Операционный усилитель для чайников: Операционный усилитель? Это очень просто! – Операционный усилитель — Википедия

Содержание

Инвертирующий усилитель на ОУ | Практическая электроника

Инвертирующий усилитель – это собрат НЕинвертирующего усилителя на ОУ. Такой усилитель дает на выходе инвертируемый сигнал.

Схема и ее описание

Базовая схема инвертирующего усилителя с двухполярным питанием выглядит вот так:

инвертирующий усилитель

Здесь мы видим два резистора и сам ОУ. На вход подаем сигнал, а с выхода уже снимаем усиленный сигнал. Как можно заметить, НЕинвертирующий вход ОУ заземлен. Как же работает схема? Здесь мы видим обратную связь. То есть с выхода сигнал подается обратно на вход через резистор R2. Наш усилитель является инвертирующим, так как сигнал на выходе на 180 градусов сдвинут по фазе относительно входного сигнала. Значит, в узле, где соединяются два резистора и инвертирующий вход, выходной сигнал будет приходить со знаком “минус”. Такая обратная связь называется отрицательной обратной связью (ООС). Она уменьшает высокий коэффициент усиления ОУ до нужных нам значений.

В НЕинвертирующем усилителе обратная связь идет по напряжению, а в инвертирующем усилителе – по току.

Если вы читали статью про ОУ, то, наверное, помните, что если один из входов ОУ соединен с землей, то и другой вход имеем точно такой же потенциал. В данном случае НЕинвентирующий вход у нас соединен с землей, следовательно, на инвертирующем входе будет точно такой же потенциал, то есть 0 Вольт. Такой вход еще называют мнимой (виртуальной) землей. Как говорит на Википедия, “мнимый – это фальшивый, поддельный, ложный”.

Инвертирующий усилитель на ОУ

Коэффициент усиления по напряжению любого усилителя выражается формулой

коэффициент усиления по напряжению формула

Итак, что получаем в итоге?

инвертирующий усилитель двухполярный

Инвертирующий усилитель на ОУ

Входное напряжение из формулы выше

Инвертирующий усилитель на ОУ

Но так как наш усилитель инвертирует входной сигнал, следовательно, на выходе у нас будет напряжение со знаком “минус”, то есть -Uвых.

В этом случае ток I2 будет выражаться формулой:

Инвертирующий усилитель на ОУ

Инвертирующий усилитель на ОУ

Отсюда находим коэффициент усиления

Инвертирующий усилитель на ОУ

Так как входное сопротивление инвертирующего входа бесконечно велико, следовательно, ток будет протекать только через цепь R1—>R2. Два разных тока в одной ветви быть не может, поэтому получается, что

Инвертирующий усилитель на ОУ

В итоге наша формула сокращается и получаем

Инвертирующий усилитель на ОУ

Симуляция в Proteus

Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием

Инвертирующий усилитель на ОУ

В Proteus она будет выглядеть вот так:

инвертирующий усилитель принцип работы

Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть

инвертирует его. Отсюда и название “инвертирующий усилитель”.

инвертирующий усилитель осциллограмма

Насыщение выхода

Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.

Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит.  Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется

насыщением выхода. То есть надо всегда помнить, что  если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.

Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму

насыщение выхода инвертирующий усилитель

Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.

Ток смещения и смещение выхода

Входы реального ОУ потребляют небольшой ток, который называется током смещения.  В англоязычных даташитах он называется Input Bias Current. Если входные цепи ОУ построены на биполярных транзисторах, то такой ток смещения будет где-то  несколько десятков наноампер, в отличите от ОУ, где входные цепи построены на полевых транзисторах. Во входных цепях, построенных на полевых транзисторах, ток смещения оценивается десятыми долями пикоампер. Следовательно, ток смещения очень важен именно для ОУ, чьи входные цепи построены на биполярных транзисторах.

Почему же так важен ток смещения? Давайте еще раз рассмотрим схему

Инвертирующий усилитель на ОУ

Даже если мы не подаем никакого сигнала на вход, то на выходе у нас все равно будет какое-то маленькое постоянное напряжение. Почему так происходит? Во всем как раз и виноват ток смещения. Он создает падение напряжения на резисторе обратной связи. В данном случае – это резистор R2. А как вы знаете, на большем сопротивлении падает большее напряжение. То есть если номинал сопротивления R2 будет очень большим, то на нем будет падать большое напряжение, которое как раз и пойдет на выход нашего ОУ.

Допустим, ток смещения равен 0,1 мкА, а резистор R2= 1 МОм, то какое падение напряжения будет в этом случае на резисторе? Вспоминаем закон Ома: I=U/R, отсюда U=IR= 0,1 В. То есть на выходе у нас уже будет постоянное напряжение 0,1 В! Подавая на вход такого усилителя полезный сигнал с током смещения в 0,1 мкА , на выходе этот сигнал будет усиливаться и суммироваться с постоянной составляющей в 0,1 В.  В нашем случае происходит смещение нулевого уровня. Наглядно – на рисунке ниже.

ток смещения инвертирующего усилителя

Способы борьбы с током смещения

В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:

1) Ставить в цепь обратной связи резистор малого номинала. На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.

2) Ввести в схему компенсирующий резистор

компенсационный резистор инвертирующий усилитель

В этом случае он будет определяться по формуле:

Инвертирующий усилитель на ОУ

Если все-таки выходной сигнал соответствует вашим ожиданиям и без R

К , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?

3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.

Инвертирующий усилитель с однополярным питанием

В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:

инвертирующий усилитель с однополярным питанием

Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?

Инвертирующий усилитель на ОУ

То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.

симуляция работы инвертирующий усилитель

Что имеем в итоге на виртуальном осциллографе?

срез полуволны

Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.

В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!

Инвертирующий усилитель на ОУ

Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:

Инвертирующий усилитель на ОУ

Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.

В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :

Инвертирующий усилитель на ОУ

Инвертирующий усилитель на ОУ

Проверяем симуляцию, все ок!

инвертирующий усилитель с напряжением смещения

Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.

То есть получилось что-то типа вот этого:

постоянная составляющая сигнала

Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из дифференцирующей цепи, с помощью которого можно отсекать лишние частоты.

RC дифференцирующая цепь

Свойства инвертирующего усилителя

Операционный усилитель. На пальцах. Для самых маленьких.

Я когда то уже писал статью про операционные усилители. Но она была унылым говном, спустя какое-то время я кажись понял КАК надо раскрыть и повернуть тему, чтобы данная деталька о 5 ногах стала понятна даже школьнику, но все никак не мог собраться выложить. И так прошло дохрена лет и я, наконец то, созрел написать это 🙂

▌Что это ваще?
Операционный усилитель, далее ОУ это краеугольный камень аналоговой электроники. Такая микросхемка с помощью которой можно сделать кучу интересных вещей. Вы не смотрите, что ее зовут усилитель. Это только принцип, а вот если его применять по разному, то с его помощью можно складывать, вычитать, умножать, интегрировать и дифференцировать аналоговые сигналы. С его помощью можно сделать генератор или регулятор. Любой: П, И, ПИ, ПД, ПИД. На нем можно сделать фильтр частот, да черт знает еще что. Очень функциональная девайсина.

▌Немного теории
Идеальный операционный усилитель обладает тремя свойствами.

  1. У него БЕСКОНЕЧНО БОЛЬШОЕ сопротивление входов. Т.е. ток в его входы не течет вообще.
  2. У него БЕСКОНЕЧНО БОЛЬШОЙ коэффициент усиления. Т.е. любой ничтожный сигнал превращается в бесконечно большое значение.
  3. У него два дифференциальных входа и один выход. Дифференциальные входы означают то, что из напряжения пришедшего в прямой вход мы вычитаем напряжение пришедшее по инверсному входу, а результат этого вычисления умножаем на бесконечность, согласно пункту 2.

Во всей статье будут рассматриваться ТОЛЬКО ИДЕАЛЬНЫЕ ОУ. Чисто теоретическая абстракция.

Давайте попробуем промоделировать его поведение. Это очень просто:

Ситуация первая: U1 = U2. Тогда разница будет равна нулю, а ноль умножить на бесконечность будет ноль. Математики скажут, что там неопределенность, но у нас не такая большая бесконечность, насколько мал наш ноль.

Ситуация вторая: U1=2V, U2=1V Разница в 1-2=-1 вольт и будучи умноженный на бесконечность даст бесконечно большое отрицательное напряжение на выходе.

Если кто еще не знаком с терминологией, то напряжение в какой либо точке цепи, относительно заданной точки земли зовется потенциалом.

Третья ситуация аналогична второй, но с другим знаком. Т.к. 2-1=1.

Ну да, зашибись, у нас получилось сравнить два сигнала и выдать троичный результат — больше, меньше или равно. Не густо, однако. Но все меняется если добавить обратную связь:

Берем и заворачиваем выход через резистор на вход. А еще добавим по паре резисторов на вход. Резистор тут важен, резисторы на входах важны тоже. Теперь ситуация становится интересней.

Для наглядности добавим значения. Хотя они тут принципиально не важны, главное соотношения. Пусть у нас U2=2V, а U1 = 1V. Так как сопротивление входа у ОУ бесконечное, то в точке В напряжение будет 2 вольта. В точке А, по началу, напряжение будет тоже соответствовать входному, будет равно 1 вольт. Но ОУ сразу же сведет дебет с кредитом, вычтет одно из другого и добавит свою маржу, в стиле лихих 90х. И в точке E моментально появится бесконечно большой потенциал. Который начнет через резистор R3 яростно подтягивать точку А в бесконечность. И дотянет ее до того момента, что напряжение в точке А станет равно напряжению в точке В. Разность на входе приходит в ноль и вся система самоустановится в единственно возможное состояние, когда на выходе, в точке E, будет присутствовать такое напряжение, чтобы уравновесить напряжение в точках А и В.

Если же ситуацию развернуть наоборот, сделать так, чтобы А стало больше В, тогда на E появится бесконечно большой отрицательный потенциал, который начнет унижать напряжение на входе А, чтобы установить равновесие.

Стоит попытаться как-либо поколебать это равновесие, изменяя напряжения на входе системы (U1 и U2), как ОУ, пользуясь возможностью дать ЛЮБОЕ напряжение на выходе, через резистор отрицательной обратной связи R3 быстро восстановит равновесие.

Ну да, все здорово. Это все и так знают. Об этом говорят на парах и пишут в учебниках. А как это понимать то? Как использовать? А это как раз те три сосны в которых обычно все утыкаются и не видят основного леса.

▌Добро пожаловать в лес
Главный прикол, который крайне редко кто разъясняет, но который сразу делает все схемы с ОУ простыми и понятными заключается в том, что с точки зрения классического ТОЭ если в каких либо точках одинаковый потенциал, всегда одинаковый, то мы можем закоротить их нахрен и от этого НИЧЕГО в цепи не изменится. А как я уже показал в примере выше, то точки А и В у нас всегда равны друг другу. Операционный усилитель, через обратную связь их надежно выравнивает. А значит, мы смело можем рисовать виртуальное КЗ, вот так:

И главная принцип разбора любой схемы на операционном усилителе это посмотреть на нее с двух точек зрения.

1) С точки зрения «виртуального КЗ» между выводами. Посчитав что и куда течет на входе если считать, что входы закорочены между собой. Какие токи там протекают и от чего и как зависят.

2) А потом, убрав КЗ, посмотреть как вычисленные в пункте 1 токи потекут через обратную связь и каким образом это ОУ должен обеспечить своим напряжением на выходе. С учетом того, что во входы ничего не течет в принципе.

И теперь давайте посчитаем нашу схему, что будет на U3? Пусть все резисторы будут по 1 ому. Для простоты расчетов. Специально буду разжевывать до предела.

Взгляд 1. Виртуальное КЗ:
Ток в ОУ не течет от слова совсем, у входов сопротивление бесконечное. Наличие там резистора R2 не играет никакой роли вообще. Какой бы он ни был его сопротивление ничтожно по сравнению с бесконечностью сопротивления входа идеального ОУ. Значит потенциал в точке В равен входному напряжению и равен 2 вольта.

Напряжение в точке А равно напряжению в точке В и равно 2 вольта. У нас же там «виртуальное КЗ» за счет отрицательной обратной связи и свойств идеального ОУ, на счет этого ОУ постарается, будьте уверены.

Потенциал в точке С у нас 1 вольт, а в точке А оно 2 вольта. Т.е. разность потенциалов между точками С и А у нас 1 вольт.

Раз есть разность потенциалов ака напряжение Uac, значит ток I течет из точки А, где потенциал выше в точку С, где потенциал ниже. Прям как вода в канализации.

И так как у нас резистор R1 в 1 ом, а напряжение Uac=1, то ток I будет, по закону Ома, 1 А.

Взгляд 2. Убираем КЗ и смотрим на токи через ОС.
Теперь еще раз вспоминаем про то, что через входы самого ОУ ничего течь не может, считайте что там обрыв. А перемычка между и А и В виртуальная и по факту ее на самом деле нет. А это значит… что ток I и ток обратной связи Ioc это один и тот же ток. Другому там взяться просто негде.

И для того, чтобы в точку А шел ток силой в 1А из точки С, через резистор в один ом, разница потенциалов между А и С должна быть +1 вольт. В точке А у нас потенциал два вольта, значит в точке E должно быть три вольта. Т.е. U3 будет три вольта.

А если мы резистор R3 изменим? Скажем увеличим в два раза. До двух ом. Что будет? Обратили внимание? Состояние левой части схемы, до «перемычки» не изменилось никак вообще. Там останется тот же самый ток в 1А, который будет равен току в 1А в ОС, ведь это тот же самый ток.

Но чтобы продавить ток в 1А через резистор в 2 Ома разница потенциалов между точками А и Е должна быть уже не 1 вольт, а 2. И U3 будет уже 4 вольта.

А если мы вместо R3 засунем ЧТО УГОДНО. Любую схему, любую конструкцию, любой двухполюсник, то наш идеальный усилитель, способный выдать любое напряжение на выходе, сдохнет, но обеспечит через Ioc ток равный I. А ток I зависит ТОЛЬКО от соотношений R1 и напряжений на входах.

Т.е. мы можем взять ОУ, сунуть ему в обратную связь любую цепь и навязать ей любой нужный нам закон изменения тока или напряжения играясь напряжением на входе.

▌Интегратор
Покажу пример навязывания закона с помощью ОУ на примере интегратора. Что такое интегратор? Это такой узел который интегрирует входной сигнал, логично. Да. Т.е. если на вход ему подать ступенчатый сигнал, то на выходе будет бесконечно возрастающий сигнал. Ведь что такое интеграл? Это площадь под кривой. У ступеньки площадь линейно возрастает, а значит интегральная функция на выходе тоже будет линейно и бесконечно расти. С другими функциями аналогичная история — интегрируем их и получаем то, что должно быть на выходе.

Простейшим интегратором в электротехнике является RC цепочка:

Напряжение на конденсаторе Uвых= Q/C

Где С — емкость, константа для данного конденсатора. А Q это заряд в этом конденсаторе. А что такое у нас ток? Ток это движение заряженных частиц, т.е. заряд у нас током втекает в кондер, как вода в банку. При этом заряд растет и напряжение на выходе растет. Скорость тока, точнее его сила, зависит от резистора. И на начальном этапе, когда конденсатор еще разряжен и не оказывает большого сопротивления, ее можно считать константой, а рост заряда, а значит и напряжения, линейной величиной. Получается как то так:

Напряжение не кондере растет по экспоненте, а где то в начале, отмечено синим отрезком, можно принять его за линейное и с натяжкой назвать его интегратором. Разумеется расти оно будет только до напряжения входа, ни о какой бесконечности речи быть не может. В общем, херовый такой интегратор.

Причина такой лажи в том, что у конденсатора с ростом заряда увеличивается напряжение, а значит растет потенциал на нем, и это мешает току в него течь. Ну как если бы мы надували воздушный шарик. Сначала надувается легко, но чем сильней раздуваем мы шар, тем тяжелей идет. И так до тех пор пока напряжение на кондере не уравновесит напряжение на входе. Финита ля комедия. Приехали.

Как нам отрезать входной ток от выходного напряжения, чтобы они были в разных плоскостях и не мешали нам жить? Правильно. С помощью ОУ, его бесконечной силы и его волшебной обратной связи.

Взгляд 1. Виртуальное КЗ:
Смотрите что получается. У ОУ есть отрицательная обратная связь. Через конденсатор. А значит мы смело можем считать, что у нас есть виртуальное КЗ между входами. Отмечено красным. А раз так, то ток I будет определяться исключительо входным напряжением и сопротивлением резистора. Ведь он через это виртуальное КЗ течет прямо в землю. Остальные ответвления уже не имеют значения. Т.е. будет ровным и константным и ему на все будет похрену. Он будет течь как будто бы ничего и не было.

Взгляд 2. Убираем КЗ и смотрим на токи через ОС.
Но! КЗ то там на самом деле нет. А входы у ОУ имеет бесконечное сопротивление, а значит по факту у нас I равен Iос и течет он прямехонько в конденсатор. Линейнено равномерно наполняя его. Помним, что Uc=Q/C. И вот этот самый Q за счет константного тока будет расти строго линейно. А чтобы это получалось ОУ свой выход будет чем дальше тем сильнее опускать вниз, ниже уровня земли, в отрицательные значения. Обратите внимание на стрелочку. Питание то у нас двуполярное. А если учесть, что ОУ может выдать бесконечное отрицательное напряжение, да и конденсатор у нас тут такой же идеальный, то результат будет выглядеть как то так:

То есть ОУ навязывает закон изменения заряда конденсатора событиями на входе, которые определяются простым законом Ома при протекании тока через резистор. И нас больше не волнует нелинейность процесса заряда конденсатора при его прямом включении.

▌Повторитель

Тоже простейший узел. Разбирается аналогично. Обратная связь есть, она отрицательная. А значит мы можем смело считать, что у нас входы ОУ закорочены, а то что на входе автоматически будет на выходе. Вольт в вольт. Но на самом деле… И да, ток по прежнему в ОУ не течет. А это значит мы получили идеальную «щупалку» слабого сигнала, которая позволяет что-либо измерить и измеренное обработать так, чтобы не повлиять на измеряемый сигнал.

Например, есть у нас делитель из терморезистора и обычного. И мы хотим, чтобы он зажигал лампочку пропорционально выходному напряжению. Но вот беда, у лампочки сопротивление сильно мало. Если мы ее подключим напрямую, то она, во-первых, даже гореть не будет, а во-вторых, обрушит нам выходное напряжение. А так, ставим повторитель и все. Развязались.

Еще пример использования повторителя это построение виртуальных нулей. Скажем, есть у нас однополярное питание. А нам ужас как хочется сделать аналоговую схему с биполярным питанием. Что делать? Можно располовинить питание с помощью ОУ. Т.е. если мы просто возьмем резисторами развалим питание пополам, сделав делитель, то этот ноль будет плавать как говно в проруби при малейшем токе через эту виртуальную землю. Но если мы развалим питание, а потом пропустим через повторитель, то мощный выход ОУ позволит нам цеплять на него земли других ОУ, которые будут думать, что работают в полноценной среде с двуполярным питанием. Есть, кстати, такие источники опорного напряжения, которые просто разваливают питание пополам. К сожалению не могу вспомнить маркировку, а так нагуглить не смог. Кто знает, подскажите. А то вечно теряется. Так хоть в статье будет 🙂

▌Линейный стабилизатор

Примерно по такой схеме работают все эти нами любимые LM1117, LM7805 и прочие грелки.

Работает точно по такому же принципу. На прямой вход ОУ мы подаем опорное напряжение со стабилитрона Vref. А на инверсный вход подаем отрицательную обратную связь с делителя который завязан на выход. А выход ОУ цеплеяем на базу транзистора. ООС есть, значит ОУ должен исполнить нашу волю, разбиться и сдохнуть, но обеспечить так, чтобы напряжения на обоих входах сравнялись. Что он и будет делать, так выдавая напряжение в базу транзистора, чтобы тот открывался ровно на столько, чтобы после делителя из R2-R3 получалось Vref. Когда с делителя напряжение меньше чем опорное, то ОУ выдает положительное напряжение и открывает транзистор сильней, пока все не сравняется. И наоборот. Меняя пропорции делителя мы меняем выходное напряжение.

Для начала хватит. Продолжение будет. Покажу еще парочку неочевидных схем которые возможны с помощью обмазывания их ОУ. А пока, в качестве домашнего задания, разберите сами с изложенными принципами работу «классических» схем на ОУ о которых написано в 100500 статей про ОУ для начинающих. Это суммирующий, инвертирующий и не инвертирующий усилитель. Дифференциатор. Выведите формулы зависимости выходного от входного.

Схемы включения операционных усилителей | HomeElectronics

Прошлая статья открыла цикл статей про строительные кирпичики современной аналоговой электроники – операционные усилители. Было дано определение ОУ и некоторые параметры, также приведена классификация операционных усилителей. Данная статья раскроет такое понятие как идеальный операционный усилитель, и будут приведены основные схемы включения операционного усилителя.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Идеальный операционный усилитель и его свойства

Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.

Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:

  1. Ток, протекающий через входы ОУ, принимается равным нулю.
  2. Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
  3. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
  4. Выходное сопротивление идеального ОУ равно нулю.
  5. Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.

Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.

Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.

Основные схемы включения операционного усилителя

Как указывалось в предыдущей статье, операционные усилители работают только с обратными связями, от вида которой зависит, работает ли операционный усилитель в линейном режиме или в режиме насыщения. Обратная связь с выхода ОУ на его инвертирующий вход обычно приводит к работе ОУ в линейном режиме, а обратная связь с выхода ОУ на его неинвертирующий вход или работа без обратной связи приводит к насыщению усилителя.

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже


Схема включения неинвертирующего усилителя.Схема включения неинвертирующего усилителя.
Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением


2016010120160101

Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя


2016010220160102

Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Инвертирующий усилитель

Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже


Схема инвертирующего усилителяСхема инвертирующего усилителя
Схема инвертирующего усилителя.

Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид


2016020120160201


2016020220160202
2016020320160203


2016020420160204

Тогда коэффициент усиление данной схемы будет равен


2016020520160205

Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже


интеграторинтегратор
Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит


2016030120160301

Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже


Дифференциатор на операционном усилителеДифференциатор на операционном усилителе
Дифференциатор на операционном усилителе.

Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит


2016030220160302

Логарифмирующий преобразователь

Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже


Логарифмирующий преобразовательЛогарифмирующий преобразователь
Логарифмирующий преобразователь.

Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.

Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением


2016040120160401

где IO – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.

При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит


2016040220160402

тогда выходное напряжение


2016040320160403

Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:

  1. Высокая чувствительность к температуре.
  2. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.

Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.

Экспоненциальный преобразователь

Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже


Экспоненциальный преобразовательЭкспоненциальный преобразователь
Экспоненциальный преобразователь.

Работа схемы описывается известными выражениями


2016040120160401


2016050120160501

Таким образом, выходное напряжение составит


2016050220160502

Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.

Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Операционный усилитель. Примеры схем с описанием работы ч. 2

▌Преобразователь тока в напряжение

Некоторые виды датчиков имеют токовый выход, т.е. их сигнал в виде тока, в зависимости от измеряемой величины. А нам этот ток надо оцифровать, например, через АЦП. Как это сделать? Простейшее решение это пропустить ток через резистор и снять падение напряжения:

Вот так. Но у данного метода есть боольшой недостаток — высокое входное сопротивление. Т.е. нам, чтобы получить напряжение надо наш ток умножить на сопротивление, ну по закону Ома U=I*R. А если ток маленький? Скажем, дает датчик 0…1мА? А нам снять для АЦП нам надо хотя бы несколько вольт. Первое что приходит в голову это просто поставить резистор побольше, скажем на 5кОм. Получим, в максимуме, 5 вольт на выходе. Ага… По идее, и то если источник тока, которым является наш некий датчик, будет обладать достаточно высоким внутренним сопротивлением, чтобы развить на выходе такое напряжение, чтобы через эти 5кОм продавить 1мА. А это далеко не всегда так. Датчик может быть хиленьким и дохленьким и от нашего нагрузочного сопротивления просто сдуется и не даст своего тока.

В таком случае надо датчик нагрузить на КЗ и снимать непосредственно ток уходящий в это КЗ. Но чтобы КЗ как бы и не было, чтобы было откуда брать падение… Ну, в общем, вы поняли к чему я клоню 😉


Конечно! Теперь все отлично, входной ток течет через виртуальное КЗ прямо в землю, ничего ему не мешает. Пусть там хоть пикоамперы будут. И этот же самый ток у нас течет по обратной связи. Т.к. другому там взяться некуда. В ОУ ничего не втекает и не вытекает. А раз так, то мы можем смело ставить туда любое сопротивление, хоть гигаомное. Тем самым умножив наш входной ток на огромное сопротивление и получив осязаемое напряжение, которое уже легко измерить тем же АЦП.

И напряжение на выходе ОУ будет таким, чтобы компенсировать это падение на резисторе ОС, поддерживая заданный уровень тока. Т.е. выходное напряжение будет:

Uвых = -Iвх * Rос

Из неудобства только инверсия напряжения, но это не проблема, прогнать через инвертирующий ОУ с коэффициентом 1 и порядок.

▌Дифференциатор
В прошлой статье был рассмотрен интегратор, а это его антипод. Простейший пример дифференциатора делается тоже на RC цепочке и схема похожа на интегратор, только на этот раз элементы меняются местами.

Работает до элементарщины просто. При изменении напряжения на входе у нас конденсатор или дозаряжается или разряжается, в зависимости от того куда меняется входное напряжение. Возникает ток и он высаживается в виде падения напряжения на резисторе. Которое и будет примерно производной по времени от входной величины. Почему примерно?

А потому, что у нас конденсатор заряжается/разряжается через резистор, который существенно растягивает этот процесс, согласно своей постоянной времени T=RC. Что портит картину. К примеру, есть у нас меандр, гоним мы его на этот дифференциатор:

Что такое дифференциал? Правильно, скорость изменения функции. Так что дифференциатора мы ждем, что там где сигнал меняется резко, а на меандре он меняется мгновенно, мы должны иметь бесконечно большие пики, т.к. скорость изменения бесконечно большая. Тогда как на стабильном сигнале он должен быть равен нулю. Т.к. скорость изменения фукнции нулевая, производная константы ноль. На деле же резистор все портит. Мы можем его, конечно, бесконечно уменьшать, но тогда мы с водой и ребенка выплеснем — выходное напряжение устремится к нулю вместе с ним. Что делать вы уже знаете — отвязать одно от другого через виртуальное КЗ, которое устроить с помощью ОУ.

Усе, кондер колбасится через виртуальное КЗ прямо в землю, ничего его больше не тормозит, а резистор ООС мы можем накрутить какой угодно, помножив наш входной ток на него и получив нужное напряжение.

Uвых = — RC dUвх/dt

Да, с инверсией полярности сигнала также придется смириться.

Чем дифференциатор может пригодиться? Ну… Часто его используют в схемах управления, когда надо на резкое изменение воздействия дать такой же резкий пинок в ответ.

Например когда, кожаные ублюдки из Бостон Динамикс с ноги пинают несчастную робособаку, то не слететь с копыт ей помогает именно дифференциальная часть контура управления, которая мгновенно начинает компенсировать ударное воздействие и чем сильней удар тем резче ответочка. В этих вот всеми любимых, но мало кем понимаемых, ПИД регуляторах Д это он и есть.

Еще дифференциатором удобно конвертить сигналы из одного в другой. Например, из пилы дифференциатором можно сделать меандр (а интегратором наоборот).

Еще дифуры можно решать в аналоговом компьютере. Если будет интерес и будет не лень, то приведу какой-нибудь пример решения дифференциального уравнения на АВМ.

Хотел еще накинуть какой-нибудь пример на ОУ, но чет поздно уже. Спать хоца. Так что to be continued. A’il be back.

принцип работы, схемы и т.д.

Операционный усилитель — это усилитель постоянного тока с высоким коэффициентом усиления, который может быть очень большим, вплоть до миллионов. Часто встречается коэффициент усиления в 200 000. Операционные усилители способны усиливать сигналы переменного тока, также как сигналы постоянного тока, они чаще используются в измерительном оборудовании для усиления сигналов постоянного тока.

Название «операционный» усилитель происходит от того, что выполняемые операционным усилителем функции представляют собой математические операции. Например, устройство для извлечение квадратного корня является контрольно-измерительным устройством, в котором используется операционный усилитель для определения квадратного корня сигналов для обеспечения контроля изменения величины потока жидкой или газообразной среды.

Операционный усилительОперационный усилитель
Обратите внимание на основы электричества и на приборы электроники.

Операционные усилители не обладают бесконечными входными сопротивлениями и нулевыми выходными сопротивлениями. Хотя возможно входное сопротивление в несколько триллионов Ом, и выходные сопротивления близкие к нулю. В результате выходные сигналы от таких операционных усилителей могут очень точно регулироваться. По этой причине операционные усилители считаются точными усилителями.

Высокая степень точности, обеспечиваемая операционными усилителями, возможна благодаря применению технологии интегральных схем. Хотя в принципе возможно изготовить операционный усилитель из дискретных компонентов, соединенных вместе на монтажной плате, однако практически все операционные усилители в настоящее время выполнены в виде интегральных схем.

Кристалл интегральной схемы операционного усилителя содержит все транзисторы и другие элементы, необходимые для усиления сигнала. Стандартный кристалл выполнен из, на нем может располагаться порядка 30 транзисторов и других элементов.

Кристалл с интегральной схемой операционного усилителяКристалл с интегральной схемой операционного усилителя

При использовании операционных усилителей в различных типах схем они могут выполнять различные операции, необходимые в контрольно-измерительном оборудовании. Например, они могут суммировать сигналы, вычитать сигналы, находить среднюю величину сигнала и выполнять даже более сложные функции.

Схемы операционного усилителя

Все операционные усилители имеют два входа. Минус на схеме обозначает один вход, плюс — другой. Условное обозначение операционного усилителя можно узнать на схеме по знакам плюс и минус на вертикальной стороне треугольника. Это отличительные черты условного обозначения операционного усилителя. Если вы встретите на схеме подобный символ, но без знаков плюс и минус, то элемент, обозначенный таким образом, может представлять собой усилитель, но это не операционный усилитель.

Схема операционного усилителяСхема операционного усилителя

Выход операционного усилителя представлен на вершине треугольника, противолежащей стороне, где находятся входные зажимы. Соединения с источником питания обычно обозначаются линиями на противоположных сторонах треугольника. Большинство операционных усилителей рассчитаны на работу от биполярного источника напряжения, имеющего положительное и отрицательное напряжения. В целом, операционные усилители могут работать в пределах напряжения от +-1 В до +-40 В. Наиболее распространенное напряжение питания для них 15 В.

Схема соединения операционного усилителя с источником питанияСхема соединения операционного усилителя с источником питания

Выход биполярного источника напряжения измеряется относительно нуля вольт, не всегда относительно земли шасси. Для указания точки отсчета используется стрелка с не закрашенной треугольной головкой. Такая стрелка показывает общую точку в схеме, называемую «общей точкой сигналов». Входной и выходной сигналы операционного усилителя также измеряются относительно общей точки сигналов. Соединения общих точек сигналов не всегда отображаются на принципиальных схемах с операционными усилителями.

Схема обозначения общей точки сигналовСхема обозначения общей точки сигналов

Корпусы операционных усилителей

Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.

Операционный усилитель в корпусе ТО-5 (небольшой, металлический, круглой формы)Операционный усилитель в корпусе ТО-5 (небольшой, металлический, круглой формы)Операционный усилитель в DIP- корпусе (самый большой из представленных)Операционный усилитель в DIP- корпусе (самый большой из представленных)Операционный усилитель в мини DIP-корпусе (самый маленький из представленных)Операционный усилитель в мини DIP-корпусе (самый маленький из представленных)Операционный усилитель в плоском корпусе с боковыми выводамиОперационный усилитель в плоском корпусе с боковыми выводами

Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.

Операционный усилитель

фотография операционного усилителя

В данной статье поговорим о операционном усилителе. Пример работы и использования.

Операционный усилитель – электронная схема усилителя на полупроводниках, в интегральном исполнении имеющего два балансных входа – прямой и инверсный, обладающий высоким коэффициентом усиления. Интегральное исполнение подразумевает законченную конструкцию усилителя, размещённую в одном корпусе интегральной микросхемы (ИМС). Применение операционных усилителей (ОУ) самое разнообразное – в усилителях различных сигналов, в генераторах сигналов, в частотных фильтрах звукового диапазона, в схемах контроля физических величин (температуры, освещённости, влажности, ветра), и т.д.

Техно-химические весыРаботу операционного усилителя можно сравнить с аптекарскими, или технохимическими весами. Весы отклоняются в сторону той чаши, масса груза на которой больше.

Точно так же работает операционный усилитель, только «образно» правую чашу весов необходимо обозначить знаком «+», а левую обозначить знаком «-«, а измеряемую величину обозначить не граммами, а вольтами.

Как вы догадались, операционный усилитель сравнивает напряжения на его входах «+» — прямом и «-» — инверсном. Если напряжение прямого входа больше, чем инверсного, тогда на его выходе появляется положительное напряжение, в противном случае, когда напряжение инверсного входа больше, чем прямого, – на выходе операционного усилителя будет отрицательное напряжение.

 

Операционный усилитель на принципиальных схемах изображается так же, как на структурных схемах обозначается обыкновенный усилитель– большим треугольником. В последнее время всё чаще треугольник заменяют на обычный прямоугольник. Предполагаю, это связано с удобством рисования схем, ведь правильный равнобедренный треугольник рисовать сложнее, чем прямоугольник. Для обозначения типа элемента, в прямоугольнике рисуется знак усилителя – маленький треугольник.

картинка-схема операционного усилителя

Прямой вход операционного усилителя обозначается знаком «+», а инверсный вход отмечается знаком «-«. Следует знать, что в различной литературе встречается и другое обозначение: инверсный вход обозначается кружком. Это типовое обозначение знака инверсии, которое встречается и в цифровой электронике – логических элементах. Прямой вход не имеет в обозначении кружочка.

Аптекарские весы не способны показать насколько вес груза одной чаши отличается от веса груза другой чаши. Для приблизительного наблюдения за разницей грузов иногда в технохимических весах используют совмещённые со стрелкой специальные отвесы, которые при этом снижают «чувствительность» весов к малым грузам. Точно так же в операционный усилитель вводится отрицательная обратная связь, снижающая его чувствительность к входному сигналу – резистор обратной связи, соединяющий выход с инверсным входом операционного усилителя, как показано на рисунке выше.


 

 

Пример использования и работа операционного усилителя

Рассмотрим работу операционного усилителя на примере схемы, контролирующей температуру воздуха, или какого либо иного предмета, на который закрепляют терморезистор – чувствительный к температуре радиоэлемент, который уменьшает своё сопротивление при повышении температуры. Схема на операционном усилителе, измеряющая температуру и сигнализирующая о превышении заданного порога температуры изображена на рисунке.

картинка-схема на операционном усилителе, измеряющая температуру и сигнализирующая о превышении заданного порога температуры

Входы операционного усилителя подключены к двум резистивным делителям напряжения питания, только один из них выполнен на линейных элементах – резисторах, а второй имеет в своём составе нелинейный элемент, изменяющий своё сопротивление в зависимости от температуры. Что такое делитель напряжения, Вы можете узнать в статье Делитель напряжения. По своей конструкции эти четыре резистора выполняют функцию измерительного моста.

Когда температура «нормальная», на средней точке «А» делителя R1 и R2 (инверсный вход ОУ) напряжение больше, чем на средней точке «В» делителя R3 и R4 (прямой вход ОУ), поэтому, на выходе операционного усилителя сигнал низкого уровня – напряжение минимально, транзистор закрыт, а лампочка VL1 не светится.

При повышении температуры сопротивление резистора R2 уменьшается, поэтому уменьшается и напряжение на средней точке «А» делителя R1 и R2. Когда с повышением температуры сопротивление терморезистора упадёт до такого значения, при котором напряжение на средней точке «А» делителя R1 и R2 (инверсный вход ОУ) становится ниже, чем на средней точке «В» делителя R3 и R4 (прямой вход ОУ), на выходе операционного усилителя появится сигнал высокого уровня – напряжение станет максимально, транзистор откроется и лампочка загорится.

Изображённая на рисунке схема контроля температуры является реально действующей схемой, и правильно собранная – работает сразу. Порог температуры срабатывания устанавливается с помощью резистора R4. Питать её можно как от батарей элементов питания, так и от выпрямителей питания. Диапазон питающих напряжений может быть от 6, до 30 вольт.

Если терморезистор R2 закрепить на какой либо поверхности, например радиаторе охлаждения мощного транзистора, вместо лампочки применить обыкновенный компьютерный вентилятор (куллер) на напряжение 12 вольт, то схему можно использовать как устройство автоматического охлаждения чего либо, например мощного транзистора. Вентилятор будет запускаться при достижении определённой температуры, и останавливаться после охлаждения «объекта контроля».

 

Для снижения чувствительности операционного усилителя подобно специальным отвесам в аптекарских весах, применяется отрицательная обратная связь (ООС), которая выполняется на резисторе (на схеме это — R5). Резистор соединяет выход усилителя с инверсным входом. При увеличении напряжения на выходе усилителя, выходное напряжение передается через резистор на отрицательный вход усилителя, заставляя его понизить выходное напряжение. Чем меньше сопротивление резистора отрицательной обратной связи, тем выше обратная связь, а значит хуже коэффициент усиления операционного усилителя. Значение резистора обратной связи R5 для типа микросхемы предложенной на схеме может быть в пределах от 10 килоом, до 1,5 мегаома. Отрицательная обратная связь делает график зависимости выходного напряжения от входного напряжения более пологим. Эта зависимость показана на левом рисунке-графике.

Коэффициент усиления операционного усилителя

Если операционный усилитель используется для управления реле системы автоматики, или другой аппаратуры «не терпящей» частых перепадов напряжения, то для исключения частого переключения, или «дребезга» контактов, может использоваться не отрицательная, а положительная обратная связь (ПОС). В этом случае резистор обратной связи соединяет выход усилителя не с инверсным входом, а с прямым. Тогда, при увеличении напряжения на выходе усилителя, выходное напряжение передается через резистор на положительный вход усилителя, заставляя его ещё быстрее повысить выходное напряжение. При таком подключении, срабатывание, как на «включение», так и на «выключение» операционного усилителя происходит при большей разнице напряжений на входных делителях напряжения – разбалансировании измерительного моста, чем при отрицательной обратной связи. Характер переключения усилителя становится более «резким» — имеет более крутой фронт при «включении» и крутой спад при «выключении». Чем меньше сопротивление резистора положительной обратной связи, тем выше обратная связь, а значит больше коэффициент усиления операционного усилителя. Но учтите, чрезмерная положительная обратная связь вызывает искажения выходного сигнала и самовозбуждение операционного усилителя.

При положительной обратной связи (ПОС) появляется побочный эффект – «петля гистерезиса», при котором, включение усилителя происходит при большей разнице входных напряжений, а выключение – при значительно меньшей, по сравнению с усилителем с отрицательной обратной связью. Чем сильнее ПОС, тем петля гистерезиса «прямоугольнее» (правый на рисунке график). Наличие сильной положительной обратной связи превращает схему в триггер Шмитта. Поэтому такой вид обратной связи допускает значительный разброс температуры в системе автоматического регулирования температуры и не пригоден например, для инкубатора, у которого большой разброс температур не допустим.

Операционные усилители могут работать от источника однополярного питания, как было изображено ранее, но вообще они предназначены для двухполярного питания. Двухполярное питание обязательно в тех схемах, в которых операционный усилитель измеряет как положительные, так и отрицательные напряжения, или измеряемые напряжения сопоставимы с «нулём», например в схемах усилителей гармонического сигнала. В случае двухполярного питания, выходное напряжение операционного усилителя в зависимости от входного сигнала может изменяться в пределах от «-» питания, до «+» питания.

В отдельных типах операционных усилителей при двухполярном питании имеется возможность регулировки «баланса нуля» — состояния, когда при отсутствии входного сигнала на обоих входах, на его выходе не положительное и не отрицательное напряжение, а равно нулю. Для этого имеются специальные выводы микросхем ОУ, куда подключается подстроечный резистор регулирующий баланс нуля.

Ко всем операционным усилителям, работающим в режиме усиления гармонических сигналов для устранения нелинейных искажений, могут подключаться дополнительные элементы – фильтры, состоящие, как правило, из конденсаторов и резисторов. Для каждого типа операционного усилителя схема фильтра своя. Как правило, она приводится в справочниках.

 


Специально для вас сейчас мы разрабатываем практикум по операционным усилителям, чтобы каждый мог на практике закрепить работу с данным полезным видом микросхем.

Операционный усилитель. Примеры схем с описанием работы ч. 3

▌Антилогарифический усилитель

Если переставить диод в логарифмическом усилителе, то получим антилогарифмический, с экспоненциальным усилением. Работает точно также, ток, ничем не ограниченный, течет в виртуальное заземление, увеличиваясь примерно по экспоненте, как это принято у pn перехода. Ну, а поскольку это тот же ток, что течет в ООС, то помноженный на сопротивление резистора он даст нам выходное напряжение увеличивающееся по экспоненте. Все просто :))) Правда вместо диода лучше использовать транзистор. Используя его БЭ переход в качестве диодного pn перехода, а база при этом заземляется. У него характеристика лучше. Или, вообще специализированные усилители с готовой характеристикой.

Зачем такой усилок нужен? Ну у меня не нашлось идей для чего его можно применить отдельно, но вот в сочетании с логарифмическим он вполне может использоваться для умножения и деления аналоговых сигналов.

▌Умножитель и делитель
Как упростить умножение? Заменить его сложением логарифмов. Ln(A*B) = Ln(A) + Ln(B). А деление это, соответственно Ln(A/B) = Ln(A)-Ln(B). Проще некуда, лол. Но так на самом деле выходит сильно проще 🙂 Т.е. если нам надо помножить два аналоговых сигнала, то мы сначала прогоняем их через логарифмирующие усилители, потом загоняем в сумматор с коэффициентом усиления 1, а дальше прогоном через антилогарифмический усилитель достаем из под логарифма.

Правда тут есть нюанс, как в том анекдоте. Попасть в чисто логарифмическую характеристику на диоде или транзисторе можно с оооочень большой натяжкой. А тут это критически важно. Так что вот так вот, на рассыпухе, собрать схему умножения на логарифмах/антилогарифмах задачка нетривиальная. Ее все время будет выносить черт знает куда. Про то, что надо будет скорректировать все смещения и перекосы самих усилителей я и не говорю. Поэтому я даже схему приводить не буду. Из описания и так понятно, если уж сильно заинтересует кого.

Для таких задач есть специальные микросхемы, вроде AD633 (умножитель) или AD734 (умножитель/делитель), тысячи их.

▌Суммирующие и комбинированные схемы
За что я люблю ОУ так это за то, что тут можно на одном ОУ склепать сразу несколько узлов одновременно. Интегратор, плюс сумматор и сверху еще усилителем обмазать… Помните, может быть, схему аналогового реобаса.

Там на одном ОУ я брал значение с термостабилитрона, вычитал из него опорное напряжение смещения, а результат еще и домножал на коэффициент, чтобы смасштабировать — #3. На двух ОУ сделал генератор пилы (меандр плюс интегратор) — #1 И еще из одного ОУ получился компаратор, который из пилы и постоянки сделал мне ШИМ — #2.

Точно также можно комбинировать, усиливающие интегрирующие и дифференцирующие схемы.

Вот, например, суммирующий усилитель:

Ток от входных напряжений течет в виртуальное КЗ через входные резисторы согласно их номиналам, просто по закону Ома. А в итоге все токи суммируется в узле и утекают в цепь ООС через резистор Roc — это суммирующая часть.

Дальше все домножается на сопротивление Roc — это уже усиливающая часть. Если все элементы взять одинаковые, скажем по 10кОм, то получим простой сумматор. Если резистор Roc взять вдвое больше, то результат суммирования умножится на два (опять же по закону Ома, ток то в ООС прежним останется). Если менять входные резисторы, то можно каждое слагаемое еще и на коэффициент домножить. В результате мы на одном элементе делаем и масштабирование входных сигналов и масштабирование выходных. Красота же!

А еще можно засунуть сумматор, например, в интегратор, а чего нет то? Получим суммирующий интегратор.

В соответствии с током через конденсатор, который вычисляется как I = C(dU/dt), суммарный ток даст нам с учетом сопротивления резисторов:

-C*dUвых/dt = (U1/R1)+(U2/R2)+…+(Un/Rn)

Если резисторы одинаковые, то на выходе будет -1/RC * ∫ (U1+U2+..+Un) dt.

Добавив вторую ветвь, можно сделать разностный интегратор:

Если считать, что резисторы равны, то:

Uвых = 1/RC ∫(U2-U1)dt

Или можно сунуть интегратору в ОС резистор и тогда к нему добавится еще и коэффициент усиления.

Он именно что добавится, то есть не результат интеграции умножится на коэффициент усиления, а к результату интеграции прибавится еще и функция обычного усиления. Т.к. результирующее напряжение теперь поделится на напряжение конденсатора (интегрирующая часть) и напряжение падения на резисторе (пропорциональная часть). На скорость зарядки конденсатора это не повлияет никак, т.к. ток в ОС зависит только от входного напряжения и входного резистора, а там ток течет в виртуальное КЗ. Ну вы поняли 😉

Uвых = -(Roc/R)*Uвх-(1/RC) ∫ Uвх dt

С дифференциатором та же история. Можно сделать суммирующий дифференциатор, добавив конденсаторов в параллель. Или добавить коэффициент усиления в сумму, поставив резистор параллельно конденсатору. Схема разностного дифференциатора аналогична интегратору.

Продолжение следует…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *