Напряжение u – Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Содержание

Электрическое напряжение — Википедия

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки A в точку B[1].

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из вкладов двух работ: работы электрических сил AABel{\displaystyle A_{AB}^{el}} и работы сторонних сил AABex{\displaystyle A_{AB}^{ex}}. Если на участке цепи не действуют сторонние силы (то есть AABex=0{\displaystyle A_{AB}^{ex}=0}), работа по перемещению включает только работу потенциального электрического поля AABel{\displaystyle A_{AB}^{el}} (которая не зависит от пути, по которому перемещается заряд), и электрическое напряжение UAB{\displaystyle U_{AB}} между точками A и B совпадает с разностью потенциалов между этими точками (поскольку φA−φB=AABel/q{\displaystyle \varphi _{A}-\varphi _{B}=A_{AB}^{el}/q}). В общем случае напряжение UAB{\displaystyle U_{AB}} между точками A и B отличается от разницы потенциалов между этими точками[2] на работу сторонних сил по перемещению единичного положительного заряда. Эту работу называют электродвижущей силой EAB{\displaystyle {\mathcal {E}}_{AB}} на данном участке цепи: EAB=AABex/q.{\displaystyle {\mathcal {E}}_{AB}=A_{AB}^{ex}/q.}

UAB=φA−φB+EAB.{\displaystyle U_{AB}=\varphi _{A}-\varphi _{B}+{\mathcal {E}}_{AB}.}

Определение электрического напряжения можно записать в другой форме. Для этого нужно представить работу AABef{\displaystyle A_{AB}^{ef}} как интеграл вдоль траектории L, проложенной из точки A в точку B.

UAB=∫LE→efdl→{\displaystyle U_{AB}=\int \limits _{L}{\vec {E}}_{ef}d{\vec {l}}} — интеграл от проекции эффективной напряжённости поля E→ef{\displaystyle {\vec {E}}_{ef}} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора dl→{\displaystyle d{\vec {l}}} в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Размерность электрического напряжения в Международной системе величин (англ. International System of Quantities, ISQ), на которой основана Международная система единиц (СИ), — L2MT-3I-1. Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).

Понятие напряжение ввёл Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 году эмпирического закона Ома: U=IR{\displaystyle U\!=IR}.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока между точками A и B — работа, которую совершает электрическое поле при переносе пробного положительного заряда из точки A в точку B.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратичное значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(t).{\displaystyle u=u(t).}

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(t)|).{\displaystyle U_{M}=\max(|u(t)|).}

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕ).{\displaystyle u(t)=U_{M}\sin(\omega t+\phi ).}

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное напряжение равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫0Tu(t)dt.{\displaystyle U_{m}={\frac {1}{T}}\int _{0}^{T}u(t)dt.}

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения (устаревшие наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫0Tu2(t)dt.{\displaystyle U_{q}={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}.}

Среднеквадратичное значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈0,707UM;UM=2Uq≈1,414Uq.{\displaystyle U_{q}={1 \over {\sqrt {2}}}U_{M}\approx 0,707U_{M};\qquad U_{M}={\sqrt {2}}U_{q}\approx 1,414U_{q}.}

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратичное значение напряжения, и все вольтметры проградуированы, исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫0T|u(t)|dt.{\displaystyle U_{m}={\frac {1}{T}}\int \limits _{0}^{T}|u(t)|dt.}

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈0,637UM)=22πUq(≈0,9Uq).{\displaystyle U_{m}={2 \over \pi }U_{M}(\approx 0,637U_{M})={2{\sqrt {2}} \over \pi }U_{q}(\approx 0,9U_{q}).}

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3{\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Характерные значения и стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1—2 мВ
Телевизионная антенна Переменное высокочастотное 1—100 мВ
Гальванический цинковый элемент типа АА («пальчиковый») Постоянное 1,5 В
Литиевый гальванический элемент Постоянное 3—3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA)
Логические сигналы компьютерных компонентов Импульсное 3,5 В; 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 5 В, 12 В
Электрооборудование автомобилей Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36—42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в бытовых электросетях России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6—20 кВ 6,6—22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10—35 кВ
На аноде кинескопа Постоянное 7—30 кВ
Статическое электричество Постоянное 1—100 кВ
На свече зажигания автомобиля Импульсное 10—25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10—20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой слоя трансформаторного масла толщиной 1 см 100—200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50—500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Примечания

Литература

Ссылки

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда

не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ
Телевизионная антенна Переменное высокочастотное 1-100 мВ
Батарейка AA («пальчиковая») Постоянное 1,5 В
Литиевая батарейка Постоянное 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 12 В
Электрооборудование автомобиля Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ
Анод кинескопа Постоянное 7-30 кВ
Статическое электричество Постоянное 1-100 кВ
Свеча зажигания автомобиля Импульсное 10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Ссылки

Электрическое напряжение цепи

При описании протекающих в электроцепи процессов в электротехнике применяют такие понятия, как сопротивление, напряжение и ток. Каждому из этих понятий свойственны свои специфические характеристики, и они имеют соответствующее назначение.

Обязательным для протекания зарядов требованием считается наличие цепи (замкнутого контура, обеспечивающего все необходимые условия для их передвижения). При формировании разрыва внутри движущихся частиц их направленное перемещение резко прекращается.

По такому принципу работают все типы выключателей и используемые в электрике защиты. Они осуществляют разделение между собой за счет подвижных контактов токопроводящих частей. Это действие и способствует прерыванию процесса протекания электрического тока после отключения электроприбора.

Понятие электрического напряжения в физике

Электрическим током в физике считается направленное перемещение заряженных частиц, создаваемое электрополем, совершающим при этом определенную работу.

Определение 1

Работа создающего ток электрополя называется работой тока ($A$). Такая работа может на разных участках цепи отличаться, однако при этом она будет пропорциональной проходящему через него заряду.

Физической величиной работы тока на конкретном участке при перемещении по нему заряда 1 Кл считается электрическое напряжение ($U$).

Для определения напряжения на отдельно взятом участке существует следующая формула:

$U =\frac{A}{q}$, где:

  • $A$ — работа тока,
  • $q$ — прошедший по участку заряд.

Возникновение тока в электрической цепи

Замечание 1

Электрическую цепь характеризует комплекс устройств, обеспечивающих путь для протекающего электрического тока и соединенных определенным образом. В качестве элементов электроцепи служат: нагрузка, проводники и источник тока. В составе электрической цепи могут быть и другие элементы, как, например, устройства защиты и коммутации.

Необходимым условием возникновения тока будет соединение двух точек, у одной из которых очень много электронов в отличие от другой. Иными словами, потребуется образование разности потенциалов между указанными точками. С этой целью в цепи используется источник тока. Таким источником могут служить устройства в виде генераторов, батарей, химических элементов и др.

В качестве нагрузки в электроцепи выступает абсолютно любой потребитель электроэнергии. Нагрузка способна оказывать сопротивление электрическому току. От величины такого сопротивления будет зависеть величина тока. Ток течет по проводникам от источника тока к нагрузке. Проводниками, в свою очередь, служат материалы, имеющие наименьшее сопротивление, такие, как золото, серебро, медь.

Типы соединения элементов в электрической цепи

В электротехнике, в зависимости от типа соединения элементов электроцепи, существуют такие виды электрических цепей:

  • последовательная;
  • параллельная электрическая цепь;
  • последовательно-параллельная.

В электрической цепи последовательного типа соединении все элементы соединены друг с другом последовательно. Это означает, что конец первого элемента соединяется с началом второго и т.д.

Для тока такое соединение элементов дает только один путь протекания от источника к нагрузке. Общий ток цепи при этом будет равен току, который проходит через каждый элемент цепи:

$I_{общ} = I_1=I_2=I_3$

При падающем напряжении вдоль всей цепи оно будет равняться приложенному к рассматриваемому участку (AB) напряжению $E$ и сумме падений напряжений на всех участках электроцепи (резисторах). Это выражает следующая формула:

$E=U(A-B)=U_1+U_2+U_3$

Элементы в параллельной электрической цепи соединены так, что начало каждого из них соединяется в одну общую точку, а концы при этом — в другую.

Для тока в этом случае существует несколько путей протекания к нагрузкам от источника. При этом общий ток цепи $I_{общ}$ получен посредством формулы:

$I_{общ}=I_1+I_2+I_3$

Падение напряжения на всех резисторах выражает следующая формула: $E=U_1=U_2=U_3$

Последовательно-параллельная электроцепь представляет комбинацию цепи последовательного и параллельного типа соединения. Другими словами, ее элементы могут включаться, как последовательным, так и параллельным образом.

Электрическое напряжение в цепях постоянного, переменного и трехфазного тока

Определение 2

Напряжением в цепи постоянного тока на участке между точками A и B считается совершаемая электрическим полем работа в момент переноса пробного положительного заряда из первой точки во вторую.

При описании цепей переменного тока используют такие виды напряжений: мгновенное, амплитудное, среднее, среднеквадратичное.

Мгновенное напряжение представляет разность потенциалов двух точек, которая была измерена в конкретный момент времени. Данный вид напряжения будет зависеть от времени.

Амплитудным считается максимальное по модулю значение мгновенного напряжения, взятое за весь период колебаний:

$U_M=\max(u(t))$

В цепях трехфазного тока существует напряжение фазного и линейного типа. Под фазным понимается среднеквадратичное значение напряжения на каждой отдельной фазе нагрузки. Линейным считается напряжение между подводящими фазными проводами. Если нагрузка соединяется в треугольник, фазное и линейное напряжение будут равны.

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ
Телевизионная антенна Переменное высокочастотное 1-100 мВ
Батарейка AA («пальчиковая») Постоянное 1,5 В
Литиевая батарейка Постоянное 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 12 В
Электрооборудование автомобиля Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ
Анод кинескопа Постоянное 7-30 кВ
Статическое электричество Постоянное 1-100 кВ
Свеча зажигания автомобиля Импульсное 10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Ссылки

Отправить ответ

avatar
  Подписаться  
Уведомление о