Наружное освещение города – СН 541-82 Инструкция по проектированию наружного освещения городов, поселков и сельских населенных пунктов, СН (Строительные нормы) от 14 января 1982 года №541-82

Освещение города: принципы построения и управления

Каким должно быть городское освещение?

Каким должно быть городское освещение?

Наружное освещение городских территорий является одним из важнейших элементов создания комфортных условий для проживания в населенном пункте. Несмотря на мнимую спонтанность данного аспекта, освещение в городе подчиняется целому ряду норм и правил. Это и нормы строительства, и нормы освещенности, и нормы ПУЭ.

Но каждый из этих элементов дает лишь фрагмент требований к освещенности городов. Мы же постараемся объединить все эти нормативы для создания целостного образа правильного монтажа освещения в городе.

Нормы городского освещения

Городское освещение улиц можно разделить на две составляющие – это освещение автомобильных дорог и освещение пешеходных зон. Понятное дело для каждых из этих составляющих существуют собственные нормативы, которые собраны в СНиП 23 – 05 – 95.

Освещение автомобильных дорог

От чего же зависит яркость освещения автомобильных дорог? Для ответа на этот вопрос давайте разберем какие факторы могут влиять на этот показатель.

Интенсивность движения на автомагистрали

Интенсивность движения на автомагистрали

  • Прежде всего это конечно интенсивность использования дороги. То есть то количество машин, которые проезжают по ней в течении часа. Как велит инструкция, этот показатель условно разделили на 4 категории. Это автомагистрали, по которым проезжает более 3000 машин в час; магистрали — нагрузка на которых составляет от 3000 до 1000 машин в час; дороги, по которым за час проезжает от 500 до 1000 автомобилей, и дороги, по которым за час проезжает менее 500 автомобилей.
  • Но не только интенсивность движения определяет приоритетность дороги. Согласитесь, скоростные магистрали должны освещаться гораздо лучше, чем небольшие дороги местного значения. Даже в том случае, если интенсивность движения по этой магистрали не так велика. Или, например, главные улицы городов в исторической части населенных пунктов, которые специально разгрузили от потока машин, должны лучше освещаться, чем такие же по интенсивности дороги в других районах города. Ведь они должны соответствовать общему уровню освещенности на улице.
Категории автомобильных дорог

Категории автомобильных дорог

  • Все это достаточно условные параметры и больше относятся к вопросам градостроительства. В связи с этим, в этом вопросе СНиП 23 – 05 – 95 ссылается на СП 42.13330.2011 который в таблице 7 и устанавливает требования к улицам и дорогам различного назначения. СП 42.13330.2011 в свою очередь ссылается на СНиП 2.05.02-85, который устанавливает категории автомобильных дорог.
Категории автомобильных дорог по СНиП 2.05.02-85

Категории автомобильных дорог по СНиП 2.05.02-85

  • Исходя из этих двух условий, таблица 11 СНиП 23 – 05 – 95 устанавливает нормы освещенности для различных типов дорог. Они колеблются от 4 до 20 лк. При этом нормируется не только средняя освещенность, но и средняя яркость покрытия, которая варьирует от 0,2кд/м2 для дорог местного значения с одиночными автомобилями, до 1,6кд/м2
    на автомагистралях с интенсивным движением.
  • Но схема освещения городов должна предполагать хорошее освещение и в местах пересечения дорог разного типа. То есть, если у нас пересекается магистраль и дорога местного значения, то освещение в месте пересечения должно быть выполнено как для освещения основной дороги. Это же касается и съездов с автомагистралей.
Нормы освещенности автомобильных дорог

Нормы освещенности автомобильных дорог

  • Отдельным вопросом является и отношение минимальной яркости к средней.
    Обратите внимание именно к средней. Так для дороги в целом это соотношение не должно превышать 0,35. Для одной же полосы движения этот перепад не должен превышать 0,6.

В видео рассказывается о том, как работает уличное освещение в Москве.

Нормы освещения пешеходных зон

Устройство освещения городов для пешеходов значительно сложнее привязать к загруженности улиц. Поэтому требования по освещенности обычно привязываются к значению населённого пункта, а также отдельных улиц в нем.

Но есть еще парковые зоны, площади, хозяйственные площадки, придомовая территория и многое другое, что также должно быть освещено. Поэтому с освещением пешеходных зон все немного сложнее.

Обратите внимание! Здесь и далее мы приводим среднее значение освещенности. Нормы отношения минимального освещения к среднему для пешеходных зон, такое же, как и у автомобильных дорог.

Освещение пешеходных зон, примыкающих к дороге

Освещение пешеходных зон, примыкающих к дороге

Начнем наш разговор с пешеходных зон примыкающим к автодорогам. Если это центральные улицы, то здесь освещенность должна быть не меньше 10лк. Если они отделены от автомагистралей, то допускается освещённость снизить до 4лк, а для улиц местного значения до 2лк.
Освещение остановки

Освещение остановки

Для остановок и других мест посадки и высадки пассажиров норма освещенности составляет 10лк. Такая же норма действует для пешеходных мостиков. А вот для пешеходных переходов освещенность днем должна составлять 100лк, в вечернее и ночное время она должна снижаться до 50лк. Это делается с целью исключения слепящего эффекта.
На фото нормы освещения различных объектов

На фото нормы освещения различных объектов

Что касается освещения территории микрорайонов, то основные пути должны иметь освещенность не менее 4лк. Второстепенные подходы всего 2 лк. А вот детские площадки должны иметь нормальное освещение. Оно должно составлять не менее 10лк.
Освещение мест отдыха

Освещение мест отдыха

Что касается мест отдыха, таких как общегородские или местные парки, стадионы, выставки, то здесь требуемые параметры освещенности достаточно сильно колеблются. Например, центральный вход в парк общегородского значения должен быть освещен не менее чем в 6 лк, на стадион 10 лк, а в парк местного значения всего 4 лк. Это же касается вспомогательных входов, аллей и зон отдыха. Все эти значения сведены в таблицу 14 СНиП 23 – 05 – 95.
Освещенность в сельской местности

Освещенность в сельской местности

Отдельные нормы существуют для сельских дорог и улиц, освещенности вокруг общественных зданий, детских учреждений, парковок, автозаправочных станций и других объектов инфраструктуры. Разбирать каждый из этих нормативов не имеет смысла ведь большинство из них колеблется в пределах 10 – 2лк.

Принципы построения уличного освещения

Если вам кажется, что организация уличного освещения города это просто, то вы глубоко ошибаетесь. Ведь при создании городского освещения проектировщики должны учитывать не только требуемы параметры освещенности.

При расчетах учитываются такие показатели как: зернистость и отраженная составляющая асфальтного покрытия, запыленность улиц, количество осадков, ширина улиц, окружающая цветовая гамма, световые шумы и многое, многое другое. И все это, исходя из концепции развития города на ближайшие 10 лет.

Односторонняя схема освещения дороги

Односторонняя схема освещения дороги

  • Конечно обсуждать каждый из этих критериев мы не будем. Ведь для полного раскрытия этой тематики научно-исследовательские институты составляют целые трактаты. И своими руками такие системы не построить. Но вот на основных аспектах принципа построения мы остановимся.
Двухрядное шахматное расположение светильников

Двухрядное шахматное расположение светильников

  • Начнем с освещения автомобильных дорог. Оно может быть выполнено двумя способами – за счет установки светильников на специальных опорах и за счет подвеса светильников на тросах.
  • Какую схему и где применять, решают путем расчета. Одним из основных параметров в этом расчете является ширина дорожного покрытия. Так, при ширине дорожного покрытия до 12 метров рекомендуется применять одностороннюю схему установки светильников на столбах. При ширине до 18 метров рекомендуют применять двухрядную систему с шахматным расположением светильников на столбах. При ширине до 32 метров прямоугольную шахматную схему.
Двухрядная система освещения

Двухрядная система освещения

  • Если у нас имеется разделительная полоса между полосами движения, как на видео, то при ширине дороги в одну сторону до 12 метров рекомендуется использовать двухрядную систему освещения — это когда светильники устанавливаются на столбах, и один светильник освещает одну полосу движения, а второй вторую.
Схемы освещения автомобильных дорог

Схемы освещения автомобильных дорог

  • Что касается подвеса светильников на тросах, то однорядную схему рекомендуют использовать для дорог с шириной до 18 метров. Для дорог шириной до 36 метров рекомендуется использоваться двухрядную схему.

Обратите внимание! Все это, не более чем рекомендации нормативного документа. Окончательный выбор проекта освещения осуществляется, исходя из расчета и удобства обслуживания таких светильников.

  • Важной составляющей схемы освещения городов является должный уровень света над перекрестками, пешеходными переходами и переездами. Для них так же разработаны определенные рекомендации. Так, для освещения пешеходных переходов устанавливается по одному светильнику с каждой стороны дороги. Причем они должны быть расположены справа от пешехода, переходящего дорогу. Расстояние между этими светильниками должно составлять 1,5 размера ширины дороги.
Схема освещения закруглений дороги, переездов, перекрестков и пешеходных переходов

Схема освещения закруглений дороги, переездов, перекрестков и пешеходных переходов

  • Что касается освещения площадей, парковых зон, пешеходных дорожек и других зон отдыха, то п.10.16 СНиП 2 – 4 – 79 рекомендует его выполнять с акцентом на архитектурно-художественный облик города. При этом рекомендуется максимально использовать кронштейны, контактные соединения общественного транспорта и другие места установки светильников для минимизации использования столбов.

Управление уличным освещением

Все дорожное и городское освещение должно иметь единую систему централизованного управления. При больших расстояниях между объектами или при наличии природных препятствий, их допускается разделить на районные схемы управления освещением. Но в любом случае они должны иметь централизованное управление по средству телефонной или радиосвязи.

Схемы управления наружным освещением

Схемы управления наружным освещением

  • Согласно норм ПУЭ управление городским освещением может осуществляться автоматически. Но при этом, в любом случае, должна быть обеспечена возможность принудительного ручного управления освещением. Это необходимо для выполнения ремонтных работ, при неисправности автоматических систем управления и в случае экстренных ситуаций.
Освещение тоннелей

Освещение тоннелей

  • Схема освещения города должна быть двухуровневой, если у нас имеются такие объекты, как подземные переходы, тоннели и другие, относящиеся ко второй степени по уровню надежности электроснабжения. Второй уровень означает, что прекращение электроснабжения таких объектов недопустимо. Все остальное освещение города относится к третьему уровню надежности.
  • Двухуровневая система управления обозначает, что часть светильников работает днем, а часть и днем, и ночью. Возможен вариант трех- и более уровневой системы управления. Тут главным фактором является цена, которая для многоуровневых систем несколько выше.
Управление включение отдельных светильников

Управление включение отдельных светильников

  • Многоуровневая система управления освещением допускается и для систем освещения города. Но при этом согласно п. 6.5.25 ПУЭ не допускается одновременное отключение двух смежных светильников. То есть глубокой ночью, для снижения потребления допускается отключить до 50% освещения города.
Шкаф наружного освещения

Шкаф наружного освещения

  • Управление наружным освещение придомовых территорий, а также зон перед общественными зданиями осуществляется из этих зданий. Для этого они должны иметь специальный щит наружного освещения. Не подключать к нему, можно только светильник над входом в здание. Он может быть подключен к внутридомовым сетям.

Вывод

Освещение городских улиц вопрос многогранный и не однозначный. С одной стороны, существуют жесткие нормы по созданию средней освещенности, с другой стороны эти нормы не должны препятствовать нормальному восприятию человека, а также ложиться неподъемным грузом на местный бюджет. Поэтому при его создании возможны варианты, которые зависят от того, какая из точек зрения преобладала при выборе проекта.

Наружное освещение городов

Единство светового облика города

Осветительные установки в городах, поселках городского типа и сельских населенных пунктах должны обеспечивать не только требования безопасности движения транспорта и людей, но и быть частью гармонической композиции вечернего облика города.

В искусственном освещении города различаются отдельные элементы, действующие совместно, большей частью одновременно, активно влияющие друг на друга и зависящие один от другого, которыми являются: освещение проезжей части города, световые указатели, сигнализация, освещение архитектурных сооружений (малые формы архитектуры, монументы, зеленые насаждения и т. д.), информационное и рекламное освещение (освещение витрин магазинов, ресторанов и различных учреждений культуры и отдыха).

Праздничное освещение тоже взаимодействует с другими элементами освещения города. Освещение улиц и прилегающих к ним тротуаров осуществляется не только светильниками уличного освещения: значительная часть светового потока на них попадает и от светильников архитектурного освещения фасадов зданий, освещенных витрин и световой рекламы.

На фасад здания, со специальным освещением падает свет от светильников уличного освещения, от рекламных огней, витрин здания, находящегося напротив освещаемого, и т. д.

В осветительных установках городов необходимо определить рекомендуемые типы источников света и светильников, распределить их по площадям и улицам города, установить высоту их размещения относительно проезжей части улицы или площади, выбрать высоту и конструкцию опор. Необходимо выявить степень влияния освещенной витрины на освещенность тротуара и проезжей части улицы, а также фасада здания противоположной стороны улицы.

В комплексе с освещением улицы разрабатывают освещение фасадов зданий исторического или культурного назначения. После этого разрабатывают световую рекламу и информацию. Рекламное решение надо рассматривать в связи со всем световым решением города. Реклама и световая информация — одно из средств выразительности в решении общей задачи создания световой архитектуры.

При освещении садов, бульваров и скверов следует учитывать, что в районе зеленых насаждений обычно отсутствуют дополнительные световые потоки, обусловленные архитектурным, рекламным и витринным освещением.

В архитектурно-художественном аспекте сложный комплекс искусственного освещения представляет собой гармонически связанное художественное произведение, в котором архитектурное решение освещения улицы зависит не столько от уровней освещенности, сколько от гармонического сочетания и стилевого единства отдельных частей осветительной установки и степени уменьшения блескости в поле зрения.

Освещение улиц, дорог и площадей

Проектирование наружного освещения городов следует выполнять в соответствии с СН541—82 (Инструкция по проектированию наружного освещения городов, поселков городского типа и сельских населенных пунктов).

В установках наружного освещения городов при средней яркости покрытия 0,4 кд/м2 и выше и средней освещенности 4 лк и выше следует применять газоразрядные источники света — преимущественно лампы ДРЛ, МГЛ, НЛВД. В Москве и в других городах для освещения площадей используют ксеноновые лампы ДКсТ. Лампы накаливания применяют только в поселках или на городских улицах местного значения. Люминесцентные лампы используют редко, в основном в южных курортных небольших городах, так как эксплуатация их в средней и северной климатических зонах затруднительна.

Транспортные и пешеходные тоннели освещают газоразрядными источниками света, пешеходные тоннели преимущественно люминесцентными лампами типа ЛБ. Освещение транспортных тоннелей рекомендуется выполнять закрытыми светильниками, имеющими струезащищенное исполнение. Для освещения улиц и дорог с нормированной яркостью 0,4 кд/м2 и выше или средней освещенностью 4 лк применяют светильники, имеющие широкое или полу широкое светораспределение.

Освещение аллей, пешеходных и прогулочных дорожек выполняется обычно венчающими светильниками рассеянного или преимущественно прямого света. Широко распространены светильники типа СВР с лампами ДРЛ мощностью 125 и 250 Вт. Узкие проезды, тротуары и площадки, расположенные у зданий, освещаются светильниками, установленными на стенах зданий, при условии обеспечения удобного доступа к ним, например, типа РБУ с лампой типа ДРЛ мощностью 125 Вт.

Уличное освещение городов, цели, задачи, нормативы

Вопросы и нюансы, связанные с уличным освещением города, причем любого — и небольшого провинциального райцентра и общероссийского значения, регламентируются на федеральном уровне — СНиП 23-05-95 «Естественное и искусственное уличное освещение», так и на местном. Причем законодательные акты и распоряжения, принимаемые региональными органами власти и муниципалитетами, не могут противоречить федеральным. Рассмотрим, какие цели достигаются, и какие задачи решаются освещением городских территорий в темное время суток.

Цели уличного освещения

Какие цели преследует современное уличное освещение? Можно выделить три основных:

  1. Благоприятные условия для человека.
  2. Безопасность.
  3. Эстетичность. 

Это очень кратко. Если подходить более подробно, то очевидно, что любой человек чувствует себя и спокойнее, увереннее при нормальном освещении. Соответственно, и недостаточное и избыточное не будет этому способствовать. Как и его полное отсутствие. О двух других целях расскажем более детально.

Уличное освещение

Уличное освещение и общественная безопасность

В данной сфере решаются следующие задачи:

  • повышение безопасности для участников дорожного движения;
  • снижение уровня преступлений и противоправных действий;
  • обеспечение гражданам их гарантированных прав на безопасность и ряда личных прав. 

Что касается дорожного движения, то давно уже установлено и доказано, что недостаточный уровень освещенности на проезжей части серьезно повышает риск возникновения ДТП. Многим пешеходам, например, кажется, что если автомобиль движется с включенными фарами, то они будут хорошо видны водителю на достаточно большом расстоянии. Это очень опасное заблуждение, стоившее многим и здоровья и жизни. Таких неприятностей можно легко избежать, при наличии работающих уличных осветительных приборов, и отсутствии на дороге затемненных мест. Ни для кого не секрет, что большинство правонарушений происходят именно в темное время суток в слабоосвещенных местах, где преступника плохо видно, и он может «подкараулить» жертву. Да и запомнить его приметы в полумраке, а тем более в темноте, достаточно сложно, если вообще возможно. А вот яркое освещение, как правило, заставляет их воздержаться от преступления.

Вопросы эстетики и наружного освещения

В темноте, при грамотном решении вопроса с уличными светильниками, город преобразуется до неузнаваемости. Любые объекты и сооружения, вполне обыденно выглядящие днем, приобретают неповторимый, удивительный вид при их вечернем или ночном освещении, особенно это заметно в случае с парками и скверами. Садово-парковое освещение, требует не только грамотного подхода и четкого соответствия требованиям нормативов, но и красоты самих источников света, которые должны быть гармонично вписаны в общий ландшафтный дизайн. В данном случае используются не только мачты городского освещения, но и различные световые приборы, монтирующиеся на деревьях, и других объектах, и, что не редкость, непосредственно в дорожное покрытие (подсветка нижнего уровня).

Cадово-парковое освещение

Уличное освещение и экономия

Многие муниципальные власти нередко решают сократить расходование бюджетных средств за счет отключения уличного освещения. В итоге получается псевдоэкономия – затраты на освещение не так высоки, и, как правило, не сильно обременяют специальные фонды муниципального образования. С другой стороны, более частые отключения приводят к преждевременному выходу из строя ламп, и, кроме того, косвенные убытки от этого могут быть значительны – ущерб от преступных посягательств на граждан и собственность. В данном случае, лучше снижать затраты заменяя устаревшие уличные светильники на новые, а также использовать эффективные источники света, обладающие улучшенными характеристиками. Конечно на современные системы уличного освещения цена выше, чем на морально-устаревшие, что нередко побуждает местные власти затягивать решение вопросов, связанных с их модернизацией. Но грамотный управленец, сразу же, увидит экономическую выгоду от внедрения новых систем. И не будет этому препятствовать.

Организация городского уличного освещения в Москве

В небольшом городе, данными вопросами, как правило, занимается подразделение, входящее в состав муниципальных служб. Иное дело – город Москва – современный крупнейший мегаполис, с населением более пятнадцати миллионов человек, сотнями километров улиц и дорог, множеством парков, скверов, дворовых и прилегающих территорий. Естественно, одно отделение с такой серьезной задачей вряд ли справится. Вопросами обслуживания, текущего и капитального ремонта уличного освещения Москвы, занимается частная специализированная и сертифицированная организация, созданная в форме акционерного общества АО «Мосгорсвет». В ее ведении находится порядка 50 000 приборов и устройств осветительной системы, а общая длина токопроводящих сетей составляет более 2 000 километров. И это все в одной только Москве.

Уличное освещение Москва

Помимо перечисленных, данная компания, также решает задачи, связанные с проектированием систем освещения, что далеко не так просто, как кажется. Кроме соблюдения технических требований, подбора оптимального оборудования, и места размещения, необходимо учитывать и тот факт, что очень часто необходимо сохранить архитектурную гармонию, между старинными зданиями и современными осветительными приборами. Нередко, тот или иной исторический объект требует дополнительной подсветки, но использовать настенные светильники не представляется возможным – строение имеет историческую ценность, является архитектурным памятником и защищено законом. В этом случае приходится применять какие-то нестандартные решения. Дополнительно отметим, что в ведении акционерного общества находятся и вопросы управления освещением уличных рекламных стендов, и эксплуатацией разнообразной праздничной иллюминации. Для того, чтобы осознать масштаб выполняемой работы и уровень ответственности предприятия, занимающегося вопросами освещения Москве, вспомните, что бывает, если в каком-нибудь небольшом городе отключается свет на улице, или на ее участке? Возникает ощущение дискомфорта, на темный участок, как правило, никто старается особо не заходить. А теперь представьте аналогичное событие, в масштабах Москвы. Где интенсивность дорожного движения выше в разы. Так вот, можно смело утверждать, что отсутствие освещения на одной из улиц мегаполиса может привести к транспортным проблемам, при отключении нескольких улиц проблемы будут расти как снежный ком. И если вообразить себе ситуацию, что без уличного освещения останется весь город, даже на короткое время, то это приведет к полной остановке всего уличного движения, и серьезным проблем, связанным с ростом преступлений и правонарушений – все просто может погрузиться в хаос.

Уличное освещение частного сектора

В завершение статьи скажем несколько слов об уличном освещении частных домов и землевладений. Все связанные с этим вопросы, как правило, владелец решает сам. Сегодня эта задача вполне выполнима, поскольку рынок предлагает массу приборов, аппаратуры и токопроводящих материалов для современного уличного освещения, купить которые имеет возможность практически каждый. Единственное, не нужно забывать его правильно организовать, для чего лучше всего привлечь специалистов, и выбирать только качественную осветительную технику.

Свет в большом городе | Наука и жизнь

Горожане привыкли к тому, что вечером, лишь стемнеет, зажигаются уличные фонари, красиво подсвечиваются здания и мосты, освещаются пешеходные дорожки. Организация освещения в городах, особенно таких больших, как Москва, Санкт-Петербург, — своя, особая отрасль городского хозяйства.

Фото Дмитрия Зыкова.

Рис. 1. Каскадная схема включения сетей городского освещения.

Рис. 2. Внешний вид наиболее употребляемых источников света в наружном освещении.

Рис. 3. Прогнозы совершенствования источников света.

Рис. 4. Фотометрическое тело сил света лампы накаливания.

Рис. 5. Светораспределение светового прибора наружного освещения автодорог.

Фото Дмитрия Зыкова.

Рис. 6. Варианты опор наружного освещения.

Таблица 1. Основные характеристики применяемых в наружном освещении источников света.

Таблица 3. Рекомендуемые схемы расположения светильников при освещении автомобильных дорог.

Как приходит энергия в город

Большая часть поступающей в город электрической энергии вырабатывается генераторами на электростанциях, расположенных за пределами города. Внутри города она производится на теплоэлектроцентралях (ТЭЦ), работающих на природном газе и мазуте. Генераторы вырабатывают напряжения от 6 до 20 кВ. Для передачи энергии на небольшие расстояния внутри города (где потери относительно невелики) этого достаточно, а для передачи от загородной электростанции — нет. Она вся будет «съедена» сопротивлением проводов линий передач. Поэтому при передаче энергии от ГЭС напряжение повышают до 110—500 кВ. Делают это на трансформаторных подстанциях (ТП), которые располагаются рядом со станцией. Уровень, до которого следует повышать напряжение, пропорционален передаваемой энергии и расстоянию передачи. Преобразованная таким образом электроэнергия передаётся по воздушным (ВЛ) и кабельным (КЛ) линиям электропередачи (ЛЭП). В Москве, например, 1100 км воздушных и около 800 км кабельных линий.

На другой (приёмной) стороне ЛЭП создаётся система районных и местных трансформаторных понижающих подстанций, обеспечивающих поэтапное снижение напряжения до требуемого уровня. Сначала с 110—500 до 6—20 кВ, затем до общепринятого 0,38 кВ. Такая схема позволяет обойтись оборудованием меньших размеров. Электроэнергия для освещения распределяется по конкретным адресам города с помощью распределительных устройств (РУ). Это общая схема доставки электроэнергии в город, в том числе и для его освещения.

Воздушные линии имеют ряд преимуществ перед КЛ. Это, прежде всего, меньшая стоимость, большая ремонтопригодность, простота в обслуживании. С другой стороны, ВЛ имеют так называемую зону «отчуждения» — довольно обширный участок земли, проходящий под проводами, где запрещено проводить строительство, земляные и другие работы. Повреждаемость кабельных линий, уложенных в землю, на порядок ниже. Например, кабели в специальном коллекторе не боятся ни стихийных бедствий, ни землетрясений, ни порывов ветра, ни наводнений, ни обледенения. Воздушные же линии подвержены воздействию стихий. Так, 29 декабря минувшего года из-за обледенения произошли многочисленные обрывы проводов и падение опор ЛЭП в Москве и Московской области. Были случаи, когда хулиганы набрасывали на провода различные предметы, вызывающие короткое замыкание на изоляторах. Это опасно и для оборудования, и для людей, развлекающихся подобным образом.

Площадь поперечного сечения (специалисты его называют просто «сечение») проводов воздушных и жил кабельных линий электропередачи определяет пропускную способность ЛЭП. Чем больше сечение провода (кабеля), тем больше энергии по нему можно передать, а значит, бóльшую мощность доставить потребителю. При проектировании сечение рассчитывают с учётом рабочих и аварийных режимов. Например, сечение проводов воздушных линий, по которым подводится энергия в Москву, колеблется от 95 до 400 мм2.

Для повышения надёжности доставки энергии к потребителям практикуется резервирование оборудования. Об этом много писали и говорили, многое и делается в этой области. В Москве разработана и внедряется схема резервирования на уровне высокого напряжения 110—220 кВ. К питающим центрам подводится не одна линия, а несколько. Это означает, что к трансформаторным подстанциям на приёмной стороне проложены как воздушные линии, так и дублирующая кабельная линия. На подстанциях стали применять новые трёхтрансформаторные схемы построения. Если раньше для повышения надёжности использовался один дублирующий трансформатор, то теперь их два. В случае выхода из строя основного прибора это в несколько раз повышает вероятность срабатывания хотя бы одного трансформатора из двух резервных. Всё это позволяет обеспечить электроэнергией потребителей практически в любой ситуации.

Освещение города

Напряжение 6—20 кВ для городских нужд понижают до 0,38 кВ на местных городских трансформаторных подстанциях. Местные ТП в Москве — небольшие одноэтажные здания без окон, на железных дверях которых написано, например, ТП № 10 6/0,38 кВ. Это означает, что перед нами местная трансформаторная подстанция № 10, преобразующая входное напряжение 6 кВ в трёхфазное напряжение 380/220 В — стандартное напряжение, поставляемое на объекты бытового и коммунального хозяйства города (в том числе и городского освещения).

Главное назначение местных ТП — обеспечение жизнедеятельности предприятий, ЖКХ города и частных домовладений. Частично их используют и для энергоснабжения сетей наружного освещения. Использование отдельной подстанции единственно для электроснабжения сетей наружного освещения, как правило, нецелесообразно. Например, в Москве это оправдано только в центральной части города при организации освещения больших площадей, парков и улиц. Существующие трансформаторные подстанции, предназначенные для нужд городского освещения, как правило, имеют значительный запас неиспользованной мощности, за счёт которого обеспечивают энергией другие объекты городского коммунального хозяйства.

После трансформаторной подстанции электрическая энергия поступает на специальные устройства распределения (РУ) — это электрические устройства для приёма электроэнергии от ТП и распределения её по отдельным электрическим линиям (группам). В состав РУ входят: разъединители, трансформаторы тока, измерительные приборы, сборные силовые шины, оборудование коммутации нагрузки, электрические защитные устройства. Оборудование обычно размещают совместно с трансформаторной подстанцией, хотя иногда это делают и в отдельных электрощитовых помещениях, электрошкафах наружной установки, доступ в которые посторонним категорически запрещён.

В отличие от ТП, которые созданы, как правило, по однотипным схемам, распределительные устройства, применяемые в установках наружного освещения, имеют конструктивные особенности. Для них важна возможность подключения различного количества светильников в одной группе. Это позволяет отключать часть светильников в каждой линии, не отключая линию целиком (изменение режима освещения «вечер — ночь»). Например, вечером хорошо видно, что горят все светильники вдоль дороги, а в ночное время горит только каждый третий. Некоторые объекты не подлежат переводу на «ночной режим». Это остановки общественного транспорта, станции метро, пешеходные переходы, перекрёстки дорог, подъезды к больницам, внутренние дворовые территории и т.п.

В качестве материала токопроводящих жил для доставки электроэнергии от распределительных устройств до фонарей в городе для электрических линий 380 В используется электротехническая медь или алюминий. Медные проводники обладают примерно в полтора раза меньшим удельным сопротивлением, чем алюминиевые (0,0175 Ом · мм2/м у меди против 0,028 Ом · мм2/м у алюминия). Однако медь значительно тяжелее (8,9 · 103 кг/м3 у меди против 2,7 · 103 кг/м3 у алюминия) и существенно превосходит алюминий по стоимости. Учитывая это, в основной массе для устройства сетей городского наружного освещения применяют проводники с алюминиевыми жилами.

В последнее время при прокладке воздушных линий электропередач начали применять самонесущие изолированные провода (СИП). Жилы таких проводов (или одна из них, обычно нулевая, большего диаметра, несущая для всей связки) делаются достаточно прочными, чтобы удержать собственный вес при подвеске сети в пролёте опор. СИП долговечны, работоспособны в агрессивных климатических и химических условиях, обладают высокой стойкостью к механическим повреждениям. Технология монтажа самонесущих проводов значительно снижает трудоёмкость и сроки сооружения линии электропередачи. При превышении допустимых механических нагрузок линии (снег, ветер, обледенение, повреждение опоры ЛЭП) разрушается специальное ослабленное звено крепёжной арматуры и обрыва линии или разрушения опор не происходит. Применение СИП при реконструкции линии позволяет гарантировать стабильное и качественное электроснабжение наружного освещения.

Для управления включением наружного освещения в городе используется комплекс диспетчерских постов. Команду на включение освещения выдаёт диспетчерский пульт, и по специально выделенным линиям городской телефонной сети она поступает на силовые распределительные пункты, оборудованные телемеханическими устройствами. Они предназначены для приёма и обработки сигнала с пульта, а также для сбора информации о состоянии электроустановки и передачи её на диспетчерский пульт. С телемеханического устройства управляющий сигнал поступает на силовые коммутационные аппараты (контакторы), которые подают напряжение в сеть наружного освещения. Далее включение сетей происходит по каскаду, то есть от включённых участков сети, посредством специальных кабелей управления, напряжение поступает на коммутационные аппараты других распределительных пунктов, происходит их включение и так далее по цепочке. Каскадность достигается путём включения последующей линии освещения предыдущей (рис. 1). Этим достигается постепенность подключения мощностной нагрузки на подстанциях.

Некоторые каскадные цепи выполняются закольцованными, то есть информационный сигнал с последнего включённого РУ передаётся на головной управляющий пункт и поступает в систему телемеханической связи. При закольцованной схеме после включения освещения на пульте у оператора появляется сообщение об исполнении команды по всей цепи каскада или отображается донесение, что в цепи каскада произошло нарушение.

В тех случаях, когда недоступно дистанционное управление с диспетчерского поста, используется программное или фотометрическое управление.

Программное управление применяется для освещения магистралей, эстакад, мостов, площадей, улиц и т.д. Устройство программного управления представляет собой микропроцессор с кварцевыми часами, в прошивке которого заложено время включения и отключения освещения на каждые сутки года. В системе с фотометрическим управлением работают датчики естественной освещённости. Такую схему применяют для включения и отключения освещения локальных объектов: отдельных дворов, небольших скверов, пешеходных дорожек в малонаселённых районах.

Особенность электросетей наружного освещения — это подверженность воздействию внешних факторов, обусловленных жизнедеятельностью города. Основная их масса расположена вдоль проезжих частей улиц и магистралей. Наезд автомобиля на опору приводит к повреждению электропроводки и нарушению электроснабжения значительных участков освещаемой территории. Близость зелёных насаждений в ненастную ветреную погоду зачастую также может вызывать нарушения в работе сетей. Поэтому в перспективах развития наружного освещения заложено использование системы автоматического ввода резерва, обеспечивающей незамедлительный переход на запасной вариант электроснабжения при прекращении питания от основного источника энергии.

Совершенствование идёт постоянно. Сейчас, например, внедряется система автоматического контроля учёта потребления электроэнергии. Она позволяет собрать воедино информацию обо всех потребителях электроэнергии для городского освещения и обработать её по специальной методике расчёта. А в ближайшем будущем ожидается появление осветительных приборов со встроенными индивидуальными микрочипами. Это даст возможность проводить компьютерную диагностику каждого светильника в отдельности дистанционно с диспетчерского пульта и получать информацию о техническом состоянии каждого прибора. При такой модернизации мобильная группа ремонтников сможет устранять неисправности конкретного светильника без включения в дневное время всей группы.

Освещение вчера, сегодня, завтра

Напряжение от распределительных щитков в РУ поступает по кабелю, проложенному в земле, или по воздушной линии к источникам света, установленным в уличных светильниках. Именно источники света (ИС) являются основными звеньями в осветительных установках наружного освещения. Остановимся на них подробнее.

До середины 50-х годов прошлого столетия единственным электрическим источником света в уличных светильниках была лампа накаливания (ЛН). Она имеет простую и надёжную конструкцию. Это экологически чистый источник света с приятным для восприятия человеком тёплым светом (цветовая температура лампы накаливания Тцв = 2000 К), практически без пульсации и с высокими цветопередающими качествами. До настоящего времени ЛН являются основными источниками в жилом секторе, где потребление в масштабе страны составляет более 25% от всей электроэнергии, выделяемой на нужды освещения. Однако они имеют существенные недостатки, основные из которых малый показатель энергоэффективности — световая отдача (см. табл. 1) и малый срок службы.

Кардинальных сдвигов не произошло и с изобретением более экономичных кварцевых галогенных ламп накаливания типа КГ. Ограниченное применение они получили при наружном освещении открытых строительных площадок, карьеров и частично в архитектурном освещении. С гораздо большим успехом галогенные лампы используются в автомобильных фарах и освещении офисных зданий, хотя и здесь наметились тенденции к их вытеснению более современными ИС на основе светодиодов.

С появлением в 1960-х годах газоразрядных ртутных ламп высокого давления типа ДРЛ, у которых световая отдача в 3—4 раза выше, чем у ламп накаливания, а срок службы достигает 16 000 часов, произошёл достаточно закономерный переход наружного освещения городов на более совершенный источник света.

Принцип действия ДРЛ основан на преобразовании ультрафиолетового излучения ртутного разряда высокого давления в кварцевой горелке в видимое излучение в люминофорном слое, нанесённом на внутреннюю поверхность колбы лампы. Рабочий режим ртутных ламп обеспечивается электромагнитным пускорегулирующим аппаратом (ПРА). До сих пор ДРЛ используются для освещения улиц и дорог с малой интенсивностью движения, а лампы малой мощности с исправленной цветопередачей освещают парки, скверы, детские площадки в жилых кварталах.

В 1980-х годах началось серийное производство более совершенного газоразрядного источника света — натриевой лампы высокого давления типа ДНаТ, у которой показатели эффективности в 2 раза выше, чем у ДРЛ. Разряд в такой лампе происходит в керамической горелке, наполненной парами натрия и ртути, поэтому в излучении ДНаТ доминируют расширенная жёлтая область видимого спектра и менее интенсивные сине-зелёные линии спектра. Пусковые и рабочие режимы лампы обеспечивают пускорегулирующие аппараты и импульсные зажигающие устройства (ИЗУ). Жёлто-белый оттенок излучения и низкий индекс цветопередачи (Ra = 25%) в значительной степени ограничивают её область применения.

Тем не менее благодаря высокой энергоэффективности натриевых ламп большая часть дорог и магистральных шоссе с высокой и средней интенсивностью движения автотранспорта освещается светильниками с лампами ДНаТ.

Наряду с ДНаТ появились металлогалогенные лампы высокого давления типа ДРИ, где разряд происходит в кварцевой или керамической горелке в парах ртути с излучающими добавками в виде йодидов различных металлов: диспрозия, скандия + натрия или натрия + талия + индия. Йодиды редких металлов позволяют не только повысить световую отдачу лампы до 100 лм/Вт, но и улучшить индекс цветопередачи до Rа = 90%.

Лампы ДРИ нашли широкое применение в архитектурном и спортивном освещении, рекомендуются для уличного освещения в центральных и исторических районах городов, а также в парковых зонах.

В энергосбережении при использовании газоразрядных ламп высокого давления наметился переход в схемах питания этих источников света на электронные ПРА (см. «Наука и жизнь» № 7, 2010 г., статья «Зачем лампе интеллект?»). Такая замена позволит на 10—12% увеличить эффективность комплекта лампа + ПРА.

Несмотря на очевидные достижения в развитии газоразрядных источников света, прогнозы на ближайшую перспективу в области светотехники, в том числе и в наружном освещении, будут базироваться на разработках в области твердотельных светоизлучающих диодов (СИД).

Непрерывный, чуть ли не экспоненциальный (рис. 3), рост световой отдачи СИД, увеличение единичной мощности и освоение выпуска блоков из нескольких светодиодов могут в самое ближайшее время изменить ситуацию с энерго-сбережением в светотехнике, в том числе и в осветительных установках.

Бурное развитие производства СИД и их широкое внедрение обусловлены их несомненными достоинствами:

— исключительно высокая надёжность;

— большой срок службы;

— малые габариты;

— высокая устойчивость к механическим нагрузкам;

— способность работать в широком диапазоне температур;

— экологичность, связанная с отсутствием ртути и других вредных веществ;

— электрическая безопасность;

— отсутствие пульсации светового потока.

Для рационального использования светового потока источника необходим световой прибор, в который этот источник устанавливается. Таких приборов разработано и выпускается множество. В их конструкциях реализованы специальные светотехнические требования, требования по безопасности, надёжности и экономичности, монтажно-эксплуатационные характеристики, требования по технической эстетике. Световые приборы наружного освещения являются не только функциональными изделиями, обеспечивающими безопасность дорожного движения на автомагистралях и в пешеходных зонах, но и архитектурными элементами.

Светильники должны обеспечивать нормированные уровни яркости и равномерности освещённости дорожного покрытия или пешеходных зон. При необходимости жёстко ограничивается слепящее действие на водителей и пешеходов (схемы освещения дорог см. табл. 3).

Светораспределение светильника принято описывать кривыми силами света (КСС). В общем случае под КСС понимается геометрическое место (тело) концов радиус-векторов, выходящих из светового центра, длина которых пропорциональна силе света прибора в соответствующем направлении (рис. 4). Наиболее полное представление о светораспределении прибора даёт семейство КСС, образующееся при сечении фотометрического тела вертикальными (меридиальными) и горизонтальными (экваториальными) плоскостями.

На рис. 5 показана КСС, полученная в результате сечения фотометрического тела светильника наружного освещения двумя взаимно-перпендикулярными меридиальными плоскостями, линия пересечения которых совпадает с оптической осью светового прибора.

В табл. 2 представлены некоторые образцы световых приборов наружного освещения, наиболее употребляемые оптические схемы с изображением хода лучей источника света и качественные графики кривых силы света.

Конструктивно светильники наружного освещения состоят из металлического или пластмассового корпуса, внутри которого устанавливают патрон, лампу, пуско-регулирующий аппарат, импульсно-зажигающее устройство и оптические элементы, перераспределяющие световой поток лампы. Рассеиватель из прозрачного термо- и ударопрочного стекла или поликарбоната защищает источник света от механических воздействий и влияния окружающей среды. Для получения эффективных кривых силы света в световом приборе применяют зеркальные отражатели из листового или отформованного альзакированного (полированного) алюминия.

Кпд световых приборов с зеркальной оптической системой составляет 70—75%. Кпд садово-парковых светильников с опаловым рассеивателем или экранирующей решеткой — не более 60%.

Появление светоизлучающих диодов открывает новые возможности при конструировании световых приборов нового поколения. Оптическая система такого прибора состоит из множества СИД, снабжённых миниатюрными преломляющими призмами, совместная работа которых позволяет формировать требуемую КСС. При этом полезное использование светового потока СИД относительно рабочей поверхности, в нашем случае дорожного полотна, на 20—25% выше, чем у традиционных светильников с газоразрядными лампами. Кпд светового прибора со светодиодами составляет 90—95%. Отсюда становится понятным, насколько эффективнее их будущее применение.

Два обстоятельства пока что тормозят широкое их внедрение в наружном освещении: высокая стоимость (в 3—5 раз выше, чем их аналоги с ДНаТ) и недостаточно высокая световая отдача самих светодиодов, составляющая на сегодняшний день 120 лм/Вт (требуется 140—150 лм/Вт).

Однако ближайшие прогнозы (см. рис. 3) показывают, что через 3—5 лет даже светильники с натриевыми лампами высокого давления не смогут составлять конкуренцию приборам с СИД.

СН 541-82 «Инструкция по проектированию наружного освещения городов, поселков и сельских населенных пунктов»

ГОСУДАРСТВЕННЫЙ КОМИТЕТ

ПО ГРАЖДАНСКОМУ СТРОИТЕЛЬСТВУ И АРХИТЕКТУРЕ

ПРИ ГОССТРОЕ СССР

(ГОСГРАЖДАНСТРОЙ)

ИНСТРУКЦИЯ

по проектированию наружного освещения

городов, поселков и сельских населенных

пунктов

СН 541-82

Утверждена

приказом Государственного комитета по гражданскому строительству и архитектуре при Госстрое СССР

от 14 января 1982 г. № 13

Согласована Госстроем СССР.

Письмо Госстроя СССР от 13 ноября

1981 г. № ДП-5830-1

СОДЕРЖАНИЕ

Даны основные положения создания осветительных установок улиц, дорог, площадей, городских транспортных пересечений и тоннелей, а также территорий микрорайонов, детских яслей-садов, школ и школ-интернатов, больниц, госпиталей, санаториев, пансионатов, домов отдыха, парков, садов, стадионов и выставок, наружного архитектурного освещения и рекламы.

Приведены нормы наружного освещения перечисленных объектов, рассмотрены вопросы выбора, расположения и способов установки световых приборов.

Даны указания по выполнению систем питания защиты, заземления осветительной сети и управления наружным освещением.

С введением в действие настоящей Инструкции утрачивают силу ВСН 22-75 и СН 407-70.

Для инженерно-технических работников, занятых в области проектирования, строительства и эксплуатации наружного освещения.

Разработана ЦНИИЭП инженерною оборудования Госгражданстроя и Академией коммунального хозяйства им. К.Д. Памфилова Минжилкомхоза РСФСР при участии ВНИСИ Минэлектротехпрома.

Согласована с Госэнергонадзором Минэнерго СССР, Минздравом СССР и ВНИПИ Тяжпромэлектропроект км. Ф.Б. Якубовского Минмонтажспецстроя СССР.

Редакторы — инженеры В.К. Лукачев (Госгражданстрой), В.П. Зобов (ЦНИИЭП инженерного оборудования Госгражданстроя), канд. техн. наук О.Г. Корягин (Академия коммунального хозяйства им. К.Д. Памфилова Минжилкомхоза РСФСР).

Государственный

комитет

по гражданскому строительству

и архитектуре

при Госстрое СССР

(Госгражданстрой)

Строительные нормы

СН 541-82

Инструкция

по проектированию наружного освещения городов, поселков

и сельских населенных пунктов

Взамен

ВСН 22-75

Госгражданстрой

и СН 407-70

1.1. Настоящая Инструкция распространяется на проектирование вновь строящихся и реконструируемых установок на

Уличное освещение — Википедия

Уличное освещение — средства искусственного увеличения оптической видимости на улице в тёмное время суток. Как правило, осуществляется лампами, закреплёнными на мачтах, столбах, путепроводах и других опорах. Лампы включаются в ночное время автоматически с помощью элементов системы управления освещением, либо вручную из диспетчерского пункта.

Уличные фонари ночью

Использование уличного освещения регулируется СНиП 23-05-95[1], который был изменён в 2011 году, с целью разрешения широкого применения светодиодной техники.[2]

  • Для освещения магистралей, кольцевых и других крупных автодорог используются фонари с рефлектором. Рефлектор необходим для концентрации света в направлении автодороги. Мощность лампы, устанавливаемой в фонарь, составляет 250—400 Ватт. Фонари устанавливаются на достаточно большой высоте для того, чтобы опоры можно было располагать на большом расстоянии друг от друга.
  • Для освещения второстепенных дорог может использоваться как рефлекторное, так и рассеянное освещение. Фонари снабжаются рельефным прозрачным плафоном, рассеивающим лучи на дальнее расстояние. Мощность ламп составляет 70—250 Ватт.
  • Для освещения пешеходных тротуаров, парков, лесов, велосипедных дорожек и остановок общественного транспорта используется рассеянное освещение. При конструкции таких фонарей особое внимание уделяется плафону, рассеивающему лучи. Обычно они делаются либо в форме шара, либо в форме цилиндра. Для большего рассеивания лучей света на плафоны цилиндрической формы устанавливаются прозрачные кольца, имеющие рельефную форму. Мощность используемых в таких фонарях ламп составляет 40-125 Ватт, в зависимости от дистанции, на которой установлены фонари друг от друга
  • Виды фонарей
  • Устройство уличного светильника с лампой ДНаТ

  • Светильник, снабжённый рельефным плафоном

  • Светильник, подвешенный на струне

По состоянию на начало XXI века в большинстве уличных фонарей используются дуговые лампы различных видов, в основном ртутные и натриевые. Перспективными считаются светодиоды, однако они применяются в основном для освещения пешеходных зон. С 2010 года в России запущена программа внедрения уличного светодиодного освещения, что связано с открытием в Санкт-Петербурге завода по сборке светодиодных ламп «Оптоган». Первым городом в России, где было произведено массовое внедрение светодиодов в систему уличного освещения, стал Боготол[3]. Иногда, чаще всего в сельской местности, используются лампы накаливания.

Уличные фонари могут устанавливаться на столбах, на стенах зданий и сооружений, а также подвешиваться на струнах.

  • Фонарные столбы
  • Manufaktura56.jpg
  • Manufaktura56.jpg

    Освещение в сельской местности, фонарь ORZ 7-1-250

  • Manufaktura56.jpg

    Столб железобетонный изогнутый. СПб

Схема датчика для автоматического включения и выключения ламп освещения
  • Автоматика: автоматическое включение и выключения ламп освещения производится либо по таймеру, либо при достижении определённого уровня освещённости, который контролируется с помощью датчика — например фотодиода. Также, возможно управление с помощью датчиков движения или присутствия, для экономии электричества и ресурса ламп.

Для экономии электроэнергии, часть светильников может быть отключена в ночное время. При этом в вечерние и предутренние часы включены все линии, а в ночное время часть линий отключается. Линия, которая включена всю ночь, называется «ночной фазой», а отключаемая линия «вечерней фазой»[4].

Отрицательные свойства уличного освещения[править | править код]

Ослепляющий фактор приводит к тому, что свет попадает в глаза прохожим, автомобилистам, вместо концентрации на дороге и освещаемых объектах. В результате воздействия ослепляющего фактора, свет бьет в глаза, контраст освещаемых объектов понижается, что затрудняет их видимость. В итоге, такое освещение приводит к повышенной опасности неверно освещенного участка дороги. Для снижения ослепляющего фактора нижняя часть фонаря должна быть плоской, исключая рассеивание в стороны, фонарь должен быть направлен строго вниз, без наклонов в стороны. Максимальный коэффициент ослепления регулируется СНиП.

Перерасход электроэнергии. Происходит в результате неверного выбора мощности ламп, неверной конструкции и направленности светильника, а также слишком большой высоты установки светильника. Зависимость освещенности от расстояния до освещаемого объекта квадратичная, в то время как зависимость освещенности от мощности практически линейная. Значительный вклад в перерасход электроэнергии вносит то, что свет продолжает гореть даже тогда, когда никому в таком количестве не нужен.

Световое загрязнение. Происходит из-за чрезмерной мощности ламп, неверной конструкции отражателя, а также неверной установки светильника, в результате чего часть света освещает ¨бесконечность¨. Также, часть света попадает на те объекты, которые освещать не требовалось. Световое загрязнение имеет многочисленные последствия для экологии и здоровья.

Самые первые уличные фонари появились в начале XV века. По распоряжению мэра Лондона Генри Бартона в 1417 году стали вывешивать уличные фонари.

В начале XVI столетия жителей Парижа обязали держать светильники у окон, которые выходят на улицу. Первая система городского уличного освещения была создана ещё в XVII веке в Амстердаме, по инициативе Яна ван дер Хейдена[5], который в первую очередь был известен как организатор городской пожарной охраны. В 1668 году он предложил установить уличные фонари, чтобы по ночам горожане не падали в каналы (набережные большинства каналов, которыми славится этот город, не имеют перил), для борьбы с преступностью и для облегчения тушения пожаров (так как при искусственном свете было легче координировать действия пожарных). Проект Ван дер Хейдена предусматривал установку двух с половиной тысяч масляных фонарей, конструкция которых была разработана им самим.

В 1669 году Ян ван дер Хейден получил должность Директора и инспектора городского освещения (directeur en opzichter van de Stadsverlichting), к которой прилагалось ежегодное жалование в размере двух тысяч гульденов. Фонари системы Ван дер Хейдена использовались в Амстердаме до 1840 года, после чего их сменили более современные светильники.

Очень скоро амстердамское новшество позаимствовали и другие города. В 1682 году город Гронинген заказал 300 фонарей конструкции Ван дер Хейдена. Не отставала и заграница: в том же году городское освещение системы Ван дер Хейдена было введено в Берлине.

В России уличные фонари появились при Петре I — в 1706 году в тогдашней столице — Санкт-Петербурге, на фасадах некоторых домов около Петропавловской крепости. Первые стационарные светильники появились на петербургских улицах в 1718 году. Регулярное уличное освещение было введено в 1723 году в тогдашней столице — Санкт-Петербурге, когда на Невском проспекте были установлены масляные фонари[6].

«Днём рождения» городского освещения Москвы считается 25 октября 1730 года, когда Московский магистрат издал указ «О сделании для освещения в Москве стеклянных фонарей»[7].

Поначалу фонари давали относительно мало света, поскольку в них использовались обыкновенные свечи и масло. Применение керосина позволило значительно увеличить яркость освещения. Газовые фонари появились в начале XIX века. Их изобретателем был англичанин Уильям Мердок. В 1807 году фонари новой конструкции были установлены на улице Пэлл-Мэлл и вскоре покорили все европейские столицы. В конце XIX века — с изобретением электричества и электрической лампы на смену газовым фонарям пришли фонари с электрическими лампами. Первые электрические уличные фонари в Москве появились в 1880 году[8]. Необычный оранжевый свет импортных консольных светильников с натриевыми лампами высокого давления, которые были установлены в Москве в 1975 году на Охотном ряду и Лубянке, надолго стал визитной карточкой города.

В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике[en] предложил ночью освещать улицы городов из космоса отражённым солнечным светом при помощи специального спутника с очень большой отражающей поверхностью, названного автором Лунеттой, светящего в 10—100 раз ярче полной Луны. Предполагалось развернуть этот отражатель в 1987—1989 гг. с затратами порядка 15 млрд долларов[9][10], однако проект не был осуществлён.

Уличное освещение и безопасность в городе

Установлено, что общее количество ДТП может быть уменьшено на 30%, а число происшествий на дорогах государственного значения и в зонах особой опасности (например, на перекрестках) — на 45%. Такие результаты показывает другое исследование МКО, обобщающие выводы, полученные по всему миру в результате экспериментов по взаимосвязи наружного уличного освещения и аварийности на дорогах. Удвоение средней яркости дорожного покрытия значительно снижает число ДТП в темное время суток.

Это отчетливо продемонстрировали эксперименты, проведенные по заказу министерства транспорта Германии на десяти участках дорог в шести крупных городах. Количество ДТП удалось снизить на 28%. Аварий с участием пешеходов, велосипедистов и мотоциклистов стало меньше на 68%, а несчастных случаев — на 45%.

 Уличные светильники в борьбе с преступностью

Правильно спланированное, качественное уличное освещение также способствует предотвращению преступных действий. Практика показывает, что акты насилия и преступления против собственности в основном происходят в темных уединенных местах, где совершающие подобные деяния чувствуют себя наиболее комфортно, так как в подобных условиях их трудно разглядеть и запомнить, а потенциальные жертвы практически беспомощны.

Более высокий уровень горизонтальной освещенности, сопровождаемый также повышением вертикальной освещенности в зонах с присутствием пешеходов, способствует лучшему визуальному восприятиюпространства. Подозрительные перемещения окружающих становятся заметны с дальнего расстояния, а приметы и намерения приближающихся людей различаются четче. Быстрое и ясное понимание ситуации дает нам больше времени на подготовку к опасности и адекватным ответным действиям.

Многочисленные исследования показали, что улучшение уличного освещения приводит к резкому спаду ночной преступности. Они также подтверждают, что более высокий уровень уличного освещения придает жителям города большее ощущение безопасности, что косвенно способствует дружелюбной атмосфере в городе и повышает качество жизни в нем.

 Экономика и псевдоэкономия при установке уличных фонарей

В силу ограниченного городского бюджета многие органы местной власти принимают решение об отключении части уличного освещения в ночное время. Жертвой подобной попытки сэкономить иногда становятся целые улицы, оказывающиеся в полной темноте в самые поздние часы. Даже не затрагивая пока вопросов безопасности на улицах, отметим, что данный подход неразумен.

Местные власти обычно не отдают себе отчета о том, насколько дешево в реальности обходится уличное освещение городу. К тому же очень часто решения об урезании ночного света приходится отменять в результате массовых протестов местных жителей против подобных «перебоев в энергоснабжении». Подробное изучение экономики уличного освещения показывает, что в целом оно обычно обходится городскому бюджету недорого, а затраты на его модернизацию быстро окупаются и позволяют добиться не меньшей экономии, чем при ночных отключениях старого оборудования.

Итак, из чего же складывается стоимость уличного освещения? Общая сумма состоит из затрат на создание и эксплуатацию этой системы уличного освещения. Капитальные затраты включают в себя цену садово-парковых фонарей, элементов их крепления и опор, а также работ по монтажу. Эксплуатационные расходы состоят из стоимости электроэнергии, текущего ремонта и обслуживания уличных светильников, а также замены ламп. Доля капитальных затрат в общей ежегодной стоимости уличного освещения существенно ниже, чем расходов на эксплуатацию.

Приведенная выше общая экономическая оценка не включает в себя стоимости ущерба, наносимого в результате аварий. Ее можно вычислить по статистике происшествий в ночное время. Решения о частичном отключении уличного освещения часто принимаются с целью снижения эксплуатационных расходов, под коими подразумевается в основном стоимость электроэнергии. Поэтому подобные меры часто оправдывают экологическими соображениями (так как выработка энергии негативно влияет на окружающую среду). На самом деле уличные светильники итак потребляют сравнительно небольшой объем электроэнергии, и их отключение не приносит желаемой заметной экономии.

Например, в Германии мощность, потребляемая наружным освещением, составляет только 0,1% от общего потребления, а годовой расход электроэнергии на эти цели — 0,7% от общенационального. Установленная мощность уличного освещения в Германии в пересчете на одного жителя составляет 13 Вт, что эквивалентно 50 кВт • ч годового расхода энергии. В денежном выражении это выливается в сумму 3,5 евро на человека в год. Стоимость энергии для наружного освещения в среднем составляет 0,4% текущих расходов местных бюджетов. Остальные эксплуатационные затраты добавляют к указанным цифрам еще 8 евро в год на человека, таким образом, общая стоимость уличного освещения равна около 12 евро в год на жителя города.

 Преимущества модернизации садово-парковых фонарей

В отдельных регионах затраты на электроэнергию оказываются довольно высокими. Практически всегда это объясняется наличием устаревших садово-парковых фонарей, которые работают в течение уже 20, 25, а то и 30 лет. Единственным выходом в данной ситуации является модернизация уличного освещения, выражающаяся в частичном или полном обновлении используемых садово-парковых светильников. Первый способ может подразумевать замену ламп на более новые модели с повышенной световой отдачей, установку «бюджетных» наружных светильников с оптимизированным светораспределением или переход к энергосберегающим системам и схемам включения. При втором способе модернизации повышенная световая отдача новых ламп и светильников позволяет уменьшить расстояние между опорами наружного освещения, а значит уменьшить число светильников.

Примечания по российским стандартам

В Российской Федерации уличное освещение регламентируется как федеральными, так и местными (региональными) строительными нормами и правилами, причем последние не могут быть снижены по сравнению с первыми. В настоящее время действует федеральный документ СНиП 23-05-95 «Естественное и искусственное уличное освещение», введенный в действие в 1996 году. В Москве руководящим документом для проектирования уличного освещения являются московские городские строительные нормы МГСН 2.06-99 «Естественное, искусственное и совмещенное освещение», разработанные на основе СНиП 23-05-95 и действующие с 1999 года. Так как российские нормы и стандарты DIN основываются на одних и тех же физиологических принципах восприятия света человеком, используются аналогичные подходы к выбору нормируемой величины и ее значения.

Для уличного освещения и дорог с автомобильным движением нормируется яркость дорожного покрытия в направлении линии зрения водителей, а в остальных случаях — горизонтальная освещенность. Предусмотрены также требования к равномерности распределения нормируемых характеристик (в ряде случаев) к вертикальной и средней полуцилиндрической освещенности. Детально предписываются также характеристики освещения автомобильных тоннелей, в том числе допустимая скорость спада освещенности от портала к внутренней части. Московские нормы регламентируют также световое загрязнение жилых домов. Критерии экономичности наружного освещения представлены в отечественных нормах рекомендацией по использованию натриевых ламп высокого давления и люминесцентных ламп (в силу особенностей российского климата — только в закрытых пространствах).

Экономию электроэнергии в ночные часы допускается осуществлять как за счет снижения мощности всех ламп по аналогии с рекомендацией 01ГЧ, так и при полном отклю¬чении не более половины светильников (полное отключение двух расположенных подряд опор запрещается). При этом сохраняется прежний уровень освещенности. Экономия средств в данном случае происходит за счет снижения как капитальных, так и эксплуатационных затрат. Современные светотехнические технологии окупаются не только за счет уменьшения энергопотребления. Их использование позволяет минимизировать и остальные составляющие эксплуатационных расходов. Например, применение источников света с большим сроком службы сокращает ежемесячные затраты на приобретение новых ламп взамен перегоревших. Кроме этого, экономятся и средства на работы по замене ламп.

Качественные светильники и крепежные элементы, сделанные из адекватных материалов, проще обслуживаются и требуют менее серьезного контроля в течение всего срока службы. За счет всех этих особенностей интервал между работами по массовому обслуживанию уличных светильников может быть увеличен вдвое и составит четыре года. Таким образом, по сравнению с обслуживанием устаревшего оборудования текущие затраты снижаются вдвое.

Уличное освещение и экология

При изучении рассматриваемой темы с экологической точки зрения наибольшее внимание принято уделять потребляемому объему электроэнергии. На практике оказывается, что он сравнительно невелик. Несмотря на это, уличное освещение становится все более энергоэффективным. В течение последних лет доля электроэнергии, идущая на уличное освещение (кроме освещения частных жилищ), снизилась на 1,5% до уровня 6,2% благодаря использованию энергоэкономичных ламп и более эффективным технологиям, внедряемым в новых и модернизированных осветительных установках. Снижение уровня энергии, потребляемого уличным освещением, невозможно без применения энергоэффективных уличных фонарей. Основу таких систем составляют лампы с большим сроком службы и высокой световой отдачей, представляющей собой отношение вырабатываемого светового потока в люменах к электрической мощности в ваттах. Чем выше такое соотношение, тем больше света создается лампой на единицу мощности и лучше энергетический баланс лампы. Другая важная составляющая эффективной системы — экономичный наружный светильник с минимальными внутренними потерями света. Уличный светильник должен оборудоваться оптической системой, направляющей свет строго на требуемую поверхность. А воспользоваться преимуществами экономичных ламп и наружных светильников в полной мере поможет электротехническая и пускорегулирующая аппаратура с малыми внутренними потерями. Другое сравнение, подчеркивающее весьма не значительную долю уличного освещения в общем энергопотреблении, было приведено Светотехническим обществом Германии (LiTG). Расчет полного энергетического баланса участка дороги, содержащего по 25 уличных светильников на километр и обладающего пропускной способностью 3000 автомобилей за 24 часа, показал, что стационарное уличное освещение расходует только 1,5% общего объема энергии, а остальные 98,5% приходятся на долю транспортных средств. Даже если бы расход топлива был снижен до 5 литров на 100 км пути (1 литр бен¬зина = 10 кВт*ч), энергопотребление уличного освещения не превысило бы 3% общего расходуемого на дороге объема. Второй объект пристального внимания экологов — утилизация отработанных ламп. Как известно, применяемые для уличных светильников лампы содержат некоторое количество ртути. Из-за этого, согласно немецкому законодательству о переработке промышленных и коммерческих отходов, большинство типов разрядных ламп подлежит специальной утилизации. Благодаря усилиям рабочей группы AGLV создана общенациональная сеть приема и утилизации ртутъ содержащих ламп, отвечающая самым строгим требованиям сертификатов. Таким образом гарантируется полное извлечение опасных веществ и возможность их повторного использования. В рабочую группу AGLV входят также участники Ассоциации производителей электрических ламп ZVEI, предоставляющие собственные зна ния и опыт в распоряжение специалистов по утилизации. Это позволяет выработать наиболее полные требования к последующей работе с материалами, содержащимися в новых лампах. В настоящее время основной задачей AGLV является повышение возвращаемости отработанных ламп. Еще один экологический аспект связан с проблемой светового загрязнения. В соответствии с действующим в Германии федеральным законодательством о загрязнении окружающей среды, жители домов, в чьи окна попадает свет от уличных светильников, имеют право подавать жалобы. Риск возникновения светового загрязнения, таким образом, должен быть устранен еще на стадии планирования осветительной установки. Хотя федеральные законы и практика их исполнения не содержат конкретных чисел, LiTG предложены методы мониторинга и оценки степени светового загрязнения, а также его максимально допустимые уровни. Эти данные были включены в официально публикуемое федеральное руководство, а также рекомендованы к применению организа циям по защите окружающей среды. Не совсем очевидная на первый взгляд взаимосвязь наружного освещения и экологии заключается в том, что искусственный свет привлекает много насекомых, а это в свою очередь влияет на жизнь ночных животных. С этой точки зрения действие желто-оранжевого спектра излучения слабее из-за того, что спектральная чувствительность глаз насекомых и человека не совпадают. Более сильное влияние имеет свет люминесцентных, ртутных и металлогалогенных ламп. Бледный лунный свет, в естественных условиях использующийся насекомыми для ориентации, воспринимается ими значительно ярче, чем человеком. Свет натриевой лампы высокого давления выглядит для них более темным, а красные и оранжевые области спектра вообще не вызывают никаких ощущений.

Видеть и быть увиденным

Существует простая формула предотвращения ДТП: для этого всего лишь необходимо видеть и быть увиденным. Однако зрительные процессы достаточно сложны, и это надо принимать во внимание при создании уличного освещения. В дневное время наружная освещенность меняется от 5 000 до 100 000 люкс, в то время как ночью 1 люкс составляет почти максимум возможностей лунного света. Наша способность видеть во всем этом широком диапазоне яркости объясняется умением глаз адаптироваться. Тем не менее при некоторых условиях адаптации зрительная восприимчивость снижается. Наилучшие условия для зрения создаются при дневном свете, когда в глазах активизируются так называемые колбочки — цветочувствительные рецепторы. В это время мы легко различаем цвета и объекты, можем четко разглядеть мелкие детали поля зрения. В темноте в действие вступают другие рецепторы — палочки, практически нечувствительные к цвету и высокочувствительные к яркости. В переходное время суток, в сумерках, активны оба вида рецепторов. Контрастами принято называть различия в цвете и яркости в пределах поля зрения. Для того чтобы восприниматься человеческим глазом, они должны быть достаточно выражены. Минимально различимый контраст зависит от окружающей яркости (яркости адаптации): чем выше яркость поля зрения, тем сильнее воспринимаются ее перепады. При более темном окружающем пространстве объекты должны иметь либо более сильное отличие от фона по яркости, либо больший размер для надежного различения. Способность воспринимать яркостные различия в поле зрения принято называть контрастной чувствительностью. Чем выше яркость адаптации, тем меньшие яркостные нюансы можно различить. Контрастная чувствительность снижается под воздействием слепящего света. Способность глаза выделять контуры и цвета окружающих предметов, например дорожных препятствий, характеризуется остротой различения. Этот фактор также улучшается по мере роста яркости адаптации. Зрительная работоспособность определяется контрастной чувствительностью и остротой различения. Этот параметр также определяется временем, за которое удается отследить различие в яркости, цвете и форме предметов (временем восприятия). Например, у водителя быстро едущего автомобиля времени для принятия решения о дорожной ситуации намного меньше, чем у пешехода. При резких изменениях яркости окружающего пространства глазу требуется время на адаптацию. Сам процесс переадаптации и занимаемое им время зависят от яркости до и после произошедшего изменения. Переадаптация от темноты к свету занимает считанные секунды, в то время как обратный процесс может занять несколько минут. Зрительная работоспособность в любой момент времени зависит от стадии адаптации. Чем больше света в окружаю¬щем пространстве, тем быстрее может быть достигнута полноценная производительность зрительного аппарата. Проблемы со зрением начи¬наются в те моменты, когда времени, отводимого на переадаптацию глаз, не хватает. Это обуславливает необходимость в специальных дорожных зонах для зрительной адаптации, например при въезде и выезде из туннелей, для безопасного перехода от одного уровня яркости к другому.

Нормы наружного освещения

Для обеспечения нормальных зрительных условий необходим достаточный уровень окружающей яркости (освещенности). В немецком стандарте DIN 5044 в качестве опорных величин используются средняя яркость или средняя освещенность. Освещенность представляет собой количество света, падающее на единицу площади поверхности дороги. Яркость (измеряемая в кд/м2) характеризует долю света, отражаемую от дороги вдоль линии зрения наблюдателя. Именно этот! параметр определяет возникающее у человека зрительное ощущение. Яркость нормируется практически для всех дорог с автомобильным движением. Этот параметр зависит от расположения наблюдателя, геометрии уличного фонаря, коэффициента отражения дорожного покрытия, светового потока ламп и светораспределения наружных светильников. Яркость рассчитывают для участков дороги со стандартизованными параметрами. Для улиц местного значения и проездов в жилых кварталах в качестве нормы применяется освещенность, так как в этом случае нельзя стандартизовать ни геометрию дороги, ни положение наблюдателя. Для оценки наружного освещения выбрана горизонтальная освещенность покрытия тротуаров и проезжей части. При наличии большого потока пешеходов дополнительно нормируются вертикальная и средняя полуцилиндрическая освещенность. Чтобы требуемые параметры уличного освещения сохранялись в течение длительного времени без специальных работ по обслуживанию уличных фонарей, стандарт DIN 5044 рекомендует закладывать в проекты коэффициент запаса, равный 1,25. В этом случае обслуживание уличных светильников производится при снижении яркости или освещенности до 70% от первоначального значения (наблюдающегося при новых лампах и светильниках). Самого по себе правильного уровня освещенности или яркости еще недостаточно для создания адекватного освещения. Для успешного выполнения зрительных задач должна также выдерживаться высокая равномерность распределения света. Темные пятна в поле зрения маскируют окружающие предметы, делая препятствия и опасные зоны на дороге трудноразличимыми или вовсе скрывая их из вида. Зоны маскирования могут возникать при недостаточном количестве установленных уличных светильников, при частичном отключении уличного фонаря или при выходе части наружных све¬тильников из строя. О равномерности распределения яркости говорят результаты расчета общей U0 и продольной U1 равномерности с учетом геометрии улицы и отражающих характеристик ее покрытия. Параметр U0 представляет собой отношение минимальной яркости дорожного покрытия к среднему значению по всей поверхности дороги. Параметр U1 равен отношению минимальной и максимальной яркоcти вдоль линии зрения наблюдателя (обычно направленной вдоль оси дороги). Равномерность освещенности оценивают параметром g1 равным отношению минимального и среднего значений. Появление в поле зрения слепящих источников света или других ярких пятен может ухудшить зрительное восприятие до такой степени, что надежное различение и опознание предметов станет вообще невозможным. Физиологически ослепленность представляет собой поддающееся измерению снижение зрительной способности, в частности остроты различения. Ослепленность вызывает дискомфорт наблюдателя и снижает концентрацию внимания, чем способствует возникновению аварий. Хотя данного явления на дорогах не удается избежать полностью, степень его проявления может быть значительно снижена. Для оценки возникающей на дороге ослепленности существуют предусмотренные в стандартах процедуры. Механизм ослепления начинает действовать при возникновении пятен с чрезвычайной яркостью либо резких яркостных перепадов в поле зрения. Это вызывает трудности с переадаптацией зрения. Свет слепящего источника рассеивается внутри глаза, создавая так называемую вуалирующую засветку на поверхности сетчатки. Из-за этого снижается контрастность проецируемого на нее изображения. Чем выше освещенность, создаваемая источником на поверхности глаза, и чем ближе источник к наблюдателю, тем выше значение вуалирующей яркости. При яркости адаптации L для надежного различения некоего объекта на фоне требуется минимальный яркостный контраст L0. При наличии ослепленности вуалирующая яркость приводит к адаптации глаза на более высокий уровень яркости L + Ls. Таким образом, объект с контрастом Lо становится неразличим. Чтобы его вновь можно было заметить на фоне, он должен обладать более высоким контрастом Lbl. Именно эта разница между L0 и Lbl, выраженная в процентах и называемая пороговым приращением контраста (Т1), используется для оценки степени ослепленности. В случае когда расчет яркости показывает высокие значения Т1, наблюдается сильная ослепленность. Уличные фонари , спроектированные с подавлением слепящего действия, обеспечивают значение Т1 от 7 до 10%. Для улиц с относительно слабым движением его допустимо принимать в пределах 15 — 20%. Прямо падающий свет создает зоны затенения, в пределах которых яркость распределена неравномерно. В качестве примера можно привести пространство между припаркованными автомобилями. В случае если глубоких теней невозможно избежать, необходимо использовать дополнительные световые точки. Помимо количества света и его распределения в пространстве, световое излучение обусловлено цветовыми свойствами. К ним относятся цветность свечения лампы и цветопередача, характеризующая восприятие цветных объектов в искусственном свете. Уличное освещение предъявляет сравнительно невысокие требования к этим двум характеристикам. Несмотря на это, рекомендуется все же использовать лампы с хорошими цветопередающими свойствами для подчеркивания цветовых контрастов и увеличения воспринимаемости информации. Лампы с неудовлетворительной цветопередачей (например, натриевые низкого давления) пригодны лишь для пешеходных переходов, территорий морских портов и охранного освещения.

Категории дорог и нормируемые параметры наружного освещения

Чем выше потенциальная аварийность на данном участке дороги в темное время суток, тем больше требуется искусственного наружного света. Риск возникновения ДТП высок на магистральных дорогах с интенсивным ночным движением, однако вероятность столкновений и наездов еще выше в тех случаях, когда участники движения перемещаются с разными скоростями, то есть представлены автомобилистами, мотоциклистами и пешеходами одновременно. Безопасность на улице непосредственно связана с этими факторами, так как она напрямую зависит от размеров, взаимного расположения и скоростей движущихся объектов. При определении уровня риска, которому соответствует участок дороги, стандарт DIN 5044 основывается на двух различных группах критериев — интенсивности и организации движения.

К первой группе относятся:

  • наличие или отсутствие встречного движения (а также центральной резервной полосы),
  • средняя интенсивность ночного движения,
  • периоды повышенной интенсивности движения, представленные количеством часов в год, в пределах которых превышается средняя транспортная нагрузка на дорогу.

Организация движения оценивается по следующим признакам:

  • планировка поперечного сечения дороги и вид управления уличным движением, взаимная изоляция различных видов участников движения,
  • расположение дороги в пределах застроенной зоны или вне ее,
  • наличие доступа извне к произвольным участкам дороги,
  • наличие или отсутствие неподвижных автомобилей по краям дороги или на обочине, установленных ограничений скорости.

Для скоростных шоссе, главных и городских дорог стандартом DIN 5044 нормируются значения яркости наружного освещения . Основной акцент делается на освещении проезжей части. На местных, вспомогательных дорогах и улицах жилых кварталов, согласно стандарту DIN 5044, должна обеспечиваться нормируемая освещенность. Также рекомендуется, чтобы фасады прилегающих к дороге зданий были освещены аналогично поверхности дороги. Помимо горизонтальной освещенности и равномерности ее распределения, в качестве меры вертикальной освещенности необходимо учитывать также среднюю полуцилиндрическую освещенность. Уровень освещенности пешеходных зон, городских площадей и парковых дорожек должен как минимум соответствовать норме для местных дорог. В случае если возможен интенсивный поток пешеходов, рекомендуется минимальная освещенность 10 лк. Основная цель стандарта DIN 5044 — улучшение зрительных условий для всех людей, пользующихся улицами и дорогами. Успешное выполнение его рекомендаций обеспечивает правильное восприятие поверхности доороги и ее границ, зон слияния и пересечения дорог, направления движения и возможных препятствий, расположения участников движения и их перемещений. Кроме выполнения своей основной функции светильники в зонах слабого транспортного движения являются элементом городской архитектуры. Они способствуют формированию «лица улицы» и вносят существенный вклад в улучшение городской обстановки. Даже излучаемый ими свет является эстетическим фактором: его теплая цветность создает уютную, домашнюю атмосферу. В данном случае критерием оценки освещения служат средняя горизонтальная освещенность (равная 3 лк для местных дорог со слабым движением, 7 лк для более нагруженных улиц, примыкающих к проспектам) и ее равномерность. Такой выбор сделан из-за того, что низкая интенсивность движения и большое разнообразие в оформлении поверхности этих улиц не позволяют пользоваться для них нормируемой яркостью. Контроль качества освещения дополнительно осуществляется при помощи средней полуцилиндрической освещенности, отражающей значения вертикальной освещенности на улице. При этом пешеходам легче разглядеть приближающихся людей, вовремя принять решение о надвигающейся угрозе и таким образом обезопасить себя от преступных посягательств. Освещение улиц рассматриваемой категории должно охватывать не только зону проезжей части. Оно призвано обеспечивать достаточным, равномерно распределенным светом также и прилегающие территории, такие как велосипедные и пешеходные дорожки, фасады рядом расположенных зданий. Одновременно важно не допускать возникновения светового загрязнения, а именно чрезмерной освещенности окон домов. Для избежания ослепленности яркость уличных светильников в определенном диапазоне углов от их оси должна быть конструктивно ограничена.

Велосипедные дорожки

В настоящее время в европейских городах наблюдается настоящий бум создания велосипедных дорожек. В уже сложившейся застройке их иногда выделяют в качестве части пешеходной зоны. Правильное освещение помогает лучше различать всех находящихся на дорожке, тем самым предотвращая возможные столкновения. Оно также выявляет потенциальные опасности на пути быстро едущих велосипедистов, обычно представленные водосточными решетками и ухабами. В зонах городской застройки задача освещения дорожек вдоль обочин дороги возлагается на установку уличного освещения. В обособленных от автомобильного движения местах, таких как сады, парки и пригороды, необходимо устройство специального освещения. Нормы предписывают горизонтальную освещенность от 1,5 до 3 лк вдоль оси дорожки. Как и в предыдущих случаях, должна выдерживаться высокая равномерность освещенности, так как островки темноты существенно снижают зрительную способность велосипедистов. Этому требованию максимально удовлетворяют уличные светильники с особенно широкими кривыми силы света. Они обеспечивают приемлемую равномерность освещения одновременно с достаточно большим расстоянием между опорами, что способствует экономичности системы в целом.

Уличное освещение пешеходных переходов

Даже маленькие дети знают, что самое безопасное место для пересечения улицы — пешеходный переход, оборудованный светофором. А для сохранения безопасности и ночью он должен быть оборудован специальным уличным освещением. Свет, отличающийся по цветности от общего уличного освещения, обладает дополнительным сигнальным действием. Водители наиболее эффективно различают пешеходов, когда те предстают в качестве светлых объектов на темном фоне (т.е. при положительном контрасте при наблюдении). Это достигается, если уличный светильник(уличный фонарь) расположен между водителем и пешеходом, причем его свет падает в направлении движения автомобиля. В зависимости от типа светильников их необходимо располагать на высоте от 50 до 100% стандартной опоры. Требования к дополнительному наружному освещению пешеходных переходов изложены в стандарте DIN 67523, часть 1. Средняя вертикальная освещенность, позволяющая добиться положительного контраста на фоне дороги, освещенной по DIN 5044, составляет 40 лк в направлении движения над осью перехода. Нижний предел — 5 лк во всех точках дополнительно освещаемой зоны. Точка максимума освещенности должна приходиться на пешехода, находящегося в середине перехода. Чтобы избежать ослепления водителей встречного направления, яркость светильников в их сторону необходимо строго ограничить. Таким образом, весь комплекс перечисленных требований выполним только при помощи специальных светильников, разработанных для освещения переходов.

Пешеходные зоны и городские площади и их наружное освещение

Помимо своего основного назначения, наружное освещение в этих местах выполняет еще и эстетическую функцию. Городские фонари, гармонирующие с окружающей архитектурой, создают особую городскую атмосферу. Несмотря на это обстоятельство, безопасность не стоит приносить в жертву эстетике. Свет должен также способствовать предотвращению преступности и помогать пешеходам. заблаговременно обнаруживать потенциальные опасности. Красиво освещенные пешеходные зоны города привлекают больше людей и тем самым способствуют коммерческому успеху местных магазинов и ресторанов. Данный эффект сохраняется и в светлое время суток при помощи декоративного оформления светильников и опор старого или современного дизайна, подходящих по стилю к архитектуре домов. Дополнительно может использоваться и заливающее освещение. Средняя горизонтальная освещенность в зонах перемещения пешеходов должна составлять 5 лк. Около крупных магазинов, привлекающих много людей, ее следует удвоить. В местах пересечения пешеходных зон и улиц с умеренным автомобильным движением требуется освещение, аналогичное пешеходным переходам (вертикальная освещенность 40 лк). Дополнительным преимуществом высокой вертикальной освещенности является ее вклад в предотвращение преступных действий на улице.

Городские парки. Садово-парковые светильники.

Основное назначение наружного освещения в городских парках и садах заключается в обеспечении безопасности людей. Садово-парковые светильники, расположенные вдоль дорожек, подсказывают направление движения и подчеркивают препятствия и опасные места. Не менее важным аспектом безопасности является предотвращение преступлений. Наряду с практическими функциями, парко¬вые светильники играют и декоративную роль, в том числе в светлое время суток. Заливающее освещение прилегающих к дорожкам территорий носит исключительно декоративный характер, подчеркивая привлекательность природы. Уровень освещенности на дорожках зависит от освещения близлежащих зон. Средняя горизонтальная освещенность должна превышать 1 лк. В местах, где имеются неровности или ступеньки, минимальный уровень составляет 5 лк. Рекомендуется также избегать контрастных темных пятен, вызывающих переадаптацию зрения и затрудняющих ориентацию. Вертикальная освещенность важна как антикриминальное средство, вдобавок за счет нее снижается чувство психологического дискомфорта людей в удаленных уголках парка. Простая закономерность размещения парковых светильников (садово-парковых фонарей) выглядит так: чем меньше высота опоры, тем чаще должны устанавливаться садово-парковые светильники(фонари). Кроме этого, расстояние между садово-парковыми фонарями зависит от формы дорожки и имеющихся препятствий для зрения. Освещение деревьев, клумб, фонтанов и прочих природных объектов не регулируется никакими нормами. При этом наличие неосвещенных зон является даже преимуществом, так как на их фоне лучше воспринимаются подчеркнутые светом объекты. Не следует также допускать ослепления прожекторами заливающего света прохожих либо светового загрязнения примыкающих к парку жилых районов. Исключить слепящее действие проще всего путем совмещения направления прожекторов и линии наблюдения. Установка прожекторов на правильном расстоянии позволяет избежать излишне глубоких теней на освещаемом объекте. Проблема нежелательной засветки окон жилых домов решается более тщательной проработкой проекта садово-паркового освещения. Требуемая освещенность зависит от желаемой яркости освещаемого объекта, то есть от его цвета и коэффициента отражения. Чем темнее объект и ярче фон, на котором он наблюдается, тем большую освещенность необходимо создать. Особенно выразительные ночные световые картины получаются за счет подбора цветности ламп в зависимости от ма¬териала объектов. Натриевые лампы высокого давления заливают светлый камень золотистым цветом и подчеркивают оттенки красноватых листьев. Металлогалогенные лампы особенно подходят для выявления блеска металлических и стеклянных конструкций, а также для подсветки желтой, желто-зеленой, сине-зеленой и темно-зеленой листвы.

Освещение крытых и открытых парковок

Основное назначение освещения автостоянок — функциональное, для обеспечения безопасности и ориентации в пространстве. Помимо этого, хорошее освещение с высокой вертикальной освещенностью отпугивает воров, угонщиков и хулиганов. С точки зрения автомобильного движения зоны въезда и выезда с парковок составляют группу риска. Вероятность аварий снижается при использовании дополнительных наружных светильников, улучшающих ориентацию водителей и повышающих общую освещенность. В стандарте DIN 67528 предусмотрен дифференцированный подход к различным зонам

Назад

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *