Мощность трехфазного тока – 17. Преимущества трехфазных систем. Мощность в трехфазной цепи. Способы измерения активной и реактивной мощности в трехфазных цепях.

Содержание

Как рассчитать мощность трехфазного тока

Содержание:
  1. Характеристики трехфазной системы
  2. Измерение мощности ваттметром

Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.

Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х U

л х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х S
    ф
    = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Измерение мощности ваттметром

В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.

В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.

Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.

Мощность трехфазной сети и ее измерение

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или  А, В, С.

Схема соединения звезда:

Документ1Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

1В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Документ2Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжениеЛинейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

2Но поскольку линейное и фазное напряжение отличаются между собой в 5, но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Мощность трехфазной сети при соединении в звезду и расчет при линейном напряжении

Или:

Мощность трехфазной сети при соединении в звезду и расчет при фазном напряженииСоответственно  для активной:

6

7Для реактивной:

8

9

Схема соединения в треугольник

Схема соединения обмоток в треугольникСхема соединения обмоток в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Мощность трехфазной сети при соединении в треугольник

И соответственно:

11

13

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметрЦифровой ваттметрАналоговый ваттметрАналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Документ5Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Документ6Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Документ7Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

DLВекторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

12

14

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) 15 показания W1 меньше чем W2 (W1<W2), при φ>600 показания W1 вообще отрицательные (W1<0).

При активной и емкостной(R-C) 16 и W1>W2, а при φ<-600 показания W2 <0.

При современном развитии техники появились цифровые ваттметры. Они в отличии от аналоговых меньше в размерах, гораздо легче и менее габаритны. Более того цифровые ваттметры могут фиксировать ток, напряжение, измерять cosφ в сети и другое. Они позволяют в режиме реального времени отслеживать различные величины и выдавать предупреждения при их отклонении. Это очень удобно и не требуется проводить измерения тока, напряжения, а потом математически это все высчитывать. Цифровой ваттметр заключен в корпус и подключается (для бытовых потребителей) самым обычным способом – как и обычный потребитель — втыканием вилки в розетку.

некоторые формулы для вычисления и методы измерения мощности

Как измерять мощность трёхфазного токаПеременный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

  • А, В, С;
  • или же U, V, W.

А так называемая нейтраль обозначается буквой N.

Характеристики трёхфазных цепей

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто — путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой: Формула 1

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: Формула 2. То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: Формула 3.

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: Формула 4 и Формула 5.

А, следовательно, общая мощностная характеристика находится по формуле: Формула 6.

Соединение звезда

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: Формула 7.

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как Формула 8.

Соединительная схема треугольник

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

Мощность трехфазной цепи при симметричной нагрузке

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток. Поэтому общая мощность сети будет больше показаний ваттметра в Формула 10 раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Мощность 3 фазной сети. Мощность трехфазной сети

Не всякому обывателю понятно, что такое электрические цепи. В квартирах они на 99 % однофазные, где ток поступает к потребителю по одному проводу, а возвращается по другому (нулевому). Трехфазная сеть представляет собой систему передачи электрического тока, который течет по трем проводам с возвратом по одному. Здесь обратный провод не перегружен благодаря сдвигу тока по фазе. Электроэнергия вырабатывается генератором, приводимым во вращение внешним приводом.

Увеличение нагрузки в цепи приводит к росту силы тока, проходящего по обмоткам генератора. В результате магнитное поле в большей степени сопротивляется вращению вала привода. Количество оборотов начинает снижаться, и регулятор скорости вращения подает команду на увеличение мощности привода, например путем подачи большего количества топлива к двигателю внутреннего сгорания. Число оборотов восстанавливается, и генерируется больше электроэнергии.

Трехфазная система представляет собой 3 цепи с ЭДС одинаковой частоты и сдвигом по фазе 120°.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью Минимальное сечение алюминиевой жилы составляет 16 мм 2 , чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Воздушное подключение трехфазного питания дома

При расстоянии от ближайшей опоры более 15 м необходима установка еще одного столба. Это необходимо для снижения нагрузок, приводящих к провисанию или обрыву проводов.

Высота места присоединения составляет 2,75 м и выше.

Электрораспределительный шкаф

Подключение к трехфазной сети производится по проекту, где внутри дома производится разделение потребителей на группы:

  • освещение;
  • розетки;
  • отдельные мощные приборы.

Одни нагрузки можно отключать для ремонта при работающих других.

Мощность потребителей рассчитывается для каждой группы, где выбирается провод необходимого сечения: 1,5 мм 2 — к освещению, 2,5 мм 2 — к розеткам и до 4 мм 2 — к мощным приборам.

Проводка защищается от короткого замыкания и перегрузки автоматическими выключателями.

Электрический счетчик

При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.

Важно соблюдать порядок подключения, где нечетные номера — это питание, а четные — нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора. Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод — ноль.

3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.

Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.

Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.

Трехфазная нагрузка

К потребителям относятся электрокотлы, асинхронные электродвигатели и другие электроприборы. Преимуществом их использования является равномерное распределение нагрузки на каждой фазе. Если трехфазная сеть содержит неравномерно подключенные однофазные мощные нагрузки, это может привести к перекосу фаз. При этом электронные устройства начинают работать со сбоями, а лампы освещения тускло светятся.

Схема подключения трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей отличается высокой производительностью и эффективностью. Здесь не требуется наличие дополнительных пусковых устройств. Для нормальной эксплуатации важно правильно подключить устройство и выполнять все рекомендации.

Схема подключения трехфазного двигателя к трехфазной сети создает вращающее магнитное поле тремя обмотками, соединенными звездой или треугольником.

У каждого способа есть свои достоинства и недостатки. Схема звезды позволяет плавно запускать двигатель, но его мощность снижается д

Расчет мощности трехфазной сети — КиберПедия

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчет величины переменного электрического тока при однофазной нагрузке.

Предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 220 вольт.

В доме имеются электроприборы:

Для освещения дома установлены 5 электролампочек по 100 ватт каждая и 8 электролампочек мощностью 60 ватт каждая. 2. Электродуховка, мощностью 2 киловатта или 2000 ватт. 3. Телевизор, мощностью 0,1 киловатт или 100 ватт. 4. Холодильник, мощностью 0,3 киловатта или 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт или 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: 1, Определяем суммарную мощность всех приборов: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при такой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в ваттах (Вт) U — напряжение в вольтах (В) cos φ — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства пользователей ниже приведена форма расчета тока.



Вам следует ввести в соответствующие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, нажать кнопку «Вычислить» и в поле «Ток» появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, для чего умножить на 1000. Для очистки введенного значения мощности следует нажать кнопку «Очистить». Очистку введенных по умолчанию значений напряжения и косинуса следует произвести клавишей delete переместив курсор в соответствующую ячейку (при необходимости).

Форма расчета для определения тока при однофазной нагрузке.

Расчет величины переменного электрического тока при трехфазной нагрузке.

Теперь предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения — 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода — 3 фазы и нейтраль (по старому — ноль).

Так вот, напряжение между фазными проводами или иначе — линейное напряжение будет 380 В, а между любой из фаз и нейтралью или иначе фазное напряжение будет 220 В. Каждая из трех фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.

Таким образом, между фазами А и В, А и С, В и С — будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а значит в доме может быть как трехфазная, так и однофазная нагрузка.

Вообще-то трехфазные нагрузки принято считать в киловаттах, поэтому, если они записаны в ваттах, их следует разделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?



Расчет: Определяем суммарную мощность всех приборов: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при такой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в киловаттах (кВт) U — линейное напряжение, В cos φ — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А

Определить

Линейные и фазные токи

Пример расчета:.

К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Определить актив­ную, реактивную и полную мощности, коэффициент мощности,

Решение.

1 Фазное напряжение:

U ф = U л / √ 3=380 / √ 3 = 220 В.

Фазный ток

Линейный ток

4 Реактивное сопротивление в фазе:

5 Активное сопротивление в фазе:

6 Коэффициент мощности катушки:

sinφ=XL/z= 56,5/90=0,628

7 Мощности, потребляемые нагрузкой:

а) активная:

Или

б) реактивная:


в) Полная:

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчёт мощности трёхфазной сети | Сайт электрика

Привет читатели моего сайта. Сегодня мы с вами на реальном примере рассмотрим формулу, с помощью которой, можно рассчитать мощность (нагрузку) трёхфазной сети.

Но для начала нужно определиться какая у вас мощность, так как она бывает двух видов:

1. равномерная (симметричная)

2. неравномерная (несимметричной)

Пример равномерной нагрузки – это когда у вас работает электродвигатель. То есть ток по всем фазам протекает одинаковый. Не большими разбежностями, тут можно пренебречь. А в нулевом проводе ток равняется нулю. В таком случае формула имеет вот такой вид:

P = √3*Uф*I* cos (φ) = 1,73Uл*I* cos (φ)

Где Uф – это фазное напряжение

Uл – это линейное напряжение

I – ток, который протекает в проводнике. Его можно измерять токоизмерительными клещами.

cos (φ) – коэффициент мощности. Обычно берут 0.76

Неравномерная нагрузка – это когда ток во всех фазах разный. К примеру, от трёхфазной сети питается освещение какого-то помещения. Один ряд светильников включили, и там горят все светильники. Во втором ряду не горит 7 светильник, а в третьем 12. В таком случае нужно взять клещи, и измерить ток во всех фазах. А формула будет выглядеть вот так:

Pобщ = Ua*Ia* cos (φ1) + Ub*Ib* cos (φ2) + Uc*Ic* cos (φ3)

Давайте решим задачу.

Нужно найти мощность, которую потребляет загородный домик с трёхфазной сетью. Ток по фазам – A — 5.4, B – 7, C – 3 Ампер. cos (φ3) – для упрощения возьмём 1.

Решение.

Если cos (φ3) у нас равняется 1, то это число можно сократить, а все токовые показатели сложить и умножить на напряжение 220 В.

Робщ = (5,4 + 7+3)*220 = 15,4*220 = 3388 Вт ≈ 3,4 кВт

На этом у меня все. В статье я привел реальный пример, как можно рассчитать мощность трёхфазной сети. Конечно, если углубится в эту тему, то можно ещё найти активную и реактивную мощность. Но об этом я напишу в следующих статьях, так что подписывайтесь на обновления. Если статья была вам полезна, то поделитесь нею со своими друзьями в социальных сетях. Пока.

Кстати, советую вам посмотреть статью Расчет тока электродвигателя.

С уважением Александр!

Читайте также статьи:

Расчет однофазного и трехфазного тока

   Добрый день!
   Из этой статьи вы узнаете по каким формулам рассчитывается однофазный и трехфазный ток, какие параметры нужно знать чтобы выполнить расчет и где их найти. Ну и конечно же я приведу пример по расчету однофазного и трехфазного токов.

Формула для расчета однофазного тока выглядит следующим образом:


где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

       

Формула для расчета трехфазного тока выглядит следующим образом: 

где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

Для электродвигателей имеет смысл учитывать коэффициент полезного действия (КПД), поэтому формулы приобретают следующий вид:

где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

      ɳ — КПД

   Можно заметить, что формулы для расчета однофазного и трехфазного токов не сложные, осталось только разобраться где брать составляющие для их расчета. 

   Мощность электроприемника (P, Вт) можно узнать из паспорта, который к нему прилагается или по табличке на корпусе устройства. Если же такой информации нет, то в интернете вы без труда найдете мощность нужного электроприемника, но для этого нужно знать точное название.

    Напряжение питающей сети (U,B) при расчетах однофазных электроприемников принимается 220В, а при расчете трехфазных электроприемников 380В. На практике эти значения обычно отличаются, так как напряжение на вводе немного завышено с целью предотвращения потерь напряжения. Бывают так же случаи когда напряжение на вводе ниже номинального из за большой удаленности потребителя и т.д.

   Коэффициент мощности cosφ (отношение активной и полной мощности) при расчетах берется из паспорта к электроприемнику, а если такая информация там отсутствует то берется из справочников. В подавляющем большинстве случаев значение cosφ неизвестно, но известны средние значения для того или иного типа потребителей, подставив которые можно выполнить расчет. Идеальный случай — это когда cosφ=1, но таким значением могут похвастаться лишь ТЭНы, обогреватели, лампы накаливания  (0,99-1). У электродвигателей значения коэффициентов мощности варьируются в пределах 0,7-0,9, у люминесцентных и светодиодных светильников  коэффициент мощности варьируется в пределах (0,85-0,96), у компьютеров 0,6-0,8.

   Все вышеприведенные параметры можно замерить опытным путем, тем самым проверить правильность расчетов.

   КПД указывается в паспорте к электродвигателю.

   

   Ну а теперь я приведу несколько примеров по расчету токов.

   Пример 1. Возьмем электрический чайник, мощностью 2кВт. Мы знаем, что он подключается к электросети 220В, а так же знаем коэффициент мощности (0,99-1), которым в данном случае мы можем пренебречь. Далее берем формулу для однофазного тока, и получаем:

   Пример 2. Возьмем трехфазный электродвигатель АИР56B2 мощностью 0,25кВт. Коэффициент мощности данного электродвигателя составляет 0,78. Для расчета тока электродвигателей стоит учитывать КПД (ɳ), который для данного двигателя равен 66%. Далее берем формулу для расчета трехфазного электрического тока, и получаем:

   Подводя итог, отмечу что правильный подсчет токов очень важен в проектировании, либо просто в быту. Правильно посчитав токи можно с уверенностью выбирать защитный, коммутационный аппарат, либо подбирать сечение проводника. 4

     Если же Вам необходим совет по расчету тока, либо выбору кабеля, обращайтесь в форму обратной связи. Помогу чем смогу!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *