Отключающая способность: 4,5кА, 6кА, 10кА. Что выбрать?

Содержание

4,5кА, 6кА, 10кА. Что выбрать?

У модульных аппаратов (автоматических выключателей, диф. автоматов, УЗО) со схожими свойствами, даже у одного производителя, может значительно отличаться цена. Если внимательно сравнить устройства, то можно заметить одно отличие, которое указывается в прямоугольной рамке. Это отключающая способность.  Именно это значение может значительно увеличить стоимость аппарата. 

Отключающая способность. Теория.

Отключающая способность – это максимальный ток КЗ (короткого замыкания), при котором аппарат способен отключить нагрузку и при этом остаться работоспособным (продолжить выполнять функции защиты). Если ток КЗ будет больше отсекающей способности, то аппарат наверняка выйдет из строя вплоть до полного разрушения, при этом НЕ выполнит свои защитные функции. Величина указывается в амперах (единица силы тока).  На белорусском рынке наиболее распространенные значения 4,5кА, 6кА, 10кА.

Данный параметр регулируется двумя международными стандартами:

IEC/EN 60898-1 — для бытовых серий.

IEC/EN 60947-2 — для промышленных серий.

Разницу между стандартами смотрите в таблице:

В указанных нормативах можно встретить следующие значения:

Icn – это номинальная сила тока КЗ, при которой автомат может отключиться многократно (не меньше 2 раз). Значение указывается в амперах в прямоугольной рамке на лицевой части аппарата. Это характеристика исключительно для бытовых серий (стандарт EN 60898-1)

Icu — Предельная (максимальная) отключающая способность. Согласно требованиям стандарта, ток с данной характеристикой должен отключиться дважды (трижды, уже не обязан). Если ток окажется выше указанного значения, то аппарат не сможет отключить контактную группу, создав при этом серьезную аварию. Это основная характеристика для промышленного стандарта EN 60947-2. На предельную отключающую способность может влиять количество полюсов автомата (у полноценного двухполюсного автомата (2P) отсекающая способность чуть больше, чем у однополюсного, но не у 1P+N).

Ics – рабочая (отключающая) способность. Ток, который обязан аппарат отключить трижды и при этом полностью сохранить все свои рабочие параметры. Чем выше значение Ics, тем более высокие значения токов КЗ выключатель может отключать. Часто Ics выражается в процентном соотношении Icu. Причем коммутационная способность зависит от напряжения сети, чем больше напряжение, тем меньше отключающая способность.

Для аппаратов 6кА и выше, производители часто указывают всю информацию на корпусе аппарата (стандарты, рабочее напряжение, подробные характеристики отключающей способности). В бюджетных версиях (4,5кА) подробная информация редкость, и всё обходится стандартным Icn.

Рекомендую запомнить, изучить и понять выше указанные значения. 

4,5кА, 6кА, 10кА. Что выбрать?

Что касается правильного выбора, если делать грамотно, то нужно знать (измерять) ток короткого замыкания.  Узнав данный параметр можно подобрать оптимальный вариант, с достаточным запасом прочности. При этом основное применяемое правило:

Отключающая способность аппарата должна быть НЕ ниже тока короткого замыкания (КЗ).

Очень часто можно столкнуться с отсутствием информации о токе короткого замыкания объекта (нет проекта или нет возможности измерить ток КЗ). В этом случае можно отталкиваться от следующего: чем лучше электропроводка (медный кабель, большие сечения жил) и ближе к источнику питания (трансформатору подстанции), тем выше отключающая способность должна быть (в пределах разумного конечно).

Следует учитывать, что КЗ всегда вещь относительная, и на 100% вам никто не скажет, каково реальное значение будет наверняка, можно только предположить. Поэтому, не смотря на то, что «в быту», в большинстве случаев, ток КЗ не превышает 3кА , нижний рекомендуемый порог для использования не ниже 4,5кА.

Существует ГОСТ 32396-2013, где указаны рекомендуемые значения отключающей способности для вводно распределительных устройств жилых и общественных зданий:

Для бытового применения распространены следующие значения:

4,5кА.

 Исключительно бюджетная «модулька». 80% рынка за китайскими производителями. Европейские заводы производят такие аппараты для третьих стран. Рынок ЕC, для такой продукции, закрыт (есть нюансы, но это не смысл данной темы). Если остановитесь на этом варианте, то рекомендую на вводе (в щите учёта или этажном щите) устанавливать автоматический автомат(ы) с отсекающей способностью 10кА. Этим вы серьезно перестрахуете всю установку, если с КЗ, что-то пойдёт не так.

6кА. Это основная линейка аппаратов у европейских производителей. Самый оптимальный вариант для бытового использования (квартира, загородный дом). Отличное соотношение ЦЕНА-КАЧЕСТВО. Этой характеристики достаточно для разных нештатных ситуаций и должно хватить на весь срок эксплуатации щита. 

10кА. Это уже предельная величина для бытовой модульной автоматики, всё что выше, будет уже значительно дороже. Данный стандарт почти у всех производителей соответствует двум стандартам: EN 60898-1 и EN 60947-2. Применяется для бытового и для промышленного использования. Если хотите максимальную надёжность и позволяет бюджет, то можно использовать этот вариант.

На нашем рынке, можно встретить версии автоматических выключателей и УЗО с отключающей способностью 3кА, но это уже пережиток прошлого, даже для наших стандартов. 15кА и выше, это уже серьезные серии и в быту не используются.

Если исходить из моей практики, то очевидно, что 6кА это самый оптимальный вариант. 10кА — для тех, у кого не ограничен бюджет щита. Хотя у некоторых производителей не слишком высокая цена в этом сегменте (Eaton, Shrack). 4,5кА, я стараюсь не применять. Использую только в единичных (слишком бюджетных) случаях, где я уверен, что ток КЗ очень мал.

Чтобы прикинуть экономическую целесобразность, возьмите на заметку: у большинства аппаратов защиты срок эксплуатации составляет 10-15 лет. При штатной работе срок службы может быть больше, и достигать 25 лет. После 25 лет параметры защитной аппаратуры вряд-ли будут соответствовать техническим требованиям.

И напоследок, еще очень простое моё правило, которое возможно поможет определиться с выбором: чем дороже и выше значимость объекта  (участка цепи), тем выше отключающая способность должна быть. А уж насколько дорого ваше имущество, решать только вам.

В чем отличие 4,5кА, 6кА, 10кА в модульной автоматике

← Звукоизоляционные электромонтажные коробки Kaiser   ||   Новые дифференциальные автоматические выключатели HAGER для 3-х фазной сети →

В чем отличие 4,5кА, 6кА, 10кА в модульной автоматике

Повсеместно при защите электрической сети, особенно бытовой, применяется

модульная автоматика. Такие приборы характеризуются сравнительно небольшими предельными токами (до 125А), стандартными (модульными) корпусами небольших размеров и устанавливаются на DIN-рейку.

Устройства этого типа отличаются простотой установки, подбора и эксплуатации. Их ассортимент очень широк – от простых автоматических выключателей до многофункциональных устройств автоматики. Стандартные размеры позволяют устанавливать самые различные приборы в унифицированные пластиковые и металлические боксы, которые различаются только по количеству устанавливаемых в них модулей.

Если модульная серия Eaton PL6 популярна в Беларуси более десяти лет, то ее младшая сестра, серия PL4 стала известна совсем недавно благодаря демократичной цене и надежности, сопоставимой с 6-й серией. В чем же все-таки их отличие? Автоматические выключатели, защищающие подключенную к ним электропроводку от перегрузки и коротких замыканий, которые могут привести к перегреву и возгоранию провода, имеют серийное обозначение

PL. Автоматы PL4 имеют стандартную для Беларуси, но ниже стандартов в Европе выключающую способность – 4,5кА. Такие автоматы выпускаются на номинальные токи 6…63А. Автоматы серии PL6 обладают стандартной для Европы электрической прочностью 6кА и чаще всего применяются в настоящее время. Их выпускают на номинальные токи 2…63А.
Если требуется обеспечить повышенный электрический запас прочности, используют автоматы PL7 (на 10кА). Их номинальный ток находится в пределах 0,16…63А.

Автоматические выключатели, предназначенные для защиты человека от поражения током при случайном касании оголенного провода, а также для предотвращения самовозгорания кабеля со старой изоляцией, выпускаются тоже в сериях PF4 (4,5кА), PF6 (6кА), PF7 (10кА) и носят название УЗО (устройств защитного отключения). УЗО, предназначенные для защиты человека, имеют номинальные токи утечки 10 и 30мА, для защиты от самовозгорания – 100 и 300мА. Последние, как правило, ставятся на ввод – сразу после вводного автомата.

Автоматические выключатели, конструктивно объединяющие УЗО и обычный автомат, носят название дифференциальных автоматов и выпускаются в серии PFL. Аналогично предыдущим модульным приборам они имеют отключающую способность 4,5кА (PFL4), 6кА (PFL6) и 10кА (PFL7). Приборы комплектуются дополнительными контактами, дистанционными расцепителями, и т.д.

Все вышеописанные серии модульной автоматики Eaton отличаются только одной важной характеристикой – выключающей способностью. В чем отличие характеристики 4,5кА, 6кА, 10кА? Выключающая способность, указывает на максимальный ток короткого замыкания, при котором автоматический выключатель не выгорит, а сработает на отключение. Производители изготавливают выключатели с одинаковым номинальным током, но с разной выключающей способностью. Например, у Eaton это автоматические выключатели PL4-C16 (4,5кА), PL6-C16 (6кА) и PL7-C16 (10кА). Необходимость установки той или иной серии зависит от места подключения их в цепи по отношению к источнику электроэнергии: электростанции, ТЭЦ и т.д. На трансформаторных подстанциях устанавливают выключатели с характеристикой 10кА, в электрощитовых многоквартирных домов и вводных щитах коттеджной постройки рекомендовано ставить автоматические выключатели не ниже 6кА. Уже в самих квартирах и коттеджах потребитель может устанавливать автоматы с любой характеристикой — 4,5кА, 6кА, 10кА, учитывая то, что чем выше выключающая способность, тем выше «запас прочности» автоматического выключателя, но, соответственно и выше его цена.

Эти модульные приборы, а также автоматические выключатели, УЗО, электротехнические щиты, реле, таймеры, розетки и выключатели вы сможете приобрести у нас по безналичному расчету и в розницу со склада в Минске. На нашем сайте www.eplan.by доступна услуга доставки во все регионы Республики Беларусь.

Отключающая способность автоматических выключателей | Элкомэлектро

Электролаборатория » Вопросы и ответы » Отключающая способность автоматических выключателей

Да, действительно существует термин «отключающая способность» защитного аппарата, иногда говорят предельная отключающая способность автоматического выключателя, что является одним и тем же. Физический смысл данного термина состоит в следующем: если отключающая способность автоматического выключателя будет ниже установленной ГОСТом Р 51732 величины, то он не сработает в случае возникновения аварийной ситуации и не защитит линию на которой установлен данный аппарат защиты, а взорвётся от действия большого тока короткого замыкания.

Для исключения подобных происшествий, на начальном этапе проектирования электроустановки, проектировщик рассчитывает токи короткого замыкания, которые могут возникнуть в аварийной ситуации в данной электроустановке. Исходя из полученных расчётным методом величин, происходит подбор аппаратов защиты по предельной отключающей способности, учитывая нормативные данные, указанные в госте Р 51732, пункт 6.5.9. В данном пункте говорится, что отключающая способность автоматических выключателей должна быть выше 3 кА для автоматических выключателей на ток до 25 А, 6 кА для автоматических выключателей на ток до 63 А и 10 кА для автоматических выключателей на ток до 125 А.

Отключающая способность аппаратов защиты с током 160 А и более должны быть не ниже 20 кА для многопанельных ВРУ, не ниже 15 кА для однопанельных ВРУ и меньше или равно 10 кА для шкафного типа ВРУ.

В заданном Вами вопросе: можно ли в ВРУ устанавливать автоматические выключатели S 203 на ток 63А нет самой важной величины исходя из которой можно дать однозначный ответ – расчётного тока короткого замыкания. Если, к примеру он равен 5 кА, то данный автоматический выключатель можно устанавливать, так как в характеристиках данных заводом изготовителем указана величина отключающей способности 6 кА.

Предельная коммутационная способность (2008)

Я хорошо знаю автоматические выключатели ВА47-29 или, например, АД12, знаю практически наизусть всю их маркировку и могу объяснить значение каждого ее обозначения. Не могу расшифровать только число, заключенное в рамку на лицевой стороне аппарата. Что оно означает?

Александр Идрисов, электротехник, г. Уфа

Многие технические параметры определяют надёжность срабатывания защитной аппаратуры. Один из важнейших параметров — предельная коммутационная способность (ПКС). Именно ее обозначают цифры на автоматическом выключателе, которые расположены немногим ниже номинального напряжения и взяты в рамку (см. рис. 1).

ГОСТ говорит, что предельная коммутационная способность определяется значением тока короткого замыкания (КЗ), при протекании которого автоматический выключатель должен отключится. При этом он может сохранить или не сохранять свою работоспособность. Предельная коммутационная способность — один из основных параметров для выбора и замены автоматического выключателя. Автоматический выключатель должен обладать предельной коммутационной способностью (рабочей отключающей или номинальной отключающей способностью), перекрывающей максимальный ток короткого замыкания. При недостаточной коммутационной способности автомат не только выйдет из строя, но и не обеспечит защиту.

Предельная коммутационная способность модульного оборудования

Применительно к продукции ТМ IEK, в частности к автоматическим выключателям ВА47-29 и другим устройствам на его базе (таким, как АД12, АД14, АВДТ32), а также автоматическим выключателям ВА47-100, данный параметр означает номинальную отключающую способность, значения которой приведены в таблице 1.

Таблица 1
Значения номинальной отключающей способности
Тип устройства ВА 47-29 ВА47- 29М АД12 АД14 АВДТ ВА 47-100 АД12М
Номинальная отключающая способность, кА 4500 4500 4500 4500 6000 10000 4500

Значения номинальной отключающей способности устанавливаются в результате испытаний. Все испытания, относящиеся к проверке на предельную коммутационную способность, выполняются в условиях, согласно ГОСТ Р 50345-99.

Испытания бытовых выключателей ВА47-29, АД12, АД14 и их аналогов проводятся на открытом воздухе. Выключатель должен управляться дистанционно с помощью механизма, имитирующего включение рукой. Испытуемый выключатель устанавливают на металлическую панель (см. рис. 3). Для операции автоматического отключения при появлении в цепи тока короткого замыкания необходимо наличие следующих элементов. На расстоянии 10 мм от максимально выступающей части испытываемого аппарата размещается рамка (8), на которой закрепляется прозрачная полиэтиленовая плёнка (7) толщиной (0,05+0,01) мм таким образом, что края плёнки выступают на 50 мм во всех направлениях относительно лицевой панели выключателя. Напротив выхлопного окна (4) устанавливается решётка (5) так, чтобы через неё проходила большая часть выходящих ионизированных газов.

Таблица 2
Соотношение К между рабочей и номинальной
наибольшей отключающей способностью

Ток отключающей способности Icn, А Коэффициент К
Icn < 6000 1
6000 <Icn≤ 10000 0,75

Испытания представляют собой последовательность из автоматического отключения при коротком замыкании «О», включения при наличии короткого замыкания в цепи и последующего автоматического отключения «СО» и временного интервала «t» между последовательными срабатываниями при коротких замыканиях. Временной интервал обычно составляет 3 минуты или несколько больше, чтобы дать остыть тепловому расцепителю для следующей операции включения.

Для проверки предельной коммутационной способности существует три типа испытаний в зависимости от заявленного тока: испытания при пониженных токах короткого замыкания; испытания при токе 1500 А; испытания при токах свыше 1500 А. Для продукции ТМ IEK применяется третий тип испытаний, поскольку нижний предел ПКС модульного оборудования TM IEK составляет 4500 А. Напомним, что показатели автоматических выключателей ниже 4500 А являются сегодня малоактуальными из-за изменившихся стандартов и увеличивающихся номинальных токов КЗ.

Здесь проводится два вида испытаний: испытания рабочей наибольшей отключающей способности и испытания номинальной наибольшей отключающей способности. Цепь для испытаний предельной коммутационной способности двухполюсного автоматического выключателя приведена на рисунке 2. Цепи для проверки однополюсного, трёхполюсного, четырёхполюсного автоматических выключателей строятся аналогично.

Для испытаний выбирается три образца. Перед началом испытаний испытательная цепь калибруется с учётом коэффициента мощности. Далее по таблице определяется, будет ли цикл испытаний полным (см. табл. 2). Если коэффициент К равен 1, то ток рабочей и номинальной наибольших отключающих способностей равны. Поэтому проводятся испытания только рабочей наибольшей отключающей способности.

Для калибровки испытательной цепи, перемычки G, полным сопротивлением которых можно пренебречь в сравнении с общим сопротивлением цепи следует присоединить в точках, указанных на рисунке 2. Испытания, в зависимости от количества полюсов, представляют собой следующую последовательность действий:

  • для одно- двухполюсных выключателей: O — t — O — t — CO;
  • для трёх- четырёхполюсных выключателей: O — t — CO — t — CO.

Если К = 0,75 проводятся испытания на номинальную наибольшую отключающую способность. Цепь для испытаний калибруется следующим образом. Аналогично предыдущим испытаниям присоединяются перемычки G. Для получения ожидаемого тока, равного номинальной наибольшей коммутационной способности выключателя при соответствующем коэффициенте мощности, на входной стороне перемычек G вставляют сопротивления Z. Испытание на номинальную наибольшую отключающую способность является более «мягким» по сравнению с испытаниями рабочей наибольшей отключающей способности, так как цикл содержит меньшее количество операций. Последовательность операций: O — t — CO.

После испытания рабочей наибольшей отключающей способности выключатели не должны иметь повреждений, ухудшающих их эксплуатационные свойства, и должны без обслуживания выдержать испытание на электрическую прочность изоляции. Для испытаний согласно ГОСТ используется постоянное напряжение величиной 1500 В. Перед испытаниями образцы не проходят обработки в камере влаги. Через 5 секунд после приложения напряжения производится замер сопротивления в следующей последовательности:

  • при разомкнутом выключателе: между каждой парой электрически соединённых выводов, когда автоматический выключатель находится в замкнутом положении — в каждом полюсе поочерёдно;
  • при разомкнутом выключателе: между каждым полюсом поочерёдно и остальными полюсами, соединёнными между собой;
  • между металлическими частями механизма и корпусом: испытание на электрическую прочность изоляции должно выполняться между 2 и 24 часами после испытаний на короткое замыкание.

После испытаний на электрическую прочность изоляции проводится проверка работы теплового расцепителя. Все полюса выключателя соединяют последовательно, затем подается ток, равный 0,85 условного тока нерасцепления (1,13 х In). В конце этой проверки ток постепенно увеличивают в течение 5 секунд до 1,1 условного тока расцепления (1,45 х In). Выключатели должны расцепиться в течение 1 ч.

После испытаний номинальной наибольшей отключающей способности выключатели должны без обслуживания выдержать испытание на электрическую прочность изоляции по пунктам, приведённым выше при испытательном напряжении 900 В и без предварительной обработки в камере влаги. Это испытание на электрическую прочность изоляции должно выполняться между 2 и 24 ч после испытаний на короткое замыкание.

Кроме того, эти выключатели должны быть способны к расцеплению при прохождении тока, равного 2,8In за время, установленное для тока 2,55 In, но с нижним пределом 0,1 с вместо 1 с

И только после всего проведённого цикла проверки можно уверенно утверждать, что предельная коммутационная способность соответствует значениям, заявленным производителем.

Предельная коммутационная способность промышленного оборудования

Кроме модульного оборудования значение предельной коммутационной способности присутствует и в маркировке промышленного оборудования, в частности, на автоматических выключателях серии ВА88 (см. рис. 4). Значение предельной коммутационной способности — один из основных параметров для выбора автоматического выключателя для промышленного использования. Правильно выбранный автоматический выключатель с необходимым значением предельной коммутационной способности защитит дорогостоящее технологическое оборудование (см. таблицу 3). Предельная отключающая способность (или наибольшая отключающая способность) согласно ГОСТ Р 50030.2-99 — это способность автоматического выключателя произвести расцепление при протекании тока короткого замыкания. При этом автоматический выключатель может сохранить или не сохранить свою работоспособность.

Помимо этого наибольшая отключающая способность согласно ГОСТ имеет два значения:

  • Номинальная предельная наибольшая отключающая способность ICU — это отключающая способность, при которой после пропускания тока ICU может произойти не-восстанавливаемый обрыв цепи с возможным разрушением контактной системы. Значение предельной наибольшей отключающей способности устанавливается изготовителем для данного выключателя, выражается в килоамперах (кА) и определяется в ходе проведённых испытаний.
  • Номинальная рабочая наибольшая отключающая способность ICS — это отключающая способность, для которой в соответствии с установленным циклом испытаний предполагают способность данного выключателя длительно проводить свой номинальный ток. Значение рабочей наибольшей отключающей способности устанавливается изготовителем для данного выключателя, выражается в килоамперах (кА) и определяется в ходе испытаний. Значения номинальной предельной наибольшей отключающей способности (ICU) и номинальной рабочей наибольше отключающей способности (ICS) для автоматических выключателей приведены в таблице 3. Значения этих параметров устанавливаются в результате испытаний.
Таблица 3
Тип автоматического
выключателя
Рабочая наибольшая отключающая способность ICS,кА Предельная наибольшая отключающая способность ICU,кА
ВА88-32 12,5 25
ВА88-33 17,5 35
ВА88-35 25 35
ВА88-35 с микропроцессором МР211 25 35
ВА-37 35 35
ВА88-37 с микропроцессором МР211 35 35
ВА88-40 35 35
ВА88-40 с микропроцессором МР211 35 35
ВА88-43 с микропроцессором МР210 50 50
ВА88-43 с микропроцессором МР211 50 50

Если производитель не указал параметров испытаний, то расцепители токов короткого замыкания откалибровываются на максимум (по времени и по току) для всех испытаний. Для испытаний используется трёхфазный переменный ток. Выключатели также должны испытываться на открытом воздухе. Испытываемый выключатель следует установить в укомплектованном виде на его собственной или эквивалентной опоре. Управление при испытаниях осуществляется дистанционно с помощью электропривода или другого устройства. При испытаниях на открытом воздухе, касающихся работоспособности при коротких замыканиях и кратковременно выдерживаемом токе, со всех сторон выключателя устанавливается металлический экран — плетёная металлическая сетка или дырчатый просверленный металлический лист с токопроводящим покрытием; площадь отверстий не более 30 мм2.

Значения, зафиксированные в протоколе испытаний, при отсутствии других указаний не должны выходить за пределы допусков, приведенных в таблице 4. Допускается проводить испытания и в более жёстких условиях, но с согласия изготовителя.

Состояние выключателя после испытаний следует проводить указанными ниже методами, предусмотренными для каждого цикла:

1. В первую очередь — визуальный осмотр корпуса: корпус не должен быть поврежден, но допускаются волосные трещины. (Для справки: волосные трещины являются следствием высокого давления газа или тепловых нагрузок в результате воздействия дуги, когда прерываются большие токи, и имеют поверхностный характер. Следовательно, они не распространяются на всю толщину литого корпуса аппарата).

2. Далее проверяется работоспособность выключателей с наличием тока в цепи. Количество циклов оперирования для выключателей равно:

  • Для ВА88-32, ВА88-33, ВА88-35, ВА88-35 с микропроцессором МР211 — 50 циклов;
  • Для ВА-37 и ВА88-37 с микропроцессором МР211 -50 циклов;
  • Для ВА88-40, ВА88-40 с микропроцессором МР211, ВА88-43 с микропроцессором МР210 и ВА88-43 с микропроцессором МР211 — 25 циклов.

Затем производится замер сопротивления изоляции при подаче удвоенного рабочего напряжения, но не менее 1000 В.

3. Следующим шагом является проверка превышения температуры. Если испытания на номинальную рабочую наибольшую отключающую способность проводились на выключателе с минимальным номинальным током или при минимальной уставке для данного типоразмера, то испытания на превышение температуры не проводятся. Если это условие не выполняется, то испытания проводятся. Проверка производится путем пропускания через выключатель условного теплового тока Ith. Значение условного теплового тока должно превышать или, в крайнем случае, равняться максимальному номинальному рабочему току. Время проведения испытаний не более 8 часов. За это время температура должна принять установившееся значение. Предел превышения температуры выводов должен быть не более 80 °С.

Таблица 4
Все испытания Испытание в условиях короткого замыкания
Ток: + 5%
Напряжение: + 5%
Коэффициент мощности: — 0,05 %
Постоянная времени: + 25%
Частота: ± 5%

4. Сразу после проверки превышения температуры следует проверка максимальных расцепителей токов перегрузки при значении тока, равного 1,45-кратной уставке. Для проведения этого испытания следует последовательно соединить все полюса. Испытание проводится при любом удобном напряжении. Условное время расцепления — 2 часа.

Выключатель считают удовлетворяющим требованиям настоящего стандарта, если он соответствует требованиям каждого испытания предусмотренного цикла.

Если Ics = Icu, то, согласно ГОСТ, дальнейшие испытания на номинальную предельную наибольшую отключающую способность проводить не нужно. Однако в линейке автоматических выключателей ВА88 присутствуют выключатели, для которых это равенство не выполняется, поэтому мы продолжим описание испытаний.

Перед испытаниями должна быть произведена проверка расцепителей токов перегрузки. Проверку следует проводить при удвоенной токовой уставке отдельно в каждом полюсе. Время размыкания не должно превышать значения приведенного на время-токовой характеристике конкретного выключателя. Далее выполняется непосредственно испытание на наибольшую номинальную предельную отключающую способность при условиях, аналогичных испытаниям на номинальную рабочую наибольшую отключающую способность.

Последовательность операций представляет собой следующую последовательность действий: O — t — CO.

После испытаний проводится проверка электрической прочности изоляции и расцепителей токов перегрузки. Проверка расцепителей проводится путем пропускания через каждый отдельно взятый полюс испытательного тока, в 2,5 раза превышающего ток уставки. Время размыкания не должно превышать значения, установленного производителем для удвоенного тока уставки. ПКС соответствует значениям, заявленным производителем после успешного проведения всего цикла испытаний.

Итак, функция параметра ПКС заключается в том, чтобы произвести оценку надежности автоматического выключателя в режиме протекания предельных токов, и, по сути, его способности в этом режиме выполнять свои функции по защите.


Автоматические выключатели с высокой отключающей способностью — Модульное оборудование (A-Z Low Voltage Products navigation)


Серия S800 — это оптимальный вариант для применения в тяжелых промышленных условиях эксплуатации с использованием возобновляемых источников энергии по всему миру.Благодаря инновационной технологии дугогашения S800 идеально подходят для использования в тех случаях, когда значение имеет и размер, и эксплуатационные показатели. Являясь, по сути, альтернативой плавким предохранителям, эти устройства характеризуются обширными возможностями применения практически в любой среде — от жилых зданий до транспортных средств и предприятий с возобновляемыми источниками энергии.

Преимущества

  • Компактное и надежное решение для защиты линии с отключающей способностью до 50 кА.
  • Благодаря инновационному и высокопроизводительному профилю модель S800 обеспечивает возможность экономии финансовых средств при интеграции в такие системы, как, например, блоки батареи PV или панели автоматизации OEM, когда стоимость зависит в основном от размера и времени установки.
  • Линейка автоматических выключателей S800 дополняется обширным ассортиментом аксессуаров, которые расширяют функциональные возможности автоматических выключателей, превращая их из устройств обеспечения безопасности в средства удаленного управления и мониторинга установленной системы

Особенности

  • Обширный ассортимент высокопроизводительных автоматических выключателей с поддержкой номинальной силы тока от 6 до 125 А и отключающей способности до 50 кА.
  • Модель S800PV-S характеризуется специальной конструкцией, обеспечивающей защиту секций солнечной батареи, и обладает размыкающей способностью на уровне 10–125 A при напряжении до 1200 В пост. тока
  • S800-SCL SR представляет собой ограничитель тока короткого замыкания с самовозвратом, который при использовании в сочетании с высокопроизводительным автоматическим выключателем или пускателем двигателя позволяет достигать отключающей способности при коротком замыкании на уровне 50 кА в условиях напряжения 690 В перем. тока.
  • Четкая идентификация причины отключения благодаря положению «TRIP» (Размыкание) переключателя
  • Модели серии S500 предоставляют неограниченные возможности регулировки номинального тока отключения, что позволяет адаптировать силу тока отключения с учетом требований конкретной среды применения

Отключающая способность — это… Что такое Отключающая способность?

2.4.11 Отключающая способность — значение ожидаемого тока, которое УЗО — Д способно отключить при заданном напряжении в заданных условиях эксплуатации без нарушения его работоспособности.

3.4.6 отключающая способность (breaking capacity): Значение переменной составляющей ожидаемого тока, который УЗО способно отключать при заданном напряжении в заданных условиях эксплуатации.

[МЭК 60050 (442-01-49), модифицированный]

3.2.4.6 отключающая способность : Значение переменной составляющей ожидаемого тока, которое УЗО-ДП способно отключать при установленном напряжении в заданных условиях эксплуатации без нарушения его работоспособности.

Смотри также родственные термины:

2.5.12 отключающая способность (коммутационного аппарата или плавкого предохранителя) : Значение ожидаемого тока отключения, который способен отключать коммутационный аппарат или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения. МЭК 60050(441-17-08).

Примечание

1) Напряжение устанавливается и условия предписываются в стандарте на соответствующий аппарат.

2) Для переменного тока это симметричное действующее значение периодической составляющей.

3) Определение наибольшей отключающей способности см. в 2.5.14.

2.5.12 отключающая способность (коммутационного аппарата или плавкого предохранителя): Значение ожидаемого тока отключения, который способен отключать коммутационный аппарат или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения.

[МЭС 441-17-08]

Примечания

1. Напряжение устанавливается и условия предписываются в стандарте на аппарат конкретного вида.

2. Для переменного тока это симметричное действующее значение периодической составляющей.

3. Определение наибольшей отключающей способности см. в 2.5.14.

3.61 отключающая способность (коммутационного аппарата или предохранителя): Значение ожидаемого тока отключения, который коммутационный аппарат или предохранитель способен отключить при заданном напряжении в предписанных условиях применения и поведения.

Примечание — Для коммутационных аппаратов отключающая способность может быть определена в соответствии с видом тока, предусмотренного в предписанных условиях, например отключающая способность при отключении ненагруженной линии, отключающая способность при отключении ненагруженного кабеля, отключающая способность при отключении одиночной конденсаторной батареи и т.д.

3.62

3.5.9 отключающая способность (коммутационного устройства или плавкого предохранителя):

Значение ожидаемого тока отключения, которое способно отключать коммутационное устройство или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения (МЭК 60050(441-17-08).

Примечания:

1. Напряжение устанавливается и условия предписываются в стандарте на соответствующее устройство.

2. Для переменного тока — это симметричное действующее значение периодической составляющей.

3. Определение наибольшей отключающей способности см. 3.5.11.

3.5.9 отключающая способность (коммутационного устройства или плавкого предохранителя) [breaking capacity (of a switching device or a fuse)]: Значение ожидаемого тока отключения, которое способно отключать коммутационное устройство или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения.

[МЭК 60050(441-17-08)]

Примечания

1 Напряжение устанавливается и условия предписываются в стандарте на соответствующее устройство.

2 Для переменного тока — это симметричное действующее значение периодической составляющей.

3 Определение наибольшей отключающей способности см. 3.5.11.

119. Отключающая способность коммутационного аппарата

Коммутационная способность коммутационного аппарата при отключении цепи

2.3.4 отключающая способность плавкого предохранителя (breaking capacity of a fuse): Значение ожидаемого тока, способного отключить плавкий предохранитель при установленном напряжении в установленных условиях эксплуатации и обслуживания.

[МЭС 441-17-08, с изменением]

3.25 отключающая способность плавкой вставки (breaking capacity of a fuse-link): Значение (эффективное при переменном токе) ожидаемого тока, который плавкая вставка способна отключать при установленном напряжении и заданных условиях эксплуатации.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

Отключающая способность — выключатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Отключающая способность — выключатель

Cтраница 1

Отключающая способность выключателей существенно зависит от амплитуды и скорости восстановления напряжения ( СВН) па контактах после обрыва тока.  [1]

Отключающая способность выключателя остается практически постоянной, а токи к. Это обусловливает необходимость периодической проверки соответствия отключающей способности выключателя изменившимся условиям в целях его своевременной реконструкции или смены.  [2]

Отключающая способность выключателя — это тот наибольший ток, который выключатель способен отключить при данном восстанавливающемся напряжении и заданных условиях эксплуатации.  [3]

Отключающая способность выключателя определяется условиями, существующими в прямых испытаниях.  [4]

Отключающая способность выключателя нагрузки зависит от частоты и амплитуды восстанавливающегося напряжения так же, как у обычных выключателей.  [5]

Отключающая способность выключателей старой серии была относительно невелика — не превышала 2 500 Мва.  [7]

Коммутационная отключающая способность выключателя характеризуется номинальным током отключения IOHOM, который может отключить выключатель при наибольшем рабочем напряжении и нормированных условиях восстановления напряжения.  [8]

Мерой отключающей способности выключателя принято считать отключаемый ток при определенном напряжении цепи или мощность отключения.  [9]

Если предельная отключающая способность выключателя при / в, н и Ка.  [10]

Как определяется отключающая способность выключателя в условиях возможного теплового или электрического пробоя.  [11]

Требования к отключающей способности выключателей, устанавливаемых в распределительных устройствах собственных нужд, определяются суммарной мощностью двигателей, приключенных к шинам в момент аварии. При возникновении короткого замыкания на шинах собственных нужд, питающихся по нормальной схеме, ток поступает из системы через рабочий трансформатор собственных нужд и от асинхронных двигателей, присоединенных к этим шинам. Однако максимального значения ток короткого замыкания может достигать при питании собственных нужд от резервного источника.  [12]

Для увеличения отключающей способности выключателей проводят следующие мероприятия.  [13]

Для увеличения отключающей способности выключателей и уменьшения времени гашения электрической дуги при размыкании тока применяют трансформаторное масло, газы, сжатый воздух. Масляные выключатели изготовляют с большим и малым объемами масла.  [14]

Количественная зависимость отключающей способности выключателей от величины и формы кривой восстанавливающегося напряжения различна для разных выключателей, но почти для всех выключателей является общим падение отключающей способности с ростом СВН. Особенно велика эта зависимость для воздушных выключателей.  [15]

Страницы:      1    2    3    4

Разъяснение терминологии предохранителей

Номинальный ток
Максимальный ток предохранителя. Когда предохранитель подвергается воздействию тока, превышающего его номинальный ток, он размыкает цепь через заданный период времени.

Температура окружающей среды
Температура воздуха, окружающего предохранитель, не следует путать с «комнатной температурой». Температура окружающей среды предохранителя во многих случаях значительно выше, поскольку он заключен (как в держателе предохранителя на панели) или установлен рядом с другими тепловыделяющими компонентами, такими как резисторы, трансформаторы и т. Д.

Американский калибр проводов (AWG)
Таблица американских размеров проводов (AWG) была создана для классификации кабелей с одним сплошным круглым проводником. AWG многожильного провода определяется общей площадью поперечного сечения (мм²) проводника. Поскольку между жилами также есть небольшие зазоры, многожильный провод всегда будет иметь немного больший общий диаметр, чем сплошной провод с тем же номером AWG. Увеличение числа AWG приводит к уменьшению диаметра проволоки, т.е. AWG # 12 — более тонкий провод, чем AWG # 10.

Предохранитель

Anti-Surge (см. Плавкий предохранитель)

Шина / Шина / Шина
Процесс соединения нескольких полюсов или цепей в одну точку подключения, т.е. кабель, шпилька или клемма. Это может уменьшить количество проводов и заделок каждого отдельного полюса. Шину можно использовать для подключения одного источника питания или заземления к нескольким цепям. Мы продаем ряд держателей предохранителей с шиной, в которых используется внутренняя шина для распределения мощности от одного входа к каждой цепи предохранителей в держателе.

Отключающая способность (см. Отключающую способность)

Картридж Предохранитель
Предохранитель, состоящий из токоведущего элемента внутри трубки предохранителя с выводами на обоих концах.

Автоматические выключатели
Тепловой выключатель предназначен для защиты цепи от перегрузки, но может быть сброшен после устранения неисправности. Узнайте больше об этих устройствах в нашем автоматический выключатель от редакции.

Время отключения
Общее время между началом перегрузки по току и окончательным размыканием цепи при номинальном напряжении устройством защиты от перегрузки по току.Время очистки — это сумма времени плавления и времени горения дуги.

Ограничение тока
А предохранитель работает только при коротком замыкании. Когда предохранитель работает в пределах своего диапазона ограничения тока, он устраняет короткое замыкание менее чем за 1/2 цикла. Кроме того, он ограничит мгновенный пиковый сквозной ток до значения, существенно меньшего, чем то, которое может быть получено в той же цепи, если этот предохранитель был заменен твердым проводом с таким же сопротивлением.

Снижение номинальных характеристик
На 25 град.C при температуре окружающей среды рекомендуется, чтобы предохранители срабатывали не более чем на 75% номинального тока, установленного с использованием контролируемого набора условий испытаний. Для получения более подробной информации свяжитесь с нами.

Двухэлементный предохранитель
Предохранитель особой конструкции, в котором последовательно используются два отдельных элемента внутри трубки предохранителя. Один элемент, пружинный спусковой механизм, работает при перегрузках, в 5-6 раз превышающих номинальный ток предохранителя. Другой элемент, секция короткого замыкания, работает при коротких замыканиях до их отключающей способности.

Быстродействующий предохранитель
Предохранитель, который срабатывает при перегрузке и очень быстро замыкается на короткое замыкание. Этот тип предохранителя не предназначен для выдерживания временных токов перегрузки, связанных с некоторыми электрическими нагрузками.

Быстродействующий предохранитель (см. Быстродействующий предохранитель)

Характеристики предохранителя
Характеристики конструкции предохранителя относятся к тому, насколько быстро предохранитель реагирует на различные токовые перегрузки. Характеристики предохранителей можно разделить на три основные категории: очень быстродействующие, быстродействующие или медленные.Отличительной особенностью плавких предохранителей является то, что эти предохранители обладают дополнительной тепловой инерцией, рассчитанной на нормальные начальные или пусковые импульсы перегрузки.

Защита от воспламенения
Сертифицированное электрическое устройство с защитой от воспламенения подходит для использования в отсеках судовых двигателей и в отсеках топливных баков. Как правило, в морской промышленности приняты два стандарта испытаний — SAE J1171, Внешняя защита от воспламенения морских электрических устройств и UL1500, Испытание защиты от воспламенения для морских продуктов.Требования и процедуры испытаний для этих двух стандартов схожи. По сути, три результата испытаний позволят устройству получить сертификат ЗАЩИТЫ ОТ ЗАЖИГАНИЯ.
1. Устройство или компонент сконструированы таким образом, что определенная горючая углеводородная смесь, окружающая устройство, не воспламенится, если обычная электрическая дуга, искра или источник тепла воспламенит смесь внутри устройства.
2. В условиях п. 1 устройство или компонент имеет недостаточную энергию для воспламенения смеси внутри устройства.
3. В условиях п. 1 источник возгорания герметично изолирован от окружающей смеси. Устройство с защитой от воспламенения не обязательно является взрывозащищенным. Взрывозащищенные устройства применяются к судам, проинспектированным Береговой охраной США, или в соответствии с определением Национального электротехнического кодекса.

Отключающая способность (отключающая способность)
Также известный как отключающая способность или номинальная мощность короткого замыкания — это максимальный разрешенный ток, который предохранитель может безопасно отключить при номинальном напряжении.Во время неисправности или короткого замыкания предохранитель может получить мгновенный ток перегрузки, во много раз превышающий его нормальный рабочий ток. Для безопасной эксплуатации необходимо, чтобы предохранитель оставался исправным (без взрыва или разрушения корпуса) и отключал цепь.
LBC = низкая отключающая способность
HRC = высокая отключающая способность
EBC = повышенная отключающая способность

Предохранитель
Устройство защиты от перегрузки по току с плавкой вставкой, которое срабатывает и размыкает цепь при перегрузке по току.

Высокоскоростные предохранители
Предохранители без преднамеренной выдержки времени в диапазоне перегрузки и предназначены для максимально быстрого размыкания в диапазоне короткого замыкания. Эти предохранители часто используются для защиты твердотельных устройств.

Ом
Единица измерения электрического сопротивления. Один Ом — это величина сопротивления, которая позволяет одному Амперу течь под давлением в один Вольт.

Закон Ома
Отношение между напряжением, током и сопротивлением, выражаемое уравнением E = IR, где E — напряжение в вольтах, I — ток в амперах, а R — сопротивление в омах.

Перегрузка по току
Состояние, которое существует в электрической цепи при превышении нормального тока нагрузки. Перегрузки по току имеют две отдельные характеристики — перегрузки и короткие замыкания.

Перегрузка
Может быть классифицирована как перегрузка по току, превышающая нормальный ток полной нагрузки цепи. Также характерным для этого типа перегрузки по току является то, что он не покидает нормальный токопроводящий путь цепи, то есть он течет от источника через проводники, через нагрузку, обратно через проводники, снова к источнику.

Peak Let-Thru Current, Ip
Мгновенное значение максимального тока, пропускаемого предохранителем, ограничивающим ток, когда он работает в своем диапазоне ограничения тока.

Восстанавливаемые предохранители / PTC
Подробную информацию об этих устройствах можно найти в нашем это техническое описание.

Активная нагрузка
Электрическая нагрузка, для которой характерно отсутствие значительного пускового тока. Когда активирована резистивная нагрузка, ток мгновенно повышается до своего установившегося значения без предварительного повышения до более высокого значения.

Р.М.С. Текущий
R.M.S. (среднеквадратичное) значение любого периодического тока равно значению постоянного тока, который, протекая через сопротивление, вызывает тот же эффект нагрева в сопротивлении, что и периодический ток.

Полупроводниковые предохранители
Предохранители, используемые для защиты твердотельных устройств. См. «Быстродействующие предохранители».

Короткое замыкание
Можно классифицировать как перегрузку по току, превышающую нормальный ток полной нагрузки цепи во много раз (в десятки, сотни или тысячи) раз.Также характерным для этого типа перегрузки по току является то, что он покидает нормальный путь прохождения тока в цепи, делая «короткий путь» вокруг нагрузки и обратно к источнику.

Медленно действующий предохранитель
Предохранитель со встроенной задержкой, который позволяет временным и безвредным пусковым токам проходить без размыкания, но предназначен для размыкания при длительных перегрузках и коротких замыканиях.

Медленный предохранитель (см. Медленно действующий предохранитель)

Супербыстрый предохранитель (см. Высокоскоростные предохранители)

Thermal Fuse / Thermal Cutoff´s
Вы найдете подробную информацию об этих устройствах в нашем это техническое описание.

Номинальное напряжение
Максимальное напряжение холостого хода, при котором может использоваться предохранитель, но безопасно отключать перегрузку по току. Превышение номинального напряжения предохранителя снижает его способность безопасно устранять перегрузку или короткое замыкание.

Сверхбыстрый предохранитель (см. Высокоскоростные предохранители)

Очень быстродействующий предохранитель (см. Быстродействующие предохранители)

Калибр провода
Это измерение размера провода, будь то диаметр (сплошные провода) или площадь поперечного сечения меди (многожильные провода).Площадь поперечного сечения указывается в мм² и обычно не включает внешнюю изоляцию. Калибр провода полезен для определения количества электрического тока, который провод может безопасно переносить, а также его электрического сопротивления.

Какой номинал кА (отключающая способность) автоматических выключателей и автоматических выключателей?

Номинальный ток

кА MCB или MCCB — это максимальный ток, который он может безопасно отключить в случае короткого замыкания. Если ток превысит это значение, автоматический выключатель может выйти из строя. Номинальный ток кА известен как выдерживаемая способность короткого замыкания или предельная отключающая способность автоматического выключателя.

Например, если MCB рассчитан на 10 кА, это означает, что MCB может безопасно разорвать цепи во время короткого замыкания, если только не произошло короткое замыкание ток не превышает 10кА.

MCB означает «Миниатюрный автоматический выключатель», а MCCB — «Автоматический выключатель в литом корпусе». Это устройства защиты цепей, способные защитить цепи от более серьезных повреждений, вызванных коротким замыканием и перегрузками.

В условиях короткого замыкания ток увеличивается экспоненциально.Это означает, что во время коротких замыканий цепь, рассчитанная на 10 А, может вызвать ток более тысячи ампер. Если используемый автоматический выключатель имеет очень низкий номинал или максимально допустимый ток короткого замыкания, автоматический выключатель, а также цепь будут повреждены. Следовательно, номинал автоматического выключателя в кА имеет большое значение.

Определение предельной отключающей способности —

Icu

Предельная отключающая способность автоматического выключателя может быть определена как максимального тока , он может безопасно отключить т в случае короткого замыкания.Обозначается он Icu . После устранения неисправности на его Icu автоматический выключатель не может быть использован повторно. Он также известен как максимальная выдерживаемая сила тока.

Определение служебной отключающей способности —

Ic s

Рабочая отключающая способность автоматического выключателя может быть определена как максимального тока , он может безопасно прервать т и все же вернуться в рабочее состояние после устранения неисправности. Обозначается он Ics .После устранения неисправности на его Ics автоматический выключатель можно использовать повторно.

Разница между Icu и Ic s заключается в возможности повторного использования автоматического выключателя после устранения неисправности.

Важность рейтинга кА

Номинал кА — очень важный фактор для любого автоматического выключателя. Максимальный ток, протекающий через автоматический выключатель во время короткого замыкания, варьируется от одной цепи к другой. Необходимо заранее рассчитать и использовать правильный автоматический выключатель, чтобы избежать опасности.Неправильный номинал в кА может быть потенциальной опасностью, стать причиной пожара, а иногда и смертельным исходом.

Какова отключающая способность автоматического выключателя: чем больше, тем лучше?

Какая отключающая способность прерывателя цепи?

Мы должны выбрать правильный автоматический выключатель и автоматический выключатель при конфигурировании электрического распределительного устройства или электрического распределительного устройства.

Отключающая способность автоматического выключателя является важным показателем автоматического выключателя, который относится к способности автоматического выключателя безопасно отключать ток короткого замыкания.Обычно он делится на номинальную предельную отключающую способность при коротком замыкании ICU и номинальную рабочую отключающую способность при коротком замыкании ICS.

Отключающая способность составляет 35 кА, 50 кА, 60 кА, 80 кА и другие спецификации, а предельная мощность короткого замыкания домашних малых автоматических выключателей обычно составляет 4-6 кА, а надежность отключения невысока.

Если ICU = 50KA, то при возникновении в цепи тока короткого замыкания 50KA автоматический выключатель может безопасно отключить цепь без замыкания контактов, взрыва и т. Д., но выключатель, который был отключен в результате крайнего короткого замыкания, не может быть использован снова.

Если IUS = 50KA, то при возникновении тока повреждения 50KA автоматический выключатель может безопасно отключить цепь, и его можно снова замкнуть, когда неисправность будет устранена. Конечно, лучше всего заменить автоматический выключатель.

Чем больше, тем лучше?

Важным принципом выбора автоматического выключателя является то, что предельная отключающая способность автоматического выключателя при коротком замыкании превышает ожидаемый ток короткого замыкания в линии.Независимо от типа автоматического выключателя, его предельная отключающая способность при коротком замыкании больше или равна его рабочей отключающей способности при коротком замыкании.

Чем больше отключающая способность автоматического выключателя, тем лучше? Конечно.

Чем больше отключающая способность, тем выше безопасность.

Например, когда ICU выбран как 35KA, если ток короткого замыкания в линии составляет 20KA, он будет отключен вовремя; но если ICU 20KA, ток короткого замыкания составляет 35KA, и его нельзя отключить.Хотя чем больше отключающая способность, тем лучше, но цена будет выше. По-прежнему необходимо выбирать соответствующий автоматический выключатель с экономической точки зрения, исходя из условий его собственного использования и исходя из предпосылки обеспечения достаточной безопасности.

Источник питания

— Номинальный ток предохранителя и отключающая способность

Отключающая способность предохранителя определяет максимальный ток, который предохранитель гарантированно сможет отключить в случае возникновения неисправности.
Предохранитель , который вы используете, должен иметь отключающую способность , превышающую максимально возможный ток, который может подаваться от источника, к которому он подключен.
Это мало или не имеет никакого отношения к величине тока, обычно потребляемой предохраняемым устройством!

Вы не указали, является ли предохранитель входным или выходным сигналом понижающего преобразователя, и для каждого случая существуют разные соображения.

Таким образом, если вы используете предохранитель на выходе, то отключающая способность предохранителя должна быть больше, чем максимальное значение тока, которое может обеспечить ваш понижающий преобразователь.

Если вы предохраняете вход преобразователя, то отключающая способность должна быть больше, чем максимальное значение тока, которое может выдать источник этого источника питания.
Если ваш источник питания представляет собой обычную сетевую розетку, вы можете с уверенностью предположить, что где-то перед вами есть автоматический выключатель, и он, вероятно, рассчитан на что-то в районе 20 А, поэтому ваш предохранитель должен иметь отключающую способность не менее чем это.

Если вы используете предохранитель с меньшим значением отключающей способности, чем величина тока, которую может подавать источник, вы рискуете, что при возникновении состояния перегрузки по току предохранитель « перегорит », но ток будет дугой через перегоревший плавкого предохранителя и продолжайте течь, пока не отключите его вручную.

Я обнаружил все это на собственном горьком опыте намного раньше в своей карьере, когда я использовал крошечный предохранитель (номинал 100 мА с отключающей способностью, возможно, 50 А), потому что устройство, которое я построил, потребляло только небольшой ток от сети.
К сожалению для меня, я не учел, что моя крошечная цепь будет подключена к очень мощным промышленным источникам питания, и однажды что-то пошло не так, отключающая способность предохранителя, который я выбрал, была ужасно недостаточна для прерывания огромного тока короткого замыкания. (много сотен или даже тысяч А) — моя маленькая электрическая цепь превратилась в обугленный кусок и отключили электричество на всей фабрике…

Калькулятор отключающей способности автоматического выключателя

[с формулой и расчетами] • Электрические калькуляторы Org

Отключающая способность автоматических выключателей — это номинальное действующее значение тока, который выключатель может отключить при номинальном напряжении.

Калькулятор

Формула

  • Отключающая способность (B.C) = 1,732 * В * I * 10 -6

Где 1,732 = √3 представляет собой множитель для трехфазных цепей

Б.C всегда равен , выраженному через MVA .

Где M = Mega (префикс, представляющий 10 6 )

В = номинальное рабочее напряжение

A = ток короткого замыкания

Расчеты — Решенные примеры

Пример 1: Рассчитайте отключающую способность, необходимую для отключения тока короткого замыкания 200 А при номинальном рабочем напряжении 11 кВ в трехфазной системе.

Решение: B.C = 1,732 * V * I * 10 -6

= 1.732 * 11 кВ * 200 * 10 -6 = 3,814 МВА

Пример 2: Повторите задачу из приведенного выше примера для I = 50 A, V = 33 кВ.

Решение: B.C = 1,732 * 33 кВ * 50 A * 10 -6 = 2,85 МВА

Часто задаваемые вопросы

Вопрос 1: Что такое Icu в MCCB и других выключателях?

Ответ: Icu или Icn — это номинальная отключающая способность при коротком замыкании или предельная отключающая способность. Это максимальный ток короткого замыкания, который должен быть способен прервать автоматический выключатель.

Вопрос 2: Что вы подразумеваете под Ics?

Ответ: Ics означает служебную отключающую способность.

Ics — номинальная отключающая способность при коротком замыкании.

Вопрос 3: Зачем нам Icu и Ics и чем Icu отличается от Ics ?
Ответ: Icu — это максимальный ток короткого замыкания, который может преобладать в случае очень опасных отказов. Оно может быть очень высоким, например, порядка 5000 А в случае выключателя или даже 5,00 000 А в случае автоматического выключателя.На практике вероятность возникновения таких неисправностей очень мала. Для практического проектирования используется еще один термин Ics. Ics на самом деле кратно k, умноженному на Icn. Проще говоря, Ics — это процент от Icu.

Математически: Ics = k * Icu

Где k представляет собой процентное число, например 10%, 20%, 25%, 50%, 75% или 100%.

Вопрос 4: Что вы подразумеваете под Ics = 100% Icu или Ics = 100% Icn?

Ответ: Европейские промышленные стандарты предполагают использование коэффициента k как 100%.Чтобы приравнять оба уравнения: Ics = Icu


Прочие инструменты калькуляторов:

Определение значений короткого замыкания для автоматических выключателей

Автоматические выключатели защищают электрооборудование от повреждений, которые могут возникнуть в результате токов короткого замыкания. Однако «ток короткого замыкания» может варьироваться в зависимости от приложения. Как стандарты IEC и EN помогают разработчикам правильно определять защиту от сверхтоков в электрическом оборудовании?

Иоахим Беккер ABB Stotz-Kontakt GmbH, Гейдельберг, Германия, Иоахим[email protected]

В любом современном обществе постоянное наличие электроэнергии жизненно важно. Без электроэнергии будет парализовано большинство жилых домов, коммерческих предприятий и промышленных предприятий. Эта электроэнергия должна быть доставлена ​​конечному пользователю безопасно и надежно, и именно здесь распределительное устройство играет важную роль. Из-за очевидных опасностей такое распределительное устройство или местный распределительный щит должны быть спроектированы так, чтобы защищать установку от неисправностей путем отключения неисправной цепи и, одновременно, обеспечения непрерывной работы незатронутых цепей.

Типы выключателей
Короткое замыкание подвергает оборудование большой нагрузке. Поэтому при проектировании распределительного устройства или распределительного щита необходимо учитывать тепловые и динамические нагрузки, вызванные максимальным током короткого замыкания в точке подключения на месте. Для предотвращения повреждения установки (или персонала) используются устройства защиты от короткого замыкания для отключения тока короткого замыкания в точке подключения → 1.

01 Различные автоматические выключатели используются для защиты электрооборудования при возникновении токов короткого замыкания.Широкий ассортимент автоматических выключателей АББ охватывает практически все значения напряжения и тока. Показан главный автоматический выключатель ABB S753DR-E63.

Чаще всего для этой задачи переключения используются автоматические выключатели в литом корпусе (MCCB) → 2, миниатюрные автоматические выключатели (MCB), автоматические выключатели, работающие от остаточного тока (RCCB), и автоматические выключатели, работающие от остаточного тока, с максимальной токовой защитой (RCBO). Эти устройства имеют маркировку с указанием их максимальной способности к короткому замыканию, чтобы производитель панелей мог выбрать правильный продукт для применения.Такие выключатели подходят для отключения, но обычно также устанавливаются выключатели-разъединители, чтобы оборудование можно было полностью обесточить для обслуживания или ремонта.

02 Низковольтный автоматический выключатель в литом корпусе ABB A1 (соответствует IEC / EN 60947-2).

Непрерывный ток короткого замыкания
Низковольтные установки обычно питаются от трансформаторов. В такой низковольтной сети непрерывный ток короткого замыкания (I k ) рассчитывается исходя из номинального напряжения и сопротивления переменного тока (импеданса) короткого замыкания.Наложенная составляющая постоянного тока, которая медленно спадает до нуля, также существует → 3. Пиковое значение I k является важным значением для определения короткого замыкания в стандартах.

03 Характеристики токов короткого замыкания.

Стандарты, относящиеся к автоматическим выключателям
В зависимости от конкретного применения, когда проектировщик определяет автоматические выключатели или соответствующее оборудование для защиты силовых сетей, могут использоваться различные стандарты:
• Стандарт IEC / EN 60898-1 применяется к автоматическим выключателям для максимальной токовой защиты в домашних условиях и аналогичных установках — например, в магазинах, офисах, школах и небольших коммерческих зданиях.Эти выключатели предназначены для использования людьми, не прошедшими инструктаж, и без необходимости обслуживания.
• Стандарт IEC / EN 60947-2 применяется к автоматическим выключателям, используемым в основном в промышленных приложениях, к которым имеют доступ только проинструктированные люди.
• Выключатели-разъединители испытаны на соответствие стандарту IEC / EN 60947-3.
• Комбинация КРУЭ или распределительные щиты проверены на соответствие стандарту IEC / EN 61439.

Из-за разной области применения стандартов в некоторых случаях для одного и того же электрического процесса используются разные определения.Следовательно, инженер должен убедиться, что он полностью понимает, какое конкретное определение, например, способности к короткому замыканию, применимо к конструкции, над которой он работает.

Автоматические выключатели и IEC / EN 60898-1
IEC / EN 60898-1 определяет номинальную способность к короткому замыканию (I cn ) как отключающую способность в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний не включает способность автоматического выключателя выдерживать 85 процентов своего неотключающего тока в течение определенного условного времени.Служебная отключающая способность при коротком замыкании (I cs ) — это отключающая способность в соответствии с указанной последовательностью испытаний, которая включает способность автоматического выключателя выдерживать 85 процентов своего тока без отключения в течение определенного времени.

IEC / EN 60898-1 определяет фиксированные значения отношения I cs к I cn . Значения I cs и I cn выражаются как среднеквадратические значения предполагаемых токов короткого замыкания.

Чтобы соответствовать требованиям стандарта для обеих этих характеристик короткого замыкания, необходимо проверить операции включения / выключения каждого из трех автоматических выключателей.Для разомкнутого режима ток короткого замыкания инициируется под определенным фазовым углом по отношению к форме волны напряжения. Три автоматических выключателя испытываются под разными углами. Последовательность испытаний для I cn следующая: «O — t — CO», где «O» — это размыкание, а «CO» — замыкание-размыкание, что означает, что проверяемый автоматический выключатель включается и испытывает короткое замыкание. — ток цепи в течение определенного времени. Время «t» между операциями — 3 мин. Для I cs последовательность испытаний: «O — t — O — t — CO» для однополюсных и двухполюсных автоматических выключателей и «O — t — CO — t — CO» для трехполюсных и четырехполюсных выключателей. -полюсные выключатели.Способ возникновения тока короткого замыкания, установленный в стандарте, означает, что по крайней мере один испытуемый автоматический выключатель должен отключиться при наиболее значительном фазовом угле напряжения.

Автоматические выключатели и IEC / EN 60947-2
IEC / EN 60947-2 определяет предельную отключающую способность при коротком замыкании (I cu ), также известную как отключающая способность, в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний включает проверку расцепителя перегрузки автоматического выключателя.В IEC / EN 60947-2 I cs — это отключающая способность в соответствии с заданной последовательностью испытаний, которая включает проверку работоспособности выключателя при номинальном токе, испытание на превышение температуры и проверку расцепителя перегрузки. IEC / EN 60947-2 определяет значения от 25 до 100 процентов для отношения I cs к I cn . Опять же, значения I cs и I cn выражаются как среднеквадратические значения предполагаемых токов короткого замыкания.Чтобы соответствовать требованиям стандарта, для обеих мощностей короткого замыкания необходимо испытать каждый из двух автоматических выключателей. Подобно МЭК / EN 60898-1, ток короткого замыкания инициируется под определенным фазовым углом по отношению к форме волны напряжения для разомкнутого режима, но здесь два автоматических выключателя испытываются под одним и тем же углом. Последовательность испытаний для I cu : «O — t — CO» и «O — t — CO — t — CO» для I cs . Время «t» между операциями снова составляет 3 мин, и для размыкания ток короткого замыкания инициируется при определенном фазовом угле напряжения, определяемом как угол, при котором достигается пиковый ток.Этот пиковый ток одновременно является номинальной включающей способностью при коротком замыкании (I см ) и выражается как номинальная предельная отключающая способность при коротком замыкании, умноженная на коэффициент, определенный стандартом IEC 60947-2.

Выключатели-разъединители и IEC / EN 60947-3
Когда выключатели, разъединители, выключатели-разъединители или блоки с предохранителями включены в конструкцию, используется стандарт IEC / EN 60947-3. Выключатель-разъединитель способен включать и выключать ток при определенных условиях.В разомкнутом положении выключатель нагрузки обеспечивает функцию отключения.

Поскольку выключатель нагрузки не оборудован расцепителем максимального тока, он должен быть защищен автоматическим выключателем, автоматическим выключателем или предохранителем. Способность к короткому замыканию комбинации переключателя и автоматического выключателя определяется как номинальный условный ток короткого замыкания. Он выражается как значение предполагаемого тока короткого замыкания, который может выдержать выключатель нагрузки, защищенный устройством защиты от короткого замыкания (SCPD).Важно помнить, что выключатель нагрузки должен выдерживать ток, ограниченный SCPD.

Этот подход также применим для ВДТ — т. Е. Ток короткого замыкания, указанный на устройстве, является номинальным условным током короткого замыкания комбинации ВДТ с SCPD.

Еще одним значением короткого замыкания, определенным как в IEC / EN 60947-3, так и в IEC / EN 60947-2, является номинальный выдерживаемый кратковременный ток (I cw ). Это значение может применяться к выключателям (например, выключателю-разъединителю), автоматическим выключателям, таким как MCCB или воздушный автоматический выключатель (ACB), и сборным шинам.I cw — значение тока, которое оборудование может выдержать в течение определенного времени без повреждений. IEC / EN 60947-2 определяет предпочтительные значения этого времени 0,05, 0,1, 0,25, 0,5 и 1 с; IEC / EN 60947-3 определяет 1 с. Для переменного тока I cw — это среднеквадратичное значение тока.

Значение I cw важно для распределительных устройств с оборудованием, подключенным последовательно, где селективность между защитными устройствами реализуется с помощью временной задержки. Например, если фидерная цепь оборудована автоматическим выключателем, а последующие ответвленные цепи защищены автоматическими выключателями, то для достижения селективности устанавливается временная задержка для отключения автоматического выключателя.Установка между ACB и MCCB должна выдерживать указанный ток короткого замыкания в течение времени задержки ACB.

Низковольтное распределительное устройство и IEC / EN 61439-1
IEC / EN 61439-1 распространяется на низковольтные распределительные устройства и устройства управления в сборе. Для сборок с SCPD во входном блоке производитель должен указать максимальный предполагаемый ток короткого замыкания на входной клемме сборки. Для защиты сборки I cu или I cn SCPD должны быть равны предполагаемому току короткого замыкания или превышать его.Если в качестве SCPD используется автоматический выключатель с выдержкой времени, или если SCPD не встроен в сборку, необходимо указать I cw с максимальной выдержкой времени.

Пример применения: завод меди и медных сплавов
Предположим, что медный завод питается от электросети среднего напряжения 20 кВ с помощью понижающего трансформатора 20 кВ / 400 В. Номинальная мощность трансформатора S r составляет 1600 кВА, а номинальное полное сопротивление u kr составляет 6 процентов.Для распределительных трансформаторов мощностью до 3150 кВА импедансом сети обычно можно пренебречь. Полное сопротивление короткого замыкания трансформатора ограничивает ток короткого замыкания, который выражается как:

→ 4 показана принципиальная схема блока питания.

04 Пример конфигурации защитного устройства для такого приложения, как медеплавильный завод.

Для входящего питания используется прерыватель ABB Emax E2 с номинальным током 2 500 А. Уровень распределения защищен автоматическим выключателем ABB 250 A Tmax XT4S.Конечные цепи оснащены автоматическими выключателями ABB S800C и S200P.

Чтобы добиться правильного каскадирования, выполняется следующий расчет: I cw Emax E2 (версия B) составляет 42 кА. Задержка установлена ​​на 0,1 с. Следовательно, Emax может выдерживать ток короткого замыкания. На уровне распределения I cu Tmax XT4S составляет 50 кА. Кабель между Tmax и шиной для вспомогательного распределения имеет поперечное сечение 95 мм 2 и длину 15 м.Сопротивление кабеля, указанное в технических справочниках, составляет 0,246 Ом / км.

Сопротивление трансформатора 0,00597 Ом. Тогда ток короткого замыкания в подраспределительной сети составляет:

.

При использовании автоматических выключателей S800C и S200P резервная защита не требуется, поскольку предельная мощность короткого замыкания этих устройств составляет 25 кА. Приведена полная селективность между Tmax XT4S и S800C, S200P.

Пример применения: распределение электроэнергии в большом офисном здании
Если офисное здание питается от электросети среднего напряжения 20 кВ через трансформатор 20 кВ / 400 В, с S r на 630 кВА и au крон из 4 процентов, полное сопротивление короткого замыкания трансформатора снова ограничивает ток короткого замыкания, который составляет:

→ 5 показана принципиальная схема блока питания.

05 Пример схемы защиты для большого офисного здания.

I cu выключателя Tmax XT4 (версия N) — 36 кА. I cu селективного главного выключателя ABB S750DR составляет 25 кА. Следовательно, Tmax и S750DR могут отключать ток короткого замыкания. Кабель между S750DR и вспомогательной распределительной сетью имеет поперечное сечение 16 мм2 и длину 10 м. Сопротивление кабеля, указанное в технических справочниках, составляет 1,32 Ом / км.Сопротивление трансформатора 0,01012 Ом.

Ток короткого замыкания на уровне подраспределения можно рассчитать как:

При использовании MCB S200M резервная защита не требуется, поскольку максимальная допустимая нагрузка при коротком замыкании составляет 15 кА. Приведена полная селективность между S750DR и S200M.

Для MCB SD200, показанного на → 5, важен номинальный условный ток короткого замыкания. Значение для комбинации SD200 / S750DR составляет 10 кА. Следовательно, SD200 защищен S750DR, так как максимальный ток короткого замыкания в этот момент равен 9.9 кА.

Приведенные выше примеры показывают, что правильная конфигурация защитных устройств может обеспечить безопасную и надежную работу распределительного устройства в условиях короткого замыкания. Упомянутые различные стандарты IEC / EN помогают разработчикам выбрать правильные характеристики для используемых ими продуктов и, таким образом, гарантировать, что электрическая мощность продолжает поступать в приложение независимо от того, какие условия электрического сбоя возникают.

Рейтинги автоматических выключателей | Включающая и отключающая способность

Номинальные характеристики автоматического выключателя:

Здесь вы узнаете номиналов автоматического выключателя и включающую и отключающую способность автоматического выключателя .Автоматический выключатель может быть задействован для работы в любых условиях, однако при возникновении неисправности в системе, к которой он подключен, на автоматический выключатель возлагаются основные обязанности. Во избежание повреждения на каждом электрическом оборудовании будут указаны номинальные характеристики. Точно так же номиналы автоматического выключателя также упоминаются производителями на автоматическом выключателе. В условиях неисправности автоматический выключатель должен выполнять следующие три функции:

(i) Он должен быть способен размыкать неисправную цепь и отключать ток короткого замыкания.

(ii) Он должен быть способен замыкаться на неисправность.

(iii) Он должен быть способен пропускать ток повреждения в течение короткого времени, пока другой автоматический выключатель (включенный последовательно) устраняет повреждение.

В соответствии с вышеупомянутыми обязанностями три класса автоматического выключателя r ниже

(i) Отключающая способность

(ii) Включающая способность и

(iii) Кратковременная мощность.

(i) Отключающая способность:

Это ток (среднеквадратичное значение), при котором автоматический выключатель может отключиться при заданном восстанавливающемся напряжении и при определенных условиях (например, коэффициент мощности, скорость нарастания напряжения повторного запуска). Отключающая способность всегда указывается как среднеквадратичное значение. значение тока короткого замыкания в момент размыкания контактов. Когда происходит замыкание, возникает значительная асимметрия тока замыкания из-за наличия постоянного тока. компонент. d.c. Компонент быстро угасает, типичный коэффициент уменьшения составляет 0,8 за цикл. В этот момент ток короткого замыкания составляет

x = максимальное значение переменного тока компонент

y = d.c. компонент

∴ Симметричный ток отключения = среднеквадратичное значение. значение переменного тока компонент

= x / √2

Асимметричный ток отключения = действующее значение значение общего тока

Обязательно к прочтению:

Обычно отключающую способность выражают в МВА, принимая во внимание номинальный ток отключения и номинальное рабочее напряжение.Таким образом, если I — номинальный ток отключения , т в амперах, а V — номинальное рабочее напряжение в вольтах, то для трехфазной цепи

Отключающая способность = √3 × V × I × 10 -6 МВА

В Индии (или Великобритании) обычно принимают ток отключения равным симметричному току отключения. Однако в американской практике ток отключения считается равным асимметричному току отключения.Таким образом, американский рейтинг автоматического выключателя выше, чем рейтинг Индии или Великобритании.

Представляется нелогичным давать отключающую способность в МВА, поскольку она получается из произведения тока короткого замыкания и номинального рабочего напряжения. Когда протекает ток короткого замыкания, на контактах выключателя присутствует только небольшое напряжение, в то время как рабочее напряжение появляется на контактах только после того, как ток был прерван. Таким образом, номинальная мощность МВА является произведением двух величин, которые не существуют. одновременно в цепи.

Поэтому согласованный международный стандарт определения отключающей способности определяется как номинальный симметричный ток отключения при номинальном напряжении.

(ii) Включающая способность:

Всегда есть возможность замкнуть или замкнуть цепь в условиях короткого замыкания. Способность выключателя «включать» ток зависит от его способности выдерживать и успешно замыкать под воздействием электромагнитных сил.Эти силы пропорциональны квадрату максимального мгновенного тока при включении. Таким образом, включающая способность указывается в терминах пикового значения тока, а не действующего значения.


Пиковое значение тока (включая составляющую постоянного тока) во время первого цикла волны тока после замыкания выключателя известно как включающая способность .

Можно отметить, что определение касается первого цикла волны тока при включении выключателя.Это связано с тем, что максимальное значение тока короткого замыкания может иметь место в первом цикле только тогда, когда максимальная асимметрия возникает в любой фазе выключателя. Другими словами, замыкающий ток равен максимальному значению асимметричного тока .

Чтобы найти это значение, мы должны умножить симметричный ток отключения на √2, чтобы преобразовать его из среднеквадратичного значения. до пика, а затем на 1 · 8, чтобы включить «эффект удвоения» максимальной асимметрии. Общий коэффициент умножения равен √2 × 1 · 8 = 2 · 55.

∴ Включающая способность = 2 · 55 × Симметричная отключающая способность

(iii) краткосрочный рейтинг:

Это период, в течение которого автоматический выключатель может проводить ток повреждения, оставаясь замкнутым. Иногда неисправность в системе носит очень временный характер и сохраняется в течение 1 или 2 секунд, после чего неисправность автоматически устраняется. питания, выключатель не должен срабатывать в таких ситуациях.

Это означает, что автоматические выключатели должны иметь возможность безопасно пропускать большой ток в течение определенного периода времени, оставаясь при этом замкнутыми. I.е., они должны иметь подтвержденные кратковременные характеристики. Однако, если неисправность сохраняется в течение более длительного времени, чем указанный предел времени, автоматический выключатель сработает, отключив неисправную секцию.

Кратковременность автоматического выключателя зависит от его способности выдерживать (а) воздействие электромагнитных сил и (б) повышение температуры. Масляные выключатели имеют установленный предел в 3 секунды, когда отношение симметричного тока отключения к номинальному нормальному току не превышает 40.Однако, если это соотношение больше 40, то указанный предел составляет 1 секунду.

Помимо всех трех номиналов автоматического выключателя , каждая цепь работает с максимальным номинальным напряжением и номинальным током. Если номинальные значения превышены, автоматический выключатель может выйти из строя.
(iv) Номинальное напряжение:
Каждый автоматический выключатель имеет номинальное напряжение, которое обозначает максимальное напряжение, с которым он может работать. Другими словами, номинальное напряжение автоматического выключателя может быть выше, чем напряжение цепи, но никогда не может быть ниже.Например, автоматический выключатель на 480 В переменного тока можно использовать в цепи 240 В переменного тока, но автоматический выключатель на 240 В переменного тока нельзя использовать в цепи переменного тока на 480 В. Номинальное напряжение является функцией способности автоматического выключателя подавлять внутренние дуга, возникающая при размыкании контактов выключателя.

Некоторые автоматические выключатели имеют так называемое «косое» номинальное напряжение , например, 120/240 В. В таких случаях автоматический выключатель может применяться в цепи, где номинальное напряжение между любым проводником и землей не соответствует превышают нижний номинал, а номинальное напряжение между проводниками не превышает более высокое номинальное значение.
(В) Номинальный ток:

Это среднеквадратичное значение тока, которое автоматический выключатель может выдерживать непрерывно на своей номинальной частоте при определенных условиях. Единственным ограничением в этом случае является повышение температуры токоведущих частей.

Номинальный непрерывный ток автоматического выключателя — это максимальный продолжительный ток, который автоматический выключатель рассчитан выдерживать без отключения. Этот рейтинг иногда называют номинальным током, потому что единицей измерения является ампер или, проще говоря, ампер.

Номинальный ток для автоматического выключателя часто обозначается как In. Это не следует путать с уставкой тока (Ir), которая применяется к тем автоматическим выключателям, которые имеют постоянную регулировку тока. Ir — это максимальный продолжительный ток, который автоматический выключатель может выдерживать без отключения для данной уставки продолжительного тока. Ir может быть указывается в амперах или в процентах от In.

Как упоминалось ранее, проводники рассчитаны на то, какой ток они могут выдерживать непрерывно.Это обычно называется допустимой токовой нагрузкой проводника. Как правило, допустимая токовая нагрузка проводов должна быть по крайней мере равной сумме любого непостоянного тока нагрузки плюс 125% постоянного тока нагрузки. Допустимая нагрузка проводника является одним из факторов, которые должны следует учитывать при выборе и применении автоматического выключателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *