Напряжения что такое – Электрическое напряжение — Википедия. Что такое Электрическое напряжение

Содержание

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ
Телевизионная антенна Переменное высокочастотное 1-100 мВ
Батарейка AA («пальчиковая») Постоянное 1,5 В
Литиевая батарейка Постоянное 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 12 В
Электрооборудование автомобиля Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В
600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ
Анод кинескопа Постоянное 7-30 кВ
Статическое электричество Постоянное 1-100 кВ
Свеча зажигания автомобиля Импульсное 10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Ссылки

Электрическое напряжение — Википедия. Что такое Электрическое напряжение

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки A в точку B[1].

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из вкладов двух работ: работы электрических сил AABel{\displaystyle A_{AB}^{el}} и работы сторонних сил AABex{\displaystyle A_{AB}^{ex}}. Если на участке цепи не действуют сторонние силы (то есть, AABex=0{\displaystyle A_{AB}^{ex}=0}), работа по перемещению включает только работу потенциального электрического поля AABel{\displaystyle A_{AB}^{el}} (которая не зависит от пути, по которому перемещается заряд), и электрическое напряжение UAB{\displaystyle U_{AB}} между точками

A и B совпадает с разностью потенциалов между этими точками (поскольку φA−φB=AABel/q{\displaystyle \varphi _{A}-\varphi _{B}=A_{AB}^{el}/q}). В общем случае напряжение UAB{\displaystyle U_{AB}} между точками A и B отличается от разницы потенциалов между этими точками[2] на работу сторонних сил по перемещению единичного положительного заряда. Эту работу называют электродвижущей силой EAB{\displaystyle {\mathcal {E}}_{AB}} на данном участке цепи: EAB=AABex/q.{\displaystyle {\mathcal {E}}_{AB}=A_{AB}^{ex}/q.}

UAB=φA−φB+EAB.{\displaystyle U_{AB}=\varphi _{A}-\varphi _{B}+{\mathcal {E}}_{AB}.}

Определение электрического напряжения можно записать в другой форме. Для этого нужно представить работу AABef{\displaystyle A_{AB}^{ef}} как интеграл вдоль траектории L, проложенной из точки A в точку B.

UAB=∫LE→efdl→{\displaystyle U_{AB}=\int \limits _{L}{\vec {E}}_{ef}d{\vec {l}}} — интеграл от проекции эффективной напряжённости поля E→ef{\displaystyle {\vec {E}}_{ef}} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора dl→{\displaystyle d{\vec {l}}} в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Размерность электрического напряжения в Международной системе величин (англ. International System of Quantities, ISQ), на которой основана Международная система единиц (СИ), — L2MT-3I-1. Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).

Понятие напряжение ввёл Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 году эмпирического закона Ома: U=IR{\displaystyle U\!=IR}.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока между точками A и B — работа, которую совершает электрическое поле при переносе пробного положительного заряда из точки A в точку B.

Напряжение в цепях переменного тока

U\!=IR

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратичное значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(t).{\displaystyle u=u(t).}

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(t)|).{\displaystyle U_{M}=\max(|u(t)|).}

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕ).{\displaystyle u(t)=U_{M}\sin(\omega t+\phi ).}

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное напряжение равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫0Tu(t)dt.{\displaystyle U_{m}={\frac {1}{T}}\int _{0}^{T}u(t)dt.}

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения (устаревшие наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫0Tu2(t)dt.{\displaystyle U_{q}={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}.}

Среднеквадратичное значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈0,707UM;UM=2Uq≈1,414Uq.{\displaystyle U_{q}={1 \over {\sqrt {2}}}U_{M}\approx 0,707U_{M};\qquad U_{M}={\sqrt {2}}U_{q}\approx 1,414U_{q}.}

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратичное значение напряжения, и все вольтметры проградуированы исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫0T|u(t)|dt.{\displaystyle U_{m}={\frac {1}{T}}\int \limits _{0}^{T}|u(t)|dt.}

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈0,637UM)=22πUq(≈0,9Uq).{\displaystyle U_{m}={2 \over \pi }U_{M}(\approx 0,637U_{M})={2{\sqrt {2}} \over \pi }U_{q}(\approx 0,9U_{q}).}

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3{\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Характерные значения и стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ
Телевизионная антенна Переменное высокочастотное 1-100 мВ
Гальванический цинковый элемент типа АА («пальчиковый») Постоянное 1,5 В
Литиевый гальванический элемент Постоянное 3 В — 3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA)
Логические сигналы компьютерных компонентов Импульсное 3,5 В; 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 5 В, 12 В
Электрооборудование автомобилей Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36—42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в бытовых электросетях России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6—20 кВ 6,6—22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10—35 кВ
На аноде кинескопа Постоянное 7—30 кВ
Статическое электричество Постоянное 1—100 кВ
На свече зажигания автомобиля Импульсное 10—25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10—20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой слоя трансформаторного масла толщиной 1 см 100—200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50—500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Примечания

Литература

Ссылки

напряжение — это… Что такое напряжение?

Морфология: (нет) чего? напряже́ния, чему? напряже́нию, (вижу) что? напряже́ние, чем? напряже́нием, о чём? о напряже́нии; мн. что? напряже́ния, (нет) чего? напряже́ний, чему? напряже́ниям, (вижу) что? напряже́ния, чем? напряже́ниями, о чём? о напряже́ниях

1. Напряжением мышц, связок и т. д., физическим напряжением вы называете такое состояние вашего тела или органов, когда вы не можете их расслабить, привести в спокойное состояние.

При овладении навыками письма ребёнок испытывает сильное физическое напряжение, производя огромные затраты мышечной энергии. | Лекарство нужно принимать при напряжении кишечника.

2. Напряжением вы называете такое состояние, когда вы внутренне сосредотачиваете свои физические и умственные возможности для какой-либо цели.

Эта профессия требует напряжения всех сил и воображения. | Игра на бирже требует полной сосредоточенности и напряжения мозгов.

3. Когда вы говорите о напряжении в отношениях между людьми, странами, народом и властью и т. д., вы имеете в виду неспокойную, недружелюбную атмосферу, которая может грозит ссорой, конфликтом.

Нарастает напряжение политических отношений между двумя странами. | В стране чувствуется спад социального напряжения. | Мне горько, что они вынуждены жить в состоянии напряжения.

4. В физике напряжением в электрической сети называют разность потенциалов между двумя её точками.

Ток высокого напряжения. | При покупке импортной бытовой техники обязательно справьтесь о напряжении.

5. Если что-либо держит вас в напряжении, значит, вы испытываете из-за этого такие эмоции, как, например, страх, беспокойство и т. д.

Фильм держит в напряжении, заставляет мыслить.

Формула электрического напряжения для новичков

Домашний мастер, затеявший ремонт бытовой проводки или электрического прибора, должен хорошо представлять электротехнические процессы, уметь проводить сложные расчеты. 

Самая простая формула электрического напряжения, выраженная для участка цепи, позволяет быстро выполнять такие вычисления. 

Я подготовил советы и рекомендации, которые помогут лучше запомнить сложные алгоритм. Рассчитываю, что вы станете правильно применять их на практике, зарекомендуете себя грамотными специалистами в глазах окружающих. 

Содержание статьи

Что такое напряжение и как его легко представлять

Мне нравится сравнение электрических процессов с более понятными механическими явлениями. Поэтому показываю такую картинку. 

Имеем какую-то горку с высотой h относительно начального уровня. На вершине стоит груз весом Р. Он не закреплён, может скатиться под действием совсем небольшого усилия, например, дуновения ветра. 

Но его нет, а если подует, то груз упадет на высоту h3. При этом им будет совершена работа, связанная с перемещением на расстояние h2. 

Такая же аналогия, на мой взгляд, действует в электротехнике. 

Рассматриваем два отличающихся потенциала φ1 и φ2, которые накопили разные материальные тела, например, облака при движении воздушных масс с противоположными знаками зарядов q. 

Они отделены слоем воздушной атмосферы, обладающей сопротивлением R, которое препятствует перемещению заряда q. 

Точно так же воробьи сидят на фазном проводе и даже аист сплел свое гнездо на столбе воздушной линии, как показано на верхней картинке. Но с ними пока ничего не происходит: от второго потенциала они отделены большим сопротивлением. 

Однако, под действием ветра груз Р может скатиться, а облака перемещаются относительно земли и друг друга: воздушная прослойка между ними изменяется. 

В какой-то момент времени разность потенциалов φ1-φ2 между заряженными телами пробьет сопротивление R и будет совершена работа по перемещению заряда q. 

Вот и получается определение формулировки напряжения U, как разность потенциалов φ1 и φ2 или работа А, совершаемая при переносе заряда q. 

Напряжение измеряется в вольтах специальными приборами — вольтметрами. Оно появляется на всех электрических схемах, где присутствуют разные потенциалы: 

  • проводах фазы и нуля домашней проводки при поданном питании от трансформаторной подстанции;  
  • шинах вводного щитка в дом или подъезд; 
  • контактных выводах любой заряженной аккумуляторной батареи либо гальванического элемента; 
  • выходных контактах включенного блока питания, зарядного устройства; 
  • многих других местах. 

Когда груз Р уже скатился вниз или произошел разряд потенциалов φ1 и φ2 между собой, то работа по перемещению зарядов произойти не сможет. В этом случае, если φ1-φ2=0, напряжение отсутствует. 

Допускаю, что опытного электрика такое мое объяснение не устроит из-за упрощений. Что ж: пишите в комментариях. Будем приходить к общему мнению. Ведь я изложил самые начальные знания для новичков. 

Виды напряжения в квартире простыми словами

А вот здесь надо ориентироваться на то, как образуются потенциалы зарядов электрической энергии. 

Как работают источники постоянного тока для бытовых приборов

На выходных клеммах элементов солнечных батарей или гальванических элементов, сборок из них накапливаются потенциалы зарядов противоположной полярности: положительные и отрицательные. Они образуют цепи постоянного напряжения. 

На графике времени его вычерчивают горизонтальной линией U, которая не меняет свою величину. 

Хотя в принципе это довольно условно: по мере разряда от приложенной нагрузки происходит снижение разности потенциалов (ничего вечного в нашей жизни не существует) и уровень сигнала со временем все же падает. Но, этим качеством при расчетах, как правило, пренебрегают. 

Как определить уровень напряжения

Если вернуться к определению термина, основанного на разности потенциалов или совершении работы по перемещению зарядов, то мы попадем в тупик: их простыми методами оценить невозможно.  

При практической работе с цепями постоянного тока пользуются измерением или вычислением электрических величин на основе известного закона Ома для участка цепи U = i * R.

Простой онлайн калькулятор, спроектированный для этих целей, значительно облегчает такие вычисления. К тому же он построен на использовании еще одной функции: мощности потребления прибора, включенного в шпаргалку электрика. 

Воспользоваться можете любым из указанных способов. Каждая приведенная формула электрического напряжения работает правильно. 

Цепи переменного тока в квартире: откуда приходят и как формируются

Электрическая энергия в дома и квартиры поступает от трансформаторных подстанций различного напряжения по линиям электропередач 0,4 киловольта (кВ). 

Как появляется напряжение в розетке

От трансформаторной подстанции электроэнергия подводится в квартиру по: 

  • двухпроводной схеме — система заземления TN-C; 
  • или трехпроводной — система заземления TN-S либо TN-C-S. 

У них используются разные алгоритмы защит в аварийных ситуациях. 

В первом случае обеспечивается меньшая электрическая безопасность. Когда возникает пробой изоляции бытового прибора на корпус, то, случайно оказавшийся поблизости человек получает электрическую травму: через его тело проходит опасный потенциал на контур заземления подстанции. 

Трёхпроводная схема электропроводки сразу обеспечивает отвод опасного потенциала через дополнительный контур защитного РЕ проводника. 

На этой картинке допущены некоторые упрощения, которые я использовал, чтобы не усложнять понимание процессов. О них будет идти речь в других статьях. 

Если отключить от розетки потенциал фазы или нуля, то совершить работу не получится: напряжения в ней не будет — отсутствует разность потенциалов.

Формулы расчета напряжения для переменного тока, приведенные в шпаргалке электрика, остаются действующими. Но, на практике требуется учитывать многие нюансы работы электроэнергии, схемы подключения оборудования, особенности прохождения частотных сигналов. 

Важные характеристики синусоиды для выполнения расчетов

Электроэнергию производят промышленные генераторы, работающие на принципе вращения ротора с витками изолированного провода (рамки) в магнитном поле статора. 

На их выводах создается синусоидальное напряжение симметричной переменной формы с гармоничными колебаниями. 

Синусоида характеризуется следующим параметрами: 

  • амплитудой; 
  • частотой или периодом колебаний; 
  • фазой. 

При этом под фазой понимают сдвиг угла между сигналами разных синусоид или относительно начала координат. 

Что такое действующее напряжение

При измерениях и вычислениях параметров синусоиды следует учитывать то обстоятельство, что ее величина постоянно изменяется по времени от нуля до максимального значения и обратно. 

Чтобы исключить ошибки и правильно вести расчет принято обозначение действующего напряжения. 

Его величина соответствует той работе, которую может выполнить одна полуволна гармоники. Ее приравнивают к действию постоянного тока за это же время Т/2. 

Для этого определяют площадь половины гармоники интегральным исчислением за полупериод. Приравнивают ее к прямоугольнику с такой же шириной. 

Далее вычисляют высоту, поделив площадь на ширину. Получается действующее значение напряжение. Оно в √2 или 1,41 раз меньше амплитудного синусоидального U max. 

Можно использовать и другую формулу расчета действующего напряжения на основе амплитудного: умножать его на 0,707. 

Все измерительные приборы — вольтметры работают за счет определения действующей величины напряжения, а не амплитудной.

Для сравнения: привычное нам значение 220 вольт является действующим, а амплитудное составляет 310. 

Что такое “импульсное напряжение”

В своей практике надо быть готовым к тому, что в бытовую проводку может проникнуть импульс перенапряжения от аварийного режима в системе электроснабжения, например, от удара молнии в воздушную линию. 

На ВЛ установлены специальные защиты от подобных случаев: разрядники. Они гасят полученные разряды, срабатывая в несколько ступеней. 

Но все равно такой импульс, хоть и пониженной величины, проникает по проводам в бытовые приборы. Он способен повредить их внутреннюю схему.

Для защиты от него используют УЗИП (устройства защиты от импульсного перенапряжения), которые рассчитывают и выбирают под местные условия. 

Как рассчитывать трехфазное напряжение

Промышленная передача электроэнергии использует три симметрично расположенных по времени синусоиды напряжения, которые вырабатывают генераторы. 

Три обмотки их ротора разнесены между собой на 120 градусов и вращаются в магнитном поле статора, поочередно пересекая его силовые линии. Поэтому у них наводится таким же образом смещенная электродвижущая сила. 

Синусоиды сдвинуты между собой на такой же угол, как показано правее. Их векторное выражение на комплексной плоскости тоже отображается с углом 120О

При этом формируется система линейных и фазных напряжений, показанная на картинке. 

Между всеми линейными проводами образуется разность потенциалов в 380 вольт. В то же время относительно каждого этого проводника и нулем присутствует так нам привычное 220. 

Такая система постоянно работает в сбалансированном режиме: токи однофазных потребителей циркулируют по своим замкнутым цепочкам, постоянно складываясь в нулевом проводнике. Сложение это не чисто арифметическое, а векторное, учитывающее направление потока энергии. 

Поэтому при геометрическом сложении векторов происходит снижение тока в проводе нуля и его, как правило, делают тоньше, чем остальные жилы.  

Формулы электрического напряжения для линейных и фазных величин, а также токов смотрите прямо на картинке. 

Обрыв нуля: как возникает и чем опасен

Нормальная работа электрооборудования происходит в сбалансированном режиме при нормально поданном напряжении на него. Если ноль пропадет, то бытовые приборы прекращают свою работу. 

Здесь есть важные отличия при эксплуатации проводки, собранной по схеме однофазного или трехфазного питания. 

Обрыв нуля в однофазной сети: опасность возникновения

Квартирная проводка подключается для подачи напряжения по двум проводам с потенциалами фазы и нуля (контура земли). Электрический ток нагрузки, совершающий полезную работу, может протекать только по замкнутому контуру. 

Это значит, что если один потенциал от обмотки трансформаторной подстанции не будет подведен к розетке или лампочке в квартире, то на них напряжения, а, следовательно, и работы не будет. 

Однако здесь есть особенность, связанная с безопасностью жильцов. 

Обычно розеточные группы собираются шлейфом при параллельном подключении между собой. В одну из них может быть вставлена вилка шнура питания какого-то прибора: холодильника, стиральной машины, микроволновки и т п. 

В такой ситуации через внутреннюю схему этого прибора потенциал фазы пройдет на контакт нуля розетку и дальше — к концу подключенного, но оборванного провода. 

Электрики говорят по этому поводу: две фазы в розетке! Их легко заметить однофазным индикатором напряжения. Его контрольная лампочка будет светиться в обоих контактных гнездах. 

Этот режим опасен тем, что оторванный конец не изолирован. Под действие вновь образованного потенциала может попасть человек, получить электрическую травму. 

Обрыв нуля в трехфазной сети и как от него защититься

Теперь еще раз внимательно посмотрим, как работает схема трехфазного подключения к квартирной проводке, приведенная выше. Разберем случай, когда оборван ноль не в однофазной цепи, а в общей питающей.  

 В этой ситуации до места обрыва практически ничего не изменяется: сформированная система напряжений 380/220 остается прежней. А вот внутри квартир происходят ну очень нехорошие вещи.  

Потребители остаются подключенными по схеме “звезды”. Но ее средняя точка, где был подвод нулевого потенциала, отсоединен от нейтрали трансформаторной подстанции. 

В итоге создаются новые контура последовательного подключения потребителей квартир к линейному напряжению 380, как я показал на правой картинке, взяв за основу сопротивления Rа и Rв.  

Теперь представим, что жильцы квартиры А очень бережливые. Они мало потребляют энергии, экономят деньги на ее оплате. При этом владелец второй квартиры B эксплуатирует большое количество бытовой техники. У него всегда высокое потребление. 

Другими славами электрика: сопротивление Rа и его мощность потребления близки к нулю, а Rв — завышены. 

Вместе они создали последовательную цепочку Rа+Rв, через которую потечет ток, вызванный приложенной разностью потенциалов 380 вольт. Этот общий ток по закону Ома на каждом сопротивлении создаст падение напряжения. (Перемножьте составляющие формулу величины). 

Все приборы в квартире подключены параллельно. Чем больше их в работе, тем выше суммарная мощность потребления и ниже сопротивление. По оборудованию обоих квартир течет один и тот же ток. К ним прикладывается напряжение, зависящее от сопротивления.

Получим, что к одной квартире будет приложено очень мало вольт, а к другой около максимального предела 380.

Что из этого следует:

  1. у экономного владельца к приборам будет приложено очень высокое напряжение порядка 380 В;
  2. во второй квартире электрооборудование станет запитано от очень низкого напряжения. Оно станет работать на износ или отключится.

Расточительный хозяин останется без света до устранения неисправности, а у бережливого выйдут из строя работающие электродвигатели, перегорят лампочки, блоки питания электронной аппаратуры и вся подключенная дорогостоящая техника.

Обрыв нуля в трехфазной сети на стороне питания энергоснабжающей организации очень опасен для бытовых потребителей. Но, от этого аварийного режима существует простая и эффективная защита — реле РКН.

Этот модуль очень быстро, за время роста первой четверти гармоники
напряжения, вычисляет неисправность и до окончания первого периода
колебания отключает питание с квартиры, разрывая цепи подвода
электроэнергии. 

За счет этого все электрооборудование обесточивается, остается в исправном состоянии. 

Кстати, формулы расчета электрического напряжения для этого случая я привел прямо на картинке. Пользуйтесь на здоровье, делайте правильные выводы для себя. 

Я постарался очень простенько объяснить сложные процессы, связанные с электричеством. Поэтому у вас могут появиться дополнительные вопросы. Задавайте их. Будем выяснять совместно.

Что такое напряжение | Практическая электроника

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, внутри которого плещется вода.

водобашня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится. То есть давление на дне башни сразу стало меньше, чем оно было бы при полной башне. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет ну очень слабенькое.

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”.  Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды полуторавольтовой пальчиковой батарейки.

Постоянное и переменное напряжение

Оно бывает бывает постоянным и переменным. На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Что такое напряжение

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Значит, переменное напряжение меняет своё значение с течением времени, точно так же, как вы меняете свое положение в пространстве, когда качаетесь на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

переменное напряжение

то в другую:

переменное напряжение

Так же ведут себя и электроны. В вашей домашней розетке они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебания напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях.

Вывод

Напряжение – это “давление” относительно нуля. Не стоит путать его с электрическим током. Если есть напряжение, то не обязательно должен быть электрический ток. Например, когда вы замеряете напряжение в розетке вашего дома, то вы просто его значение, но если вы подключите лампочку накаливания, либо какой-нибудь бытовой прибор, то уже по проводам потребителя побежит электрический ток. Об этом стоит помнить.

Более подробно про напряжение вы можете прочитать также в этой статье.

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: 

U=A/q,

где U — напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными : электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

1

. Поэтому для диэлектриков не проходят наши доказательства свойств

проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

1. Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.

  • Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

  • Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

  • Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

  • Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

  • Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

  • Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)

  • Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

НАПРЯЖЕНИЕ — это… Что такое НАПРЯЖЕНИЕ?

  • Напряжение — Напряжение: В Викисловаре есть статья «напряжение» Электрическое напряжение между точками A и B  отношение работы электрического поля при переносе пробного заряда из точки A в B к величине этого пробного заряда. Номинальное напряжение… …   Википедия

  • напряжение — См …   Словарь синонимов

  • НАПРЯЖЕНИЕ — НАПРЯЖЕНИЕ, напряжения, ср. 1. только ед. Действие по гл. напрячь напрягать. Напряжение мышц. Напряжение внимания. 2. только ед. Состояние подъема, повышенных усилий в осуществлении чего нибудь, сосредоточение всех сил, внимания на чем нибудь. С… …   Толковый словарь Ушакова

  • Напряжение — – характеристика силового воздействия на элемент, определяемого как доля усилия на единицу площади поверхности. [Полякова, Т.Ю.  Автодорожные мосты: учебный англо русский и русско английский терминологический словарь минимум / Т.Ю. Полякова …   Энциклопедия терминов, определений и пояснений строительных материалов

  • НАПРЯЖЕНИЕ — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации …   Современная энциклопедия

  • Напряжение s — Напряжение, определяемое отношением осевого растягивающего усилия Р к начальной площади поперечного сечения рабочей части образца F0 Источник: ГОСТ 1497 84: Металлы. Методы испытаний на растяжение оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Напряжение — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации.   …   Иллюстрированный энциклопедический словарь

  • НАПРЯЖЕНИЕ — механическое внутренние силы, возникающие в деформируемом теле под влиянием внешних воздействий …   Большой Энциклопедический словарь

  • НАПРЯЖЕНИЕ — электрическое то же, что разность потенциалов между 2 точками электрической цепи; на участке цепи, не содержащей электродвижущую силу, равно произведению силы тока на сопротивление участка …   Большой Энциклопедический словарь

  • Напряжение — ситуация в управлении, характеризуемая повышенной психической или физиологической напряженностью …   Словарь терминов антикризисного управления

  • Отправить ответ

    avatar
      Подписаться  
    Уведомление о