Обмотка пусковая и рабочая – Электродвигатель конденсаторный однофазный 220 вольт схема включения. Как определить рабочую и пусковую обмотки

Содержание

Сопротивление пусковой и рабочей обмотки однофазного двигателя

Пусковая и рабочая обмотка однофазного двигателя: как отличить?

Для определения типа обмотки однофазного двигателя достаточно взглянуть на маркировку на шильдике и схему. Но бывают ситуации, когда любые маркировочные определения отсутствуют, что, в свою очередь, существенно усложняет задачу. К тому же вид обмотки электродвигателя, который уже ремонтировали, лучше определять самостоятельно, во избежание неприятных неожиданностей.

Что такое пусковая обмотка

Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон.

Таким образом, вспомогательная катушка включается на короткий промежуток времени.

Характеристики рабочей обмотки

Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Однако не всегда можно определить толщину сечения проводов невооруженным глазом, иногда разница между ними совсем незаметна человеку.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Однофазные асинхронные двигатели на службе человечества

Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.

Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям

История возникновения

Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.

В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.

Применение однофазных асинхронных двигателей

Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:

  • пылесосы;
  • вентиляторы;
  • электронасосы;
  • холодильники;
  • машины для переработки сырья.

Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:

  1. Статор (неподвижный элемент).
  2. Ротор (вращающаяся часть).
  3. Механическое соединение этих двух частей.
  4. Поворотные подшипники.

Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.

Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена ​​другая катушка. Обмотка стартера установлена ​​со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:

  1. Активное сопротивление.
  2. Емкостное.
  3. Индуктивное.

В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Расчет проводной принадлежности

Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.

Выбор емкости конденсатора

Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.

Проверка работоспособности

Тестирование начинается с визуального осмотра. Возможные неисправности:

  1. Если опорная часть на устройстве была сломана, это может привести к неисправностям.
  2. При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
  3. Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.

Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.

Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.

Заключение

Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.

Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.

{SOURCE}

Как можно определить рабочую и пусковую обмотки?

Знать устройство пусковой и рабочей обмоток надо обязательно. Это можно сравнить с таблицей умножения.

Схемы обмоток

Схемы обмоток.

Начнем с того, что однофазные двигатели имеют две разновидности обмоток, пусковую и рабочую. Эти обмотки отличаются и по сечению провода, и по количеству витков.

Рабочая обмотка всегда имеет сечение провода большее, а следовательно, ее сопротивление будет меньше. На фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным, и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше, и есть рабочая.

Однофазные компрессоры с пусковой обмоткой

Однофазные компрессоры с пусковой обмоткой.

А теперь несколько примеров, с которыми вы можете столкнуться в жизни. Если у двигателя 4 вывода, то, найдя концы обмоток и произведя замеры, вы легко разберетесь в этих четырех проводах. Сопротивление меньше — рабочая обмотка, сопротивление больше — пусковая обмотка.

Подключается все просто, на толстые провода подается 220 В. И один кончик пусковой обмотки —  на один из рабочих. На какой из них, разницы нет: направление вращения от этого не зависит, как и от того, что вы вставите вилку в розетку. Вращение будет изменяться, от подключения пусковой обмотки, меняя ее концы.

Если двигатель имеет 3 вывода, замеры будут выглядеть следующим образом: 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15  ом и 10 ом. Это и будет один из сетевых проводов. Кончик, который показывает 10 ом, тоже сетевой, третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения вы уже не измените. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом , 20 ом. Это тоже одна из разновидностей обмоток. Такие шли на некоторых моделях стиральных машин. В этих двигателях рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой также осуществляется через конденсатор.

Как определить рабочую и пусковую обмотки

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее, а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15  ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий  15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом, 10 ом , 20 ом. Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки ( по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Л. Рыженков

Как запустить электродвигатель без пусковой обмотки. Схемы обмоток однофазных электродвигателей

Иногда встает вопрос о том, как осуществляется подключение однофазного двигателя к питающим устройствам и сетям. Однофазные асинхронные электродвигатели являются самым распространенными, поскольку их устанавливают на подавляющем большинстве различных бытовых приборов и техники (компьютерной и т.д.). Иногда такие двигатели приобретаются и устанавливаются в мастерских, гаражах и пр. для обеспечения проведения каких-либо работ (например, подъем груза).

Однофазные асинхронные электродвигатели устанавливают на подавляющем большинстве различных бытовых приборов и техники.

Работы требуют подключения однофазного электродвигателя, а это довольно сложно для человека, который не разбирается в электротехнике и электроприводе. Сложность связана с тем, что двигатель имеет много выводов, и дилетант испытывает трудности вследствие того, что не знает, какой вывод следует подключить к источнику питания. Поэтому данный материал рассматривает вопросы подключения именно для среднестатистического гражданина, который не имеет никакого представления об электроприводе и не разбирается в электротехнике.

Описание машины

Однофазными электродвижителями обычно называют асинхронные однофазные электрические машины с малой мощностью. Магнитопровод таких машин имеет двухфазную обмотку, которая делится на стартовую (пусковую) и основную. Необходимость наличия 2 обмоток заключается в следующем: они должны вызывать вращение ротора у электрического движителя (однофазного). На данный момент такие устройства условно делят на 2 категории:

  1. Наличие пусковых обмоток. В этом варианте стартовая обмотка подключена через пусковой конденсатор. Когда пуск совершен, и машина развила номинальную скорость вращения, пусковая обмотка отключается от питания. После чего двигатель продолжает вращаться на подключенной к сети рабочей обмотке (конденсатор заряжается при пуске и отключает пусковую). Необходимый объем конденсатора стандартно указывает производитель машины на табличке со всеми параметрами (стандартно она должна находиться на всех двигателях).
  2. Машины с рабочими конденсаторами. У таких электрических машин вспомогательные обмотки всегда подключены через конденсаторы. В таком случае объем конденсаторов определяется конструкцией двигателя. При этом конденсатор остается включенным и при выходе машины на номинальный режим работы.

Чтобы правильно осуществить подключение электрической машины, необходимо уметь определить (или знать), как выведены пусковые и рабочие обмотки, а также их характеристики.

Стоит отметить: эти обмотки различны по используемым проводникам (их сечению), а также по виткам. Так для рабочих обмоток применяются проводники большего сечения, и они имеют большее количество витков. При этом важно знать, что сопротивление рабочих обмоток у разных машин всегда меньше, чем сопротивление пусковых/вспомогательных. При этом измерить сопротивление обмотки двигателя не составляет особого труда, особенно если применяются специальные мультиметры.

На основании описанного стоит привести некоторые примеры.

Примеры подключения

Здесь рассмотрим 3 варианта движителей, которые отличаются друг от друга.

Вариант №1. У движителя имеется 4 вывода. Сначала находят концы обмоток (обычно они располагаются попарно, поэтому увидеть их не составляет труда).

Вариантов расположения выводов может быть 2: либо все 4 в один ряд, либо 2 в одном ряду и 2 во втором. В первом случае определить обмотки проще: первая пара – одна обмотка, вторая – другая.

Во втором случае можно запутаться между обмотками. Наиболее часто распространен вариант, когда один вертикальный ряд – одна обмотка, другой – вторая. Но стоит знать, что мультиметр выдаст значение бесконечного сопротивления, если выбраны выводы разных обмоток. А далее все просто.

Определяют сопротивление у обмоток: там, где меньшее сопротивление, – та рабочая, а большее – пусковая.

Подключение осуществляется следующим образом: на толстые провода подают 220 В, а один вывод пусковой соединяют с выводом рабочей. При этом не стоит беспокоится о правильности соединения выводов – работа машины и то, в какую сторону осуществляется вращение, не изменятся от того, какой конец с каким был соединен. Направление вращения изменяется из-за смены концов подключения стартовой обмотки.

Второй вариант – когда у машины имеется 3 вывода. В этом случае при измерении сопротивлений между обмотками мультиметр будет показывать различные значения – минимальное, максимальное, среднее (если их мерять попарно). Здесь общий конец, который будет у минимального и среднего значения, является одним из концов подключения, другой вывод для подключения сети – тот, который имеет минимальное значение. Вывод, который останется, – вывод пусковой обмотки – должен быть подключен с конденсатором и с одним из концов подачи питания сети. В этом случае невозможно самостоятельно изменить направление вращения.

Последний пример. Есть 3 вывода, а замеры сопротивления между выводами попарно показали, что имеется 2 абсолютно одинаковых значения и одно большее (примерно в 2 раза). Такие движители часто ставились на старые и устанавливаются на современные стиральные машины. Это именно тот случай, когда обмотки у машины идентичны, поэтому абсолютно без разницы, как подключать обмотки.

Как это применить на практике? Это самый часто задаваемый вопрос, ведь с подключением инструментов (болгарок, перфораторов, шуруповертов и т.д.) могут возникнуть сложности. Это иногда связано с тем, что в инструменте использу

Схема подключения электродвигателя с рабочей и пусковой обмоткой

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими схема подключения электродвигателя с рабочей и пусковой обмоткой

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

схема подключения электродвигателя с рабочей и пусковой обмоткой

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

схема подключения электродвигателя с рабочей и пусковой обмоткой

Как все может выглядеть на практике

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) — провода красного цвета
  • пусковая (В1-В2) — провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

Итак, приступим.

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники, можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

. Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

  • 1 часть
  • 2 часть
  • 3 часть

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Более подробно об этом читайте в моей статье про реверс однофазного электродвигателя.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)

Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом — ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель. В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный. И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты — отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще — мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки. При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов. Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Для подключения конденсаторного двигателя пусковая кнопка не нужна. Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.

Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Статья дополняется.

Электродвигатель конденсаторный однофазный 220 вольт схема включения. Как определить рабочую и пусковую обмотки

Для освещения и общих бытовых целей в домах, офисах, магазинах, а также в небольших производствах, широко используется однофазная система электропитания наряду с трёхфазной системой. Однофазная система применяется там, где потребляемая мощность мала, где нет необходимости в использовании трёхфазных электрических цепей, где нет постоянного круглосуточного потребления большой мощности.

Однофазные двигатели просты в конструкции и эксплуатации, что в свою очередь даёт экономию в их эксплуатации, ремонте и обслуживании в сравнении с аналогичными трёхфазными двигателями. Обычно в бытовой технике, такой как пылесосы, вентиляторы, стиральные машины, фены, центробежные насосы, маленькие игрушки и т.д. используются именно однофазные электрические машины.

Однофазные асинхронные двигатели классифицируются следующим образом:

  • Однофазные асинхронные двигатели или асинхронные двигатели.
  • Однофазные синхронные двигатели.
  • Коллекторные двигатели.

Эта статья даёт основное представление об однофазном асинхронном двигателе, его описание и принцип его работы.

Конструкция однофазного асинхронного двигателя

Как и любой другой электрический двигатель, однофазный асинхронный двигатель состоит из двух основных частей, а именно из ротора и статора. Статор является неподвижной частью двигателя, а ротор подвижной частью. Питание однофазным напряжением подается на статор асинхронного двигателя, который содержит обмотки для создания магнитного поля. Ротор представляет собой вращающуюся часть, которая соединяется с механической нагрузкой. Ротор однофазного асинхронного двигателя является короткозамкнутым, то есть содержит короткозамкнутую обмотку, обычно по своему виду напоминающую беличью клетку (колесо).

Конструкция однофазного асинхронного двигателя практически аналогичная конструкции трёхфазного электродвигателя с короткозамкнутым ротором. Единственное отличие – это наличие двух обмоток для одной фазы питания, в то время как в трёхфазном двигателе на каждую фазу приходится по одной обмотке.

Статор однофазного асинхронного двигателя

Статор однофазного асинхронного двигателя изготовлен из ламинированных штампованных листов электротехнической стали. Каждый лист изолирован от предыдущего и последующего слоем лака или иного изолирующего немагнитного покрытия. Изготовление статора из многих тонких пластин обусловлено необходимостью избавится от влияния вихревых токов. Чем больше пластин и чем они тоньше, тем меньшие вихревые токи наводятся в статоре, что положительно влияет на эффективность преобразования

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные электрические двигатели – электромеханический преобразователь энергии небольшой мощности. Конструктивно однофазный двигатель похож на трехфазный, однако статорная обмотка такого двигателя является двухфазной (основная и пусковая обмотки).
Основная (рабочая) обмотка создает магнитное поле при работе электродвигателя. Однако при подключении только рабочей обмотки к питающей сети результирующее магнитное поле будет равно нулю.

Пусковая (вспомогательная) обмотка предназначена для создания необходимого пускового момента. По способу создания пускового момента однофазные электродвигатели можно разделить на двигатели с рабочим конденсатором (конденсатор постоянно подключен к пусковой обмотке) и двигатели с пусковым конденсатором (конденсатор подключается к вспомогательной обмотке на время пуска).

По своему конструктивному исполнению основная и пусковая обмотки имеют ряд отличий. В первую очередь это сечение токопроводящих проводников. Сечение проводов рабочей обмотки больше ввиду длительного пребывания обмотки под нагрузкой. Именно это условие и используется при определении пусковой и рабочей обмоток электродвигателя. Рабочая обмотка имеет бОльшее сечение проводника, а следовательно и меньшее активное сопротивление.

Клеммная коробка однофазного электродвигателя имеет 3 или 4 вывода. Для определения пусковой и рабочей обмоток необходимо произвести измерение активного сопротивления проводников. Иногда обмотки можно различить визуально, зная что рабочая имеет бОльшее сечение.
Рабочая обмотка подключается к сети переменного тока. Один из выводов пусковой – к выводу рабочей обмотки, второй – через конденсатор к другому концу рабочей обмотки. Направление вращения двигателя определяется подключением пусковой обмотки и не зависит от полярности питающего напряжения.

Для электродвигателей с 3 выводами также необходимо произвести измерения активных сопротивлений. Довольно часто встречается комбинация сопротивлений 10 Ом, 25 Ом и 15 Ом. При этом один из выводов основной обмотки будет иметь наименьшее сопротивление (10 Ом), а второй при измерениях с двумя другими выводами покажет 10 Ом и 15 Ом. Третий вывод будет выводом пусковой обмотки. Направление вращения такого двигателя можно изменить лишь изменением схемы соединения обмоток, для чего необходимо произвести разборку электродвигателя.


Всего комментариев: 0


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *