Напряжение датчика холла – Как Подключить, Проверить Или Заменить, Где Находится, Принцип Работы, Признаки Неисправности, Линейный Или Аналоговый, Двухконтурное Зажигание

Содержание

Напряжение на датчике холла

Широкое распространение получили двигатели с инжекторной системой подачи топлива. Разработка и внедрение инжекторов было продиктовано реалиями современного мира. Автомобилей становилось все больше и больше, выбросы в атмосферу превышали все допустимые нормы. Остро встал вопрос контроля качества выхлопных газов автомобилей, так появился датчик Холла. Инжектор – один из действенных способов снизить врезные выбросы в атмосферу планеты. Кроме того, он помогает увеличить КПД двигателя внутреннего сгорания, следовательно, рабочие показатели всего автомобиля.

Напряжение на датчике Холла

Содержание статьи

История появления датчика Холла

Электронный контроль функций всех деталей и процессов в автомобиле возможен исключительно благодаря встроенным датчикам. Они непрерывно информируют центральный контрольный орган обо всех изменениях, в том числе и возникающих сбоях в слаженной работе систем.

Датчик Холла  — один из таких агентов ЭБУ, отвечающий за положения заслонок дросселя. Он передает изменяющиеся параметры магнитного поля. Эффект возникновения разности потенциалов и как следствие, напряжения, при помещение в магнитное поле проводника постоянного тока – на этой идее основано действие данного прибора. Это явление открыл и исследовал Эдвином Холлом и названо его именем. Отсюда и название нашего датчика.

Есть три вида этого прибора:

  1. Индуктивный (магнитный) – с двумя выходами.
  2. На эффекте Холла – с тремя выходами.
  3. Оптические – чередование попадания на фотоэлемент светового пучка, из источника света. Такое устройство используют редко.

Есть автомобили, в которых установлены несколько датчиков, причем могут быть разного типа.

Как возникает напряжение на датчике Холла

Как все происходит? Попробуем разобраться.

Другое название датчика Холла – датчик фаз или датчик распредвала. Он определяет угловое положение вала в данный момент. При его вращении, по отверстиям на датчике, проходят металлические лопасти. Возникающий управляющий импульс передается на коммутатор, который преобразует их в импульсы тока  на катушке зажигания. Происходит постепенное возрастание силы тока в обмотке катушки, по мере прохождения импульса от датчика. Катушка индуцирует импульс высокого напряжения. Датчик направляет его на свечу, тем самым способствуя правильному выбору момента искрения.

Датчик Холла передает данные по распознаванию блока цилиндров, чтобы впрыск осуществлялся только в один цилиндр. То есть, он предназначен для регулирования впрыска.

Теперь все то же, самое на понятном языке:

  • Он вживляется в систему зажигания (то есть, помещается проводник в зону магнитного воздействия)
  • С моментом образования искры, на нашем приборе образуется напряжение, величина которого, в конечном итоге, зависит от угла отклонения колен и распредвалов.
  • Отсюда импульс с измененным значением напряжения передается в коммутатор
  • Импульсы с измененным напряжением считываются ЭБУ
  • После обработки и расчета параметров оптимальной работы, сигналы с ЭБУ поступают в соответствующие инстанции.

Датчик является составной частью трамблера, устанавливается рядом с распределительным валом. В конструкции прибора предусмотрены магнитная основа и пластина, на которой имеются прорези по числу цилиндров в моторе.

При подключении используются три клеммы – массы, выходное напряжение, напряжение на коммутатор

Схема подключения датчика Холла уникальна тем, что простое внедрение в цепь зажигания не нарушает ее работу. Именно это делает сей прибор незаменимым для решения проблемы распознавания положения валов.

Выход из строя датчика Холла

Чтобы распознать поломку именно этого устройства, нужно знать несколько симптомов проявления этой напасти:

  • Мотор «жрет» бензин
  • Неровная работа двигателя. Машину дергает, ощущается потеря скорости, глохнет мотор
  • Коробка передач не переключает скорости. При перезапуске двигателя проблема решается. Однако, повторные ее возникновение говорит о выходе из строя датчика Холла
  • Свечи не искрят, даже при смене всего комплекта
  • Некорректная самодиагностика
  • «Чек» на панели хаотичным образом загорается на холостом ходу, и гаснет только на высоких оборотах

Причиной такого поведения машины, и возникновения вышеперечисленных проблем не всегда становится поломка датчика. Это могут быть неисправности проводки или сопутствующих элементов. Например:

— нет подключения к сигнальным проводам

— попадание влаги на контакты

— обрывы, замыкания, неправильное подключение различных звеньев электроцепи

— неисправность: ЭБУ, цепи зажигания

— механическое повреждение шестерней распределительного вала

Тестирование и замена датчика Холла

Проверка сводится к замеру напряжения на выходах.

  • Проверить с помощью вольтметра, формирование импульсов при работающем двигателе
  • Проверить напряжение автосканером
  • Внимательно осмотреть штекер со всеми составляющими, на нем может скопиться вода. Очистить окисленные зоны и тщательно высушить.
  • Чаше всего, причина кроется в нарушении целостности изоляционного покрытия проводящих элементов.
  • Есть еще один способ – отсоединить его от электронного блока и присоединить к вольтметру. Стрелка должна стоять на показателе в 12В. Поводите металлическим предметом возле прибора. Если стрелка меняет положение, то с датчиком все в порядке.
  • А вот самый простой способ убедится в неисправности вашего датчика Холла – отсоедините его, замкните его контакты («-« и коммутаторский контакт). Если есть искра, то система в порядке, значит неполадки с датчиком.

Как правило, датчик Холла не ремонтируют. Неисправный датчик заменяют новым. Это можно сделать и самостоятельно, нужно только купить прибор с правильными (подходящими вашей машине) параметрами.

  1. Снимают трамблер, демонтируют крышку
  2. Бегунок тянут вверх
  3. Убрав крышку, снимают штекер
  4. Выкручивают болты пластины прибора и вакуумного корректора
  5. Извлекаем стопорное кольцо через маленькое отверстие
  6. Вынимаем корректор и его тягу
  7. Разогнуть провода и снять пластину
  8. Заменить ее на новую, и пройти весь путь обратно

Пытаться смастерить прибор самостоятельно не имеет смысла. Стоит он копейки, зато, дать гарантию исправной работы всего агрегата может только фирма – производитель. Менять его рекомендуется каждые 100 тыс. пробега

Датчик Холла – контрольное устройство для фиксации изменений магнитного поля при переменных показателях выходного напряжения мотора. Кроме основного предназначения, датчик способствует увеличению мощности агрегата, ускорению работы разных систем. Используется для быстрого запуска АВS, мотора и тахометра.

принцип работы, типы, применение, преимущества и недостатки

В статье узнаете что такое датчики Холла, принцип работы, его типы, применение в промышленности, преимущества и недостатки.

Датчики Холла широко используются в различных областях. В этом посте мы расскажем о том, как они работают, их типах, приложениях, преимуществах и недостатках.

Что такое датчик Холла

Магнитные датчики — это твердотельные устройства, которые генерируют электрические сигналы, пропорциональные приложенному к нему магнитному полю. Эти электрические сигналы затем дополнительно обрабатываются специальной электронной схемой пользователя для получения желаемого выхода.

В наши дни эти магнитные датчики способны реагировать на широкий спектр магнитных полей. Одним из таких магнитных датчиков является датчик Холла, выход которого (напряжение) зависит от плотности магнитного поля.

Внешнее магнитное поле используется для активации этих датчиков эффекта Холла. Когда плотность магнитного потока в окрестности датчика выходит за пределы определенного определенного порога, он обнаруживается датчиком. При обнаружении датчик генерирует выходное напряжение, которое также известно как напряжение Холла.

Эти датчики Холла пользуются большим спросом и имеют очень широкое применение, например, датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и т. Д.

Купить датчик вы можете в популярном китайском интернет магазине Алиэкспресс. Брали оттуда, все рабочие, советуем.

Принцип работы датчика Холла

Датчик Холла основан на принципе Холла. Этот принцип гласит, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение может измеряться под прямым углом к ​​пути тока.

на схеме Принцип эффекта Холла - ток, протекающий через пластину

Как работает датчик Холла

Работа датчика Холла описана ниже:

  • Когда электрический ток проходит через датчик, электроны движутся по нему по прямой линии.
  • Когда на датчик воздействует внешнее магнитное поле, сила Лоренца отклоняет носители заряда, следуя изогнутой траектории.
  • Из-за этого отрицательные зарядовые электроны будут отклоняться к одной стороне датчика, а положительные зарядные отверстия — к другой.
  • Из-за этого накопления электронов и дырок на разных сторонах пластины, напряжение (разность потенциалов) может наблюдаться между сторонами пластины. Полученное напряжение прямо пропорционально электрическому току и напряженности магнитного поля.
на картинке Принцип эффекта Холла - Отклонение электронов и дырок

Типы датчиков Холла

Датчики эффекта Холла можно разделить на два типа:

  • На основании Вывода
  • На основании операции

На основе результатов

На основе выходных данных датчики Холла можно разделить на два типа:

  • Датчики Холла с аналоговым выходом
  • Датчики Холла с цифровым выходом
 Датчики Холла с аналоговым выходом
Принципиальная схема датчика Холла с аналоговым выходом

Датчики Холла с аналоговым выходом содержат регулятор напряжения, элемент Холла и усилитель. Как следует из названия, выход такого типа датчика является аналоговым по своей природе и пропорционален напряженности магнитного поля и выходу элемента Холла.

Эти датчики имеют непрерывный линейный выход. Благодаря этому свойству они подходят для использования в качестве датчиков приближения.

график Напряжения аналогового датчика Холла
Датчики Холла с цифровым выходом

Датчики эффекта Холла с цифровым выходом имеют только два выхода: «ВКЛ» и «ВЫКЛ». Эти датчики имеют дополнительный элемент «триггер Шмитта» по сравнению с датчиками Холла с аналоговым выходом.

Принципиальная схема датчика Холла с цифровым выходом

Именно триггер Шмитта вызывает эффект гистерезиса, и поэтому достигаются два различных пороговых уровня. Соответственно, выход всей цепи будет либо низким, либо высоким.

Переключатель эффекта Холла — один из таких датчиков. Эти датчики цифрового вывода широко используются в качестве концевых выключателей в станках с ЧПУ, трехмерных (3D) принтерах и позиционных блокировках в автоматизированных системах.

график Напряжение цифрового датчика Холла

На основе операции

На основе операции датчики эффекта Холла можно разделить на два типа:

  • Биполярный датчик Холла
  • Униполярный датчик Холла
Биполярный датчик Холла

Как следует из названия, эти датчики требуют как положительных, так и отрицательных магнитных полей для своей работы. Положительное магнитное поле южного полюса магнита используется для активации датчика, а отрицательное магнитное поле северного полюса магнита используется для отпускания датчика.

на картинке Датчик биполярного эффекта Холла
Униполярный датчик Холла

Как следует из названия, эти датчики требуют только положительного магнитного поля южного полюса магнита, чтобы активировать, а также отпустить датчик.

Применение датчика Холла

Приложения датчиков Холла были представлены в двух категориях для простоты понимания.

  • Применение аналоговых датчиков Холла
  • Применение цифровых датчиков Холла

Применение аналоговых датчиков Холла

Аналоговые датчики с эффектом Холла используются для:

  • Измерение постоянного тока в токоизмерительных клещах (также известных как Tong Testers).
  • Определение скорости вращения колеса для антиблокировочной тормозной системы (ABS).
  • Устройства управления двигателем для защиты и индикации.
  • Чувствуя наличие питания.
  • Зондирование движения.
  • Чувствуя скорость потока.
  • Датчик давления в мембранном манометре.
  • Ощущение вибрации.
  • Обнаружение черного металла в детекторах черного металла.
  • Регулирование напряжения

Применение цифровых датчиков Холла

Цифровые датчики эффекта Холла используются для:

  • Определяя угловое положение коленчатого вала для угла зажигания свечей зажигания.
  • Чувство положения автомобильных сидений и ремней безопасности для контроля подушек безопасности.
  • Беспроводная связь.
  • Чувствительное давление
  • Ощущение близости.
  • Чувствительная скорость потока.
  • Чувствительная позиция клапанов.
  • Ощущение положения объектива.

Преимущества датчиков Холла

Датчики эффекта Холла имеют следующие преимущества:

  • Они могут использоваться для нескольких функций датчика, таких как определение положения, определение скорости, а также для определения направления движения.
  • Поскольку они являются твердотельными устройствами, они абсолютно не подвержены износу из-за отсутствия движущихся частей.
  • Они почти не требуют обслуживания.
  • Они крепкие.
  • Они невосприимчивы к вибрации, пыли и воде.

Недостатки датчиков Холла

Датчики эффекта Холла имеют следующие недостатки:

  • Они не способны измерять ток на расстоянии более 10 см. Единственное решение для преодоления этой проблемы заключается в использовании очень сильного магнита, который может генерировать широкое магнитное поле.
  • Точность измеренного значения всегда является проблемой, поскольку внешние магнитные поля могут влиять на значения.
  • Высокая температура влияет на сопротивление проводника. Это, в свою очередь, повлияет на подвижность носителя заряда и чувствительность датчиков Холла.

Как большие электрические нагрузки можно контролировать с помощью датчиков Холла

Мы уже знаем, что выходная мощность датчика Холла очень мала (от 10 до 20 мА). Поэтому он не может напрямую контролировать большие электрические нагрузки. Тем не менее, мы можем контролировать большие электрические нагрузки с помощью датчиков Холла, добавив NPN-транзистор с открытым коллектором (сток тока) к выходу.

Транзистор NPN (приемник тока) функционирует в насыщенном состоянии в качестве переключателя приемника. Он замыкает выходной контакт заземлением, когда плотность потока превышает предварительно установленное значение «ВКЛ».

Выходной переключающий транзистор может быть в разных конфигурациях, таких как транзистор с открытым эмиттером, транзистор с открытым коллектором или оба. Вот так он обеспечивает двухтактный выход, который позволяет ему потреблять достаточный ток для непосредственного управления большими нагрузками.

Как работает датчик Холла Видео

Системы зажигания с датчиком Холла

Магнитоэлектрический датчик Холла получил свое название по имени Э. Холла американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Элемент Холла

представляет собой тонкую пластинку, выполненную из полупроводникового материала (кремний, германий), с четырьмя электродами. Если через такую пластинку проходит ток I и на нее одновременно действует магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластинки, то на параллельных направлению тока гранях возникает э.д.с. Холла, которое определяется по следующему выражению:

Uн = кхIВ/d,
кх – постоянная Холла, зависящая от материала пластинки; d – толщина пластинки

Принцип работы элемента Холла

Рис. Принцип работы элемента Холла:
1 – магнит; 2 – пластинка из полупроводникового материала

Через пластинку пропускается ток примерно 30 мА, тогда как напряжение Холла составляет 2 мВ, увеличиваясь с ростом температуры. Пластинка обычно представляет одно целое с интегральной схемой, осуществляемой усиление и формирование сигнала.

Если между магнитом и полу­проводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Схема прерывателя-распределителя с датчиком Холла представлена на двух следующих рисунках.

Принцип работы датчика Холла

Рис. Принцип работы датчика Холла:
1 – постоянный магнит; 2 – ротор; 3 – элемент Холла; 4 – операционный усилитель; 5 – формирователь импульсов; 6 – выходной каскад; 7 – блок стабилизации

Магнитное поле создается постоянным магнитом 1, а прерывание магнитного поля осуществляется ротором (экраном) 2 с окнами, укрепленным на валике распределителя. При прохождении окна ротора около постоянного магнита силовые линии его магнитного поля пронизывают поверхность элемента Холла и на его выходе возникает ЭДС. Если воздушный зазор между магнитом и элементом Холла перекрывается шторкой, магнитное поле замыкается на шторку экрана и не попадает на элемент Холла.

Схема прерывания магнитного потока

Рис. Схема прерывания магнитного потока:
1 – датчик Холла; 2 – держатель датчика; 3 – воздушный зазор; 4 – магнитный поток; 5 – ротор

Количество шторок и окон экрана соответствует количеству цилиндров двигателя. Ширина шторки экрана соответствует углу, при котором выходной транзистор коммутатора пропускает ток через первичную обмотку зажигания.

Учитывая небольшое напряжение, вырабатываемое элементом Холла, оно обрабатывается и усиливается.

Операционный усилитель 4 усиливает сигнал датчика и через формирователь импульсов 5 подает сигнал на базу выходного транзистора 6 и открывает его. Для исключения влияния на выходной сигнал датчика колебаний напряжения сети и температуры в схеме датчика имеется блок стабилизации 7.

При нахождении шторки экрана в щели воздушного зазора, величина магнитного потока резко падает, вследствие замыкании магнитного потока на шторку.

Импульсы датчика Холла

Рис. Импульсы датчика Холла:
В – магнитная индукция; Uн – напряжение, вырабатываемое элементом Холла; Ug – напряжение, вырабатываемое датчиком Холла; I – ток первичной обмотки катушки зажигания; tz – момент зажигания электрической искры; а – изменение магнитной индукции; б – изменение напряжения, вырабатываемого элементом Холла; в – изменение напряжения, вырабатываемого датчиком Холла; г – изменение силы тока первичной катушки зажигания.

Напряжение, вырабатываемое элементом Холла Uн, поступает на операционный усилитель, где происходит усиление сигнала. После этого ток поступает на формирователь импульсов и там происходит переработка из аналогового сигнала в цифровой. Затем полученный цифровой сигнал поступает на выходной каскад и окончательно усиливается до величины напряжения Ug, достаточного для работы транзисторного коммутатора. При этом напряжение Ug за счет инверсии выходного каскада вырабатывается в момент отсутствия напряжения Uн с входа элемента Холла, т.е. в момент перекрытия шторкой экрана воздушного зазора, что соответствует напряжению Uн ниже 0,4 В. В таком положении экрана транзистор выходного каскада Т0 находится в открытом состоянии, при этом от коммутатора через транзистор Т0 проходит ток и при этом база транзистора Т1 соединяется с массой.

Электрическая схема коммутатора и датчика Холла

Рис. Электрическая схема коммутатора и датчика Холла:
1 – датчик Холла; 1а – выходной сигнал; 2 – коммутатор; 3 – замок зажигания; 4 – дополнительный резистор; 5 – шунтирование дополнительного резистора; 6 – катушка зажигания

Учитывая, что проводимость транзистора Т1 n-p-n, отсутствие положительного потенциала этого транзистора приводит к его закрытию. В результате этого прекращается подача положительного потенциала на базу В через резистор R4 и коллекторно-эмитерный переход транзистора Т1. При этом ток не проходит через резистор R7 и база В включения транзисторов Т2/Т3 замыкается на массу. Учитывая проводимость этих транзисторов n-p-n, отсутствие положительного заряда на базе В, транзисторы закрываются и ток в первичную обмотку катушки зажигания не поступает. При выходе экрана из воздушного зазора напряжение с элемента Холла достигает 0,4В и через первичную обмотку катушки зажигания начинает протекать ток.

В момент попадания зуба ротора в зазор датчика на выходе датчика создается напряжение Umax примерно на 3 В меньше напряжения питания. Если через зазор датчика проходит прорезь ротора, напряжение на выходе датчика Umin близко к нулю (не более 0,4 В). Отношение периода Т к длительности Ти (скважность) равна трем. Напряжение питания датчика соответствует напряжению бортовой сети и находится в пределах 8…14 В.

Для преобразования управляющих импульсов бесконтактного датчика в импульсы тока в первичной обмотке катушки зажигания применяются коммутаторы. Коммутатор преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания. Коммутатор соединен с генератором импульсов (бесконтактным датчиком) тремя проводниками. Коммутатор управляет зажиганием в зависимости от частоты вращения валика датчика-распределителя, напряжения аккумулятора, полного сопротивления катушки зажигания и при любых режимах работы двигателя выдает импульсы напряжения постоянной величины. Во время прохождения положительного импульса (напряжение Umax ) от бесконтактного датчика происходит постепенное ( в течении 4…8 мс) нарастание тока в первичной обмотке катушки зажигания до максимальной величины В равной 8…9 А. В момент, когда напряжение на выходе датчика падает до Umin , выходной транзистор коммутатора закрывается и ток через первичную обмотку катушки зажигания резко прерывается. В результате во вторичной обмотке индуцируется импульс высокого напряжения.

Отдельно элементы прерывателя-распределителя с датчиком Холла показаны на рисунке. Пластинка и остальные составляющие датчика Холла устанавливается внутри пластмассового корпуса, залитого смолой. Датчик Холла неразборный и не подлежит ремонту. Для соединения с коммутатором датчик Холла имеет 3 вывода.

Элементы прерывателя-распределителя с датчиком Холла

Рис. Элементы прерывателя-распределителя с датчиком Холла:
1 – ротор: 2 – шторка; 3 – держатель датчика Холла; 4 – постоянный магнит и датчик Холла; 5 – воздушный зазор

Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по свечам зажигания. Он имеет центробежный и вакуумный регуляторы опережения зажигания. Бескон­тактный датчик в сборе с опорной пластиной имеет возможность поворачиваться в зависимости от разряжения, подводимого к вакуумному регулятору.

Катушка зажигания, адаптированная к данной системе зажигания, установлена рядом с коммутатором. Она преобразует прерывистый ток низкого напряжения (12 В) в ток высокого напряжения (20…25 кВ) необходимый для пробоя воздушного зазора между электродами свечей зажигания. Катушка имеет в верхней части отверстие, закрытое пробкой диаметром 5.5 мм для защиты катушки от избыточного внутреннего давления. Пробка выталкивается из отверстия при росте давления вследствие повышения температуры из-за короткого замыкания.

Видео: Как работает датчик Холла

Эффект Холла — Википедия

У этого термина существуют и другие значения, см. Холл.

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости[1] будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Hall-Effect-diagram.svg

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.}
где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},}
где n{\displaystyle n} — концентрация носителей заряда. Тогда
E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определить знак их заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью[2].

В сильных магнитных полях в плоском проводнике (то есть в квазидвумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к появлению квантового эффекта Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

В случае отсутствия магнитного поля в немагнитных проводниках может наблюдаться отклонение носителей тока с противоположными направлениями спинов в разные стороны перпендикулярно электрическому полю. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 году. Говорят о внешнем и внутреннем спиновых эффектах. Первый из них связан со спин-зависимым рассеянием, а второй — со спин-орбитальным взаимодействием.

Эдвин Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчёты по которой приводились выше. Однако при более строгих расчётах и в сильных полях магнетосопротивление проявляется достаточно хорошо.

R_{H} Датчик Холла, используемый для измерения силы тока в проводнике. В отличие от трансформатора тока, измеряет также и постоянный ток.

Эффект Холла позволяет определить концентрацию и подвижность носителей заряда, а в некоторых случаях − тип носителей заряда (электроны или дырки) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников (см. Метод ван дер Пау).

На основе эффекта Холла работают датчики Холла — приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли датчика положения ротора (ДПР), который реализует обратную связь по положению ротора и выполняет ту же функцию, что и коллектор в коллекторном ДПТ.

Датчики Холла применяются:

  1. ↑ Критерий малости — внешние воздействия не разрушают присущих физической системе внутренних свойств, не осуществляют «насилия» над системой.
  2. Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald and N. P. Ong. Anomalous Hall effect (англ.) // Rev. Mod. Phys.. — 2010. — Vol. 82, iss. 2. — P. 1539—1592.
  • Абрикосов А. А. Основы теории металлов. — Москва: «Наука», главная редакция физико-математической литературы, 1987. — 520 с. — ISBN нет, ББК 22.37, УДК 539.21 (075.8).
  • Ашкрофт Н., Мермин Н. Физика твердого тела. — «Мир», 1979.

Датчик Холла | Описание, предназначение, виды

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру.  Но  вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток.  На рисунке эту пластинку я отметил с гранями ABCD.

датчик Холла принцип работы

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил?  Разность потенциалов на гранях А и C!  Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект  –  в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла. 

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

токовые клещи датчик холла

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила  эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

цифровой датчик холла

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

цифровой датчик холла

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика.  Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу перестал гореть

Переворачиваю магнит другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видео работы

Как вы видите на видео,  мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков Холла
  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения
Применение цифровых датчиков Холла
  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически  датчика хватит на бесконечное число включений-выключений. Там нет электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. Используйте на здоровье датчики Холла в своих электронных устройствах.

принцип работы, применение, принципиальная схема, подключение

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Датчик Холла

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Устройство датчика Холла

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

виды датчиков холла

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Биполярный датчик холла

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Аналоговый датчик

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

линейный датчик холла

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

датчик тока холла

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

тахометр с датчиком холла

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Датчик вибраций

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Датчик угла поворота

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

Бесконтактный потенциометр

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик расхода на датчике холла

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Цифровой датчик

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер частоты вращения

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер системы зажигания авто

Контроллер положения клапанов

Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).

Так можно фиксировать открывание и закрывание клапанов.

Контроллер положения клапанов

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Контроллер бумаг в принтере

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0). Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает. По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Счетчик импульсов

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Блокировка дверей

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Измеритель расхода

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Детектор приближения в телефоне

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Принципиальная схема подключения элемента Холла.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

устройство, принцип работы и назначение

Магнитные датчики Холла широко распространены в современных условиях и применяются не только в специализированных изделиях, но и в обычной бытовой технике. Большинство пользователей даже не подозревают, какие чувствительные элементы работают у них в телефоне, например, и что они могут быть установлены не только в электронной аппаратуре, но и в средствах передвижения (в автомобиле или мотоцикле). В этой статье мы рассмотрим устройство, принцип работы и назначение датчика Холла.

Принцип действия и типы

Использование сенсоров в различных устройствах (в планшете, в частности) объясняется их способностью реагировать на изменения поля и отключаться при закрытии магнитной крышки чехла. Благодаря этому свойству они устанавливаются и в стиральных машинах, позволяя контролировать скорость вращения барабана. Если выразиться простым языком – здесь датчик Холла используется как тахометр.

Датчик Холла

Историческая справка

Чтобы понять принцип работы этого элемента, потребуется небольшой экскурс в историю. В 1879 году американский физик Холл открыл интересное явление, связанное с поведением проводника с током в магнитном поле. Проверка показала, что если через помещенную между магнитами медную пластину пропускать ток, то на ее боковых гранях появляется разность потенциалов. Возникает закономерный вопрос: как проверить это напряжение в домашних условиях?

Измерение холловского напряжения

Оказалось, что на практике его можно измерить мультиметром или любым другим прибором, имеющим соответствующие пределы. То же самое можно сделать любым подходящим тестером или подобным ему прибором.

Подключение измерителя подтверждает то, что движущиеся электроны под действием магнитного поля отклоняются в сторону (перпендикулярно направлению их движения).

Важно! Величина этого отклонения или разность потенциалов пропорциональна «мощности» магнитов и силе тока через пластину.

На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля. На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия.

Классификация

Важно понимать, какие бывают датчики Холла, и по какому принципу их принято классифицировать. По особенностям работы и тому для чего он нужен или по назначению, датчик Холла может иметь различные исполнения. Одна из разновидностей – аналоговые приборы, вырабатывающие на выходе непрерывный сигнал.

В отличие от них цифровой элемент имеет только два дискретных состояния («ноль» и «единица»). Эта разновидность прибора может быть униполярной или иметь биполярный тип. Первая из них срабатывает при обнаружении поля любой полярности и отключается при его исчезновении. То есть униполярный цифровой сенсор реагирует только на отсутствие или наличие магнитной напряженности. Рассмотренные особенности каждого из подвидов также помогают понять, что это такое – датчик Холла.

Униполярные сенсоры переключаются в «единицу» лишь при достижении полем порогового уровня и не способны определять его наличие при слабых напряженностях. Указанное свойство – существенный минус таких приборов, заметно ограничивающий сферу их применения. Биполярный датчик срабатывает с учетом полярности магнитного поля, одна из которых включает его, а другая – выключает.

Условное графическое обозначение приборов этого класса приведено на фото ниже:

УГО датчика Холла

Устройство и примеры использования

Простейшая система с датчиком Холла включает в свой состав следующие элементы:

  1. Постоянный магнит (его функция – создание магнитного поля).
  2. Подвижный ротор с лопастями или зубцами.
  3. Особый стержень из магнитного материала (магнитопровод).
  4. Пластиковый корпус.

Помимо этого, техническая характеристика датчика предусматривает применение микросхем, задействованных в измерительном процессе.

Понять принцип работы этого прибора удается, если ознакомиться с подробной схемой включения датчика Холла в зоне проведения измерений. Схема подключения и суть работы сенсора может быть представлена следующим образом:

  • В зазоре, образованном половинками магнитопровода, перемещаются металлические лопасти ротора.
  • При их вращении происходит периодическое шунтирование магнитного потока.
  • Встроенной микросхемой предусмотрено определение нулевого показателя индукции (в эти моменты напряжение на ее выходе максимально).
  • По частоте таких всплесков, подсчитываемой той же микросхемой, судят о скорости вращения контролируемого объекта (двигательного вала в мотоцикле, например).

Чтобы этот процесс протекал нормально – при включении сенсора в измерительную цепь должна учитываться цоколевка данного образца (она бывает разной).

Пример схемы подключения

Обобщая рассмотренную схему, следует предположить, что датчики этого класса способны измерять скорость вращения коленвала любого движущегося средства. Универсальность сенсора, не исключающая возможности его установки в скутере, например, позволяет применять датчик Холла не только в сложных технических устройствах, но и в обычной бытовой технике.

Применение в системе зажигания и стиральных машинах

При использовании датчика Холла в системе зажигания автомобиля с его помощью удается фиксировать момент размыкания трамблера. В данном случае он работает как аналоговый преобразователь, определяющий мгновения прерывания бортового питания. На этом же принципе базируется его применение в рабочих модулях стиральной машины, что позволяет по скорости вращения барабана определять увеличение веса белья.

Пример схемы подключения системы зажигания

Датчики Холла устанавливаются и в некоторых образцах измерительной аппаратуры. Чаще всего ими комплектуются бесконтактные клещи, применяемые для измерения тока в проводниках. Встроенный прибор реагирует на изменение электромагнитного поля, образующегося вокруг силового кабеля. Кроме того, он подходит для ручки газа электровелосипеда, позволяя контролировать угол ее поворота.

В бытовых условиях

В клавиатурах компьютеров эти приборы обеспечивают бесконтактный способ снятия информации. Сенсор, входящий в состав кулера бытового ПК, способен управлять полярностью обмоток ротора, то есть менять направление его вращения.

Пример платы компьютерного куллера датчик Холла установлен в нижней частиПример использования датчика из куллера в системе зажигания двигателя с мопеда типа Д-4

При использовании такого элемента в смартфоне, в частности, он обеспечивает выключение устройства при помещении его в чехол с «магнитной» застежкой.

ДХ в смартфоне обеспечивает смену заставки при закрытии крышки, если поднести обычный магнит — телефон «подумает»

Рассматривая области применения датчики Холла простыми словами можно сказать, что его использование в технической сфере практически ничем не ограничено. В электронном конструкторе Ардуино, например, имеется набор с таким датчиком, позволяющий на практике проиллюстрировать эффект Холла.

Модуль с датчиком Холла A3144 для Ардуино

Это не единственный пример его использования в целях обучения, помогающий начинающим пользователям понять, как подключить и использовать сенсоры полевых структур.

В заключение отметим, что к недостаткам датчиков Холла относят их чувствительность к электромагнитным помехам, нередко возникающим в рабочих цепях. Кроме того, использование сложных электронных модулей в конструкции прибора в какой-то мере влияет на его надежность, несколько снижая ее. Эти минусы сенсора не рассматриваются как его дефекты, а просто учитываются при работе с аппаратурой.

Теперь вы знаете, что такое датчик Холла, как он работает и зачем нужен. Надеемся, предоставленная информация была для полезной и интересной!

Материалы по теме:

Добавить комментарий

Ваш адрес email не будет опубликован.