На этой электростанции вырабатывают электроэнергию и тепло – Типы электростанций. Виды электростанций. Принципиальная схема тепловой электростанции

Содержание

Тест с ответами: «Электроэнергетика России»

1. Какую энергию использует Мутновская электростанция:
а) геотермальную +
б) угольную
в) газовую

2. Какую энергию использует Паужетская электростанция:
а) газовую
б) геотермальную +
в) атомную

3. Один из плюсов ГЭС:
а) при перекрытии рек затапливаются огромные территории
б) для получения электроэнергии нужно топливо
в) для получения электроэнергии не нужно топливо +

4. Один из плюсов ГЭС:
а) простота в обслуживании и эксплуатации +
б) сложность в обслуживании и эксплуатации
в) сложность в эксплуатации

5. Один из минусов ГЭС:
а) простота в обслуживании
б) нет выбросов в атмосферу
в) при перекрытии рек затапливаются огромные территории +

6. Один из плюсов ТЭЦ:
а) высокие затраты на строительство по сравнению с АЭС и ГЭС
б) работает на доступном дешевом топливе +
в) для получения электроэнергии нужно дорогое топливо

7. Один из плюсов ТЭЦ:
а) высокие затраты на строительство по сравнению с АЭС и ГЭС

б) выбросы в атмосферу
в) низкие затраты на строительство по сравнению с АЭС и ГЭС +

8. Один из минусов ТЭЦ:
а) выбросы в атмосферу +
б) низкие затраты на строительство по сравнению с АЭС и ГЭС +
в) можно построить практически в любом месте

9. Один из плюсов АЭС:
а) высокая стоимость и сложность строительства
б) радиоактивные отходы
в) дешевизна электроэнергии по сравнению с ТЭЦ +

10. Один из минусов АЭС:
а) дешевизна электроэнергии по сравнению с ТЭЦ
б) высокая стоимость и сложность строительства +
в) низкая стоимость и сложность строительства

11. Альтернативный источник энергии является таким ресурсом:
а) возобновляемым +

б) не возобновляемым
в) сложным

12. Альтернативный источник энергии:
а) газ
б) солнечная +
в) уголь

13. Альтернативный источник энергии:
а) ветряная +
б) атомная
в) мазут

14. Какое топливо используется на атомных электростанциях:
а) мазут
б) природный газ
в) уран +

15. Наиболее используемый тип электростанций в РФ:
а) тепловая электростанция +
б) солнечная электростанция
в) атомная электростанция

16. Какой тип электростанций использует энергию недр земли:
а) тепловая
б) геотермальная +
в) ветряная

17. Электроэнергетика относится к:
а) химической промышленности
б) пищевой промышленности

в) тяжёлой промышленности +

18. Ведущая роль в выработке электроэнергии в России принадлежит:
а) АЭС
б) ТЭС +
в) ГЭС

19. Крупнейшие ГЭС России построены на этой реке:
а) Ангаре
б) Волге
в) Енисее +

20. На такой электростанции вырабатывают электроэнергию и тепло:
а) АЭС
б) ТЭЦ +
в) ТЭС

21. Крупнейшая ГЭС России:
а) Саяно –Шушенская +
б) Усть-Илимская
в) Красноярская

22. Одна из самых крупных ГЭС РФ:
а) Павловская ГЭС
б) Красноярская ГЭС +
в) Гоцатлинская ГЭС

23. Одна из самых крупных ГЭС РФ:
а) Миатлинская ГЭС
б) Нарвская ГЭС
в) Братская ГЭС +

24. Одна из самых крупных ГЭС РФ:

а) Нива ГЭС-3
б) Усть-Илимская ГЭС +
в) Павловская ГЭС

25. Одна из самых крупных ГЭС РФ:
а) Верхне-Свирская ГЭС
б) Миатлинская ГЭС
в) Богучанская ГЭС +

26. Запасы гидроэнергоресурсов России возрастают:
а) с востока на запад
б) с запада на восток +
в) с севера на юг

27. Подавляющая часть АЭС размещена в:
а) Европейской части России +
б) Азиатской части России
в) Южной части России.

28. Район действующих ГеоЭС:
а) Алтай
б) Кавказ
в) Камчатка +

29. Большая часть электроэнергии производится на АЭС в экономическом районе:
а) Центральном +
б) Центрально – Чернозёмном

в) Поволжском

30. Экологические последствия, возникающие при строительстве ТЭС:
а) опасность радиоактивного заражения
б) загрязнение атмосферы продуктами сгорания топлива +
в) затопление больших площадей

Тепловая электростанция — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2016; проверки требуют 54 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2016; проверки требуют 54 правки.

Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счёт преобразования химической энергии топлива в процессе сжигания в тепловую, а затем в механическую энергию вращения вала электрогенератора. В качестве топлива широко используются различные горючие ископаемые топлива: уголь, природный газ, реже — мазут, ранее — торф и горючие сланцы. Многие крупные тепловые станции вырабатывают лишь электричество — традиционно ГРЭС, в настоящее время КЭС; средние станции могут также использоваться для выработки тепла в схемах теплоснабжения (ТЭЦ).

Первая теплоэлектростанция «Pearl Street Station (англ.)русск.» появилась в Нью-Йорке на Перл-стрит в 1882 году

[1][2].

В традиционных теплоэлектростанциях топливо сжигается в топке парового котла (ранее также назывались парогенераторами), нагревая и превращая в пар питательную воду, прокачиваемую внутри котла в специальных трубках (водотрубный котёл). Полученный перегретый пар с высокой температурой (до 400—650 градусов Цельсия) и давлением (от единиц до десятков МПа) подается через паропровод в турбогенератор — совмещенные паровую турбину и электрогенератор. В многоступенчатой паровой турбине тепловая энергия пара частично превращается в механическую энергию вращения вала, на котором установлен Электрический генератор. В ТЭЦ часть тепловой энергии пара также используется в сетевых подогревателях.

В ряде теплоэлектростанций получила распространение газотурбинная схема, в которой полученная при сжигании газообразного или жидкого топлива смесь горячих газов непосредственно вращает турбину газотурбинной установки, ось которой соединяется с электрогенератором. После турбины газы остаются достаточно горячими для полезного использования в котле-утилизаторе для питания паросилового двигателя (парогазовая установка) или для целей теплоснабжения (Газотурбинная ТЭЦ).

  • Котлотурбинные электростанции
  • Газотурбинные электростанции
  • Электростанции на базе парогазовых установок
  • Электростанции на основе поршневых двигателей
    • С воспламенением от сжатия (дизель)
    • C воспламенением от искры
  • Комбинированного цикла

Математические модели и методы, используемые в задачах управления ТЭС[править | править код]

Как известно, технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии. Технологический процесс имеет особенность — конечный продукт — электроэнергия — не подлежит складированию. Косвенным показателем соответствия между паропроизводительностью кола мощностью турбины служит давление перегретого пара.

Современные ТЭС делятся на два типа:

  1. С поперечными связями. Основной агрегат по пару и воде связаны между собой
  2. С блочной компоновкой. При таком типе основное оборудование описывается отдельным технологическим процессом в пределах каждого энергоблока.

Для описания технологических процессов и формирования критериев управления составляются математические модели. Их изображают в форме уравнений.

В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе. [3]

Реализация и концепции построения АСУ ТП ТЭС[править | править код]

Одна из основных задач управления технологическим процессом на ТЭС состоит в поддержании непрерывною соответствия между количествами вырабатываемой и потребляемой энергии. Решение этой задачи может осуществляться по частям с помощью автономных АСР парового котла, турбины и электрического генератора.

Состав функций АСУ ТП[править | править код]

  1. Информационные функции АСУ ТП по энергоблокам:
    • Оперативный контроль
    • Технологическая сигнализация
    • Расчет технико-экономических показателей
    • Определение достоверности информации
    • Диагностика состояния оборудования
    • Регистрация аварийных положений
    • Формирование банков данных
  2. Функции управления АСУ ТП по энергоблоку
    • Статическая оптимизация режимов работы энергооборудования
    • Исследование объекта управления
    • Имитация экстремальных условий
  3. Информационные функции АСУ ТП по ТЭС
    • Общестанционный контроль
    • Расчет общестанционных ТЭП
    • Контроль достоверности информации
    • Регистрация общестанционных аварий
    • Обмен оперативно-диспетчерской информацией с АСУ вышестоящих и нижестоящих уровней
    • Формирование развитых баз данных
  4. Функции управления АСУ ТП по ТЭС
    • Оптимальное распределение электрических нагрузок между энергоблоками
    • Оптимальное распределение экологических нагрузок между энергоблоками
    • Выбор состава работающего оборудования энергоблоков
    • Дискретное и непрерывно-дискретное управление вспомогательным оборудованием
    • Выполнение логических операций по переключениям в главной электрической схеме станции
    • Групповое управление автоматическими системами регулирования возбуждения электрических генераторов[4]

Организация управления технологическим процессом ТЭС[править | править код]

Для осуществления управления технологического процесса ТЭЦ необходимо учитывать изменение производительности первоисточников энергии и их состоянием в зависимости от электрической нагрузки.

Основными факторами, влияющими на организацию управления ТП ТЭС являются:

  • организационная структура оперативно-диспетчерского управления;
  • комплекс технических средств автоматизации;
  • эргономика рабочего места оператора;
  • композиционное решение оперативно-диспетчерских постов управления;
  • существующий уровень автоматизации.
Функционально-групповое управление (ФГУ).[править | править код]

Осуществляется путем декомпозиции и агрегирования, для разделения энергоблока на отдельные элементы или участки для децентрализованного управления ими. В результате ФГУ повышается надежность и точность автоматизированной системы управления энергоблока в целом. Деление на функциональные группы условное, однако оно облегчает работу оперативно-обслуживающего персонала.

Примеры перечня ФГ для мощного моноблока с прямоточным котлом и конденсационной турбины:

по котлу:

  • питания водой,
  • полами твердого пылевидного топлива,
  • подачи жидкого (газообразного) топлива,
  • подачи и подогрева воздуха,
  • розжига растопочных горелок,
  • удаления и очистки дымовых газов,
  • подавления вредных выбросов,
  • пароперегреватели;

по генератору:

  • система охлаждения,
  • система возбуждения,
  • система синхронизации;

по турбине и вспомогательному оборудованию:

  • система снабжения смазочным маслом
  • система снабжения регулирующей жидкостью (аккумуляторный бак, центральный насос, устройства распределения и т.п.)
  • система снабжения паром для прогрева соединительных трубопроводов в пределах турбины,
  • система снабжении турбины перегретым паром (ГПЗ, паровые байпасы, стопорный и регулирующий клапаны, АСР частоты вращения и т.п.),
  • вакуумно-уплотнительные устройства (пусковой и рабочий -эжекторы, система лабиринтовых уплотнений и т.п.),
  • охладительная установка (конденсатор, циркуляционные насосы и т.п.),
  • конденсатные насосы,
  • блочная обессоливающая установка,
  • питательно- деаэраторная установка,
  • подогреватели среднего давления,
  • подогреватели высокого давления.[4]

Экологические аспекты использования[править | править код]

Энергетика является одним из тех секторов мировой экономики, изменения в которых необходимы, чтобы избежать неприемлемых последствий глобального потепления. Оценки энергоинфраструктуры на основе глобального эмиссионного бюджета CO2 показывают, что после 2017 года в мире не должны вводиться в строй новые электростанции, работающие на ископаемом топливе.[5]

Тепловые электростанции зачастую становятся «мишенями» для радикально настроенных климатических активистов.[6][7]

  1. ↑ Global Edison — History
  2. ↑ Тепловые электростанции
  3. ↑ Плетнев Г. П Автоматизированное управление объектами тепловых электростанций: Учебн. пособие для вузов.—М.: Энергоиздат, 1981. —368 е., ил.
  4. 1 2 ISBN 9785903072859 Автоматизация технологических процессов и производств в теплоэнергетике: учебник для студентов вузов / Г.П. Плетнев. — 4-е изд., стереот. — М.: Издательский дом МЭИ, 2007. —с. 87-90
  5. ↑ Pfeiffer et al, The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy [1] Архивировано 20 октября 2007 года. (англ.)
  6. ↑ Drax coal train hijackers sentenced [2]  (англ.) The Guardian, Friday 4 September 2009
  7. ↑ Ten years since Climate Camp: return to Drax [3] Архивная копия от 28 января 2017 на Wayback Machine  (англ.) Corporate Watch. Tue, 11/10/2016
  • Аракелян Э. К., Старшинов В. А. Повышение экономичности и маневренности оборудования тепловых электростанций. — М.: МЭИ, 1993. — 328 с. — ISBN 5-7046-0042-5.

СГК Online | Чем отличается ТЭЦ от ГРЭС?

Первая вырабатывает и тепловую, и электрическую энергию, а вторая – только электроэнергию. В обоих случаях речь идет о тепловых электростанциях, различия между которыми существенны, но не принципиальны – в ЕЭС России есть ТЭЦ, работающие в конденсационном режиме, и ГРЭС, «разжалованные» в теплоцентрали.

Первая вырабатывает и тепловую, и электрическую энергию, а вторая – только электроэнергию. В обоих случаях речь идет о тепловых электростанциях, различия между которыми существенны, но не принципиальны – в ЕЭС России есть ТЭЦ, работающие в конденсационном режиме, и ГРЭС, «разжалованные» в теплоцентрали.

Любая электростанция представляет собой комплекс из оборудования, с помощью которого организуется преобразование энергии определенного источника (как правило, природного) в электрическую и тепловую энергию. В гидроэнергетике таким источником выступает вода, в атомной – уран, а на тепловых электростанциях (ТЭС) применимо большое разнообразие элементов (от газа, угля и нефтепродуктов до биотоплива, торфа и геотермальных скважин). В России порядка 70% электрогенерации обеспечивают именно ТЭС. 

В качестве расхожих обозначений ТЭС используется две аббревиатуры – ГРЭС и ТЭЦ.  Для обывателей они зачастую малопонятны, причем первую еще и путают с ГЭС, при том что это вообще разные виды генерации. Гидроэлектростанция работает за счет водяного потока, а ее плотины для этого перегораживают реки (но есть исключения), а ГРЭС – за счет пара, хотя и такая станция может располагать собственным водохранилищем. Однако ТЭС, которым также, как и ГЭС, жизненно необходима вода, способны эффективно функционировать и вдали от рек и водоемов – в таком случае на них обычно строят градирни, один из самых монументальных и заметных (после дымовых труб) технических элементов в тепловой энергетике. Особенно в зимнее время.

Градирни — один из самых монументальных и заметных) технических элементов в тепловой энергетике.

Главное – электричество

Обозначение «ГРЭС»  – пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто – «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС компании «Юнипро» в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.

В современном понимании ГРЭС – это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции – выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года).

Поэтому ГРЭС, как правило, расположены вдали от крупных городов – благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт – как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва». 

Интересно, что далеко не все станции, имеющие в своем названии аббревиатуру «ГРЭС», являются конденсационными; некоторые из них давно работают как теплоэлектроцентрали. Например, Кемеровская ГРЭС «Сибирской генерирующей компании» (СГК). «Изначально, в 1930-е годы, она вырабатывала только электроэнергию. Тем более что энергодефицит тогда был большой. Но когда вокруг станции вырос город Кемерово, на первый план вышел другой вопрос – как отапливать жилые кварталы? Тогда станцию перепрофилировали в классическую теплоэлектроцентраль, оставив лишь историческое название – ГРЭС. Для того, чтобы работник с гордостью мог сказать: «Я работаю на ГРЭС!». Потребление угля на электричество и тепло на станции идет сегодня в пропорции 50 на 50», — объясняет «Кислород.ЛАЙФ» начальник управления эксплуатации ТЭС Кузбасского филиала СГК Алексей Кутырев. 

В то же время на других ГРЭС, входящих в СГК – например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае – 97% сжигаемого угля идет на генерацию электричества. И всего 3% – на выработку тепла. И такая же картина, за редким исключением – практически на любой другой ГРЭС.

«В советское время ГРЭС обеспечивали электроэнергией населенные пункты, и, несмотря на то, что там присутствует пар, ни о какой когенерации (одновременной выработки электроэнергии и тепла) речи не шло. Для горячей воды и батарей в небольших городах строили котельные. Количество тепла, которое вырабатывает ГРЭС, ограничивается турбоагрегатами, которые входят в ее состав. Поэтому, например, на Беловской ГРЭС к турбоагрегатам присоединяется микро-бойлерная, где есть вода, и она уже направляется на обогрев небольшого поселка. Для любой ГРЭС это побочная продукция. По заявкам, так сказать, трудящихся»

Алексей Кутырев

начальник управления эксплуатации ТЭС Кузбасского филиала

Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2(входит в «Юнипро») – ее мощность 5657,1 МВт (мощнее в нашей стране – только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2017 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская — она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь. 

Кемеровская ГРЭС давно перепрофилирована в классическую теплоэлектроцентраль, ей оставлено лишь историческое название – ГРЭС.

В приоритете – тепло

Теплоэнергоцентрали (ТЭЦ) – это еще один тип ТЭС, но это не конденсационная, а теплофикационная станция.  ТЭЦ, главным образом, производят тепло – в виде технологического пара и горячей воды (в том числе для горячего водоснабжения и отопления жилых и промышленных объектов). Поэтому ТЭЦ являются ключевым элементом в централизованных системах теплоснабжения в городах, по уровню проникновения которых Россия является одним из мировых лидеров. Средние и малые ТЭЦ являются также незаменимыми спутниками крупных промышленных предприятий. Ключевая черта ТЭЦ – когенерация: одновременное производство тепла и электричества . Это и эффективнее, и выгоднее выработки, например, только электроэнергии (как на ГРЭС) или только тепла (как на котельных). Поэтому в СССР в свое время и сделали ставку на повсеместное развитие теплофицикации. 

Принципиальное отличие ТЭЦ от ГРЭС, при том что все это котлотурбинные и паротурбинные электростанции — разные типы турбин. На теплоэлектроцентралях ставят теплофикационные турбины марки «Т», отличие которых от конденсационных турбин типа «К» (которые работают на ГРЭС) – наличие регулируемых отборов пара. В дальнейшем он направляется, например, к подогревателям сетевой воды, откуда она идет в батареи квартир или в краны с горячей водой. Наибольшее распространение в нашей стране исторически получили турбины Т-100, так называемые «сотки». Но работают на ТЭЦ и противодавленческие турбины типа «Р», которые производят технологический пар (у них нет конденсатора и пар, после того, как выработал электроэнергию в проточной части, идет напрямую промышленному потребителю). Бывают и турбины типа «ПТ», которые могут работать и на промышленность, и на теплофикацию. 

В турбинах типа «К» процесс расширения пара в проточной части заканчивается его кондесацией (что позволяет получать на одной установке большую мощность – до 1,6 ГВт и более). 

«Для ТЭЦ электроэнергия, в отличие от ГРЭС – продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя – и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия – не так уж и важно. Важно – выдать нужные гигакалории, чтобы потребителям, в основном – населению, было комфортно»      

Алексей Кутырев   

начальник управления эксплуатации ТЭС Кузбасского филиала

В отопительный сезон ТЭЦ работают по так называемому «тепловому графику» – поддерживают температуру сетевой воды в магистрали в зависимости от температуры наружного воздуха. В этом режиме ТЭЦ могут нести и базовую нагрузку по электроэнергии, демонстрируя, кстати, очень высокие коэффициенты использования установленной мощности (КИУМ). По электрическому графику ТЭЦ обычно работают в теплые месяцы года, когда отборы на теплофикацию с турбин отключаются. ГРЭС же работают исключительно по электрическому графику. 

Нетрудно догадаться, что ТЭЦ в России гораздо больше ГРЭС – и все они, как правило, сильно различаются по мощности. Вариантов их работы также великое множество. Некоторые ТЭЦ, например, работают как ГРЭС — такова, к примеру, ТЭЦ-10 компании «Иркутскэнерго». Другие функционируют в тесной спайке с промышленными предприятиями – и потому не снижают свою мощность даже в летний период. Например, Казанская ТЭЦ-3 ТГК-16 снабжает паром гигант химиндустрии – «Казаньоргсинтез» (обе компании входят в Группу ТАИФ). А Ново-Кемеровская ТЭЦ СГК генерирует пар для нужд КАО «Азот». Некоторые станции обеспечивают теплом и горячей водой преимущественно население – например, все четыре ТЭЦ в Новосибирске с 1990-х практически прекратили производство технологического пара. 

Случается, что теплоэлектроцентрали вообще не производят электрической энергии – хотя таких сейчас и меньшинство. Связано это с тем, что в отличие от гигакалорий, стоимость которых жестко регулируются государством, киловатты в России являются рыночным товаром. В этих условиях даже те ТЭЦ, что ранее не работали на оптовый рынок электроэнергии и мощности, постарались на него выйти. В структуре СГК, например, такой путь прошла Красноярская ТЭЦ-3, до марта 2012 года вырабатывавшая только тепловую энергию. Но с 1 марта того года на ней ввели в строй первый угольный энергоблок в России на 208 МВт, построенный в рамках ДПМ. С тех пор эта станция вообще стала образцово-показательной в СГК по энергоэффективности и экологичности. Красноярская ТЭЦ-3 до марта 2012 года вырабатывала только тепловую энергию. А сейчас является образцово-показательной в СГК по энергоэффективности и экологичности.

Крупнейшие ТЭЦ в России работают на газе и находятся под крылом «Мосэнерго». Самой мощной, вероятно, можно считать ТЭЦ-26, расположенную в московском районе Бирюлево Западное – по крайней мере, по показателю электрической мощности 1841 МВт она опережает все другие ТЭЦ страны. Эта электростанция обеспечивает централизованное теплоснабжение промышленных предприятий, общественных и жилых зданий с населением более 2 млн человек в районах Чертаново, Ясенево, Бирюлево и Марьино. Тепловая мощность у этой ТЭЦ хоть и высока (4214 Гкал/час), но не является рекордной. У ТЭЦ-21 того же «Мосэнерго» мощность по теплу выше – 4918 Гкал/час, хотя по электроэнергии она немногим уступает «коллеге» (1,76 ГВт).


Подготовлено порталом «Кислород.ЛАЙФ»

это что такое? ТЭС и ТЭЦ: различия :: SYL.ru

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это электростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

тэс это

ТЭС — это (расшифровка самой аббревиатуры выглядит как «тепловая электростанция»), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 — 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как «конденсационная электростанция».

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как «теплоэнергоцентраль».

тэс это расшифровка

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод;
  • системы водоподготовки на станциях следует обустраивать безотходные.

тэс это тепловая электрическая станция

Принцип работы ТЭС

ТЭС — это электростанция, на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

  1. Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

  2. Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

  3. Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

  4. Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

  5. Деаэрированная вода подогревается и подается в котел.

тэс это электростанция

Преимущества ТЭС

ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

  1. Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 — 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

  2. Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 — 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

тэс электростанция примеры

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

  1. Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

  2. Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

  3. Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

  4. Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

  5. ТЭЦ-26 «Мосэнерго» (1800 МВт).

  6. Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

тэс и тэц различия

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.

Принцип работы ТЭЦ, устройство ТЭС

ТЭЦ

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.

Схема работы ТЭЦ

Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Схема работы ТЭЦ

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

Схема ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.

Чистое сжигание угля (Clean Coal)

Чистое сжигание угля (Clean Coal)

Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Чистое сжигание угля (Clean Coal)

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

ТЭС Touketuo

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.

Сургутская ГРЭС-2 Сургутская ГРЭС-2

Тепловые электростанции: виды и принцип работы

Содержание:

  1. Разновидности тепловых электростанций
  2. Принцип работы тепловой электростанции
  3. ТЭС на угле
  4. Газовые ТЭС
  5. Другие виды топлива для ТЭС
  6. КПД тепловой электростанции
  7. Самые мощные ТЭС
  8. Видео

Превращение природных энергетических ресурсов в электричество осуществляется с помощью специальных установок, функционирующих на различных принципах. Среди них наиболее широкое распространение получили тепловые электростанции, применяющие для работы жидкое, твердое и газообразное органическое топливо. Они вырабатывают более 70% всей мировой электроэнергии и располагаются поблизости от месторождений природных ресурсов. Многие ТЭС производят не только электричество, но и тепловую энергию.

Виды тепловых электростанций

Стандартная тепловая электростанция представляет собой целый комплекс, включающий в себя различные устройства и оборудование, преобразующие топливную энергию в электричество и тепло.

Подобные установки отличаются параметрами и техническими характеристиками, по которым и выполняется их классификация:

  • В соответствии с видами и назначением поставляемой электроэнергии, тепловые станции могут быть районными и промышленными. Районные установки известны как ГРЭС или КЭС и предназначены для обслуживания всех потребителей региона. Электростанции, вырабатывающие тепло, называются ТЭЦ. Мощность районных станций превышает 1 млн. кВт. Промышленные электростанции предназначены для электро- и теплоснабжения конкретных предприятий и производственных комплексов. Их мощность значительно меньше, чем у ГРЭС и устанавливается в соответствии с потребностями того или иного объекта.
  • Все типы тепловых электростанций работают на различных источниках энергии. Прежде всего, это обычные органические ресурсы, используемые большинством ТЭС и продукты нефтепереработки. Наибольшее распространение получили уголь, природный газ, мазут. Наиболее прогрессивные установки работают на ядерном топливе и называются атомными электростанциями – АЭС.
  • Силовые установки, преобразующие энергию тепла в электричество, бывают паротурбинными, газотурбинными и смешанной парогазовой конструкции.
  • Технологическая схема паропроводов ТЭС может быть разной. В блочных конструкциях тепловые электрические станции используют одинаковые энергетические установки или энергоблоки. В них пар от котла подается лишь к собственной турбине и после конденсации он вновь возвращается в свой котел. По данной схеме построено большинство ГРЭС (КЭС) и ТЭЦ. Другой вариант предполагает использование поперечных связей, когда пар от котлов подается к общему коллектору – паропроводу, обеспечивающему работу всей паровых турбин станции.
  • По параметрам начального давления ТЭС могут быть с критическим и сверхкритическим давлением. В первом случае российские стандарты для ТЭС-ТЭЦ составляют 8,8-12,8 Мпа или 90-130 атмосфер. Второй вариант имеет более высокие параметры, составляющие 23,5 Мпа или 240 атмосфер. В таких конструкциях используется промежуточный перегрев и блочная схема.

Принцип работы тепловой электростанции

Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.

Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.

Несмотря на разнообразие конструкций, работа всех ТЭС осуществляется по общей схеме. В котел постоянно подается топливо в виде угля, газа, торфа, мазута или горючих сланцев. На многих электростанциях используется заранее приготовленная угольная пыль. Вместе с топливом поступает воздух в подогретом виде, выполняющий функцию окислителя.

В процессе горения топлива создается тепло, нагревающее воду в паровом котле. Происходит образование насыщенного пара, подаваемого в паровую турбину через паропровод. Далее тепловая энергия становится механической.

Вал и остальные движущиеся части турбины связаны между собой и представляют единое целое. Струя пара под высоким давлением и при высокой температуре выходит из сопел и воздействует на лопатки турбины. Закрепленные на диске, они начинают вращаться и приводят в движение вал, соединенный с генератором. В результате вращения происходит преобразование механической энергии в электрический ток.

Пройдя через паровую турбину, пар снижает свою температуру и давление. Далее он попадает в конденсатор и прокачивается по трубкам, охлаждаемым водой. Здесь пар окончательно превращается в воду и поступает в деаэратор для очистки от растворенных газов. Очищенная вода с помощью насоса подается в котельную установку через подогреватель.

ТЭС на угле

Уголь уже давно стал одним из основных источников энергии в повседневной жизни и производственной деятельности людей. Широкое распространение данного вида топлива стало возможным благодаря его доступности. Во многих месторождениях он расположен в нескольких метрах от поверхности земли и может добываться более дешевым открытым способом. Кроме того, уголь не требует каких-то особых условий хранения и складируется в обычные кучи неподалеку от объекта.

Промышленное использование угля началось в конце 18-го века. В дальнейшем, когда появился железнодорожный транспорт, уголь стал источником движущей силы для паровозов. Позднее он стал применяться на первых тепловых электростанциях, построенных в конце 19-го века. Многие ТЭС и в настоящее время работают на угле.

На самых первых электростанциях сжигание угля осуществлялось путем его укладки на колосниковые решетки. Загрузка топлива и удаление шлака выполнялось вручную. Постепенно эти процессы были механизированы и уголь попадал на решетки из верхнего бункера. Решетка приводилась в движение и отработанный шлак ссыпался в специальный приемник.

Современные тепловые электростанции уже давно не пользуются кусковым углем. Вместо него в котлы загружается угольная пыль, получаемая в дробилках или мельницах. Подача топлива к горелкам производится сжатым воздухом. Попадая в топку, угольная пыль вперемешку с воздухом начинает гореть, выделяя большое количество тепла.

Газовые ТЭС

Вторым после угля по своей значимости является природный газ, используемый многими ТЭС. Данный вид топлива обладает несомненными преимуществами. Вредные выбросы, отравляющие атмосферу, значительно ниже, чем при сжигании угля. После сжигания не остается побочных продуктов в виде шлака или золы.

Эксплуатация ТЭС на газе становится значительно проще, поскольку в этом случае не требуется приготовление угольной пыли. Газу не требуется какая-либо специальная подготовка, и он сразу готов к использованию. Газовые тепловые электростанции считаются более маневренными, что немаловажно в ситуациях с изменяющимися нагрузками.

Эффективность и коэффициент полезного действия газовых ТЭС значительно увеличились при переходе в рабочий режим с циклом парогазовых установок. Сжигание топлива производится не в котле, а в газовой турбине. Такие установки предназначены только для газа и не могут работать на угольной пыли.

Другие виды топлива для ТЭС

Помимо традиционных видов топлива тепловые электростанции применяют в своей работе и другие источники энергии. Одним из таких энергоресурсов является мазут, который использовался на многих электростанциях во второй половине 20-го века.

В современных условиях цена продуктов нефтепереработки существенно увеличилась, поэтому мазут перестал быть основным топливом. Его частично используют угольные электростанции для растопки. Эксплуатационные качества мазута аналогичны с природным газом, однако при его сжигании в большом количестве выделяется оксид серы, загрязняющий окружающую среду.

В 20-м веке некоторые ТЭС работали на торфе. В настоящее время этот ресурс практически не используется из-за низкой эффективности по сравнению с газом и углем. Установки на дизельном топливе применяются на небольших объектах, где не требуются значительные объемы электроэнергии. В основном, они предназначены для удаленных районов, расположенных на значительном расстоянии от сетей централизованного электроснабжения.

КПД тепловой электростанции

Основным показателем любой тепловой электростанции является ее коэффициент полезного действия. Например, для угольных ТЭС существует термический КПД, определяемый количеством угля, необходимого для выработки 1 кВт*ч электроэнергии. Если в начале 20-х годов прошлого века этот показатель составлял 15,4 кг, то в 60-е годы он снизился до 3,95 кг. В дальнейшем расход угля вновь незначительно поднялся до 4,6 кг.

Причиной такого подъема стали газоочистители, уловители пыли и золы, из-за которых угольная электростанция снизила выходную мощность на 10%. Многие станции пользуются более чистым в экологическом плане углем, что также привело к увеличению потребления топлива.

Процентное выражение термического КПД тепловой электростанции составляет не более 36%, что связано с высокими тепловыми потерями, вызываемыми отходящими газами при горении. У атомных электростанций, отличающимися низкими температурами и давлением термический КПД еще ниже – 32%. Самый высокий показатель у газотурбинных установок, оборудованных котлами-утилизаторами и дополнительными паровыми турбинами. КПД электростанций с таким оборудованием превышает 40%. Этот показатель полностью зависит от величины рабочих температур и давления пара.

Современные паротурбинные электростанции используют промежуточный перегрев пара. После того как он частично отработает в турбине, происходит его отбор в промежуточной точке для последующего повторного нагрева до первоначальной температуры. Система промежуточного перегрева может состоять из двух ступеней и более, что способствует значительному увеличению термического КПД.

Самые мощные ТЭС

В настоящее время лидером тепловой энергетики по праву считается тепловая электростанция Туокетуо, находящаяся в Китае в провинции Внутренняя Монголия. До недавних пор она являлась лишь третьей в мире, уступая по мощности ТЭС, расположенным в Тайчжуне и Сургуте. В результате проведенной реконструкции в 2017 году добавились два энергоблока по 660 Мвт каждый, после чего общая мощность станции достигла 6720 мегаватт. После этого Сургутская ГРЭС стала занимать 3-е место в мире и 1-е – в России.

В российской Энергосистеме доля тепловых электростанций составляет около 70%, а общее количество в натуральных цифрах – 358 единиц. Самые крупные ТЭС расположены возле крупных месторождений полезных ископаемых, используемых в качестве топлива. Установки, применяющие мазут, привязаны к крупным нефтеперерабатывающим предприятиям.

Крупнейшей российской ТЭС является Сургутская, производительность которой составляет 5600 МВт. На карте географическое положение объекта определяется на примерно одинаковом расстоянии от Нефтеюганска и Ханты-Мансийска.

Строительство объекта началось в 1979 году, а в 1985 году был введен в эксплуатацию 1-й энергоблок. Далее за 3 года в строй вступили все оставшиеся энергоблоки, производительностью 800 МВт. Работа станции осуществляется на попутном газе, образованном в местах разрабатываемых газовых месторождений. Такой газ должен утилизироваться, однако он превратился в энергетический ресурс. К настоящему времени построены еще 2 энергоблока по 400 МВт, что позволило вывести станцию на проектную мощность.

Следует отметить еще одну крупную российскую ГРЭС – Рефтинскую. Она работает на каменном угле, а производительность составляет 3800 мегаватт. Объект расположен примерно в 100 км от Екатеринбурга. Строительство велось с 1963 по 1980 годы, в течение всего периода энергоблоки вводились в строй поэтапно.

их преимущества и недостатки, разновидности, классификация

elektrostancia 1Электростанцией называется комплекс зданий, сооружений и оборудования, предназначенный для выработки электрической энергии. То есть, электростанции преобразуют различные виды энергий в электрическую. Наиболее распространенными типами электростанций являются:

— гидроэлектростанции;
— тепловые;
— атомные.

Гидроэлектростанция (ГЭС) — это электростанция, преобразующая энергию движущейся воды в электрическую энергию. Устанавливаются ГЭС на реках. При помощи плотины создается перепад высот воды (до и после плотины). Возникающий напор воды приводит в движение лопасти турбины. Турбина приводит в действие генераторы, которые вырабатывают электроэнергию.

В зависимости от мощности вырабатываемой электроэнергии, гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор — от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.

Преимуществами гидроэлектростанций являются: выработка дешевой электроэнергии, использование возобновляемой энергии, простота управления, быстрый выход на рабочий режим. Кроме того, ГЭС не загрязняют атмосферу. Недостатки: привязанность к водоемам, возможное затопление пахотных земель, пагубное влияние на экосистему рек. ГЭС можно строить только на равнинных реках (из-за сейсмической опасности гор).

elektrostancia 2 Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.

В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.

Тепловые электростанции подразделяются на:

— газотурбинные;

— котлотурбинные;

— комбинированного цикла;

— на базе парогазовых установок;
— на основе поршневых двигателей.

Котлотурбинные ТЭС, в свою очередь делятся на конденсационные (КЭС или ГРЭС) и теплоэлектроцентрали (ТЭЦ).

Преимущества теплоэлектростанций 

— малые финансовые затраты;

— высокая скорость строительства;

— возможность стабильной работы вне зависимости от сезона.

Недостатки ТЭС

— работа на невозобновляемых ресурсах;

— медленный выход на рабочий режим;

— получение отходов.

elektrostancia 3 Атомная электростанция (АЭС) — станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все АЭС мира выработали почти 11% электроэнергии.

Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров АЭС может быть разным.

АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на: кипящие, водоводяные, тяжеловодные, газоохлаждаемые, графито-водные.

В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:

Станции, предназначенные для выработки электроэнергии.

Станции, предназначенные для получения электрической и тепловой энергии (АТЭЦ).

Преимущества атомных электростанций:

— независимость от источников топлива;

— экологическая чистота;

Главный недостаток станций этого типа — тяжелые последствия в случае аварийных ситуаций.

Кроме перечисленных электростанций еще бывают: дизельные, солнечные, приливные, ветровые, геотермальные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *