Назначение терморезистора – 5. Измерительные преобразователи температуры. Терморезисторы. Принцип работы, основное уравнение терморезистора, типы, способы подключения в измерительную цепь. Специфика применения терморезисторов.

9. Терморезисторы » СтудИзба

Глава 9

ТЕРМОРЕЗИСТОРЫ

§ 9.1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от тем-гературы. Терморезисторы называют также термометрами сопро­тивления или термосопротивлениями. Они применяются для !змерения температуры в широком диапазоне от —270 до 1600°С.

Если терморезистор нагревать проходящим через него электри­ческим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность тепло­обмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой сходится терморезистор, от скорости перемещения терморезисто­ра относительно газовой или жидкой среды, то терморезисторы ис­пользуются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисто­ры. Металлические терморезисторы изготовляют из чистых метал­лов: меди, платины, никеля, железа, реже из молибдена и воль­фрама. Для большинства чистых металлов температурный ко­эффициент электрического сопротивления составляет примерно (4—6,5)10-3 1/°С, т. е. при увеличении температуры на 1°С со-противление металлического терморезистора увеличивается на 0,4— 0,65%. Наибольшее распространение получили медные и платино­вые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффи­циент сопротивления, чем медные и платиновые, однако применя­ются они реже. Дело в том, что железо и никель сильно окисляют­ся и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает темпе­ратурный коэффициент сопротивления. Сплавы металлов и окис­ляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры прихо

дится применять такие жаропрочные металлы, как вольфрам и
молибден, хотя терморезисторы из них имеют характеристики не­
сколько отличающиеся от образца к образцу.                             ‘

Широкое применение в автоматике получили полупроводнико­
вые терморезисторы, которые для краткости называют термисто-
рами. Материалом для их изготовления служат смеси оксидов мар­
ганца, никеля и кобальта; германий и кремний с различными пои-
месями и др.                                                                                         к

По сравнению с металлическими терморезисторами полупровод­никовые имеют меньшие размеры в большие значения номиналь­ных сопротивлений. Термисторы имеют на порядок больший тем­пературный коэффициент сопротивления (до —6 10-2 1/°С) Но этот коэффициент —отрицательный, т. е. при увеличении темпера­туры сопротивление термистора уменьшается. Существенный не­достаток полупроводниковых терморезисторов по сравнению с ме­таллическими—непостоянство температурного коэффициента со­противления. С ростом температуры он сильно падает, т. е. термис-тор имеет нелинейную характеристику. При массовом производст­ве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

§ 9.2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

где С — постоянный коэффициент, зависящий от материала и кон­структивных размеров проводника; а —температурный коэффици-ент сопротивления; е — основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в гра­дусах Цельсия соотношением Т К=273+Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при началь­ной температуре Т0и имел сопротивление . При нагреве до температуры Т его сопротивление RT = T. Возьмем отношение

 

  Известно, что функцию вида е* можно разложить в степенной ряд:


 

 Так как величина а для меди сравнительно мала и в диапазоне температур до +150°С может быть принята постоянной а=4,3-10-з 1/°с, то и произведение а (Г— Т0) в этом диапазоне температур меньше единицы. Поэтому не будет большой ошибкой пренебречь при разложении членами ряда второй степени и выше сопротивление при температуре Т через начальное со­противление при То

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные)   с соответствующей   градуировкой:

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные)   с соответствующей   градуировкой:

гр. 23 имеет сопротивление 53,00 Ом при 0°С; гр. 24 имеет сопро­тивление 100,00 Ом при 0°С. Медные терморезисторы выполняют­ся из проволоки диаметром не менее 0,1 мм, покрытой для изо­ляции эмалью.

Для платиновых терморезисторов, которые применяются в бо­лее широком диапазоне температур, чем медные, следует учиты­вать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции е*.

В диапазоне температур от —50 до 700°С достаточно точное является формула

где для платины =3,94 10-3 1/°С,  = 5,8 10-7 (1/°С)2.

Платиновые терморезисторы выпускаются серийно и обознача­ются ТСП (термосопротивления платиновые) с соответствую­щей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0°С, гр. 21—46,00 Ом; гр. 22—100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.

В табл. 9.1 приведены зависимости сопротивления металличе­ских терморезисторов от температуры; они называются стандарт­ными градуировочными таблицами.

На рис. 9.1 показано устройство платинового термометра сопро­тивления. Сам терморезистор выполнен из платиновой проволо­ки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Се­ребряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный че­хол 7.

 

§ 9.3. Полупроводниковые терморезисторы

Сопротивление полупроводниковых терморезисторов (термисторов) резко уменьшается с ростом температуры. Их чувст­вительность значительно выше, чем металлических, поскольку тем­пературный коэффициент сопротивления полупроводниковых тер­морезисторов примерно на порядок больше, чем у металлических. Если для металлов = (4-6)*10-3 1/°С, то для полупроводнико­вых терморезисторов ||>4*10-2 1/°С. Правда, для термисторов этот коэффициент непостоянен, он зависит от температуры и им редко пользуются при практических расчетах.

Основной   характеристикой   терморезистора   является   зависи­мость его сопротивления от абсолютной температуры Т:

где А — постоянный коэффициент, зависящий от материала и кон­структивных размеров термистора; В — постоянный коэффициент, зависящий от физических свойств полупроводника; е — основание натуральных логарифмов.

Сравнение формулы (9.6) с формулой (9.1) показывает, что у термисторов с ростом температуры сопротивление уменьшается, а у металлических терморезисторов — увеличивается. Следовательно, у термисторов температурный коэффициент сопротивления имеет отрицательное значение.

Вообще чувствительность терморезистора (как датчика темпе­ратуры) можно оценить как относительное изменение его сопро­тивления (R/R), деленное на вызвавшее это изменение прираще­ние температуры:

Для металлического терморезистора чувствительность можно полу­чить дифференцируя (9.4). Следовательно, , т. е. именно тем­пературный коэффициент сопротивления определяет чувствитель­ность.

Для полупроводникового терморезистора   (термистора)   чувст­вительность получим, дифференцируя (9.6):

Из (9.9) видно, что чувствительность термистора имеет нелиней­ную зависимость от температуры.

Серийно выпускаются медно-марганцевые (тип ММТ) и кобаль-тово-марганцевые (тип КМТ) термисторы. На рис. 9.2 показаны за­висимости сопротивления от температуры для термисторов этих ти­пов и для сравнения — для медного терморезистора. Величина В для термисторов составляет 2—5 тыс. К (меньше — для ММТ, боль­ше для КМТ).

Электрическое сопротивление термистора при окружающей тем­пературе +20°С называют номинальным или холодным сопротив­лением. Для термисторов типов ММТ-1, ММТ-4, ММТ-5 эта вели­чина может составлять 1—200 кОм, а для типов КМТ-1, ММТ-4 — от 20 до 1000 кОм.

Верхний диапазон измеряемых температур для типа ММТ — 120°С, а для типа КМТ— 180°С.

Термисторы выпускаются в различных конструктивных испол­нениях: в виде стерженьков, дисков, бусинок. На рис. 9.3 показаны некоторые конструкции термисторов.

Термисторы типов ММТ-1, КМТ-1 (рис. 9.3, а) внешне подобны высокоомным резисторам с соответствующей системой герметиза­ции. Они состоят из полупроводникового стержня /, покрытого эма-

левой краской, контактных колпачков 2 с токоотводами 3. Термис-торы типов ММТ-4 и КМТ-4 (рис. 9.3, б) также состоят из полу­проводникового стержня 1, контактных колпачков 2 с токоотвода­ми 3. Кроме покрытия эмалью стержень обматывается металличе­ской фольгой 4, защищен металлическим чехлом 5 и стеклянным изолятором 6. Такие термисторы применимы в условиях повышен­ной влажности.

На рис. 9.3, в показан термистор специального типа ТМ-54 — «Игла». Он состоит из полупроводникового шарика / диаметром от 5 до 50 мкм, который вместе с платиновыми электродами 2 впрессован в стекло толщиной порядка 50 мкм. На расстоянии около 2,5 мм от шарика платиновые электроды приварены к выводам 3 из никелевой проволоки. Термистор вместе с токоотводами поме­щен в стеклянный корпус 4. Термисторы типа МТ-54 обладают очень малой тепловой инерцией, их постоянная времени порядка 0,02 с, и они используются в диапазоне температур от —70 до 4-250°С. Малые размеры термистора позволяют использовать его, например, для измерений в кровеносных сосудах человека.

§ 9.4. Собственный нагрев термисторов

Термисторы применяются в самых различных схемах ав­томатики, которые можно разделить на две группы. В первую груп­пу входят схемы с термисторами, сопротивление которых определя­ется только температурой окружающей среды. Ток, проходящий при этом через термистор, настолько мал, что не вызывает допол­нительного разогрева термистора. Этот ток необходим только для измерения сопротивления и для термисторов типа ММТ составляет около 10 мА, а для типа КМТ— 2—5 мА. Во вторую группу вхо­дят схемы с термисторами, сопротивление которых меняется за счет

собственного нагрева. Ток, проходящий через термистор, разогрева­ет его. Поскольку   при повышении   температуры   сопротивление уменьшается, ток увеличивается, что приводит к еще большему вы­делению теплоты. Можно сказать, что в данном случае проявля­ется положительная обратная связь. Это позволяет получить в схе­мах с термисторами своеобразные характеристики релейного типа. На рис. 9.4, а показана вольт-амперная характеристика термис-тора. При малых токах  влияние собственного нагрева незначительно и сопротивление термистора практически остается постоянным. Следовательно, напряжение на термисторе растет про­порционально току (участок ОА). При дальнейшем увеличении то­ка (/>/доп) начинает сказываться собственный нагрев термистора, сопротивление его уменьшается. Вольт-амперная   характеристика изменяет свой вид, начинается ее «падающий» участок АБ. Этот участок используется для создания на базе термистора схем тер­мореле, стабилизатора напряжения и др.

Резко выраженная нелинейность вольт-амперной характеристи­ки термистора позволяет использовать его в релейном режиме. На рис. 9.4, б представлена схема включения, а на рис. 9.4, в — харак­теристика термистора в этом режиме. Если в цепи термистора от сутствует добавочное сопротивление(RДОБ0), то при некотором значении напряжения ток в цепи термистора резко увеличивается, что может привести к разрушению термистора (кривая UTна рис. 9.4, в). Для ограничения роста тока необходимо в цепь тер­мистора RTвключить добавочный резистор RДОБ(рис. 9.4, б) с пря­молинейной характеристикой (кривая URна рис. 9.4, в). При гра­фическом сложении этих двух характеристик {Ut+Ur) получим общую вольт-амперную характеристику U0(имеющую S-образный вид на рис. 9.4, в). Эта характеристика похожа на характеристику бесконтактного магнитного реле (см. гл. 26). Рассмотрим по этой характеристике процесс изменения тока I в цепи (рис. 9.4, б) при плавном увеличении напряжения питания U0При достижении значения напряжения срабатывания Ucp(этому напряжению со­ответствует ток I1) ток скачком возрастает от значения 1 до су­щественно большего значения /2. При дальнейшем увеличении на­пряжения ток будет плавно возрастать от I2. При уменьшении на­пряжения ток вначале плавно уменьшается до значения I3(этому току соответствует напряжение отпускания U0T), а затем скачком падает до значения /4, после чего ток плавно уменьшается донуля. Скачкообразное изменение тока происходит не мгновенно, а посте­пенно из-за инерционности термистора.

§ 9.5. Применение терморезисторов

При использовани терморезисторов в качестве датчиков систем автоматики различают два основных режима. В первом ре­жиме температура терморезистора практически определяется толь­ко температурой окружающей среды. Ток, проходящий через тер­морезистор, очень мал и практически не нагревает его. Во втором режиме терморезистор нагревается проходящим по нему током, а температура терморезистора определяется изменяющимися усло­виями теплоотдачи, например интенсивностью обдува, плотностью окружающей газовой среды и т. п.

При использовании терморезисторов в первом режиме они иг­рают роль датчиков температуры и называются обычно термомет­рами сопротивления. Наибольшее распространение получили тер­мометры сопротивления типов ТСП (платиновые) и ТСМ (медные), включаемые в мостовую измерительную схему.

В процессе измерения температуры с помощью термометров со­противления могут возникать следующие погрешности: 1) от ко­лебания напряжения питания; 2) от изменения сопротивления со­единительных проводов при колебаниях температуры окружающей среды; 3) от собственного нагрева датчика под действием проте­кающего через него тока.

Рассмотрим схему включения термометра сопротивления (рис. 9.5), в которой приняты меры для уменьшения отмеченных трех видов погрешностей. Для уменьшения погрешности от колебаний питания используется измерительный прибор логомет.-рического типа (см. гл. 2). Угол отклонения подвижной системы логометра пропорционален отношению токов в двух катушках, од­на из которых создает вращающий, а вторая — противодействую­щий моменты. Через одну катушку проходит ток разбаланса, за­висящий от сопротивлеия терморезистора Rt. Вторая катушка пи­тается тем же напряжением, что и мостовая измерительная схема.

При колеоаниях напряжении питания

одновременно будут изменяться токи в обеих катушках, а их отношение бу­дет оставаться постоянным.

В автоматических уровновешенных мостах колебание напряжения пита­ния не приводит к появлению пропор­циональной погрешности измерения, незначительно изменяется лишь порог чувствительности.

Для уменьшения погрешности от изменения сопротивления соединитель­ных проводов необходимо правильно выбирать сопротивление датчика. Эта погрешность сводится к минимуму, ес­ли сопротивление датчика выбрать из условия  намного больше Rпр, где Rпр— сопротив­ление соединительных проводов. При больших расстояниях (сотни метров) Rпр может достигать 3—5 ОмЛЕще од­ним способом уменьшения погрешно­сти от температурных изменений со-

противления соединительных проводов является применение «п»-гопроводных схем. На рис. 9.5 показана схема включения датчи­ка RДв мостовую схему посредством трех проводов (а, б, в). Со­противления проводов а и б включены в смежные плечи моста, поэтому одновременное их изменение не нарушает равновесия мос­та. Сопротивление проводов b вообще не входит в мостовую схе­му. Погрешность за счет самонагрева датчика может быть учтена при градуировке шкалы измерительного прибора.

При быстром изменении температуры появляется динамическая погрешность, обусловленная тепловой инерцией датчика. Переда­ча теплоты от измеряемой среды к терморезистору происходит не мгновенно, а в течение некоторого времени.

Для количественной оценки тепловой инерции датчика пользу­ются понятием «постоянная времени»:

коэффициент теплопередачи; s — поверхность соприкосновения дат­чика со средой.

Если холодный датчик поместить в среду с температурой Тср(°С), то его температура будет изменяться во времени по сле­дующему закону:

Чем больше постоянная времени т, тем больше пройдет времени, пока температура датчика сравняется с температурой среды. За время  датчик нагреется только до температуры Тср=0,63°С,

а за время / до температуры Т,ср=0>99оС. Графиком уравне­ния   (9.11)   является экспонента, показанная на  рис.   1.3, в.

Рассмотрим теперь некоторые примеры использования собст­венного нагрева терморезисторов в устройствах для измерения раз­личных физических величин, косвенно связанных с температурой.

Автоматическое измерение скорости газового потока проводится с помощью термоапемометра. Датчик этого прибора (рис. 9.6, а) состоит из терморезистора, представляющего собой тонкую пла­тиновую проволоку /, припаянную к двум манганиновым стерж­ням 2, закрепленным в изоляционной втулке 3. С помощью выводов 4 терморезистор включается в измерительную схему. Через термо­резистор пропускается ток, вызывающий его нагрев. Но темпера­тура (а следовательно, и сопротивление) терморезистора будет оп­ределяться скоростью газового потока, в который помещен дат­чик. Чем больше будет эта скорость, тем интенсивнее будет отво­диться теплота от терморезистора. На рис. 9.6, б показана градуи-ровочная кривая термоанемометра, из которой видно, что при уве­личении скорости примерно вдвое сопротивление терморезистора уменьшается примерно на 20%.

На аналогичном принципе основана работа электрического га­зоанализатора. Если взять два одинаковых саморазогреваемых тер­морезистора и поместить один в камеру, наполненную воздухом, а другой — в камеру, наполненную смесью воздуха с углекислым газом СО2, то из-за различной теплопроводности воздуха и угле­кислого газа сопротивление терморезисторов будет разным. Так как теплопроводность углекислого газа значительно меньше тепло­проводности воздуха, то и отвод теплоты от терморезистора в ка­мере с С02 будет меньше, чем от терморезистора в камере с воз­духом. По разнице сопротивлений терморезисторов можно судить о процентном содержании углекислого газа в газовой смеси.

Зависимость теплопроводности газа от его давления позволя­ет использовать терморезисторы с собственным нагревом в элек- • трическнх вакуумметрах. Чем глубже вакуум ( т. е. более разре­жен газ), тем хуже условия теплоотдачи с поверхности терморезис­тора, помещенного в вакуумную камеру. Если через терморезис­тор пропускать ток для его нагрева, то температура терморезисто­ра будет возрастать при уменьшении давления контролируемого газа.

Таким образом, с помощью терморезисторов можно измерять скорости и расход газов и жидкостей, давление и плотность газов, определять процентное содержание газов в смеси. Кроме платины в таких приборах используют вольфрам, никель, полупроводниковые терморезисторы. Для того чтобы исключить влияние колебаний температуры окружающей среды, стремятся обеспечить достаточ­но интенсивный собственный нагрев (до 200—500°С).

1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от температуры. Терморезисторы называют также термометрами сопротивления или термосопротивлениями. Они применяются для измерения температуры в широком диапазоне от -270 до 1600 °С.

Если терморезистор нагревать проходящим через него электрическим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность теплообмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой находится терморезистор, от скорости перемещения терморезистора относительно газовой или жидкой среды, то терморезисторы используются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисторы. Металлические терморезисторы изготовляют из чистых металлов: меди, платины, никеля, железа, реже из молибдена и вольфрама. Для большинства чистых металлов температурный коэффициент электрического сопротивления составляет примерно (4—6,5) 10-3 1/°С, т. е. при увеличении температуры на 1 °С сопротивление металлического терморезистора увеличивается на 0,4—0,65 %. Наибольшее распространение получили медные и платиновые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффициент сопротивления, чем медные и платиновые, однако применяются они реже. Дело в том, что железо и никель сильно окисляются и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает температурный коэффициент сопротивления. Сплавы металлов и окисляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры приходится применять такие жаропрочные металлы, как вольфрам и молибден, хотя терморезисторы из них имеют характеристики, несколько отличающиеся от образца к образцу.

Широкое применение в автоматике получили полупроводниковые терморезисторы, которые для краткости называют термисторами. Материалом для их изготовления служат смеси оксидов марганца, никеля и кобальта; германий и кремний с различными примесями и др.

По сравнению с металлическими терморезисторами полупроводниковые имеют меньшие размеры в большие значения номинальных сопротивлений. Термисторы имеют на порядок больший температурный коэффициент сопротивления (до -6 10-2 1/ºС). Но этот коэффициент — отрицательный, т. е. при увеличении температуры сопротивление термистора уменьшается. Существенный недостаток полупроводниковых терморезисторов по сравнению с металлическими — непостоянство температурного коэффициента сопротивления. С ростом температуры он сильно падает, т. е. термистор имеет нелинейную характеристику. При массовом производстве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

(1)

где С — постоянный коэффициент, зависящий от материала и конструктивных размеров проводника; α температурный коэффициент сопротивления; е — основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в градусах Цельсия соотношением Т К= 273 + Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при начальной температуре

Т0 и имел сопротивление . При нагреве до температурыT его сопротивление . Возьмем отношение RT и R0:

(2)

Известно, что функцию вида ex можно разложить в степенной ряд:

Для нашего случая . Так как величина α для меди сравнительно мала и в диапазоне температур до +150 °С может быть принята постоянной α = 4,3 10-3 1/ºС, то и произведение в этом диапазоне температур меньше единицы. Поэтому не будет большой ошибкой пренебречь при разложении членами ряда второй степени и выше:

(3)

Выразим сопротивление при температуре

T через начальное сопротивление при T0

(4)

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные) с соответствующей градуировкой: гр. 23 имеет сопротивление 53,00 Ом при 0 ºC; гр. 24 имеет сопротивление 100,00 Ом при 0 ºC. Медные терморезисторы выполняются из проволоки диаметром не менее 0,1 мм, покрытой для изоляции эмалью.

Для платиновых терморезисторов, которые применяются в более широком диапазоне температур, чем медные, следует учитывать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции

ex.

В диапазоне температур от -50 до 700 °С достаточно точной является формула

(5)

где для платины α = 3,94 10-3 1/ºС, β = 5,8 10-7 (1/ºС)2.

Платиновые терморезисторы выпускаются серийно и обозначаются ТСП (термосопротивления платиновые) с соответствующей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0 °С, гр. 21 — 46,00 Ом; гр. 22 — 100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.

В табл. 1 приведены зависимости сопротивления металлических терморезисторов от температуры; они называются стандартными градуировочными таблицами.

Таблица 1. Зависимость сопротивления терморезисторов от температуры

Температура, °С

Сопротивление, Ом

Платиновые термометры сопротивления

Медные термометры сопротивления

гр. 20

гр. 21

гр. 22

гр. 23

гр. 24

-200

1,73

7,95

17,28

-150

3,88

17,85

38,80

-100

5,97

27,44

59,65

-50

8,00

36,80

80,00

41,71

78,70

-30

8,80

40,50

88,04

46,23

87,22

-10

9,60

44,17

96,03

50,74

95,74

0

10,00

46,00

100,00

53,00

100,00

20

10,79

46,94

107,91

57,52

108,52

40

11,58

53,26

115,78

62,03

117,04

60

12,36

56,86

123,60

66,55

125,56

80

13,14

60,43

131,37

71,06

1 34,08

100

13,91

63,99

139,10

75,58

142,60

120

14,68

67,52

146,78

80,09

151,12

140

15,44

71,03

154,41

84,61

159,64

160

16,20

74,52

162,00

89,13

168,16

180

16,95

77,99

169,54

93,64

176,68

300

21,38

98,34

213,79

400

24,94

114,72

249,38

500

28,38

130,55

283,80

600

21,70

145,85

317,06

650

33,33

153,30

333,25

На рис. 1 показано устройство платинового термометра сопротивления. Сам терморезистор выполнен из платиновой проволоки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Серебряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный чехол 7.

Рис. 1. Платиновый термометр сопротивления

характеристики и параметры, принцип действия и классификация

Что такое термисторРазвитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов — термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.

Описание прибора

Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор — это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде — главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

Термистор — это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

Существуют и другое его название — терморезистор. Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора. Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

Позистор PTCПоэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС — резисторы получили название позисторов, а NTC — термисторов.

Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC — приборов его значение уменьшается.

Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора — к падению.

Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор. Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

Основное вещество для создания позисторов — титанат бария. Технология изготовления NTC — приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

  • Виды термисторовплоскую пластину;
  • диск;
  • стержень;
  • шайбу;
  • трубку;
  • бусинку;
  • цилиндр.

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные — от 900 до 1300;
  • высокотемпературные — от 570 до 899;
  • среднетемпературные — от 170 до 510;
  • низкотемпературные — до 170.

Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

Технические характеристики и принцип действия

Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.

РТС — элементы оцениваются тремя определяющими показателями: температурной и статической вольт — амперной характеристикой, термическим коэффициентом сопротивления (ТКС).

У термистора список более широкий.

Помимо параметров, аналогичных позистору, показатели следующие:

  • номинальное сопротивление;
  • коэффициенты рассеяния, энергетической чувствительности и температуры;
  • постоянная времени;
  • температура и мощность по максимуму.

Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:

  • номинальное сопротивление;
  • термический коэффициент сопротивления;
  • мощность рассеяния;
  • интервал рабочей температуры.

Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.

Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.

Как проверить термисторТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.

Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния — величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.

Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.

Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.

Происходит это по нескольким причинам:

  • из-за фазового превращения;
  • ионы с непостоянной валентностью более энергично обмениваются электронами;
  • сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.

Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту — стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.

1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от температуры. Терморезисторы называют также термометрами сопротивления или термосопротивлениями. Они применяются для измерения температуры в широком диапазоне от -270 до 1600 °С.

Если терморезистор нагревать проходящим через него электрическим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность теплообмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой находится терморезистор, от скорости перемещения терморезистора относительно газовой или жидкой среды, то терморезисторы используются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисторы. Металлические терморезисторы изготовляют из чистых металлов: меди, платины, никеля, железа, реже из молибдена и вольфрама. Для большинства чистых металлов температурный коэффициент электрического сопротивления составляет примерно (4—6,5) 10-3 1/°С, т. е. при увеличении температуры на 1 °С сопротивление металлического терморезистора увеличивается на 0,4—0,65 %. Наибольшее распространение получили медные и платиновые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффициент сопротивления, чем медные и платиновые, однако применяются они реже. Дело в том, что железо и никель сильно окисляются и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает температурный коэффициент сопротивления. Сплавы металлов и окисляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры приходится применять такие жаропрочные металлы, как вольфрам и молибден, хотя терморезисторы из них имеют характеристики, несколько отличающиеся от образца к образцу.

Широкое применение в автоматике получили полупроводниковые терморезисторы, которые для краткости называют термисторами. Материалом для их изготовления служат смеси оксидов марганца, никеля и кобальта; германий и кремний с различными примесями и др.

По сравнению с металлическими терморезисторами полупроводниковые имеют меньшие размеры в большие значения номинальных сопротивлений. Термисторы имеют на порядок больший температурный коэффициент сопротивления (до -6 10-2 1/ºС). Но этот коэффициент — отрицательный, т. е. при увеличении температуры сопротивление термистора уменьшается. Существенный недостаток полупроводниковых терморезисторов по сравнению с металлическими — непостоянство температурного коэффициента сопротивления. С ростом температуры он сильно падает, т. е. термистор имеет нелинейную характеристику. При массовом производстве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

(1)

где С — постоянный коэффициент, зависящий от материала и конструктивных размеров проводника; α температурный коэффициент сопротивления; е — основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в градусах Цельсия соотношением Т К= 273 + Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при начальной температуре Т0 и имел сопротивление . При нагреве до температурыT его сопротивление . Возьмем отношение RT и R0:

(2)

Известно, что функцию вида ex можно разложить в степенной ряд:

Для нашего случая . Так как величина α для меди сравнительно мала и в диапазоне температур до +150 °С может быть принята постоянной α = 4,3 10-3 1/ºС, то и произведение в этом диапазоне температур меньше единицы. Поэтому не будет большой ошибкой пренебречь при разложении членами ряда второй степени и выше:

(3)

Выразим сопротивление при температуре T через начальное сопротивление при T0

(4)

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные) с соответствующей градуировкой: гр. 23 имеет сопротивление 53,00 Ом при 0 ºC; гр. 24 имеет сопротивление 100,00 Ом при 0 ºC. Медные терморезисторы выполняются из проволоки диаметром не менее 0,1 мм, покрытой для изоляции эмалью.

Для платиновых терморезисторов, которые применяются в более широком диапазоне температур, чем медные, следует учитывать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции ex.

В диапазоне температур от -50 до 700 °С достаточно точной является формула

(5)

где для платины α = 3,94 10-3 1/ºС, β = 5,8 10-7 (1/ºС)2.

Платиновые терморезисторы выпускаются серийно и обозначаются ТСП (термосопротивления платиновые) с соответствующей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0 °С, гр. 21 — 46,00 Ом; гр. 22 — 100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.

В табл. 1 приведены зависимости сопротивления металлических терморезисторов от температуры; они называются стандартными градуировочными таблицами.

Таблица 1. Зависимость сопротивления терморезисторов от температуры

Температура, °С

Сопротивление, Ом

Платиновые термометры сопротивления

Медные термометры сопротивления

гр. 20

гр. 21

гр. 22

гр. 23

гр. 24

-200

1,73

7,95

17,28

-150

3,88

17,85

38,80

-100

5,97

27,44

59,65

-50

8,00

36,80

80,00

41,71

78,70

-30

8,80

40,50

88,04

46,23

87,22

-10

9,60

44,17

96,03

50,74

95,74

0

10,00

46,00

100,00

53,00

100,00

20

10,79

46,94

107,91

57,52

108,52

40

11,58

53,26

115,78

62,03

117,04

60

12,36

56,86

123,60

66,55

125,56

80

13,14

60,43

131,37

71,06

1 34,08

100

13,91

63,99

139,10

75,58

142,60

120

14,68

67,52

146,78

80,09

151,12

140

15,44

71,03

154,41

84,61

159,64

160

16,20

74,52

162,00

89,13

168,16

180

16,95

77,99

169,54

93,64

176,68

300

21,38

98,34

213,79

400

24,94

114,72

249,38

500

28,38

130,55

283,80

600

21,70

145,85

317,06

650

33,33

153,30

333,25

На рис. 1 показано устройство платинового термометра сопротивления. Сам терморезистор выполнен из платиновой проволоки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Серебряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный чехол 7.

Рис. 1. Платиновый термометр сопротивления

1.2. Терморезисторы Общие сведения

Большинство рассмотренных выше температурных датчи­ков

обладают большой себестоимостью, существенными разме­рами и при этом необходимо применять специальные (достаточно слож­ные) электронные узлы для обеспечения их работы. Простые электронные конструкции используют в качестве термодат­чиков, в основном, терморезисторы. О них и пойдет речь ниже.

Терморезистор — это устройство, сопротивление которого значительно изменяется с изменением температуры. Это резистивный прибор, обладающий высоким ТКС (температурным ко­эффициентом сопротивления) в широком диапазоне температур. Различают терморезисторы с отрицательным ТКС, сопротивле­ние которых падает с возрастанием температуры, часто называе­мые термисторами, и терморезисторы с положительным ТКС, сопротивление которых увеличивается с возрастанием темпе­ратуры. Такие терморезисторы называются позисторами. Термо­резисторы обоих типов изготавливают из полупроводниковых материалов, диапазон изменения их ТКС — (-6,5…+70)%/С. Терморезисторный эффект заключается в изменении сопротивления полупроводника в большую или меньшую сторону за счет убыва­ния или возрастания его температуры. Однако сам механизм из­менения сопротивления с температурой отличен от подобного явления в металлах (о чем и говорит факт уменьшения сопротив­ления при увеличении температуры), а особенности этого физи­ческого эффекта будут подробнее рассмотрены ниже.

Известно, что в 1833 году Фарадей обнаружил отрицатель­ный ТКС у сульфида серебра, но отсутствие сведений о явлении в контактах металл-полупроводник препятствовало изготовлению приборов с воспроизводимыми характеристиками. В 30-х годах двадцатого века у оксидов Fe3O4 и UO2 ученые-химики обнару­жили высокий отрицательный температурный коэффициент со­противления. В начале 40-х этот ряд пополнился NiO, CoO, соединениями NiO-Со2O3-Мn2О3 . Интервал удельных сопротивле­ний расширился благодаря добавлению оксида меди Мn3О4 в со­единение NiO-Мn2 О3 .

Терморезисторы с отрицательным ТКС изготавливаются из оксидов металлов с незаполненными электронными уровнями, и при низких температурах обмен электронами соседних ионов за­трудняется, при этом электропроводность вещества мала. Если температура увеличивается, то электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носите­лей заряда.

Другие терморезистoры имеют положительный тем­пературный коэффициент сопротивления в некотором интервале температур. Такие терморезисторы на жаргоне радиотехников на­зывают позисторами.

Терморезисторы с положительным ТКС можно разделить на 2 группы:

  1. Терморезисторы из полупроводникового материала (обычно Si) в форме небольших пластин с двумя выводами на противоположных сторонах. Их применение основано на том, что легированные кристаллы Si (кремния) как n-, так и р-типа имеют положительный ТКС при температуре от криогенных до 150°С и выше, причем ТКС при комнатной температуре пример­ но равен 0,8% на 1 oС.

Терморезисторы с большим ТКС (до 70% на 1oС), но в более ограниченном диапазоне температур. Материалом в данном случае является поликристаллический полупроводнико­вый титанат бария с большим изменением ТКС при температу­ре 120°С, соответствующей сегнетоэлектрической точке Кюри этого материала. Добавляя другие материалы, например, тита­нат свинца или стронций, такое изменение ТКС можно получить при температурах от -100 до +250°С. Можно также изменить наклон кривой сопротивления так, что большее изменение тем­ператур будет происходить в более узком интервале темпера­тур, например 0…100°С.

Основные параметры терморезисторов

Как и любой технический прибор, терморезисторы имеют ряд параметров и характеристик, знание которых позволяет выяс­нить возможность использования данного терморезистора для решения определенной технической задачи.

  1. Габаритные размеры.

  2. Величина сопротивления образцов Rt и RT (в Ом) при оп­ределенной температуре окружающей среды t, °C, или Т, К. Для терморезисторов, рассчитанных на рабочие температуры при­мерно от -100 до +125…200°С, температура окружающей среды принимается равной 20 или 25°С и величина R, называется «хо­лодным сопротивлением».

  3. Величина ТКС а в процентах на 1°С. Обычно она указы­вается для той же температуры t, что и холодное сопротивление, и в этом случае обозначается через at: a=(dR/R)/dT*100%=-B/T2,

  4. Постоянная времени τ (в секундах), характеризующая те­пловую инерционность терморезистора. Она равна времени, в те­чение которого температура терморезистора изменяется на 63% от разности температур образца и окружающей среды. Чаще все­го эту разность берут равной 100°С.

  5. Максимально допустимая температура tmax, до которой характеристики терморезистора долгое время остаются ста­бильными.

  6. Максимально допустимая мощность рассеивания Рmах в Вт, не вызывающая необратимых изменений характеристик тер­морезистора. Естественно, при нагрузке терморезистора мощно­ стью Рmах его температура не должна превышать tmax.

  7. Коэффициент рассеяния Н в Вт на 1°С. Численно равен мощности, рассеиваемой на терморезисторе при разности темпе­ратур образца и окружающей среды в 1°С.

  8. Коэффициент температурной чувствительности В, раз­мерность — К:

В =[ (T1*T2)/(T2-T1) *Ln(R1/R2)

  1. Коэффициент энергетической чувствительности G в Вт/%R, численно равен мощности, которую нужно рассеять на терморезисторе для уменьшения его сопротивления на 1 %. Коэф­фициенты рассеяния и энергетической чувствительности зависят от параметров полупроводникового материала и от характера теплообмена между образцом и окружающей средой. Величины G, Н и а связаны соотношением: G=H/100a

  2. Теплоемкость С в Дж на 1°С, равная количеству тепла (энергии), необходимому для повышения температуры терморе­зистора на 1°С. Можно доказать, что τ, Н и С связаны между со­бой следующим соотношением: τ= С / H

Для позисторов, кроме ряда приведенных выше пара­метров, обычно указывают также еще примерное положение интервала положительного температурного коэффициента со­противления, а также кратность изменения сопротивления в об­ласти положительного ТКС.

Основные характеристики терморезисторов

  1. ВАХ — зависимость напряжения на терморезисторе от тока, проходящего через него. Снимается в условиях тепловогоравновесия с окружающей средой. На рис. 1.1 и 1.2 график (А) соответствует терморезистору с отрицательным ТКС, (Б) — с положительным.

Рис.1.1.Вольт-амперная характеристика терморезистора

Рис.1.2.

Температурная характеристика — зависимость R(T), сни­мающаяся в установившемся режиме. Принятые допущения: мас­штаб по оси R взят возрастающим по закону 10х, по оси Т пропущен участок в интервале (0…223) К (см. рис. 1.2).

Рис. 1.3. Зависимость сопротивления терморезистора от подво­димой мощности

  1. Подогревная характеристика — характеристика, свойст­венная терморезисторам косвенного подогрева — зависимость сопротивления резистора от подводимой мощности. Принятые допущения: масштаб по оси R взят возрастающим по закону 10x (рис. 1.3).

Терморезисторы: принцип работы

Терморезисторы относятся к категории полупроводниковых приборов и широко используются в электротехнике. Для их изготовления применяются специальные полупроводниковые материалы, имеющие значительный отрицательный температурный коэффициент. Если в целом рассматривать терморезисторы, принцип работы этих устройств заключается в том, что электрическое сопротивление данных проводников, полностью зависит от температуры. В данном случае, учитываются формы и размеры терморезистора, а также, физические свойства полупроводника. Отрицательный температурный коэффициент в несколько раз превышает такой же показатель для металлов.

Устройство и действие терморезисторов

Наиболее распространенные терморезисторы изготавливаются в виде полупроводникового стержня, покрытого эмалевой краской. К нему подводятся выводы и контактные колпачки, использующиеся только в сухой среде. Отдельные конструкции терморезисторов помещаются в герметичном металлическом корпусе. Они могут свободно применяться в помещениях с любой влажностью и легко переносят влияние агрессивной среды.

Герметичность конструкции обеспечивается с помощью стекла и олова. Стержни в таких терморезисторах оборачиваются металлической фольгой, а для токоотвода используется никелевая проволока. Номинальные значения терморезисторов находятся в диапазоне от 1 до 200 кОм, а их температурный диапазон находится в пределах от -100 до +129 градусов.

В работе терморезисторов применено свойство проводников, изменять значение сопротивления в зависимости от температуры. Для этих приборов применяются металлы в чистом виде, чаще всего, платина и медь.

Использование терморезисторов

Многие конструкции терморезисторов применяются в приборах, контролирующих и регулирующих температуру. У них имеется источник тока, чувствительный элемент и измерительный уравновешенный мост. В уравновешенное состояние мост приводится путем перемещения движка реостата. В результате, реостатная величина находится в пропорции с измеряемым сопротивлением, которое полностью зависит от температуры.

Кроме уравновешенных измерительных мостов, применяется неуравновешенный вариант, у который обладает повышенной надежностью. Однако, у такого прибора, точность измерений значительно ниже, поскольку на него влияют колебания напряжения в источнике тока. Например, термометр сопротивления на основе платины, позволяет измерять температуру в пределах от -10 до +120 градусов. Относительная влажность может доходить до 98%.

Принцип действия такого прибора основан на изменении сопротивления платины в зависимости от изменений температуры. Непосредственная фиксация результатов измерения сопротивления осуществляется с помощью вторичного прибора, оборудованного шкалой.

Термистор: принцип работы

Содержание:
  1. Термисторы: устройство и принцип работы
  2. Применение термисторов
  3. Видео: что такое термистор / терморезистор / термосопротивление

Термисторы являются разновидностью терморезисторов и относятся к категории приборов на основе полупроводников. Данные устройства получили широкое применение в электротехнике. Они изготавливаются из специальных полупроводниковых материалов с высоким отрицательным температурным коэффициентом. Во многих приборах используется термистор принцип работы которого основан на зависимости электрического сопротивления от температуры. Качество любого прибора, прежде всего, зависит от физических свойств полупроводника, а также от форм и размеров самого терморезистора.

Термисторы: устройство и принцип работы

Термистор представляет собой терморезистор с отрицательным температурным коэффициентом сопротивления. Эти устройства изготавливаются в виде полупроводниковых стержней и покрываются защитным слоем эмалевой краски.

Соединение с другими деталями осуществляется с помощью контактных колпачков и выводов, для которых подходит только сухая среда. Для размещения некоторых моделей термисторов используется металлический герметичный корпус. В этом случае они становятся устойчивыми к любым агрессивным воздействиям и могут эксплуатироваться даже при высокой влажности в помещении.

Для того чтобы конструкция устройства была герметичной, применяется стекло и олово. Рабочие качества термисторов улучшаются, когда для оборачивания стержней применяется металлическая фольга. Токоотводы изготавливаются из никелевой проволоки. Номинальные значения сопротивления в различных устройствах находятся в пределах 1-200 кОм, а диапазон температур составляет от -100 до +1290С.

Работа термисторов основана на свойствах отдельных видов проводников, изменять показатели сопротивления под действием различных температур. Основными проводниками, используемыми в этих приборах, является медь и платина в чистом виде. Следует отметить, что значение отрицательного температурного коэффициента термисторов значительно превышает такие же параметры, свойственные обычным металлам.

Применение термисторов

Терморезисторы применяемые в качестве датчиков, могут работать в двух режимах. В первом случае температурный режим зависит лишь от температуры окружающей среды. Значение тока, проходящего через термистор, очень мало и нагревания устройства практически не происходит. Второй режим предполагает нагревание термистора электрическим током, проходящим внутри него. В данном случае значение температуры будет зависеть от различных изменяющихся условий тепловой отдачи. Это может быть плотность газовой среды, окружающей прибор, интенсивность обдува и другие факторы.

Каждый термистор, принцип работы которого основан на снижении сопротивления при повышении температуры, используется в определенных сферах электротехники. Они применяются для измерения и компенсации температуры, в крупных бытовых электроприборах — холодильниках и морозильных камерах, посудомоечных машинах и другой технике. Эти устройства нашли широкое применение в автомобильной электронике. С их помощью измеряется температура охлаждающей жидкости или масла, а также температурные показатели других элементов автомобиля.

В кондиционере термисторы устанавливаются в тепловом распределителе. Кроме того, они используются в качестве датчика слежения за температурой в комнате. С помощью термисторов осуществляется блокировка дверей нагревательных приборов, они устанавливаются в нагреватели теплых полов и в газовые котлы. Терморезисторы применяются, когда нужно определить уровень нестандартных жидкостей, например, жидкого азота. В целом, они получили самое широкое распространение в промышленной электронике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *