности, в его луче смерти. Основная идея изобретения — трансляция энергии в атмосфере и фокусирование ее для различных целей. Позднее эти технологии, в значительной степени, основанные на изобретениях Теслы, были использованы в программе Звездные войны.

Известно, что отчаявшийся изобретатель рассылал по всему миру предложения сконструировать «супер-оружие”, предполагая установить баланс сил между разными странами и таким образом предотвратить наступление Второй Мировой войны. В списке адресатов были правительства США, Канады, Англии, Франции, Советского Союза и Югославии.

Советский Союз заинтересовался этим предложением. В 1937 году изобретатель провел переговоры с фирмой «Амторг”, представлявшей интересы СССР в США, и передал ей некоторые планы вакуумной камеры для своих «лучей смерти”. Два года спустя Тесла получил из СССР чек на 25000 долларов. Войну это, конечно, не остановило — Советский Союз создал лазерные технологии гораздо позднее.

В 1940 году в интервью «Нью-Йорк таймс» 84-летний Никола Тесла заявил о своей готовности раскрыть перед американским правительством секрет телесилы. Она построена, сказал он, на совершенно новом физическом принципе, о котором никто и не мечтал, отличном от принципов, воплощенных в его изобретениях в области передачи электроэнергии на большие расстояния.

По словам Теслы, этот новый тип энергии будет действовать посредством луча диаметром в одну стомиллионную долю квадратного сантиметра и может генерироваться особыми станциями, стоимость которых не будет превышать 2 млн. долларов, а время постройки – трех месяцев.

Да, возможно, стареющий изобретатель действительно погрузился в мир иллюзий. Однако, учитывая то, что он никогда не бросал слов на ветер и всегда реализовывал заявленные проекты, можно допустить, что Тесла мог приспособить технологию беспроводной передачи энергии под нужды военных.

Основная идея Николы Теслы в поиске вечного и бесконечного источника энергии — черпать энергию из «эфира», т.е. пользоваться энергией Земли и космоса. Если Никола тесла и знал как это возможно, то современные псевдо-изобретатели (а попросту аферисты) пользуются наивностью для продажи «вечных генераторов Теслы».Аферисты активно используют теорию заговора, утверждая, что Пентагон, а также аналогичные ведомства стран Большой Семерки обладают полной информацией о «бесплатной» энергии однако продолжают использовать нефть как основу экономического превосходства и стабильности.

Совершенно очевидно, что Тесле было знакомо то, что, за нехваткой лучшего выражения, можно назвать парапсихологией. Способ, с помощью которого он приходил к своим открытиям или работал в своей лаборатории, безусловно, не имеет аналогов в истории науки. И при том, что в музее Николы Теслы в Белграде хранятся сегодня более чем 150 000 документов, он не оставил после себя системы своего научного метода, который допустимо сравнивать только с состояниями, в которых могут находиться йоги, или с тем, о чём ведают святые.

Сегодня мало кто относится к Тесле как к философу или человеку духа, или к тому, кто одухотворил физику, кто одухотворил технологию, одухотворил науку. Наконец, всей своей жизнью и трудом он заложил основы новой цивилизации третьего тысячелетия и, хотя пока что его влияние на современные тенденции в науке минимально, его роль нуждается в переоценке. Только будущее даст настоящее объяснение явлению Теслы, ибо он ушёл слишком далеко вперёд и стоит выше принятых сегодня научных методов.

78 День рождения Теслы. Отель в Нью Йорке

Известный индийский философ Вивекананда, один из членов миссии Рамакришны, посланный на Запад с целью выяснить возможность объединения всех существующих религий, посетил Теслу в его лаборатории в Нью-Йорке в 1906 году и сразу же послал письмо своему индийскому коллеге Аласингу, в котором встречу с Теслой описал с восторгом: «Этот человек отличается от всех западных людей. Он продемонстрировал свои опыты, проводимые им с электричеством, к которому относится как к живому существу, с которым разговаривает и которому отдаёт приказания. Речь идёт о высшей степени спиритуальной личности. Вне сомнения, что он обладает духовностью высшего уровня и в состоянии признать всех наших богов. В его электрических многокрасочных огнях появились все наши Боги: Вишну, Шива, и я почувствовал присутствие самого Брамы»

Из всех свершений Теслы в учебниках физики обычно упоминается только одно – «трансформатор Теслы». Возможно это единственное из изобретений Тесла, носящих его имя сегодня. Это — устройство, производящее высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. Трансформатор Тесла, также известный как катушка Тесла, используется сегодня в различных применениях в радио и телевидении.

Да ещё его именем названа единица измерения магнитной индукции…

Если правда, что гениев посылают на Землю небеса, то с рождением Николы Теслы в небесной канцелярии явно поспешили. Или в преждевременности есть какой-то особый урок?

Шоу с катушками Тесла:

источники
http://gendocs.ru
http://www.peoples.ru/science/physics/tesla/
http://www.werewolfexposures.com/
http://ntesla.at.ua/

Кто пропустил у меня, связанный с Тесла, напоминаю вам, вы можете с ним ознакомиться тут — , а так же продолжение его, как Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия —

Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.

Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.

Электрическое освещение стали использовать после появления дуговых ламп, среди которых наиболее простой была свеча Яблочкова в виде двух вертикально расположенных угольных электродов, разделенных слоем изолирующего материала . Вскоре выяснилось, что на постоянном токе разнополярные электроды сгорают неодинаково, поэтому Яблочков предложил питать свечи переменным током, для чего совместно с известным французским заводом Грамма разработал специальный генератор переменного тока, конструкция которого оказалась столь удачной, что его производство доходило до 1000 штук в год . Другое важное изобретение Яблочкова — это схема «дробления света» с использованием индукционной катушки (прообраза современного трансформатора) для параллельного питания от одного генератора любого числа свечей, подобно газовому освещению.

Однако эксплуатация выявила серьезные недостатки дугового освещения, особенно в быту: необходимость замены свечей через каждые два часа, шум, мерцание, большая дороговизна по сравнению даже с газом. Поэтому уже с начала 1890-х гг. электрические свечи были почти повсеместно вытеснены лампами накаливания Эдисона и применялись только в прожекторах или для больших пространств. Тем не менее, именно Яблочкову мы обязаны введением переменных токов в практическую электротехнику, что, в конечном счете, привело к решению острой проблемы дальней передачи электроэнергии, называемой тогда проблемой «распределения света».

Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке . Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. . Однако для систем освещения такое высокое напряжение было непригодно.

Более простое решение — переход на однофазный переменный ток с повышающими и понижающими трансформаторами — было предложено известной компанией «Ганц и Ко» из Будапешта для освещения оперных театров в Будапеште, Вене и Одессе . Талантливые инженеры этой компании, Микша Дери (Miksa Dèri), Отто Блати (Otto Blathy) и Карой Циперновски (Karoly Zipernowsky), создали в 1884 г. наиболее совершенные конструкции трансформатора (и они же придумали сам этот термин). Отто Блати также изобрел первый электрический счетчик электроэнергии и прославился как выдающийся шахматист.

Однако развитие промышленности требовало мощных приводов, которые не могли быть созданы на базе электродвигателей переменного тока с питанием от однофазной осветительной сети. Эта проблема формулировалась как «электрическая передача механической энергии» или «передача силы». Одно из ее первых решений было предложено Депре в 1879 г. в виде дистанционной передачи в опытный вагон движения поршней паровой машины (рис. 1) .

У нее был датчик в виде щеточного коммутатора (1) и приемник (2), содержащий ротор (3) с двумя взаимно перпендикулярными катушками, который в свою очередь был подключен к коммутатору (4) и находился в поле магнита (5). Устройство работало со скоростью до 3000 об/мин и с моментом до 5 Нм. Эта идея позднее получила свое развитие в виде сельсинных передач и шаговых двигателей, однако подходила для использования только в приборных системах.

Решение этой проблемы в целом пришло из-за океана, где появился деятельный человек, интуитивно осознавший грядущий переход на переменный ток. Это был Джордж Вестингауз (George Westinghouse) (рис. 2) — видный американский промышленник в сфере оборудования железных дорог, основатель компании Westinghouse, решивший заняться еще и электротехническим бизнесом .

Для того чтобы выйти на рынок со своей продукцией, ему нужны были новые патенты, поскольку основные патенты в этой области принадлежали Эдисону, Вернеру Сименсу (Verner Siemens) и другим конкурентам. Перевести освещение на переменный ток было сравнительно просто, и Вестингауз легко вышел на этот рынок, закупив европейские генераторы и трансформаторы и запатентовав ряд своих ламп накаливания. В 1893 г. он получи большой подряд на электрификацию Всемирной выставки в Чикаго, установив там 180 тыс. ламп накаливания и тысячи дуговых ламп .Однако электрические машины были совсем другим делом, поэтому для их разработки он подыскал через патентное ведомство никому не известного изобретателя Николу Теслу, имевшего десятки патентов на системы переменного тока. На встрече в Нью-Йорке в 1888 г. Вестингауз предложил Тесле уступить ему все уже полученные и будущие патенты в обмен на один миллион долларов, пост технического руководителя завода в Питтсбурге и один доллар за каждую л. с. двигателей и генераторов по системе Теслы, установленных на территории США в течение ближайших 15 лет. Третье условие соглашения сыграло в дальнейшем важную роль. Тесла все эти условия принял, и так началось его плодо­творное сотрудничество с Вестингаузом .
Будущий великий электротехник Никола Тесла (рис. 3) родился в семье сербского священника, жившей в Хорватии. Учился в Градском политехникуме и Пражском университете, но, не закончив их, поступил на работу в отделение компании Эдисона в Париже, откуда перебрался в США с рекомендательным письмом от директора отделения самому Эдисону.

Письмо гласило: «Я знаю двух великих людей: один из них вы, а второй — молодой человек, которого я вам рекомендую». Разумеется, Тесла был принят незамедлительно, и ему поручили самую ответственную работу с электротехническим оборудованием, включая ликвидацию аварий.

Впрочем, работа в этой компании продолжалась недолго. Поводом к расставанию якобы послужил отказ Эдисона выплатить обещанную премию в 50 тысяч долларов за совершенствование генераторов постоянного тока. Когда Тесла напомнил об этом шефу, тот сказал: «Молодой человек, вы не понимаете американского юмора» . Однако скорее всего причиной ухода Теслы было упорное нежелание Эдисона разрешать молодому сербу заниматься бесколлекторным электродвигателем переменного тока, с мечтой о котором Тесла прибыл из Европы. Поэтому, разумеется, Тесла с радостью принял предложение Вестингауза, которое предоставляло ему прекрасные возможности для работы над своей идеей.

Еще в мае 1888 г. Тесла получил семь патентов США на системы переменного тока и бесщеточные двигатели . Главным в них было новаторское предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как многофазную систему переменного тока, включающую генератор, линию передачи и двигатель переменного тока, названный Теслой «индукционным». Пример такой системы показан на рис. 4.

Здесь: 1 — синхронный генератор с возбуждением от постоянных магнитов и с двумя взаимно перпендикулярными фазами обмотки ротора (2), соединенными через контактные кольца (3) и линию передачи (4) с двухфазным индукционным двигателем (5) с обмоткой статора (6) и ротором (7) в виде стального цилиндра со срезанными сегментами . Действие такого двигателя, называемого теперь асинхронным, объяснялось формированием «перемещающегося», а по современной терминологии вращающегося магнитного поля. Для линии дальней передачи предлагалось включение двухфазных повышающего и понижающего трансформаторов. В мае того же года Тесла выступил с большим докладом о многофазных системах на семинаре Американского института инженеров-электриков AIEE (предшественника IEEE). Продолжая исследования, он вскоре реализовал и другие идеи: двухфазный и трехфазный асинхронный двигатель с обмоткой в звезду, трехфазный генератор с нейтралью и без, трех- и четырехпроводные линии электропередачи и т. д. Всего по многофазным системам у Теслы был 41 патент .

Несомненно,Тесле принадлежит патентный, а Вестингаузу промышленный приоритет на многофазные системы переменного тока, поскольку им сразу же было развернуто массовое производство двигателей, генераторов и другой аппаратуры таких систем. Вершиной этой бурной деятельности было строительство в 1895 г. самой крупной по тем временам Ниагарской электростанции на американском берегу Ниагарского водопада, высота которого составляла 48 метров. На плотине было установлено 10 двухфазных генераторов по 3,7 мВт каждый, а также проложена линия электропередачи 11 кВ длиной 40 км в Буффало, где был создан промышленный район с многочисленными потребителями электроэнергии переменного тока .

Однако Теслу тяготила производственная деятельность, и он ушел от Вестингауза, желая и дальше развивать идею дальней передачи электроэнергии, но уже без проводов. Этим он и стал с увлечением заниматься в собственной лаборатории.Его первой мыслью было создать с помощью высоковольтного и высокочастотного излучателя мощное электрическое поле, действующее на значительные расстояния, из которого потребитель мог бы черпать электроэнергию. Тесла изобретает первый электромеханический СВЧ-генератор, использованный позднее в первых радиостанциях и для индукционного нагрева, передающую и приемную антенны, а также резонансный контур приемника для выделения определенной частоты. Всех поразил опыт Теслы, когда при включении генератора безо всяких проводов в его руках загоралась электрическая лампа, как показано на рис. 5.

Тесла был в одном шаге от изобретения радио, но не пошел по этому пути, поскольку его занимала мысль о передаче электроэнергии, а не информации. Однако именно ему принадлежит приоритет в создании телемеханики, реализованной в 1898 г. в виде дистанционно управляемого водяного катера.

Тем временем, многочисленные опыты показывали, что электролампу удается зажигать только на расстоянии не более нескольких сотен метров. Тесла попытался реализовать другой способ передачи электро­энергии: не через атмосферу, а прямо сквозь землю путем возбуждения в земном шаре, как огромном конденсаторе, поверхностных стоячих волн, в пучности которых можно было отбирать энергию в любой точке поверхности Земли. Для этого он построил в местечке Уорденклиф под Нью-Йорком огромную антенну с мощным надземным и подземным возбудителями, подключенными к отдельной электростанции, как показано на рис. 6. Опыты с этой башней по беспроводной передаче электроэнергии в период с 1899 по 1905 г., судя по всему, не дали желаемого эффекта, поскольку Тесла их неожиданно забросил, не опубликовав результатов. И ученые до сих пор спорят, чего же все-таки достиг Тесла в этом эксперименте, поскольку он работал без помощников и не оставил никаких записей .

Задача беспроводной передачи электроэнергии не решена до сих пор. Последние достижения используют узконаправленные микроволновое или лазерное излучения для удаленного электропитания космических аппаратов от спутника с солнечными батареями или от управляемых дронов . Экспериментально доказана возможность передачи порядка десятка киловатт на расстояние километров. Другое направление разработок — это лазерное оружие, предвозвестником которого был знаменитый «Гиперболоид инженера Гарина».
Тем не менее заслуги Теслы были всемирно признаны. В честь него единица индукции магнитного поля в системе SI названа «тесла», он был избран членом и почетным доктором наук многих академий и университетов. Одна из самых престижных наград IEEE — медаль Теслы — ежегодно присуждается за выдающиеся заслуги в области производства и использования электроэнергии. Тесле принадлежит около 800 патентов, причем, в отличие от патентов Эдисона, они считаются более новаторскими. Существует несколько памятников Тесле и посвященных ему музеев, среди которых самый впечатляющий находится в Белграде, выпущены банкноты с его портретом (рис. 7).

Однако личная жизнь Теслы сложилась неудачно . В конце XIX в. в США разразился экономический кризис, поставивший компанию Вестингауза на грань разорения. Узнав об этом, Тесла явился в штаб-квартиру своего бывшего патрона и публично разорвал их первичное соглашение, потеряв около 10 млн долларов, причитавшихся ему в соответствии с третьим пунктом этого договора. Буквально через две недели после этого великодушного жеста дотла сгорела его великолепная лаборатория, и он остался без средств. В отличие от Эдисона, он не был бизнесменом и вложил все, что у него имелось, в эту лабораторию. После этого Тесла был вынужден проводить свои дальнейшие исследования на различные гранты и пожертвования, в частности, башня Уорденклифф была построена на деньги американского финансиста Моргана.

Биограф Теслы Велимир Абрамович писал: «Пытаясь представить себе Теслу, я не вижу его улыбающимся, а наоборот, грустным…» . Тесла не пил вина, никогда не знал женщин, не имел семьи и умер в одиночестве и бедности в отеле «Нью-Йоркер» .

Потребность в передаче электроэнергии на большие расстояния возникла в конце XIX в., прежде всего в связи с широким внедрением систем освещения.

  • Такая передача на постоянном токе была технически целесообразной только при высоком напряжении и практически неприемлемой для низковольтного освещения.

  • Линии передачи переменного тока с трансформаторами удовлетворяли задачам освещения, однако для промышленности требовались мощные электродвигатели, все известные конструкции которых были постоянного тока.

  • Решение этой комплексной проблемы было предложено изобретателем Теслой и предпринимателем Вестингаузом, создавшими многофазные системы переменного тока с синхронными генераторами, линиями передачи и асинхронными двигателями.

  • Исследования же Теслы по беспроводной передаче электроэнергии до сих пор не получили практического завершения.

В наше время преимущества переменного тока кажутся более чем очевидными, но в 80-х годах XIX века из-за вопроса, какой ток лучше и как выгоднее передавать электрическую энергию, разразилось острое противостояние. Главными фигурантами этой нешуточной битвы стали две конкурирующие фирмы — Edison Electric Light и Westinghouse Electric Corporation. В 1878 году гениальный американский изобретатель Томас Алва Эдисон основал свою собственную компанию, которая должна была решить проблему электрического освещения в быту. Задача стояла простая: вытеснить газовый рожок, но для этого электрический свет должен был стать более дешевым, ярким и доступным для всех.

Предвосхищая свои будущие открытия, Эдисон написал: «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи». Вначале ученый разработал план центральной электростанции, начертил схемы подводки линий электропередач к домам и фабрикам. В то время электричество получали с помощью динамо-машин, приводящихся в движение паром. Затем Эдисон приступил к усовершенствованию электрических лампочек, стремясь продлить их действие с имевшихся тогда 12 часов. Перебрав более 6 тысяч различных образцов для нити накаливания, Эдисон наконец остановился на бамбуке. Его будущий коллега Никола Тесла иронично отметил: «Если бы Эдисону пришлось найти иголку в стоге сена, он не стал бы терять время на то, чтобы определить ее более вероятное местонахождение. Напротив, он немедленно, с лихорадочным прилежанием пчелы начал бы осматривать соломинку за соломинкой, пока не отыскал бы искомое». 27 января 1880 года Эдисон получил патент на свою лампу, срок жизни которой был поистине фантастическим — 1200 часов. Чуть позже ученый запатентовал всю систему производства и распространения электроэнергии в Нью-Йорке.

Эдисон. (Pinterest)

В тот год, когда Эдисон занялся освещением американского мегаполиса, Никола Тесла поступил на философский факультет Пражского университета, но проучился там всего один семестр — на дальнейшее обучение не хватило денег. Затем он поступил в Высшее техническое училище в Граце, где стал изучать электротехнику и начал задумываться о несовершенстве электродвигателей постоянного тока. В 1882 году Эдисон запустил две электростанции постоянного тока — в Лондоне и Нью-Йорке, наладив производство динамо-машин, кабелей, лампочек и осветительных приборов. Спустя два года американский изобретатель создает новую корпорацию — Edison General Electric Company, куда вошли десятки компаний Эдисона, разбросанные по всей Америке и Европе.

В том же году Тесла придумал, как использовать явление вращающегося электромагнитного поля, а значит он мог попытаться сконструировать электродвигатель переменного тока. С этой идеей ученый отправился в парижское представительство Continental Edison Company, но в тот момент компания была занята выполнением крупного заказа — сооружения электростанции для железнодорожного вокзала Страсбурга, в ходе выполнения которого возникли многочисленные ошибки. Теслу отправили спасать ситуацию, и в требуемые сроки электростанция была достроена. Сербский ученый отправился в Париж, чтобы получить обещанную премию в 25 000 долларов, однако компания отказалась выплачивать деньги. Оскорбленный Тесла решил больше не иметь ничего общего с предприятиями Эдисона. Он поначалу хотел даже отправиться в Петербург, ведь Россия славилась в то время своими научными открытиями в области электротехники, в частности изобретениями Павла Николаевича Яблочкова и Дмитрия Александровича Лачинова. Однако, один из работников Континентальной компании уговорил Теслу отправиться в США и дал ему рекомендательное письмо к Эдисону: «Было бы непростительной ошибкой дать возможность уехать в Россию подобному таланту. Я знаю двух великих людей: один из них Вы, второй — этот молодой человек».


Edison General Electric Company. (Pinterest)

Прибыв в Нью-Йорк в 1884 году, Тесла приступает к работе в компании Edison Machine Works в качестве инженера по ремонту двигателей — генераторов постоянного тока. Тесла сразу же поделился с Эдисоном своими мыслями насчет переменного тока, но американского ученого идеи сербского коллеги не вдохновили — он очень неодобрительно отозвался и посоветовал Тесле заниматься на работе сугубо профессиональными делами, а не личными изысканиями. Год спустя Эдисон предлагает Тесле конструктивно улучшить машины постоянного тока и за это обещает премию в 50 тысяч долларов. Тесла тут же принялся за работу и очень скоро предоставил 24 варианта новых машин Эдисона, а также новый коммутатор и регулятор. Эдисон работу одобрил, но деньги платить отказался, пошутив при этом, что эмигрант плохо понимает американский юмор. С этого момента Эдисон и Тесла стали непримиримыми врагами.

На счету Эдисона значилось 1093 патента — такого количества изобретений не было ни у кого в мире. Неутомимый экспериментатор, он однажды провел в лаборатории 45 часов, не желая прерывать опыт. Эдисон был к тому же весьма умелым предпринимателем: все его компании приносили прибыль, правда богатство как таковое его мало интересовало. Деньги были нужны для работы: «Мне не нужны успехи богачей. Мне не нужно ни лошадей, ни яхт, на все это у меня нет времени. Мне нужна мастерская!» Однако, в 1886 году у корпорации Эдисона появился очень мощный конкурент — компания Westinghouse Electric Corporation. Первую 500-вольтную электростанцию переменного тока Джордж Вестингауз запустил в 1886 году в Грейт-Баррингтоне, штат Массачусетс.

Так, монополии Эдисона пришел конец, ведь преимущества новых электростанций были очевидны. В отличие от американского изобретателя-любителя, Вестингауз основательно знал физику, поэтому прекрасно понимал слабое звено электростанций постоянного тока. Все изменилось, когда он познакомился с Теслой и его изобретениями, выдав сербу патент на счетчик переменного тока и многофазный электромотор. Это были те самые изобретения, с которыми в свое время Тесла обращался в парижскую компанию Эдисона. Теперь Вестингауз выкупил у сербского ученого в общей сложности 40 патентов и заплатил 32-летнему изобретателю 1 миллион долларов.


Электрический стул. (Pinterest)

В 1887 году в США уже работало более 100 электростанций постоянного тока, однако процветанию компаний Эдисона должен был наступить конец. Изобретатель понимал, что находится на грани финансового краха, а потому решил подать в суд на Westinghouse Electric Corporation за нарушение патентных прав. Однако, иск был отклонен, и тогда Эдисон развернул антипропагандистскую кампанию. Его главным козырем был тот факт, что переменный ток очень опасен для жизни. Вначале Эдисон занялся публичной демонстрацией убийств животных электрическими разрядами, а потом ему подвернулся очень удачный случай: губернатор Нью-Йорка захотел найти гуманный способ казни, альтернативу повешенью — Эдисон тут же заявил, что самой человечной считает смерть от переменного тока. Хотя лично он выступал за отмену смертной казни, тем не менее решить проблему удалось.

Для создания электрического стула Эдисон нанял инженера Гарольда Брауна, который приспособил для карательных целей генератор переменного тока Вестингауза. Ярый оппонент Эдисона был категорически против смертных казней и отказался продавать свое оборудование тюрьмам. Тогда Эдисон купил три генератора через подставных лиц. Вестингауз нанял приговоренным к смерти самых лучших адвокатов, одного из преступников удалось спасти: смертную казнь ему заменили пожизненным заключением. Нанятый Эдисоном журналист опубликовал огромную разоблачительную статью, обвиняя Вестингауза в тех мучениях, которые претерпел казненный.


Westinghouse Electric Corporation. (Pinterest)

«Черный пиар» Эдисона принес свои плоды: ему удалось отсрочить поражение, правда ненадолго. В 1893 году Вестингауз и Тесла выиграли заказ на освещение Чикагской ярмарки — 200 тысяч электрических лампочек работали от переменного тока, а спустя три года тандем ученых смонтировал на Ниагарском водопаде первую гидросистему для непрерывного питания переменным током города Баффало. Кстати, электростанции постоянного тока строились в Америке еще 30 лет, вплоть до 1920-х годов. Затем их строительство было прекращено, но эксплуатация продолжалась вплоть до начала XXI века. Тесла и Вестингауз выиграли «войну токов». А Эдисон отреагировал так: «Я никогда не терпел поражений. Я просто нашел 10 000 способов, которые не работают».

Создать Российскую государственную академию знаний имени Н.Тесла

Сменится множество поколений, и наши машины будут питаться энергией, которую они смогут получать в любой точке вселенной. Ведь энергия повсюду вокруг нас.
Никола Тесла, 1892 год.
Тесла оставил много загадок, разгадать которые обязаны мы.
Никола Тесла – великий сербский изобретатель, учёный в области электро- и радиофизики, гений. Он открыл переменный ток, флуоресцентный свет, беспроводную передачу энергии посредством радиоизлучения. На его счету разработки принципов дистанционного управления, электрических часов, лечения токами высокой частоты, двигателя на энергии солнца и многого другого, на что в сумме получено более 300 патентов. Он изобрёл радио до Маркони и Попова (лишь в 1943 году Верховный суд США признал это) и получил трёхфазный ток раньше Доливо-Добровольского. Тесла внес огромный вклад в создание устройств, работающих на переменном токе, многофазных систем и электродвигателя, позволивших совершить так называемый второй этап промышленной революции. Ранние работы Теслы проложили путь современной электротехнике, его открытия имели инновационное значение.
Современники-биографы считали Теслу «человеком, который изобрёл XX век» и «святым заступником» современного электричества.
За Теслой числится множество изобретений и открытий: генератор переменного тока (1882), вращающееся магнитное поле (1888), волновой радиопередатчик (1893), электросчётчик, частотомер, резонансный трансформатор, безпроводная передача энергии, электромобиль, радиоуправление, управление шаровыми молниями и многое другое.
За свои достижения Тесла удостоен наград — медалей Э. Крессиана, Дж. Скотта, Т. Эдисона. Ему с Эдисоном присудили Нобелевскую премию, однако он отказался.
Аэропорту в белградском пригороде Сурчин присвоено имя Николы Теслы. В Хорватии, в курортном городе Пореч, есть набережная имени Николы Теслы. Именем Теслы названы улицы в Загребе, Шибенике, Сплите, Риеке, Вараждине. Памятник ему установлен около здания Белградского университета. Памятник Тесле установлен также в столице Азербайджана, в городе Баку.
Экс-директор музея Н.Теслы в Белграде (Сербия), член Европейской Академии наук — Велимир Абрамович — опубликовал своё письмо-обращение в журнале «Дельфис» № 68(4/2011) под названием «Наследие Н. Теслы — пришло время изучать», в котором указал, что «с 1952 года хранится около 60 тыс. ещё не изученных научных документов всемирно известного сербского учёного» и предложил создать Российско-сербское общество (институт) по изучению научного наследия Николы Теслы.
В учебниках ему отводится неожиданно мало внимания. Именем Теслы названа единица измерения магнитной индукции в международной системе единиц СИ и резонансный трансформатор Теслы.
Многие опыты Н.Теслы не подтверждены и не опровергнуты по сей день.
Это огромное упущение для развития современной физики и всего человечества.


Практический результат

Изучение материалов и документов Теслы, сохранившихся в мире.
Изучение и развитие теорий Тесла.
Повторение или опровержение опытов и экспериментов Тесла.
Развитие и внедрение технологий Тесла.
Автоматизация промышленности и других отраслей.
Развитие энергетики. Развитие технологий. Развитие науки. Развитие общества.
Развитие Российской Федерации. Развитие граждан Российской Федерации.
Обучение студентов.
Приобретение уникальных знаний.
Появление первого в мире высшего учебного заведения, изучающего наследие и имеющего имя одного из величайших людей XX столетия – Николы Тесла.
Восстановление исторической справедливости.

Никола Тесла: 5 изобретений, опередивших время :: Новости :: ТВ Центр

10 июля исполняется 159 лет со дня рождения великого сербского изобретателя Николы Теслы. В материале TVC.RU работы ученого, которые внесли огромный вклад в технологии наших дней.

Насчет Николы Теслы существуют разные мнения. Для кого-то это чуть ли не бог электричества, покоритель свободной энергии и изобретатель вечного двигателя. Другие же считают его великим мистификатором, умелым иллюзионистом и любителем сенсаций. И ту, и другую позицию можно подвергнуть сомнению, однако отрицать огромный вклад Теслы в науку никак нельзя. В этом материале представлены изобретения великого серба, которые не вызывают сомнений даже у самых закоренелых скептиков.

Переменный ток

Переменный ток стал не только сенсацией на Всемирной выставке 1893 года в Чикаго, но и положил начало непримиримой борьбе Теслы с Томасом Эдисоном. Ученые разошлись во взглядах о производстве и распространении электричества. Эдисон всецело поддерживал идею постоянного тока, который был дорогим при передаче на большие расстояния и небезопасным. Однако недостатки своего подхода он использовал для сочинения «страшилок» о переменном токе Теслы, заявляя, что изобретение серба представляет смертельную опасность. Однако Тесла довольно хорошо изучил свойства высокочастотного тока. Многие его наработки входят в современные правила безопасности при работе с ВЧ токами. Как бы ни пытался Эдисон задавить изобретение Теслы, в наше время переменный ток используется повсеместно.

Ниагарская ГЭС

Сама электростанция не была разработкой Теслы, однако в ее работе использовались разработки ученого. Ниагарская ГЭС была самой масштабной в свое время и называли ее не иначе как восьмое чудо света. Она стала самой первой так называемой районной электростанцией, то есть обеспечивающей энергией развитые промышленные районы, потреблявшие большое количество электроэнергии. ГЭС генерировала двухфазный переменный ток, так как Тесла считал его наиболее экономичным и его проще было преобразовать в постоянный, требовавшийся для некоторых предприятий. Однако через несколько лет (станция была запущена в 1896 году), когда стали очевидны преимущества трехфазного тока ГЭС модернизировали. Но даже в новом варианте использовалось множество разработок Теслы. Принцип получения электричества, использованный на Ниагарской станции, лежит в основе всех электростанций, включая атомные.

Электродвигатель

В изобретение асинхронного электродвигателя внесли свой вклад несколько ученых. Так итальянский электротехник Галлилео Феррарис независимо от Теслы описал принцип действия электродвигателя и даже построил его. Однако посчитал свою разработку бесперспективной. В то же время, его выводы подтолкнули инженеров к совершенствованию технологии, что привело к ее развитию. Тесла также описал принцип работы асинхронного электродвигателя и запатентовал его. Кроме того он смог построить наиболее удачную и эффективную для своего времени схему двигателя. В 1889 году была выпущена первая партия его разработки. Однако Тесле не повезло заниматься электродвигателями в эпоху бурного развития нефтяной промышленности. Тем не менее, в наше время асинхронные двигатели используются очень широко: от электродрели до автомобиля.

Радио

О сферах применения этого изобретения говорить излишне. Радиоволны окружают нас повсюду. Интересен здесь спор за первенство в изобретении. Довольно долго считалось, что первооткрыватель радио — итальянец Гильермо Маркони. Однако его патент был отменен в 1943 году Верховным судом США. Тесла получил два патента на свое изобретение в 1897 году, то есть за семь лет до итальянца. Тем не менее, Патентное бюро США в 1904 году отдало патент Маркони. Существует мнение, что это было связано с компаньонами итальянского изобретателя, которыми были Томас Эдисон и Эндрю Карнеги, которые Теслу, мягко говоря, недолюбливали.

Дистанционное управление

Это изобретение явилось прямым следствием предыдущего. В 1898 году на выставке в «Мэдисон-сквер-гарден» Никола Тесла впервые продемонстрировал лодку на дистанционном управлении. Он передавал с помощью радиоволн сигналы на винт, руль и габаритные огни судна. Лодка могла двигаться вперед, назад и выполнять достаточно сложные маневры. Посетители выставки считали происходящее не иначе как магией и телепатией, а скептики решили, что лодкой управляет маленькая обезьяна, спрятавшаяся внутри. Сейчас дистанционное управление никого не удивляет и используется во многих областях: от детских игрушек, до беспилотных летательных аппаратов.

Андрей Скворцов, TVC.RU

Цепи переменного тока

На рисунке 1 показан график переменного напряжения и переменного тока как функции времени в цепи, которая имеет только резистор и источник переменного тока — генератор переменного тока.

Поскольку напряжение и ток достигают своих максимальных значений одновременно, они равны в фазе . Закон Ома и предыдущие выражения для мощности действительны для этой схемы, если используются среднеквадратическое значение (действующее значение) напряжения и действующее значение тока, иногда называемое эффективным значением .Эти отношения:

Закон Ома выражается следующим образом: В R = IR , где В R — среднеквадратичное напряжение на резисторе, а I — среднеквадратичное значение в цепи.

Цепи резисторно-конденсаторные

Цепь с резистором, конденсатором и генератором переменного тока называется RC цепью . Конденсатор — это в основном набор проводящих пластин, разделенных изолятором; таким образом, устойчивый ток не может проходить через конденсатор .Изменяющийся во времени ток может добавлять или снимать заряды с обкладок конденсатора. Простая схема зарядки конденсатора показана на рисунке 2.


Рисунок 2

RC-цепь для зарядки конденсатора.

Первоначально, в момент времени t = 0, переключатель (S) разомкнут, и на конденсаторе нет заряда.Когда переключатель замкнут, через резистор проходит ток и заряжается конденсатор. Ток прекратится, когда падение напряжения на конденсаторе сравняется с потенциалом батареи (В) . Как только конденсатор достигнет максимального заряда, ток упадет до нуля. Сразу после замыкания переключателя ток достигает максимума и экспоненциально уменьшается со временем. Емкостная постоянная времени (τ), греческая буква тау) — это время, за которое заряд распадется до 1/ e от его начального значения, где e — натуральный логарифм.Конденсатор с большой постоянной времени будет медленно изменяться. Емкостная постоянная времени τ = RC .

Из правил Кирхгофа получены следующие выражения для разности потенциалов на конденсаторе (V C ) и тока (I) в цепи:

, где В, — потенциал аккумулятора.

Цепи резисторно-индуктивные

Цепь с резистором, катушкой индуктивности и генератором переменного тока представляет собой цепь RL .Когда переключатель замкнут в цепи RL, в катушке индуктивности индуцируется обратная ЭДС. Следовательно, току требуется время, чтобы достичь своего максимального значения, а постоянная времени, называемая индуктивной постоянной времени , равна

.

Уравнения для тока как функции времени и потенциала на катушке индуктивности:

Для простоты в вышеупомянутых обсуждениях RC- и RL-схем использовался переключатель. Открытие и закрытие переключателя дает реакцию, аналогичную реакции на переменный ток.Цепи RC и RL похожи друг на друга, потому что увеличение напряжения дает ток, который изменяется экспоненциально в каждой цепи, но отклики различаются в других отношениях. Это различное поведение, описанное ниже, приводит к разным откликам в цепях переменного тока.

Реактивное сопротивление

Теперь рассмотрим цепь переменного тока, состоящую только из конденсатора и генератора переменного тока. Графики зависимости тока и напряжения на конденсаторе от времени показаны на рисунке.Кривые , а не синфазны, как это было для цепи резистора и генератора переменного тока. (См. Рисунок.) Кривые показывают, что для конденсатора напряжение достигает максимального значения через четверть цикла после того, как ток достигает максимального значения. Таким образом, напряжение отстает от тока через конденсатор на 90 градусов.

Емкостное реактивное сопротивление (X c ) выражает тормозящее влияние конденсатора на ток и определяется как

.

Рисунок 3

Ток и напряжение от источника переменного тока через конденсатор.

, где C — в фарадах, а частота (f) — в герцах. Закон Ома дает В c = IX c , где В c — среднеквадратичное напряжение на конденсаторе, а I — среднеквадратичное значение тока в цепи.

Рассмотрим схему только с катушкой индуктивности и генератором переменного тока. На рисунке показаны графики зависимости тока и напряжения для катушки индуктивности от времени.Еще раз обратите внимание, что напряжение и ток не совпадают по фазе. Напряжение для этой схемы достигает своего максимального значения за четверть цикла до того, как ток достигнет своего максимума; таким образом, напряжение опережает ток на 90 градусов.


Рисунок 4

Ток и напряжение от источника переменного тока через катушку индуктивности.

Току в цепи препятствует обратная ЭДС катушки индуктивности.Эффективное сопротивление называется индуктивным сопротивлением (X L ) , определяемым как (X L ) = 2π fL , где L измеряется в генри, а f — в герцах. Закон Ома дает (V L ) = IX L , где (V L ) — среднеквадратичное значение напряжения на катушке индуктивности, а I — действующее значение напряжения в катушке индуктивности.

Цепь резистор-индуктор-конденсатор

Цепь с резистором, катушкой индуктивности, конденсатором и генератором переменного тока называется цепью RLC .Фазовые отношения этих элементов можно резюмировать следующим образом:

  • Мгновенное напряжение на резисторе В R находится в фазе с мгновенным током.
  • Мгновенное напряжение на катушке индуктивности В L опережает мгновенный ток на 90 градусов.
  • Мгновенное напряжение на конденсаторе В c отстает от мгновенного тока.

Поскольку напряжения на различных элементах не совпадают по фазе, отдельные напряжения нельзя просто складывать в цепях переменного тока. Уравнения для полного напряжения и фазового угла:

, где все напряжения являются действующими значениями. Закон Ома для общего случая цепей переменного тока теперь выражается В = IZ , где R заменено на импеданс ( Z ), измеренный в омах. Импеданс определяется как


Переменный ток (AC) — физика и радиоэлектроника

Поток носителей заряда называется электрическим током.Носителями заряда, проводящими электрический ток, являются электроны, дырки и ионы.

В проводе электрический ток проводится движущимися электронами. В полупроводнике электрический ток передается за счет движения электронов и дырок. В электролите электрический ток проводят ионы.

Чтобы проводить электрический ток, частицы должны иметь положительный или отрицательный заряд. У нейтронов нет заряда. Поэтому они не могут проводить электрический ток.

Протоны имеют положительный заряд, но не могут двигаться.Таким образом, протоны не проводят электрический ток. Мы знаем, что электрический ток означает поток заряда или носителей заряда. Протоны не несут заряда. Они всегда находятся в центре атома. Значит, они не проводят электрический ток.

Электрический ток часто проводят движущиеся электроны.

Электрический ток подразделяется на два типа в зависимости от направления носителей заряда. Один из них — постоянный ток, при котором электроны всегда текут в одном направлении.Другой — переменный ток, при котором поток электронов всегда меняет свое направление.

В этом руководстве объясняется переменный ток.

Определение переменного тока (AC)

Переменный ток — это электрический ток, при котором поток электронов или носителей заряда всегда меняет свое направление много раз в секунду через равные промежутки времени (вперед → и ← назад).

Электроны, протекающие по проводящему проводу, показаны на рисунке выше.Электроны в проводе на короткое время движутся в одном направлении, а затем меняют его направление. Это происходит неоднократно.

Мы знаем, что электрический ток означает поток электронов или носителей заряда. Следовательно, течение через определенные промежутки времени меняет свое направление.

Переменный ток также иногда называют переменным током.

Что такое переменный ток (AC)?

Поток электронов через проводник или проволоку составляет электрический ток.Ток может течь через проводник двумя способами.

Когда к батарее подсоединен проводящий провод, ток течет через него только в одном направлении. Такой ток, который течет только в одном направлении, называется постоянным током (DC).

Обычное направление тока — от положительного к отрицательному. Но фактическое направление тока — от отрицательного к положительному.

При постоянном токе электроны всегда текут от отрицательной клеммы батареи к положительной клемме батареи.Во время своего путешествия электроны не изменят своего направления.

Источником постоянного тока (DC) может быть аккумулятор, топливный элемент, термопара или солнечный элемент.

Электрический ток, получаемый от генератора, меняет направление на обратное через равные промежутки времени. Такой ток, который регулярно меняет свое направление, называется переменным током (AC).

В наши дома подается электрический ток переменного тока. Переменный ток вырабатывается на электростанциях и проводится по проводам в наши дома.

Переменный ток используется для питания таких бытовых приборов, как телевизор, вентиляторы, освещение, смеситель, электрический обогреватель и электродвигатель. Однако в некоторых электронных приборах переменный ток сначала преобразуется в постоянный.

Переменный ток (AC) непостоянен

Переменный ток не только меняет направление, но и меняет свою величину. Проще говоря, величина переменного тока или напряжения изменяется во времени.

Переменный ток (AC) начинается с нуля и возрастает до положительного максимума (положительный пик). Положительный пик синусоидальной формы волны представляет собой максимальный прямой ток или напряжение. После достижения максимального тока он начинает уменьшаться до нуля.

После достижения нулевой точки переменный ток снова начинает увеличиваться в обратном направлении и возрастает до отрицательного максимума (отрицательный пик), а затем снова возвращается к нулю. Точно так же величина тока непрерывно изменяется во времени.

Интервал времени между достижением идентичного значения в двух последовательных циклах называется периодом или волновым циклом. Другими словами, один период — это количество времени, которое требуется электронам, чтобы течь от отрицательного конца (-) источника к положительному концу (+) источника, меняет свое направление на противоположное (отрицательная полярность -) и течет к положительному концу. конец (+) источника.

Число волновых циклов, проходящих через заданную точку за одну секунду, называется частотой. Проще говоря, количество раз, когда поток электронов меняет свое направление на обратное за одну секунду, называется частотой.

Частота измеряется в герцах. Например, если два волновых цикла проходят через заданную точку за одну секунду, частота составляет 2 герца (Гц).

Переменный ток, который меняет свое направление много раз в секунду, имеет высокую частоту, тогда как переменный ток, который меняет свое направление только реже, чем секунду, имеет низкую частоту.

Максимальный ток в прямом или обратном направлении — это амплитуда переменного тока. Другими словами, максимальная высота волны от нулевой точки — это амплитуда переменного тока.

В США используется переменный ток (AC), который меняет направление на обратное 60 раз в секунду. В Европе используется переменный ток (AC), который меняет направление 50 раз в секунду. Другими словами, в США используется переменный ток 60 Гц, в то время как в Европе используется переменный ток 50 Гц. Почти во всех странах используется переменный ток 50 Гц или 60 Гц.

Основное преимущество переменного тока (AC) перед постоянным (DC) заключается в том, что напряжение переменного тока легко изменять.Напряжение переменного тока легко изменить с помощью устройства, называемого трансформатором. Трансформатор — это устройство, которое снижает или увеличивает напряжение переменного тока. Энергетические компании используют эту технику для экономии своих денег.

Обозначение источника переменного напряжения

Обозначение источника переменного напряжения показано на рисунке ниже. Переменный ток обычно представлен синусоидальной формой волны. Таким образом, источник переменного напряжения представлен небольшой синусоидальной формой волны с окружностью вокруг нее.

В отличие от источника постоянного напряжения, мы не отмечаем положительные и отрицательные знаки на источнике переменного напряжения, потому что электроны в переменном токе (AC) всегда меняют свое направление. Другими словами, полярность источника переменного напряжения всегда меняется через определенные промежутки времени. Поэтому мы не отмечаем положительные и отрицательные знаки на источнике переменного напряжения. Однако некоторые источники отмечают либо положительный, либо отрицательный знак на источнике переменного напряжения.

Пример переменного тока (AC)

Наиболее часто используемый источник переменного тока — это генератор переменного тока.Генератор переменного тока — это электрическое устройство, преобразующее механическую энергию в переменный ток (AC).

Мы также можем преобразовать механическую энергию в постоянный ток (DC) с помощью электрического устройства, называемого генератором постоянного тока.

Электрическая цепь переменного тока

Рассмотрим электрическую цепь, состоящую из источника переменного тока, двухпозиционного переключателя и электрической лампочки.

Предположим, что изначально переключатель находится в выключенном состоянии. Выключатель в выключенном состоянии означает, что электрический путь нарушен.Этот прерванный электрический путь называется разомкнутой цепью.

Когда переключатель находится в выключенном состоянии, в цепи не течет ток. Так лампочка не включится.

Когда переключатель включен, электрическая цепь замыкается без разрыва цепи. Таким образом, электрический ток начинает течь по цепи.

Электрический ток (электроны), протекающий по цепи, на короткое время течет в одном направлении, а затем меняет свое направление на противоположное.Это происходит постоянно.

Электрическая лампочка не выключится, даже если электрический ток (поток электронов) постоянно меняет свое направление. Это связано с тем, что изменение направления электрического тока (потока электронов) происходит настолько быстро, что лампочка не успевает выключиться.

Off идет ток питания, запущенный Томасом Эдисоном

Оригинальная электростанция Con Edison на Жемчужной улице. (Иллюстрация: Consolidated Edison)

Сегодня Con Edison завершит 125-летний срок службы электроснабжения постоянного тока, который начался, когда Томас Эдисон открыл свою электростанцию ​​на Перл-стрит.4, 1882 г. Con Ed теперь будет обеспечивать только переменный ток, что является окончательным, рудиментарным триумфом Николы Теслы и Джордж Вестингауз, соперники г-на Эдисона, которые были главными сторонниками переменного тока в дебатах по переменному и постоянному току на рубеже 20-го века.

Последний снимок системы постоянного тока Con Ed будет проходить по адресу 10 East 40th Street, недалеко от библиотеки Среднего Манхэттена.Это здание, как и тысячи других пользователей постоянного тока, которые были переведены За последние несколько лет в помещении установлен преобразователь, который может принимать переменное электричество из энергосистемы Con Ed и адаптировать его на месте. До сих пор Con Edison преобразовывали переменный ток в постоянный для клиентов, которые в этом нуждались — например, в старых зданиях в Верхнем Ист-Сайде и Верхнем Вест-Сайде, которые использовали постоянный ток для своих лифтов.Метро, который имеет собственные преобразователи, а также обеспечивает постоянный ток через свою третью рельс, в значительной степени потому, что электричество постоянного тока было доминирующей системой в Нью-Йорке, когда метро впервые развивалось из ранние троллейбусы.

Несмотря на очевидное преимущество переменного тока — его можно передавать на большие расстояния гораздо экономичнее, чем постоянный ток — постоянный ток потребовались десятилетия, чтобы постепенно отказаться от Манхэттена, потому что Первую основу электросети Нью-Йорка построил г-н.Компания Эдисона, которая имела хорошую фору в первое десятилетие до того, как г-н Тесла и г-н Вестингауз продемонстрировали потенциал переменного тока с энергетическим проектом Ниагарского водопада. (Среди клиентов электростанции Томаса Эдисона на Перл-стрит в тот первый день была газета The New York Times, который заметил, что для включения света в здании «спички не нужны»)

Но постоянный ток явно стал неэкономичным, поскольку короткие расстояния, на которые он мог быть передан, потребовали бы электростанции через каждую милю или меньше, по словам Джо Каннингема, историка инженерии.Таким образом Переменный ток в Нью-Йорке начался на окраинах — Куинсе, Бронксе, Верхнем Манхэттене и пригородах.

Преобразование постоянного тока в Нижнем Манхэттене началось в 1928 году, и, по словам г-на Каннингема, тогда один инженер предсказал, что это займет 45 лет. «Оптимистичный прогноз, поскольку он у нас все еще есть», он сказал.

Человек, который прерывает связь сегодня по адресу 10 East 40th Street, — Фред Симмс, 52-летний ветеран компании. Почему он?

«Он наша ближайшая связь с Томасом Эдисоном», — пошутил Боб МакГи, представитель Con Ed.

Месть Эдисона: вернется ли постоянный ток в США?

Новый фронт в старой вражде открывается в стремлении к большей энергоэффективности.

В конце 19 века две конкурирующие электроэнергетические системы боролись за господство в распределении электроэнергии в Соединенных Штатах и ​​большей части промышленно развитого мира. Переменный ток (AC) и постоянный ток (DC) использовались для питания таких устройств, как двигатели и лампочки, но они не были взаимозаменяемыми.

Битва за энергосистему началась в Apple и Microsoft в позолоченный век. Томас Эдисон, который изобрел множество устройств, использующих энергию постоянного тока, разработал первые системы передачи энергии, использующие этот стандарт.Между тем, Джордж Вестингауз и несколько европейских компаний продвигали AC, которые использовали изобретения Николы Теслы для увеличения тока до более высоких напряжений, что упростило передачу энергии на большие расстояния с использованием более тонких и дешевых проводов.

Соперничество было чревато язвительными трюками и рекламными трюками — например, Эдисон зарезал слона электрическим током, чтобы показать, что переменный ток опасен, — но переменный ток в конечном итоге стал стандартом для передачи, господствовавшим более века.

Теперь появляется EMerge Alliance, консорциум агентств и отраслевых групп, который думает, что DC вернется.С таким количеством портативных электронных устройств и крупными потребителями электроэнергии, такими как центры обработки данных, работающие на постоянном токе, технология может заполнить растущую нишу при одновременном сокращении потребления энергии.

Кроме того, по мере того, как все больше генераторов возобновляемой электроэнергии, таких как фотоэлектрические и ветряные турбины, вырабатывающие постоянный ток, начинают работать, энергосистемы постоянного тока могут упростить их интеграцию в сеть. «Мы как группа спрашивали себя:« Если мы генерируем мощность постоянного тока и используем мощность постоянного тока, почему мы преобразуем ее в переменный ток, чтобы переместить ее на несколько сотен футов или даже на несколько футов? » «сказал Брайан Паттерсон, председатель EMerge.

Исправление расточительного «несоответствия»
Группа разрабатывает стандарты питания постоянного тока в небольших масштабах для отдельных зданий и конкретных приложений, таких как освещение. Паттерсон объяснил, что альянс исправляет «фундаментальное несоответствие между энергосистемой общего пользования и базой пользователей, которая в основном состоит из постоянного тока».

Хотя теперь у нас есть технология для передачи постоянного тока по сети, большинство генераторов вырабатывают переменный ток. Затем его повышают до более высокого напряжения, чтобы преодолеть сопротивление в линиях передачи.Ток колеблется от положительного к отрицательному напряжению, как правило, от 50 до 60 раз в секунду, в зависимости от страны.

Когда власть доходит до пользователя, она понижается до более удобных уровней. Поскольку компьютеры, телевизоры и мобильные телефоны работают от постоянного тока, питание должно быть выпрямлено из переменного тока, чтобы волнообразный ток стал плоским и «прямым».

Это преобразование не всегда эффективно, тратя от 5 до 20 процентов энергии в виде тепла. Вот почему блок питания вашего компьютера нагревается, когда вы его заряжаете.«Ваш ноутбук представляет собой своего рода собственную сеть нано-постоянного тока. Если вы можете представить себе, как масштабируется на всю нашу энергосистему, вы можете увидеть эволюцию, похожую на то, как формировался Интернет», — сказал Паттерсон.

Центры обработки данных составляют основу онлайн-мира и могут помочь DC набрать обороты. В них размещается от нескольких десятков до тысяч серверов, каждый со своими процессорами, жесткими дисками и памятью. Эти объекты служат базой для крупных предприятий — не только в технологическом секторе, но и для консалтинговых, финансовых и исследовательских фирм.Однако, как известно, они много потребляют энергию.

Например, Lakeside Technology Center в Чикаго — один из крупнейших центров обработки данных в мире. Это второй по величине потребитель энергии в регионе после международного аэропорта О’Хара, который получает более 100 мегаватт энергии. Согласно отчету Национальной лаборатории Лоуренса Беркли (LBNL), по всей стране эти центры потребляют 14,6 тераватт-часов электроэнергии в год.

Экономика может снова вызвать рост постоянного тока
У этих центров обработки данных есть некоторые особенности, которые делают их привлекательными объектами для микросетей постоянного тока.Поскольку время безотказной работы серверов означает деньги для бизнеса, многие из этих объектов поддерживаются источниками бесперебойного питания (ИБП), системами резервного питания от батарей, которые гарантируют, что такие веб-сайты, как Google, остаются в сети во время перебоев в подаче электроэнергии.

Брайан Фортенбери, руководитель программы в группе эффективности Исследовательского института электроэнергетики (EPRI), отметил, что в таких установках есть некоторые явные недостатки. «Что нас заинтересовало, так это то, что в центрах обработки данных, когда они проходят эти преобразования, ИБП, которые они любят использовать, преобразуют переменный ток в постоянный в переменный», — сказал он, добавив, что мощность переменного тока из резервного источника преобразованы обратно в DC внутри серверов, так как они работают внутри.

Преобразования выделяют тепло, поэтому серверные комнаты нуждаются в очень энергоемких системах охлаждения, требующих вдвое больше энергии для работы кондиционера, чем для работы самих серверов. «На самом деле это выглядело довольно глупо», — сказал он.

EPRI и LBNL начали пилотное исследование центров обработки данных постоянного тока в 2008 году. При их установке они обнаружили, что системы постоянного тока были на 6–8 процентов эффективнее и на 5–7 процентов более энергоэффективны по сравнению с центрами обработки данных переменного тока.

Фортенбери сказал, что эти улучшения — не единственное преимущество серверных комнат с питанием от постоянного тока. Есть и другие переменные, которые подтолкнут компании к этой парадигме. «Элементы, которые, вероятно, будут стимулировать рынок, — это продажа этих систем постоянного тока с меньшими капитальными затратами, меньшими занимаемыми площадями и повышением эффективности. Самым крупным игроком, самым большим драйвером будет надежность системы», — сказал он. объясняя, что питание постоянного тока обычно более стабильно и что устранение потерь при преобразовании продлевает срок службы батарей.

Возобновляемая энергия создаст «Приус» зданий
Другой драйвер — распространение возобновляемых источников энергии. Солнечные панели вырабатывают постоянный ток, который необходимо преобразовать в переменный, прежде чем подавать в дом, офис или в сеть. По словам Бринды, для компаний, стремящихся к созданию здания с нулевым энергопотреблением — такого, которое производит столько же энергии, сколько потребляет — или пытающихся сократить срок окупаемости своих инвестиций в солнечную энергетику, обход переменного тока может помочь выжать больше энергии из солнца. Томас, докторант кафедры инженерии и государственной политики Университета Карнеги-Меллона.

По ее словам, установка системы питания постоянного тока со временем станет дешевле, и она предполагает, что в зданиях будут розетки как переменного, так и постоянного тока.

Паттерсон из EMerge согласился с тем, что будущее за гибридными электрическими системами, и сказал, что его группа разрабатывает стандарты для «создания« Prius »зданий», правила написания правил прокладки тока, конструкции вилок и обеспечения безопасности систем.

Это важные соображения, потому что напряжение постоянного тока остается довольно постоянным, когда устройство работает, в отличие от переменного тока, в котором напряжение падает до нуля десятки раз в секунду.Это означает, что если вы отключите устройство постоянного тока во время его работы, электричество может пройти через воздух. Это также может вызвать коррозию и точечную коррозию металлических компонентов.

«Мы делаем ту работу, которая должна быть сделана, чтобы сделать код и нормативную базу равными для DC», — пояснил он.

По словам Карины Гарбеси, профессора и приглашенного исследователя в LBNL, вдали от линий электропередачи DC становится все более популярной альтернативой в развивающихся странах.Обеспечение электроснабжения отдаленных районов от сети переменного тока очень дорого и не имеет особого смысла, поскольку в некоторых из этих регионов можно построить ветряные турбины и солнечные фермы.

«Как только вы начнете использовать весь этот сценарий, этот прямой DC станет все более и более привлекательным», — сказала она. «Самой большой проблемой будет переход: как вы собираетесь перейти от мира, ориентированного на переменный ток, к миру, ориентированному на постоянный ток?»

Паттерсон сказал, что по мере того, как здания модернизируются для подачи постоянного тока, технология будет распространяться аналогично Интернету, управляемому более крупными фирмами, прежде чем она распространится в домах, где солнечные панели на крышах заряжают электромобили.

Перепечатано из Climatewire с разрешения Environment & Energy Publishing, LLC. www.eenews.net, 202-628-6500

История электричества — напряжение, ток, переменный и постоянный ток

Начиная с Бена Франклина

Многие думают, что Бенджамин Франклин открыл электричество в своих знаменитых экспериментах по запуску воздушных змеев в 1752 году, но электричество было открыто не сразу. Сначала электричество ассоциировалось со светом.Людям нужен был дешевый и безопасный способ осветить свои дома, и ученые думали, что электричество может помочь.

Бен Франклин

Батарея

Научиться производить и использовать электричество было непросто. Долгое время не существовало надежного источника электричества для экспериментов. Наконец, в 1800 году Алессандро Вольта , итальянский ученый, сделал великое открытие. Он замочил бумагу в соленой воде, поместил цинк и медь на противоположные стороны бумаги и наблюдал, как химическая реакция производит электрический ток.Вольта создал первую электрическую ячейку.

Соединив многие из этих элементов вместе, Вольта смог «протянуть ток» и создать батарею. Именно в честь Вольты мы измеряем мощность батареи в вольт . Наконец, появился безопасный и надежный источник электричества, что облегчило ученым изучение электричества.

Алессандро Вольта

Текущий начался

Английский ученый, Майкл Фарадей , был первым, кто понял, что электрический ток можно получить, пропустив магнит через медную проволоку.Это было потрясающее открытие. Почти все электричество, которое мы используем сегодня, производится с помощью магнитов и катушек из медной проволоки на гигантских электростанциях.

И электрогенератор, и электродвигатель основаны на этом принципе. Генератор преобразует энергию движения в электричество. Двигатель преобразует электрическую энергию в энергию движения.

Мистер Эдисон и его свет

В 1879 году Томас Эдисон сосредоточился на изобретении практичной лампочки, которая прослужила бы долгое время, прежде чем перегореть.Проблема заключалась в том, чтобы найти прочный материал для нити накала, небольшой провод внутри лампы, который проводит электричество. Наконец, Эдисон использовал обычную хлопковую нить, пропитанную углеродом. Эта нить накаливания вообще не горела — стала накаливания ; то есть светился.

Томас Эдисон

Следующей задачей была разработка электрической системы, которая могла бы предоставить людям практический источник энергии для питания этих новых светильников.Эдисон хотел найти способ сделать электричество практичным и недорогим. Он спроектировал и построил первую электростанцию, которая могла производить электроэнергию и доставлять ее в дома людей.

Электростанция на Перл-Стрит Эдисона запустила свой генератор 4 сентября 1882 года в Нью-Йорке. Около 85 клиентов в нижнем Манхэттене получили достаточно энергии, чтобы зажечь 5000 ламп. Однако его клиенты много платили за электроэнергию. В сегодняшних долларах электричество стоит 5 долларов за киловатт-час! Сегодня электричество стоит около 12 центов за киловатт-час для бытовых потребителей и около 7 центов за киловатт-час для промышленности.

переменного или постоянного тока?

Переломный момент в эпоху электричества наступил несколькими годами позже, когда были разработаны энергосистемы переменного тока (переменного тока) . Благодаря переменному току электростанции могли транспортировать электроэнергию намного дальше, чем раньше. В 1895 году Джордж Вестингауз открыл первую крупную электростанцию ​​на Ниагарском водопаде, работающую на переменном токе. В то время как установка Эдисона постоянного тока (постоянного тока) могла транспортировать электроэнергию только в пределах одной квадратной мили от его электростанции на Перл-стрит, электростанция на Ниагарском водопаде могла транспортировать электроэнергию на расстояние более 200 миль!

У электричества было нелегкое начало.Многие люди были в восторге от всех новых изобретений, но некоторые люди боялись электричества и опасались приносить его в свои дома. Многие социальные критики того времени рассматривали электричество как конец более простому и менее беспокойному образу жизни. Поэты отмечали, что электрическое освещение менее романтично, чем газовое. Возможно, они были правы, но новую электрическую эру нельзя было затмить.

В 1920 году только два процента энергии в США использовалось для производства электричества. Сегодня около 41 процента всей энергии используется для производства электричества.По мере роста использования нами технологий эта цифра будет продолжать расти.

Ссылки и ресурсы

  • Потребность — http://www.need.org

Эдисон проиграл войну токов, но сети постоянного тока снова возвращаются

Когда Томас Эдисон открыл первую в мире центральную электростанцию ​​на Перл-стрит в центре Манхэттена в 1882 году, он произвел революцию в том, как люди используют электричество. До тех пор большинство пользователей генерировали собственную мощность.Эдисон, однако, использовал сеть кабелей, проложенных под улицами Нью-Йорка, для подачи электричества в дома и предприятия от удаленного генератора. Этот дизайн, который сегодня кажется здравым смыслом, тогда был революционным.
Edison использовал постоянный ток, или DC, для распределения энергии. Но когда он попытался отправить электричество на расстояние более мили, его сеть начала терять напряжение. Соперники Эдисона Джордж Вестингауз и Никола Тесла воспользовались этим недостатком, и их система преобразования и передачи переменного тока с тех пор стала нормой во всем мире.

Но DC никуда не делся. Фактически, это тихое возвращение в качестве эффективного способа передачи энергии из удаленных мест, таких как морские ветряные электростанции, или ее доставки на большие расстояния через большие штаты, такие как Техас, и, возможно, даже на все Соединенные Штаты. IEEE Spectrum недавно сообщил, что последнее воплощение передачи постоянного тока — постоянного тока высокого напряжения или HVDC — «легко доступно и становится все более доступным и может заменить старое оборудование для передачи электроэнергии на большие расстояния между восточной и западной частями Соединенных Штатов. возможный.«Некоторые линии HVDC могут быть проложены вдоль существующей полосы отвода железной дороги, чтобы ускорить процесс установки.

Мы поговорили со специалистом GE Power по HVDC Рафаэлем Бончангом о последних приложениях этой технологии. Вот отредактированная версия нашего разговора.

Вверху и выше: В 2013 году GE выиграла тендер на строительство и установку платформы преобразователя переменного / постоянного тока для морского ветроэнергетического проекта DolWin3 в Германии. Помимо платформы, DolWin3 также включает новую внутреннюю преобразовательную подстанцию ​​в Дёрпене / Запад и более 100 миль кабелей HVDC, сочетание подводного и наземного, которые соединят два объекта.Изображение предоставлено GE Power.

GE Reports: Почему Эдисон проиграл свою «нынешнюю войну» с Westinghouse более века назад?

Рафаэль Бончанг: Не существовало технологии увеличения постоянного напряжения, необходимого для [эффективной] передачи большой мощности из точки А в точку Б. Переменный ток столкнулся с теми же проблемами, но инженеры-электрики при поддержке Westinghouse придумали, как это сделать. построить практичные трансформаторы. Это полностью изменило ситуацию и дало AC преимущество, в частности, для передачи и распределения электроэнергии.Трансформаторы позволяли им повышать напряжение и передавать мощность на большие расстояния.

GER: Итак, Westinghouse и AC выиграли. Почему мы до сих пор говорим о DC?

RB: Постоянный ток всегда обладал очень привлекательными качествами. Например, переменный ток колеблется на определенных частотах. Эти частоты могут отличаться от сети к сетке, и вы не сможете соединить их, если сначала не синхронизируете частоты. У вас нет этой проблемы с DC, потому что он прямой, он постоянный.Эта функция весьма полезна, поскольку делает систему питания более стабильной. Соединители HVDC могут, например, помочь предотвратить каскадные перебои в подаче электроэнергии.

GER: В Северной Америке есть несколько отдельных систем передачи электроэнергии. Эта проблема существует где-нибудь в мире?

РБ: Безусловно. На ум приходят Бразилия и Уругвай. Сети в этих двух странах работают на разных частотах. Еще один хороший пример — Саудовская Аравия, которая работает с совершенно другой частотой, чем остальной Ближний Восток.

GER: Какие еще преимущества HVDC?

RB: Когда вы отправляете мощность из точки A в точку B, она никогда не будет эффективна на 100 процентов, и вы всегда теряете мощность. Но ваши потери при передаче постоянного тока намного ниже, чем при передаче переменного тока. Чем больше расстояние между силовыми соединителями, тем более привлекательным становится HVDC. С помощью HVDC вы также можете передавать больше энергии по тому же коридору линии электропередачи — фактически в три раза больше. Это огромно, учитывая, что сам кабель может составлять до 70 процентов от общей стоимости проекта.Еще одним большим преимуществом является то, что вы можете прокладывать HVDC через подземные и подводные кабели. Это сложно с переменным током по разным техническим причинам.

GER: Почему тогда у нас нет HVDC повсюду, особенно с учетом того, что эти линии могут эффективно передавать электроэнергию, скажем, с удаленных и прибрежных ветряных электростанций в города, которые потребляют много электроэнергии?

RB: Это происходит, особенно с морскими ветряными электростанциями, но исторически возникали проблемы. Например, ветряные электростанции генерируют переменный ток, а разъемы HVDC на каждом конце кабеля, которые преобразуют переменный ток в постоянный и постоянный ток на другом конце, до недавнего времени были очень дорогими.Трансформаторные подстанции переменного тока намного дешевле. Вы должны сделать расчет, имеет ли соединитель HVDC экономический смысл. Как я уже упоминал, чем дальше расстояние, тем больше потерь вы несете с системой переменного тока и тем более привлекательным становится HVDC.

GER: Когда HVDC начал возвращаться?

RB: HVDC возвращается уже давно. GE работает над этой технологией более 50 лет. Первым большим прорывом стал ртутно-дуговый клапан, который позволил нам преобразовать переменный ток в HVDC и построить некоторые из первых соединителей HVDC.Один соединительный узел в Канаде для Manitoba Hydro обеспечивал подачу электроэнергии с гидроэлектростанций на севере в центры нагрузки и города, такие как Виннипег, на юге.

GER: Вы все еще производите эти клапаны?

РБ: Нет. Ртутно-дуговые клапаны проложили путь и показали, что высоковольтные передачи постоянного тока нашли свое место на рынке. Следующим большим нововведением стал тиристор, мощное полупроводниковое устройство, которое позволяло преобразовывать переменный ток в постоянный и постоянный ток в переменный.Это позволило нам построить, например, соединительную линию мощностью 2000 мегаватт между Францией и Великобританией. Это звено по-прежнему остается крупнейшим подводным и наиболее часто используемым соединителем HVDC в мире.

GER: Зачем Франции и Великобритании понадобилось такое мощное силовое соединение?

RB: Как я уже сказал, соединение разных сетей позволяет улучшить стабильность вашей сети, воспользоваться преимуществами разницы в ценах на энергию и снизить маржу выработки.

GER: Что такое маржа поколения?

RB: Две страны обычно держат определенное количество генерирующих мощностей в своих задних карманах на случай плохого дня, когда что-то пойдет не так.Но маловероятно, что у вашей сети возникнут проблемы в то же время, когда есть проблема в сети соседней страны. Соединяя сети с помощью линии HVDC, вы можете уменьшить маржу и сократить количество резервных электростанций, что является дорогостоящим.

GER: Каково состояние современных технологий HVDC?

RB: Новейшая технология сегодня — это то, что мы называем преобразователем источника напряжения или VSC, в котором используются полупроводниковые транзисторы.По сравнению с тиристорами эти преобразователи имеют гораздо меньшую площадь и большую гибкость.

GER: Почему размер важен?

RB: Это позволяет нам строить преобразовательные подстанции в густонаселенных районах и, например, подводить HVDC к центрам городов, где недвижимость очень дорогая. Это определенно один из больших рынков будущего.

GER: Какие еще возможности для бизнеса у HVDC?

РБ: Однозначно возобновляемые источники энергии.Наше отношение к источникам выработки энергии сильно изменилось. В результате морской ветер — одна из основных областей, на которые мы обращаем внимание. С помощью технологии VSC вы можете установить преобразовательные подстанции на морских платформах, поддерживающих межсоединения мощностью 1000 мегаватт. Мы уже развернули один в Северном море для поддержки морского ветроэнергетического проекта DolWin3 в Германии.

Реактивное сопротивление | электроника | Britannica

Реактивность , в электричестве, мера сопротивления, которое цепь или часть цепи представляет электрическому току, поскольку ток переменный или переменный.Постоянные электрические токи, протекающие по проводникам в одном направлении, испытывают сопротивление, называемое электрическим сопротивлением, но не реактивным. Реактивность присутствует в дополнение к сопротивлению, когда по проводникам протекает переменный ток. Реактивное сопротивление также возникает в течение коротких интервалов, когда постоянный ток изменяется по мере приближения к установившемуся потоку или отклонения от него, например, когда переключатели замкнуты или разомкнуты.

Реактивное сопротивление бывает двух типов: индуктивное и емкостное. Индуктивное реактивное сопротивление связано с магнитным полем, окружающим провод или катушку, по которой проходит ток.Переменный ток в таком проводнике или индукторе создает переменное магнитное поле, которое, в свою очередь, влияет на ток и напряжение (разность потенциалов) в этой части цепи. Катушка индуктивности по существу противодействует изменениям тока, заставляя изменения тока отставать от изменений напряжения. Ток нарастает по мере того, как управляющее напряжение уже уменьшается, имеет тенденцию продолжаться на максимальном значении, когда напряжение меняет свое направление, падает до нуля, когда напряжение увеличивается до максимума в противоположном направлении, и меняет свое направление и нарастает в в том же направлении, что и напряжение, даже когда напряжение снова падает.Индуктивное реактивное сопротивление, мера этого противодействия току, пропорционально как частоте f переменного тока, так и свойству индуктора, называемому индуктивностью (обозначено L и, в свою очередь, зависит от размеров индуктора, его расположения, и окружающая среда). Индуктивное реактивное сопротивление X L равно 2π умноженному на произведение частоты тока и индуктивности проводника, просто X L = 2π f L. Индуктивное реактивное сопротивление выражается в омах. (Единица измерения частоты — герцы, индуктивности — Генри.)

Емкостное реактивное сопротивление, с другой стороны, связано с изменяющимся электрическим полем между двумя проводящими поверхностями (пластинами), отделенными друг от друга изолирующей средой. Такой набор проводников, конденсатор, по существу противодействует изменениям напряжения или разности потенциалов на своих пластинах. Конденсатор в цепи замедляет прохождение тока, заставляя переменное напряжение отставать от переменного тока, в отличие от отношения, вызванного индуктором.Емкостное реактивное сопротивление, мера этого противостояния, обратно пропорционально частоте f переменного тока и свойству конденсатора, называемому емкостью (обозначено C и зависит от размеров конденсатора, его расположения и изоляционной среды. ). Емкостное реактивное сопротивление X C равно произведению 2π, частоты тока и емкости этой части цепи, просто X C = 1 / (2 π f C ).Емкостное реактивное сопротивление измеряется в омах. (Единица измерения емкости — фарады.)

Поскольку индуктивное реактивное сопротивление X L заставляет напряжение опережать ток, а емкостное реактивное сопротивление X C вызывает отставание напряжения от тока, всего реактивное сопротивление X является их разницей, то есть X = X L X C .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *