Напряжение при коротком замыкании: Короткое замыкание — Википедия – Ток короткого замыкания: как рассчитать, таблица

Содержание

Суть короткого замыкания электрической цепи. Напряжение (ЭДС) и ток при КЗ.

 

 

 

Тема: что такое короткое замыкание в электроцепи, каковы последствия КЗ.

 

Суть короткого замыкания электрической цепиПро электрическое короткое замыкание слышали многие, но далеко не всем известна суть этого явления. Давайте же с этим разберемся. Итак, если вникнуть в само словосочетание «короткое замыкание», то можно понять, что происходит какой-то процесс, при котором замыкается нечто по короткому, а именно самому короткому пути протекания электрического тока (электрических зарядов в проводнике). Проще говоря, есть путь, по которому течет электричество, его ток зарядов. Это различные электрические цепи, проводники электроэнергии. Чем длиннее этот путь, тем больше преград нужно преодолеть зарядам, тем больше электрическое сопротивление этого пути. А из закона ома известно, чем больше сопротивление цепи, тем меньше сила тока будет в нем (при определенном значении напряжения). Следовательно, на самом коротком пути, будет максимально возможный ток, а это путь будет коротким в случае замыкания концов самого источника питания.

 

В общем, у нас есть, к примеру, обычный автомобильный аккумулятор (в заряженном состоянии). Если к нему подключить лампочку, рассчитанную на напряжение аккумулятора (12 вольт), то в результате прохождения тока определенной величины через эту лампу мы получим излучение света и тепла. Лампа имеет определенное электрическое сопротивление, которое и ограничивает силу тока, идущего по этой цепи. Чтобы намеренно сделать короткое замыкание нам просто нужно взять кусок провода и подсоединить его к концам выводов аккумулятора (параллельно лампе). У этого провода сопротивление очень мало, по сравнению с лампой. Следовательно и нет особого ограничения, которое бы препятствовало движению заряженных частиц. И как только мы замкнем такую вот цепь, получим наше КЗ. По проводу потечет сразу большое ток, который может просто раскалить и расплавить этот кусок провода.

 

что такое короткое замыкание в электроцепи, каковы последствия КЗВ результате такого вот короткого замыкания будет возгорание проводника (его изоляции), вплоть до пожара, если этот проводник своим воспламенением переносит огонь на легковоспламеняющиеся вещи, что находятся поблизости. Кроме этого такое вот резкое, скачкообразное течение тока может быть вредным для самого аккумулятора. Он также в это время начинает нагреваться. А как известно аккумуляторы очень сильно не любят чрезмерного нагрева. Как минимум у них значительно после этого сокращается срок службы, а как максимум — выходят из строя и даже загораются и взрываются. Если такое короткое замыкание происходит, к примеру, с литиевым аккумулятором в телефоне (у которого нет электронной защиты внутри), в течении нескольких секунд происходит сильный нагрев, далее образуется пламя и взрыв.

 

 

 

 

Есть некоторые аккумуляторы, которые изначально рассчитаны на отдачу больших токов (тяговые аккумуляторы), но и у них полное короткое замыкание может привести к большим неприятностям. Ну, а что же происходит с напряжением во время короткого замыкания? Из школьной физики должно быть известно, что чем больше сила тока, тем большее падение напряжения на этом участке цепи. Следовательно, когда к источнику электропитания не подсоединено никакой нагрузки, на нем можно увидеть максимальное значение напряжения (это и есть ЭДС источника питания, его электродвижущая сила). Как только мы нагрузили этот источник питания, тут же появляется некое падение напряжения. И чем больше будет нагрузка, тем сильнее будет падение напряжения. Так как при коротком замыкании сопротивление цепи практически равно нулю, а сила тока при этом будет максимально возможной, то и падение напряжение на источнике питания также будет максимальной (около нуля).

 

обматка генератора, двигателя после сгорания, короткого замыканияЭто мы рассмотрели вариант полного короткого замыкания, который происходит непосредственно на выводах источника питания. Да, вот, что еще стоит добавить про это. В случае аккумулятора будет происходит большая токовая нагрузка на внутренние части и химические вещества самого аккумулятора (электролит, пластины, выводы). В случае короткого замыкания на таких источниках питания как электрогенераторы токовая нагрузка ложится на обмотки этих генераторов, что приводит к ее чрезмерному нагреву и испорченности (ну и те цепи, что работают в генераторе после этой обмотки). Короткое замыкание на выводах различных блоков питания приводит к перегреву и выходу из строя самих электрических схем источников тока и вторичной обмотки трансформатора.

 

Короткое замыкание может случаться в самой электрической цепи проводки, схемы. В этом случае последствия также имеют крайне негативный характер. Но при этом сила тока уже будет, как правило, чуть меньше, чем в случае замыкания на выходе источника питания. К примеру, есть схема усилителя звука. Вдруг из-за плохой изоляции самих динамиков происходит короткое замыкание на звуковом выходе этого усилителя. В итоге, скорее всего выгорят выходные транзисторы, микросхемы, стоящей в последних каскадах усиления звука. Сам источник питания в этом случае может даже не пострадать, так как до него чрезмерная токовая нагрузка может не дойти. Думаю вы суть короткого замыкания уловили.

 

ps smail

P.S. В любом случае явление электрического короткого замыкания приводит к плачевным последствиям. Для защиты от этого как правило применять обычные плавкие предохранители, автоматические выключатели, защитные схемы и т.д. Их задача заключается в быстром разрыве электрической цепи при резком увеличении силы тока. То есть, обычный предохранитель как бы является самым слабым звеном во всех электрической цепи. Как только сила тока резко возросла плавкая вставка просто плавится и разрывает цепь. Это в большинстве случаев приводит к тому, что прочие другие цепи в схеме остаются не поврежденными.

 

Чему равно напряжение при коротком замыкании. Расчёт токов короткого замыкания Общие сведения о коротких замыканиях

Основной причиной нарушения нормального режима работы системы электроснабжения (СЭС) является возникновение коротких замыканий (КЗ) в сети или элементах электрооборудования вследствие повреждения изоляции или неправильных действий обслуживающего персонала. Для снижения ущерба, обусловленного выходом из строя электрооборудования при протекании токов КЗ, а также для быстрого восстановления нормального режима работы СЭС необходимо правильно определять токи КЗ и по ним выбирать электрооборудование, защитную аппаратуру и средства ограничения токов КЗ.

Коротким замыканием называется непосредственное соединение между любыми точками разных фаз, фазы и нулевого провода или фазы с землей, не предусмотренное нормальными условиями работы установки.

Основные виды коротких замыканий в электрических системах:

3. Однофазное КЗ , при котором происходит замыкание одной из фаз на нулевой провод или землю. Условное обозначение точки однофазного КЗ

Токи, напряжения, мощности другие величины, относящиеся однофазному КЗ, обозначаются

,

,

и т.д.

Встречаются и другие виды КЗ, связанные с обрывами проводов и одновременными замыканиями провод различных фаз.

Трёхфазное КЗ является симметричным, поскольку при нём все три фазы оказываются в одинаковых условиях. Все остальные виды коротких замыканий являются несимметричным, так как при них фазы не остаются в одинаковых условиях, вследствие чего системы токов и напряжений получаются искаженными.

При возникновении КЗ общее электрическое сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

Элементы электрических систем обладают активными и реактивными (индуктивными или ёмкостными) сопротивлениями, поэтому при внезапном нарушении нормального режима работы (при возникновении КЗ) электрическая система представляет собой колебательный контур. Токи в ветвях системы и напряжения в отдельных её частях будут изменяться в течение некоторого времени после возникновения КЗ в соответствии с параметрами этого контура. Т.е. за время короткого замыкания в цепи поврежденного участка протекает переходный процесс.

При КЗ в каждой из фаз наряду с периодической составляющей тока (слагающей тока переменного знака) имеет место апериодическая составляющая тока (слагающая постоянного знака), которая также может изменять знак, но через большие промежутки времени по сравнению с периодической.

Мгновенное значение полного тока КЗ для произвольного момента времени:

где — апериодическая составляющая тока КЗ в момент времени

;- угловая частота переменного тока;- фазовый угол напряжения источника в момент времени

;- угол сдвига тока в цепи КЗ относительно напряжения источника;- постоянная времени цепи КЗ;

— индуктивность, индуктивное и активное сопротивление цепи КЗ.

Периодическая составляющая тока КЗ (рис. 1)одинакова для всех трёх фаз и определяется для любого момента времени значением ординаты огибающей, деленной на

. Апериодическая составляющаятока КЗ различна для всех трёх фаз (см. рис. 2)и изменяется в зависимости от момента возникновения КЗ.


Рис. 3. Изменение во времени периодической составляющей тока КЗ:

а) при питании от генераторов без АВР; б) при питании от генераторов с АВР; в) при питании от энергосистемы.

Амплитуда периодической составляющей изменяется в переходном процессе в соответствии с изменением ЭДС источника КЗ (рис. 3).При мощности источника, соизмеримой с мощностью элемента, где рассматривается КЗ, а также отсутствииАРВ генераторов ЭДС источника уменьшается от начального значения

до установившегося

, вследствие чего амплитуда периодической составляющей изменяется от

(сверхпереходной ток КЗ) до

(установившейся то КЗ) (рис. 3,а).

При наличии АРВ генераторов периодическая составляющая тока КЗ изменяется, как показано на рис. 3,б.Снижение периодической составляющей в начальный период КЗ объясняется инерционностью действия устройства АРВ, которое начинает работать через0,08-0,3 с после возникновения КЗ. С повышением тока возбуждения генератора увеличивается его ЭДС и соответственно периодическая составляющая тока КЗ вплоть до установившегося значения.

Если мощность источника существенно больше мощности элемента, где рассматривается КЗ, что соответствует источнику неограниченной мощности, у которого внутреннее

Что конкретно происходит при коротком замыкании и почему?

Законы электротехники и гидравлики практически совпадают. Так вот, аналог короткого замыкания в бытовой гидравлике, это срыв крана. Когда кран работает нормально, то он создает току воды нужное вам сопротивление. Когда же плохо прикрученный кран срывается с резьбы, то сопротивление падает, ток воды многократно возрастает и получается потоп (в случае электротехники-пожар).

У тебя в системе определенное напряжение и определенное сопротивление. Но при коротком замыкании большая часть тока начинает идти по какому-то побочному пути, там где сопротивление много меньше. Следовательно сила тока много больше — вследствии чего плавятся провода и происходят другие гадости.

ток в замкнутой цепи = напряжение / сопротивление. Если сопротивление ==0, то ток по цепи прет максимально возможный.

В коротком замыкании сопротивление равно 0 поэтому ток в цепи возрастает и получается очень большая нагрузка на все элементы!

простым языком: короткое замыкание используется в лампах накаливания. электроплитках. поищи их принцип работы и поймеш

В нормальном режиме использования источников электричества, от них берут какой-то определенный ток. Если источник мощный — то и ток можно брать бОльший. «Коротким замыканием» в быту называют такое проишествие, из-за которого через счетчик потёк недопустимо большой ток, и установленная защита разомкнула цепь питания раньше, чем из-за этого тока сгорела бы электропроводка. В постейшем случае (батарейка) защиту не применяют потому как замыкание приводит к тому, что напряжение падает практически до 0 вольт, не выдавая большого тока. В квартиры подаётся мощность с запасом, чтобы после включения электроплитки люстра не стала светить в полнакала. Но, как я писал, если использовать эту мощность по-максимуму, то сгорит проводка. Поставить толстые провода, чтобы не горела, и отключить защиту — сгорит электросчетчик. Если отказаться от счетчика, а провода в квартире будут толще, чем в подъезде — будут гореть провода в подъезде. Чтобы не горели — на трансформаторной подстанции (будка во дворе) стоит еще один защитный механизм. И так далее. Поэтому, по большому счету, «короткое замыкание» — вещь относительная. Всё сводится к одному из трех: -сработает защита ограничения тока (потребляемой мощности) -сгорят провода (чем больше ток — тем больше тепловыделение в проводнике, помните? ) -выйдет из строя (или быстро разрядится) источник питания. — Да, и самое главное: чтобы устроить качественное короткое замыкание, нужно, чтобы замыкающая штука была достаточно толстой и короткой. Желательно медной или золотой. Лучше всего — сверхпроводящей 🙂 Тогда она точно не сгорит раньше, чем проводка 😉

Электрическая сеть, это источник постоянного напряжения (220в) тоесть сеть может выдать скол угодно большой ток. Ток определяеться законом Ома I=U/R, а значит если сопротивление будет стримиться к нулю, ток будет стремится к бесконечноси (что и происходит при коротком замыкание R=0). Бьёт нас током (ток — количество зарядов в единицу времени, через единицу площади) , тоесть

Ток короткого замыкания. Виды и работа. Применение и особенности

Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:
  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:
  1. Трехфазное замыкание.
  2.  Двухфазное замыкание.
  3.  Однофазное замыкание на землю.
  4.  Однофазное замыкание на землю (Изолированная нейтраль).
  5.  Двухфазное замыкание на землю.
  6.  Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Причины повреждения изоляции
  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.
Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.
Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение iп. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения iк. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = iно. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током iу. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I уi пm + i аt=0’, где i пm является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть сварочный аппарат. Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка плавких предохранителей, которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют электрические автоматы. Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде дифференциальных автоматов. Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.
Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до трансформатора питания на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

Похожие темы:

Ток короткого замыкания: определение и причины

Содержание:

  1. Понятие короткого замыкания
  2. Причины опасной ситуации
  3. Разновидности коротких замыканий
  4. Опасность и последствия
  5. Защитные и профилактические мероприятия
  6. Как использовать короткое замыкание
  7. Расчёт токов короткого замыкания в сетях низкого напряжения

Несмотря на свою очевидную пользу, электрическая энергия, в определенных условиях, представляет серьезную опасность. Среди всех негативных факторов, более всего оказывает отрицательное воздействие ток короткого замыкания, способный нанести вред не только приборам, бытовой технике, оборудованию, но и обслуживающему персоналу. КЗ возникает в результате электрического взаимодействия разных фаз друг с другом или с землей. В точках соприкосновения в цепи наблюдается резкий рост силы тока, многократно превышающий предельно допустимые значения. В результате, возникает аварийная ситуация.

Понятие короткого замыкания

Короткое замыкание — КЗ возникает при незапланированном электрическом контакте между точками цепи с разными потенциалами, не предусмотренном нормативными правилами эксплуатации. Зону контакта отличает низкое сопротивление, что приводит к резкому росту силы тока, превышающему номинальное значение.

В качестве наглядного примера можно взять обычную лампочку на 100 Вт, подключенную к напряжению 220В. Для того чтобы сравнить токи в нормальном и аварийном режиме, необходимо воспользоваться законом Ома. При этом, сопротивление источника тока и проводников не учитывается при расчетах.

Сила тока в нормальном рабочем режиме составит I = P/U = 100/220 равно около 0,45А. Далее рассчитывается сопротивление нагрузки: R = U/I = 220/0,45 = около 489 Ом.

Когда появляется ток короткого замыкания, формула показывает, что параметры цепи существенно изменяются. Замыкание между двумя точками осуществляется проводником, сопротивление которого составляет 0,01 Ом. Известно, что ТКЗ всегда выбирает путь с минимальным сопротивлением. С связи с этим, произойдет резкое увеличение силы тока: I = U/R = 220/0,01 = 22000A. Поэтому данное явление и получило свое название, поскольку ток КЗ идет по наиболее минимальному пути, минуя нагрузку. Такое высокое значение получается лишь теоретически, на самом же деле такого роста не произойдет из-за падения напряжения у потребителя.

Таким образом, отвечая на вопрос, что такое короткое замыкание по-простому, можно отметить, что в этом случае положительный и отрицательный проводники создают для тока самый короткий путь, сопротивление начинает стремиться к нулю. Физика утверждает, что без сопротивления схема перестает нормально функционировать, работа источника напряжения сбивается и происходит замыкание с образованием разрушительного тока.

Причины опасной ситуации

Аварийная ситуация и короткое замыкание цепи не может возникнуть просто так.

В каждом конкретном случае имеются определенные причины и негативные факторы:

  • Высокий уровень напряжения при замыкании. Обычно возникает в результате резкого скачка, при котором наблюдается превышение всех допустимых норм. Вероятность пробоя изоляции или всей схемы становится очень высокой. Повышаются токовые утечки с одновременным повышением температуры дуги. При коротком замыкании большое напряжение всегда создает кратковременный дуговой разряд.
  • Старые изношенные слои изоляционного покрытия. Подобные ситуации чаще всего встречаются, когда замена проводки не проводилась в течение длительного времени. Слабая изоляция оказывается наиболее подверженной электрическому пробою, чему причина – выработка своего ресурса.
  • Внешние механические воздействия. Защитная оболочка проводников постепенно перетирается, а изоляционное покрытие оказывается нарушенным. Жилы проводов также подвержены повреждениям, вызывающим не только КЗ, но и возгорания.
  • В электрическую цепь иногда попадают посторонние предметы – пыль, мусор и т.д. Попадая на проводник, они создают собственную дополнительную цепочку, способную вызвать ток короткого замыкания источника.
  • Удары молний, создающие высокое напряжение, легко пробивающее всю электрическую схему или изоляцию проводников.

Разновидности коротких замыканий

В зависимости от конкретных обстоятельств и компонентов, участвующих в этом процессе, все аварийные ситуации подобного рода условно разделяются на следующие виды коротких замыканий:

  • Трехфазное (№ 1 на рисунке). В этом случае между собой контактируют все три фазы, без каких-либо перекосов. Распределение токов происходит симметрично, поэтому силу тока и ЭДС КЗ рассчитать достаточно легко. Главную опасность такого замыкания составляют тепловые и электродинамические воздействия, существенно превышающие такие же факторы в других случаях. Дополнительное замыкание на землю не оказывает какого-либо влияния на общий процесс, что характерно для подобной ситуации.
  • Двухфазное (№ 2). Подобное замыкание, как и все остальные называется несимметричным из-за происходящих процессов. В результате, они сопровождаются обязательным перекосом напряжения. В кабельных ЛЭП двухфазных процесс может легко превратиться в трехфазный. Это случается из-за высокой температуры в точке замыкания, под действием которой разрушается изоляция токоведущих частей.
  • Две фазы замыкаются с землей (№ 3). Ситуация характерна для систем, имеющих заземленную нейтраль.
  • Одна фаза замыкается на землю (№ 4). Считается наиболее частым коротким замыканием, встречающимся на жилых и промышленных объектах.
  • Замыкание двух фаз на землю (№ 5). Каждая из них замыкается по-отдельности, не контактируя между собой. Обычно такое положение приобретает схема, где имеется заземленная нейтраль.

Опасность и последствия

Практически все короткие замыкания приводят к негативным последствиям различной степени тяжести. Если кратко, то наибольшую опасность представляет возможное возгорание, нередко переходящее в полноценный пожар. В аварийной ситуации сила тока значительно увеличивается, а в проводниках в большом количестве выделяется теплота, оказывающая разрушающее действие на изоляцию.

В большинстве случаев, особенно в быту, при возникновении дугового КЗ между проводниками и местом замыкания образуется электрический разряд большой мощности, способный легко воспламенить находящиеся рядом предметы. Резкое выделение тока и тепла представляет особую опасность для людей, проживающих в доме, и обслуживающего персонала предприятий.

Аварийные ситуации с замыканиями называются просадочными из-за значительных понижений напряжения в данной сети. Особенно большие просадки образуются непосредственно в месте КЗ. Подобные скачки отрицательно влияют на электроприборы и оборудование, особенно с электрическими двигателями. Чувствительные устройства нередко попадают под воздействие сильных электромагнитных волн.

Предотвратить разрушительные последствия, определяемые термином коротких замыканий, вполне возможно при помощи различных защитных средств. Они определяются еще на стадии проектирования в индивидуальном порядке для каждой электроустановки.

Защитные и профилактические мероприятия

Полностью защититься от КЗ практически невозможно, поскольку во многих случаях оно происходит под влиянием случайных факторов. Поэтому основная роль отводится профилактическим мероприятиям, от чего зависит снижение вероятности аварийных ситуаций.

В обязательном порядке планируется и выполняется следующее:

  • Контроль и определение состояния изоляционного слоя токоведущих частей электроустановок или ЛЭП. В помещениях производственного назначения изоляция проводов проходит испытание 1 раз в 3 года или чаще. Домашние сети нормируются сроками максимальной эксплуатации. Например, скрытая проводка из медного провода может эксплуатироваться в течение 40 лет.
  • Перед тем как найти скрытую проводку перед сверлением стен, необходимо заранее свериться со схемой или проектом электрических сетей. Это существенно снизит вероятность повреждений, хотя более точные результаты можно получить только с помощью специального поискового прибора.
  • Выходя из дома следует отключать все электроприборы, особенно мощное оборудование – нагреватели, электроплиты, посудомоечные машины и т.д.
  • В помещениях, где есть признаки повышенной влажности, количество электрических устройств должно быть минимальным. Допускается эксплуатация приборов только с соответствующим классом защиты.
  • Не должна подключаться к сети поврежденная электротехника.
  • Не выходить за рамки установленных норм потребления электроэнергии.

Большое значение имеет использование защитных средств в электрической цепи – автоматов или плавких предохранителей. Они устанавливаются на вводе и на всех внутренних линиях проводки. В случае короткого замыкания произойдет срабатывание и сеть окажется обесточенной. Отработанные предохранители заменяются аналогичными устройствами того же типа. Элементы с меньшими номиналами приведут к ложным срабатываниям, а превышение допустимых токов вызовет повреждение оборудования и проводов.

Как использовать короткое замыкание

КЗ может не только наносить вред, но в чем-то – приносить ощутимую пользу в работе. Если говорить простым языком, то типичным примером такого использования служит дуговая сварка. Принцип действия сварочной аппаратуры заключается во взаимном контакте стержня-электрода и поверхности свариваемого металла.

Свойства КЗ обеспечивают нагрев поверхности до температуры плавления, после чего образуется сварочный шов из сплава металлов, обеспечивающий высокую прочность соединения. С технической точки зрения происходит замыкание сварочного электрода и контура заземления.

Работа сварочного аппарата в режиме электродвижущей силы КЗ происходит в течение короткого времени. В момент соприкосновения электрода с металлом появляется ток короткого замыкания с нестандартным зарядом и высокой ЭДС, сопровождающийся выделением большого количества тепла. Этой теплоты вполне достаточно, чтобы расплавить металл и образовать сварочный шов.

Кроме того, режимы КЗ используются в промышленной автоматике, некоторых видах электроники, в электродинамических датчиках сейсмических приемников и индукционных виброметров.

Напряжение короткого замыкания — это… Что такое Напряжение короткого замыкания?


Напряжение короткого замыкания

2.20 Напряжение короткого замыкания — напряжение, которое следует приложить к первичной обмотке при комнатной температуре для того, чтобы замкнутая накоротко вторичная обмотка нагрузилась током, равным номинальному вторичному току.

Напряжение короткого замыкания обычно выражается в процентах от номинального первичного напряжения.

Смотри также родственные термины:

9.1.4. Напряжение короткого замыкания пары обмоток трансформатора

Напряжение к. з.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

9.1.5. Напряжение короткого замыкания трансформатора

Напряжение к. з.

Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжения — для трехобмоточного трансформатора.

Примечание. Для многообмоточного трансформатора с п обмотками число значений напряжения короткого замыкания равно n(n — 1)/2

3.3 напряжение короткого замыкания трансформатора (impedance voltage): Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжения — для трехобмоточного трансформатора.

[ГОСТ 16110-82, статьи 6.15 и 9.1.5 соответственно]

95. Напряжение короткого замыкания трансформатора малой мощности

Напряжение короткого замыкания

D. Kurzschlusspannung des Kleintransformators

E. Short-circuit voltage of a low-power transformer

F. Tension de court-circuit du transformateur de faible puissance

Напряжение в первичной обмотке трансформатора при опыте короткого замыкания всех вторичных обмоток

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • напряжение испытательное нормированное
  • Напряжение короткого замыкания пары обмоток трансформатора

Смотреть что такое «Напряжение короткого замыкания» в других словарях:

  • напряжение короткого замыкания — trumpojo jungimo įtampa statusas T sritis automatika atitikmenys: angl. short circuit voltage vok. Kurzschlußspannung, f rus. напряжение короткого замыкания, n pranc. tension de court circuit, f …   Automatikos terminų žodynas

  • НАПРЯЖЕНИЕ КОРОТКОГО ЗАМЫКАНИЯ — характеристич. величина трансформатора, представляющая собой напряжение, к рое нужно приложить к первичной обмотке, при условии, что вторичная обмотка замкнута накоротко и в ней протекает номин. ток. Н. к. з. составляет 5 12% от номин. напряжения …   Большой энциклопедический политехнический словарь

  • напряжение короткого замыкания трансформатора — напряжение к. з. Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжения для трехобмоточного… …   Справочник технического переводчика

  • напряжение короткого замыкания трансформатора малой мощности — Напряжение в первичной обмотке трансформатора при опыте короткого замыкания всех вторичных обмоток [ГОСТ 20938 75] Тематики трансформатор Классификация >>> Синонимы напряжение короткого замыкания EN short circuit voltage of a low power… …   Справочник технического переводчика

  • напряжение короткого замыкания пары обмоток трансформатора — напряжение к. з. Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных… …   Справочник технического переводчика

  • напряжение короткого замыкания (трансформатора) — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN impedance voltage (of a transformer) …   Справочник технического переводчика

  • Напряжение короткого замыкания трансформатора — 9.1.5. Напряжение короткого замыкания трансформатора Напряжение к. з. Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего,… …   Словарь-справочник терминов нормативно-технической документации

  • Напряжение короткого замыкания трансформатора малой мощности — 95. Напряжение короткого замыкания трансформатора малой мощности Напряжение короткого замыкания D. Kurzschlusspannung des Kleintransformators E. Short circuit voltage of a low power transformer F. Tension de court circuit du transformateur de… …   Словарь-справочник терминов нормативно-технической документации

  • Напряжение короткого замыкания трансформатора (Напряжение короткого замыкания) — English: Voltage of the short circuit Напряжение короткого замыкания пары обмоток для двухобмоточного и три значения напряжения короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжения для… …   Строительный словарь

  • Напряжение короткого замыкания пары обмоток трансформатора — 9.1.4. Напряжение короткого замыкания пары обмоток трансформатора Напряжение к. з. Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой… …   Словарь-справочник терминов нормативно-технической документации

способы защиты и предотвращения, места возникновения

Содержание статьи:

При эксплуатации высоковольтных электрических цепей нередко явление, определяемое нормативными документами как межфазное замыкание. Такое отклонение от нормального режима работы систем электроснабжения связано с неисправностями питающих линий, последствия которых бывают непредсказуемыми. Особо опасный характер возможных повреждений вынуждает разобраться с рядом вопросов, касающихся того, что собой представляет это явление, к каким неприятностям оно приводит и как их избежать.

Понятие и причины замыканий

Причиной замыкания, как правило, становится нарушение изоляции проводов

Межфазным замыканием электричества в многофазных цепях называют непреднамеренное соединение между собой изолированных проводников с поврежденным защитным покрытием.

В отдельных случаях оно проявляется как однофазное замыкание на землю или корпус работающего электрооборудования.

Такое состояние электрической сети является нарушением нормального режима работы системы и трактуется как аварийное. В этом случае в местах замыкания двух проводников или в точках их контакта с землей величина тока существенно возрастает. Максимальное его значение достигает порой нескольких тысяч Ампер. Неуправляемые потоки электричества способны привести к разрушительным последствиям.

Причинами возникновения аварийных ситуаций в высоковольтных электрических сетях являются:

  • Повреждение защитной изоляции каждого из фазных проводников из-за нарушений правил эксплуатации кабельных линий.
  • Случайный обрыв одной из жил воздушного кабеля и его замыкание на другой провод или землю.
  • Замыкание провода с поврежденной изоляцией на корпус действующей электроустановки.

Каждый из случаев возникновения короткого замыкания является следствием грубейшего нарушения правил эксплуатации электрооборудования и в соответствии с требованиями нормативных документов нуждается в тщательном расследовании.

Виды аварийных замыканий

По типу электропитания все короткие замыкания делятся на повреждения, произошедшие в однофазных или в трехфазных цепях, а по их количеству – на одиночные и двойные КЗ. Самый простой случай – однофазные линии, в которых возможно только одиночное замыкание фазы на нейтраль или землю. Трехфазное короткое замыкание отличается большим вариантом возможностей, поскольку число проводов в кабеле увеличивается до 3-х. При этом возможны следующие варианты повреждений:

  • Замыкание двух высоковольтных проводов между собой.
  • КЗ одного провода на нейтраль или землю (однофазные короткие замыкания).
  • Контакт сразу двух проводников с поверхностью грунта.

В каждом из этих случаев, включая двухфазные КЗ на землю, рассматриваемая неисправность проявляется особым образом, характеризуясь токами растекания и распределениями аварийных потенциалов. Помимо этих факторов, текущий процесс описывается таким показателем, как напряжение прикосновения. Указанный параметр представляет собой напряжение, прикладываемое к телу человека между двумя точками прикосновения к оголенному проводу.

К тому же типу опасных воздействий относят разность потенциалов, появляющуюся между частями тела, соприкасающимися с оголенным проводом, замкнутым на землю. При однофазных КЗ особый интерес представляет вопрос, какой величины достигает напряжение прикосновения при замыкании фазы. Согласно положениям ПУЭ этот показатель зависит от расстояния между контактными зонами и увеличивается с его повышением.

В отдельных случаях, когда сопротивление растеканию тока на землю в слишком высоко, напряжение соприкосновения достигает опасной для человека величины.

Последствия КЗ

К опасным проявлениям межфазного замыкания трехфазной цепи (как и однофазного) относят последствия, связанные с протеканием в линии токов предельно больших значений. Они закономерно становятся причиной следующих аварийных ситуаций:

  • Возникновение пожара из-за расплавления и сильного нагрева изоляции фазных проводников.
  • Выход из строя подключенного к поврежденной линии силового оборудования.
  • Электрический удар током человека, случайно оказавшегося на участке аварийного замыкания.

При перемещении в этой зоне важно учитывать так называемое «напряжение шага», образующееся из-за растекания тока утечки в почву между ногами человека. Этот показатель отсчитывается между его ступнями при перемещении около упавшего на землю кабеля. Он также может достигать опасного значения, особенно при авариях в высоковольтных воздушных линиях 6,3-10 кВт. Поэтому ПУЭ предписывают передвигаться в этих зонах характерным гусиным шажком: ступня вплотную приставляется к ступне.

Основным условием надежной защиты от однофазных и двухфазных замыканий в силовых линиях 220/380 Вольт является качественная изоляция, способная выдерживать тестовые напряжения до 1000 Вольт. Величина ее сопротивления, согласно ПУЭ, должна составлять не менее 0,5 Мом для каждой из фаз. Для предотвращения пожаров и поломок оборудования в цепях питания устанавливаются специальные защитные устройства, обеспечивающие мгновенное отключение линии при появлении КЗ. К таким приборам относят:

  • Предохранители линейные автоматические.
  • Токовые пробойники и высоковольтные реле.
  • Автоматы токовой защиты и другие.

С их помощью удается предотвратить разрушительные последствия фазных замыканий, которые порой происходят по независящим от человека причинам.

Благодаря своевременному принятию соответствующих мер удается сохранить в целостности материальные ресурсы, а также защитить от поражения электрическим током обслуживающий оборудование персонал.

Междуфазные замыкание высоковольтной линии: способы защиты

В питающих цепях с рабочим напряжением свыше 1000 Вольт не допускается применять автоматические разъединители, так как при размыкании их силовых контактов образуется дуга большой мощности. В этом случае для коммутации линий используются масляные, вакуумные или газовые выключатели.

Для защиты высоковольтных сетей применяются также релейные схемы. Они отличаются простой исполнения и представляют собой преобразовательные устройства, работающие по закону индукции Фарадея – наведения э/м поля. В основе релейной аппаратуры, обеспечивающей защиту высоковольтных линий от перенапряжений, лежит токовый трансформатор. С его помощью удается контролировать величину тока в аварийной линии и при достижении им предельного значения вырабатывать сигнал, поступающий на обмотку мощного электромагнита. Этот защитный прибор после своего срабатывания отключает всю питающую цепь от источника энергоснабжения.

Независимо от наличия коммутационной аппаратуры основным способом защиты от междуфазных и трехфазных КЗ является использование кабельной продукции с качественной изоляцией. При соблюдении этого условия любая высоковольтная линия способна выдерживать токи КЗ, многократно превышающие допустимую норму.

Профилактические меры

Силовой трехжильный кабель ВВГнг

Самый действенный и надежный способ предупреждения коротких замыканий – профессиональный подход к решению следующих технических и организационных вопросов:

  • Выбор подходящего силового кабеля, способного выдерживать большие перегрузки по току.
  • Строгое соблюдение правил монтажа и эксплуатации электрических сетей, а также подключаемых к ним машин и аппаратов.
  • Наличие актов приемки системы электроснабжения при сдаче ее в эксплуатацию.
  • Использование современных видов защитного оборудования, гарантирующего моментальное отключение линии при возникновении аварийной ситуации.

Особое внимание уделяется профилактическим мероприятиям, проводимым в строгом соответствии с требованиями действующих нормативов. Согласно положениям, касающимся обслуживания электрических сетей, профилактика проводится по заранее составленному плану, утвержденному руководителем конкретного подразделения. При его реализации необходимо различать следующие виды профилактического обслуживания:

  • Визуальные осмотры.
  • Текущие и планово-предупредительные ремонты.
  • Тестовые испытания электрооборудования при его приемке и в ходе эксплуатации.

Замыкание электрических проводов на землю – очень опасное явление, способное привести к возгоранию и последующему за ним пожару. Кроме того, оно чревато возможностью поражения обслуживающих установки людей высоковольтным напряжением. Все это в конечном итоге вынуждает принимать специальные меры защиты, обеспечивающие нормальную эксплуатацию сетей в отсутствии критических режимов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *