Мощность резистора по размеру: расчет мощности, формула, как определить по внешнему виду

Содержание

Резисторы

Добавлено 6 октября 2020 в 13:15

Сохранить или поделиться

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько постоянное, мы можем надежно контролировать в цепи любую из этих переменных, просто управляя двумя другими. Возможно, самой простой для управления переменной в любой цепи является ее сопротивление. Это управление сопротивлением можно реализовать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, созданы специально для создания точного количества сопротивления, добавляемого в схему. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды. В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку в работающей схеме ими рассеивается электрическая энергия. Однако обычно резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и номиналы резисторов на схеме

Условное обозначение резистора на схеме согласно ГОСТу – прямоугольник размером 4 мм x 8 мм. В англоязычной литературе распространено обозначение резистора в виде пилообразной линии:

Рисунок 1 – Условное графическое обозначение резистора

Номиналы резисторов в омах обычно отображаются на схеме в виде чисел рядом с условным обозначением, а если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, таким как R1, R2, R3 и т.д. Как видите, обозначения резисторов могут быть показаны горизонтально или вертикально:

Рисунок 2 – Обозначение номиналов резисторов на схеме (резисторы 150 Ом и 25 Ом)

Ниже показано несколько примеров резисторов разных типов и размеров:

Рисунок 3 – Примеры резисторов

Также на схеме можно показать, что резистор имеет переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного для обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто имеет нестабильное сопротивление:

Рисунок 4 – Условное графическое обозначение переменного резистора

Фактически, каждый раз, когда вы видите обозначение компонента с нарисованной по диагонали стрелкой, это означает, что этот компонент имеет переменное, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным дополнением к обозначению электронных компонентов.

Переменные резисторы

Переменные резисторы должны иметь какие-то физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать, чтобы изменять величину электрического сопротивления. На фотографии ниже показаны устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Рисунок 5 – Потенциометр

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах. Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов посмотрите фотографию ниже. Это изображение печатной платы: сборка, состоящая из изолирующих слоев стеклотекстолита и слоем проводящих медных дорожек, в которую можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены напечатанными метками. Резисторы обозначаются любой меткой, начинающейся с буквы «R».

Рисунок 6 – Пример резисторов на печатной плате

Эта конкретная печатная плата представляет собой дополнение к компьютеру, называемое «модемом», которое позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть, как минимум, дюжину резисторов (все с номинальной рассеиваемой мощностью 0,25 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами», или «чипами») также содержит свой собственный массив резисторов, необходимый для работы. На другом примере печатной платы показаны резисторы, упакованные в еще меньшие корпуса, называемые SMD («surface mount device», «устройство поверхностного монтажа»). Эта конкретная печатная плата является нижней стороной жесткого диска компьютера; и снова припаянные к ней резисторы обозначены метками, начинающимися с буквы «R»:

Рисунок 7 – Пример резисторов на печатной плате

На этой печатной плате более сотни резисторов поверхностного монтажа, и это количество, конечно, не включает резисторы, встроенные в черные «чипы». Эти две фотографии должны убедить любого, что резисторы (устройства, которые «просто» препятствуют прохождению электрического тока) – очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схемах символы резисторов иногда используются для иллюстрации обобщенного типа устройств, выполняющих что-то полезное с электрической энергией. Любое неконкретизированное электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схему с символом резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей какие-либо концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ резисторных схем

Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:

Рисунок 8 – Пример схемы

Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:

\(R=\frac{E}{I} \qquad и \qquad P=IE\)

Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

\(R = \frac{10 \ В}{2 \ А} = 5 \ Ом\)

\(P = (2 \ А)(10 \ В) = 20 \ Вт\)

Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Ключевые показатели эффективности (KPI)

Ключевые показатели эффективности резисторов для каждого материала можно найти ниже:

Ключевые показатели эффективности резисторов в зависимости от материала
ХарактеристикаМеталлопленочные резисторыТолстопленочные резисторыТонкопленочные резисторыУглеродные композиционные резисторыУглеродные пленочные резисторы
Диапазон рабочих температур, °C-55 . .. +125-55 … +130-55 … +155-40 … +105-55 … +155
Максимальный температурный коэффициент сопротивления100100151200250–1000
Максимальное напряжение, В250–350250200350–500350–500
Шум, мкВ на 1 В приложенного постоянного напряжения0,50,10,145
Сопротивление изоляции, кОм1010101010
Изменение сопротивления при пайке, %0,200,150,0220,50
Изменение сопротивления при воздействии высокой температуры и влажности, %0,5010,50153,5
Изменение сопротивления при длительном хранении, %0,100,100,0052
Изменение сопротивления при работе в течение 2000 часов при температуре 70°C, %110,03104

Резюме

  • Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
  • Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.

Оригинал статьи:

Теги

ОбучениеРассеиваемая мощностьРезисторСопротивлениеСхемотехникаТемпературный коэффициент сопротивления / ТКС

Сохранить или поделиться

Разница по размеру компонента (резистор, конденсатор, индуктор)?

Существует множество причин для разных размеров.

Чтобы начать, есть законные причины, перечисленные ниже, для разных размеров, где некоторые из спецификаций, которые вы перечисляете, также различаются (многие из них относятся к L, C и R, некоторые немного больше к одному, чем другие):

  • Различные возможности управления питанием
  • Разное максимальное напряжение
  • Опция на более крупном, чтобы позже добавить опцию лазерной обрезки для настроенных значений (производитель смотрит в будущее?) пост-продакшн [вряд ли будет честным]
  • Разная паразитная емкость
  • Разная паразитная индуктивность
  • Различные пиковые мощности (даже если средняя мощность одинакова, пиковая мощность может быть выше или ниже в разных пакетах).
  • Возможность использования другой керамики с другими характеристиками хранения
  • Позволяет использовать различные технологии обработки на заводе
  • Больший пакет легче выбрать и разместить, поэтому для 0805 легче найти дешевый производитель печатной платы, чем для 0402.
  • Группировка и рассогласование проще управлять в небольших пакетах для высокой частоты.
  • Различные профили Reflow для компонентов разного размера из-за использования различных покрытий или торцевых крышек (это далеко заходит на общие компоненты, но происходит в специализированных областях).

Все эти причины означают, что тогда существуют разные размеры пакетов. Предполагая, что уже существуют разные резисторы (например), любой изготовитель стоит что-либо, сделает их резисторы во всех этих размерах, поэтому дизайнер может переключиться на них для

всех своих резисторов. Имеет смысл?

Итак, если вы создадите конструкцию для хорошего резистора 0402 значения с использованием машины для этого типа дизайна, что также подходит для керамической упаковки 0603, и, возможно, даже пакет 0805 и исследования рынка показывают, что в этом диапазоне значений (для которые, по-видимому, кажутся 100k) вряд ли кому-то нужно больше, чем мощность 0402, а все остальные вещи почти равны для более крупных .

.. тогда почему бы не реализовать один дизайн/машину на трех базовых станциях, сократить крошечный бит Стоимость? Несмотря на то, что более крупный, возможно, может обрабатывать немного больше энергии из-за своей большей массы, керамика может быть настолько дешевой, что она недостаточно хорошо работает, чтобы хорошо использовать дополнительную площадь поверхности, поэтому вы указываете все пессимистично, что одинаково как 0402 и такие же паразиты, как и самый большой пакет.

Очевидно, что высокопроизводительный производитель в своем высокопроизводительном ассортименте обычно пытается получить максимальную отдачу от каждого размера в качестве точки качества и гордости, но почти у каждого производителя также есть B-диапазон, где они оптимизируют стоимость как можно больше возможно, без ухудшения качества продукта. Некоторые продают его как другую серию, некоторые продают ее под другим брендом.

Рассчитать падение напряжения на резисторе переменный ток. Напряжение на резисторе

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.


— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в

Омах . Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R 3 =R 1 +R 2

В интернете есть удобные он-лайн калькуляторы для расчета и соединения резисторов.

Токоограничивающий резистор

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V 1 -V 2)/R
где (V 1 -V 2) является разностью напряжений до и после резистора.

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для .

Резисторы как делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R 1 =R 2 =R), то формулу можно записать так:

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V 1 -V 2 =I 1 *(R 1)
Перенесем:
V 2 =V 1 -(I 1 *R 1)
Где V 2 является искомым напряжением, V 1 является опорным напряжением, которое известно, I 1 ток, протекающий от узла 1 к узлу 2 и R 1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1 =(V 1 -V 2)/R 1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1 + I 3 =I 2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.


Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.



Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то V out будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Про определение номинала резистора используя цветовую маркировку можно почитать .

Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.


Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.

Пример 1

Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r = 0,5 Ом. Сопротивления резисторов R 1 = 20 и R 2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи.

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов.

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем.

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей .

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора R 1 =70 Ом и R 2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала

Итак, резистор … Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока , протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока . То есть, без резистора по цепи течет большой ток , встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток , проходящий через цепь. И Резистор . Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток , например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Кроме того, на резисторе происходит падение напряжения . Барьер не только задерживает ток , но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор . Включаем цепь без резистора (слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.


Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе .

Основная характеристика резистора — сопротивление . Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление , тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока (I) и Сопротивление(R).

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора , при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.

V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом

Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи , будет составлять 0,2А.

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока . При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток , проходящий по цепи(а значит и через резистор ), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе ). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение .

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:


При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:


Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Напряжение падения на сопротивлении можно рассчитать по формуле: U пад =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Где ƒ-частота в килогерцах ƛ- длинна волны в метрах.

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых. / R ном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R 1 R 2 /(R 1 +R 2)

Где R 1 и R 2 — сопротивление первого и второго резистора соответственно (Ом).

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R 1 +1/R 2 +1/R n…

Где R 1 , R 2 , R n … — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C 1 + C 2 +C n …

Где C 1 , C 2 и C n – емкость первого, второго и последующих конденсаторов соответственно (мФ).

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C 1 C 2 /C 1 +C 2

Где C 1 и C 2 – емкость первого и второго конденсаторов соответственно (мФ).

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле :

Типы корпусов резисторов smd. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. Маркировка SMD резисторов

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (S urface M ount T echnology ), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (S urface M ounted D evice ), что в переводе с английского – “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.


Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и :



Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

SMD компоненты намного проще выпаивать. Для этого нам потребуется с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD . Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.



Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.


Типоразмеры SMD компонентов могут быть разные. Вот есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:


А вот так выглядят SMD :



Есть еще и такие виды SMD транзисторов:


Которые обладают большим номиналом, в SMD исполнении выглядят вот так:



Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем , но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.


2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.


Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Резюме

Что же все-таки использовать в своих конструкциях? Если у вас не дрожат руки, и вы хотите сделать, маленького радиожучка, то выбор очевиден. Но все-таки в радиолюбительских конструкциях габариты особо не играют большой роли, да и паять массивные радиоэлементы намного проще и удобнее. Некоторые радиолюбители используют и то и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD компоненты. Меньше, тоньше, надежнее. Будущее, однозначно, за микроэлектроникой.

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выводные радиодетали дороже в производстве;
— печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
— DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
— печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
— монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т. п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы


Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

  1. Введение
  2. Корпуса SMD компонентов
  3. Типоразмеры SMD компонентов
    • SMD резисторы
    • SMD конденсаторы
    • SMD катушки и дроссели
  4. SMD транзисторы
  5. Маркировка SMD компонентов
  6. Пайка SMD компонентов

Введение

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются «SMD». По-русски это значит «компоненты поверхностного монтажа». Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово «запекают» и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся.

Для тех, кто впервые столкнулся с SMD-компонентами естественным является смятение. Как разобраться в их многообразии: где резистор, а где конденсатор или транзистор, каких они бывают размеров, какие корпуса smd-деталей существуют? На все эти вопросы ты найдешь ответы ниже. Читай, пригодится!

Корпуса чип-компонентов

Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:

выводы/размерОчень-очень маленькиеОчень маленькиеМаленькиеСредние
2 выводаSOD962 (DSN0603-2) , WLCSP2*, SOD882 (DFN1106-2) , SOD882D (DFN1106D-2) , SOD523, SOD1608 (DFN1608D-2)SOD323, SOD328SOD123F, SOD123WSOD128
3 выводаSOT883B (DFN1006B-3) , SOT883, SOT663, SOT416SOT323, SOT1061 (DFN2020-3)SOT23SOT89, DPAK (TO-252) , D2PAK (TO-263) , D3PAK (TO-268)
4-5 выводовWLCSP4*, SOT1194, WLCSP5*, SOT665SOT353SOT143B, SOT753SOT223, POWER-SO8
6-8 выводовSOT1202, SOT891, SOT886, SOT666, WLCSP6*SOT363, SOT1220 (DFN2020MD-6) , SOT1118 (DFN2020-6)SOT457, SOT505SOT873-1 (DFN3333-8), SOT96
> 8 выводовWLCSP9*, SOT1157 (DFN17-12-8) , SOT983 (DFN1714U-8)WLCSP16*, SOT1178 (DFN2110-9) , WLCSP24*SOT1176 (DFN2510A-10) , SOT1158 (DFN2512-12) , SOT1156 (DFN2521-12)SOT552, SOT617 (DFN5050-32) , SOT510

Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.

Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять .

Типы корпусов SMD по названиям

НазваниеРасшифровкакол-во выводов
SOTsmall outline transistor3
SODsmall outline diode2
SOICsmall outline integrated circuit>4, в две линии по бокам
TSOPthin outline package (тонкий SOIC)>4, в две линии по бокам
SSOPусаженый SOIC>4, в две линии по бокам
TSSOPтонкий усаженный SOIC>4, в две линии по бокам
QSOPSOIC четвертного размера>4, в две линии по бокам
VSOPQSOP ещё меньшего размера>4, в две линии по бокам
PLCCИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
CLCCИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
QFPквадратный плоский корпус>4, в четыре линии по бокам
LQFPнизкопрофильный QFP>4, в четыре линии по бокам
PQFPпластиковый QFP>4, в четыре линии по бокам
CQFPкерамический QFP>4, в четыре линии по бокам
TQFPтоньше QFP>4, в четыре линии по бокам
PQFNсиловой QFP без выводов с площадкой под радиатор>4, в четыре линии по бокам
BGABall grid array. Массив шариков вместо выводовмассив выводов
LFBGAнизкопрофильный FBGAмассив выводов
CGAкорпус с входными и выходными выводами из тугоплавкого припоямассив выводов
CCGAСGA в керамическом корпусемассив выводов
μBGA микро BGAмассив выводов
FCBGAFlip-chip ball grid array. М ассив шариков на подложке, к которой припаян кристалл с теплоотводоммассив выводов
LLPбезвыводной корпус

Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы, чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки — это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.


Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его «типоразмеру». Например, чип-резисторы имеют типоразмеры от «0201» до «2512». Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах.

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)H, мм (дюйм)A, ммВт
02010.6 (0.02)0.3 (0.01)0.23 (0.01)0.131/20
04021.0 (0.04)0.5 (0.01)0.35 (0.014)0.251/16
06031.6 (0.06)0.8 (0.03)0.45 (0.018)0. 31/10
08052.0 (0.08)1.2 (0.05)0.4 (0.018)0.41/8
12063.2 (0.12)1.6 (0.06)0.5 (0.022)0.51/4
12105.0 (0.12)2.5 (0.10)0.55 (0.022)0.51/2
12185.0 (0.12)2.5 (0.18)0.55 (0.022)0.51
20105.0 (0.20)2.5 (0.10)0.55 (0.024)0.53/4
25126.35 (0.25)3.2 (0.12)0.55 (0.024)0.51
Цилиндрические чип-резисторы и диоды
ТипоразмерØ, мм (дюйм)L, мм (дюйм)Вт
01021.1 (0.01)2.2 (0.02)1/4
02041. 4 (0.02)3.6 (0.04)1/2
02072.2 (0.02)5.8 (0.07)1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)T, мм (дюйм)B, ммA, мм
A3.2 (0.126)1.6 (0.063)1.6 (0.063)1.20.8
B3.5 (0.138)2.8 (0.110)1.9 (0.075)2.20.8
C6.0 (0.236)3.2 (0.126)2.5 (0.098)2.21.3
D7.3 (0.287)4.3 (0.170)2. 8 (0.110)2.41.3
E7.3 (0.287)4.3 (0.170)4.0 (0.158)2.41.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются «моточные изделия». Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур.

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма.

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпусаL* (мм)D* (мм)F* (мм)S* (мм)Примечание
DO-213AA (SOD80)3.51.650480.03JEDEC
DO-213AB (MELF)5.02.520.480.03JEDEC
DO-213AC3.451.40. 42JEDEC
ERD03LL1.61.00.20.05PANASONIC
ER021L2.01.250.30.07PANASONIC
ERSM5.92.20.60.15PANASONIC, ГОСТ Р1-11
MELF5.02.50.50.1CENTS
SOD80 (miniMELF)3.51.60.30.075PHILIPS
SOD80C3.61.520.30.075PHILIPS
SOD873.52.050.30.075PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.

Пайка чип-компонентов

В домашних условиях чип-компоненты можно паять только до определённых размеров, более-менее комфортным для ручного монтажа считается типоразмер 0805. Более миниатюрные компоненты паяются уже с помощью печки. При этом для качественной пропайки в домашних условиях следует соблюдать целый комплекс мер.

в калькуляторах на солнечных батарейках Citizen установлены круглые железные батарейки

Удивительное рядом!
Если бы мне на полном серьезе сказали, что земля плоская, я бы этому удивился так же, как словам Олега о том, что в калькуляторе на солнечных батарейках используется еще и самая обычная, железная батарейка.

Олег рассказал, что однажды перестал работать его верный друг и помощник- бухгалтерский калькулятор типа Citizen SDC-888. Вскрыв корпус Олег был поражен тому, что увидел внутри калькулятора. По его словам, там в калькуляторе была установлена железная батарейка-таблетка.

Солнечная же батарея была просто не подключена к плате калькулятора, из чего он сделал вывод, что эта солнечная батарея просто бутафория. Внутренний монтаж калькулятора Олега тоже удивил- платы были небрежно примотаны друг к другу скотчем.
Олег заменил батарейку в своем калькуляторе и он волшебным образом вновь заработал.

У меня есть такой же калькулятор, Олег и рассказал-то свою историю потому, что увидел у меня такой же аппарат.
Я не привык верить на слово, потому тут же при Олеге решил сам проверить правдивость жестоких обличений.
Разобрал свой ситизен и заглянул внутрь.
Вот что я там увидел.


Действительно, в моём «солнечном» калькуляторе используется GP 189 батарейка (элемент питания марганцево-цинковый) (LR54), которая похажа на батарейку для биоса, только значительно меньше.

В то же время, от солнечной батареи на плату идут 2 провода, надо полагать это провода для тока, который вырабатывает солнечная батарея.

Но может быть, солнечная батарея бутафорская?

Проводим опыт- вынимаем из платы батарейку GP189 и тестером меряем напряжение на проводах от солнечной батареи.

Итак, при вынутой батарейке на проводах с солнечной батареи видим напряжение 0.8 В.

Значит солнечная батарея действительно работает, а не установлена для красоты.

Так же я проверил как без батарейки работает калькулятор. Работает он нормально- умножает, делит, складывает, вычитает.

Получается, калькулятор работает от солнечной батареи. Но зачем тогда ему еще одна батарейка? Не знаю. Может для того, что бы работать в сумерках.

Значит мне повезло- у меня нормальный калькулятор а не дешевая подделка.

Причем, что интересно, у некоторых в аппаратах от солнечной батареи провода не идут, но напряжение на солнечной батарее есть, а у некоторых солнечная батарея действительно бутафорская.

Потому если не работает калькулятор на солнечной батарее, не торопись его выкидывать, может нужно просто поменять батарейку. И отнюдь не солнечную.

Резисторы

— learn.sparkfun.com

Добавлено в избранное Любимый 51

Номинальная мощность

Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить проходящую через него электрическую энергию только в тепла . Тепло обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно следить за тем, чтобы мощность на резисторе не превышала его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называются силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальная мощность резистора обычно определяется по размеру его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Резисторы мощности более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа до нижнего слева приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Резисторы мощности меньшего размера часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности на резисторе

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если нам известно напряжение на резисторе, мощность можно рассчитать как:



← Предыдущая страница
Расшифровка маркировки резистора

Wire Wound Resistor — Проволочный силовой резистор

Что такое силовые резисторы с проволочной обмоткой?

Резистор с проволочной обмоткой — это электрическое пассивное устройство, ограничивающее или ограничивающее ток в цепи.Резисторы с проволочной обмоткой изготавливаются из токопроводящей проволоки. Затем проводящий провод наматывают на непроводящий сердечник. Токопроводящая проволока может быть изготовлена ​​из различных сплавов и различной толщины для контроля значения сопротивления. Резисторы с проволочной обмоткой обычно используются в мощных и промышленных устройствах, таких как автоматические выключатели и предохранители.

Конструкция с проволочной обмоткой

Мы предлагаем более 20 различных серий с проволочной обмоткой. который можно выбрать в зависимости от монтажа, применения и диапазона сопротивления.Различные типы резисторов с проволочной обмоткой, включая прецизионные, осевые, трубчатые, поверхностные и регулируемые, обладают хорошей стабильностью и диапазоном сопротивления и производятся во многих номинальных мощностях. Резисторы с проволочной обмоткой более высокой мощности используются в приложениях с высоким током / торможением.

20 серии
Осевые оконечные резисторы серии 20 компании Ohmite

долговечны и экономичны.У них есть все электрические атрибуты более дорогих осевых резисторов с проволочной обмоткой, включая цельносварную конструкцию.… Подробнее

Посмотреть в каталоге

Скачать PDF

200 серии

Ohmite’s серии 200 Brown Devil® — это небольшой, исключительно прочный силовой резистор. Он имеет цельносварную конструкцию и прочное, огнестойкое конформное покрытие из стекловидной эмали без содержания свинца… Подробнее

Посмотреть в каталоге

Скачать PDF

210 серии

Стекловидная эмаль Dividohm® Регулируемый силовой резистор Выбирайте регулируемые резисторы Ohmite типа 210 для приложений, требующих настройки при различных значениях сопротивления.Эти резисторы с проволочной обмоткой… Подробнее

Посмотреть в каталоге

Скачать PDF

270 серии

Сила стекловидной эмали Выберите постоянные резисторы типа 270 для приложений, требующих номинальной мощности от 12 до 1000 Вт. Резисторы типа 270 оснащены наконечниками, подходящими для… Подробнее

Посмотреть в каталоге

Скачать PDF

280 серии

Corrib® фиксированный и регулируемый Сила стекловидной эмали Резисторы Corrib® идеально подходят для приложений с высокими токами при очень низких значениях сопротивления — всего 0.1 Ом для блока 300 Вт.… Подробнее

Посмотреть в каталоге

Скачать PDF

30 серии

Серия 30 с проволочной обмоткой для высоких энергий Осевой терминал / поверхностный монтаж / теплоотводящая упаковка Резисторы с проволочной обмоткой используют особую технику намотки, чтобы максимизировать эффективное значение джоулей каждого… Подробнее

Посмотреть в каталоге

Скачать PDF

40 серии
Резисторы серии

Ohmite 40 являются наиболее экономичными из предлагаемых конформных резисторов с силиконово-керамическим покрытием.Эти цельносварные агрегаты характеризуются низкотемпературными коэффициентами и прочностью… Подробнее

Посмотреть в каталоге

Скачать PDF

50 серии

Автоматическая намотка, линейная цветовая шкала и тестирование позволяют получить недорогой промышленный силовой резистор с проволочной обмоткой.Резисторы серии Ohmite 50 имеют цельносварную конструкцию… Подробнее

Посмотреть в каталоге

Скачать PDF

60 серии

Четырехконтактные резисторы без неизолированных элементов Четырехконтактные резисторы с неизолированными элементами от Ohmite обеспечивают сверхнизкие значения сопротивления (до 0.0005Ω) для относительно высоких требований по току, с преимуществами… Подробнее

Посмотреть в каталоге

Скачать PDF

Серия 80 RW Серия
Резисторы

Ohmite серии 80 представляют собой конформные резисторы с силиконовым керамическим покрытием высочайшего качества с конформным осевым выводом.Серия 80 разработана для приложений, требующих высокой точности… Подробнее

Скачать PDF

89 серии

Серия 89 — это высокоэффективный осевой резистор с радиатором. Эти резисторы литой конструкции в металлическом корпусе доступны с более высокой номинальной мощностью, чем стандартные осевые резисторы, и лучше… Подробнее

Посмотреть в каталоге

Скачать PDF

90 серии

Если вам нужны осевые оконечные резисторы высочайшего качества с проволочной обмоткой, выбирайте резисторы Ohmite серии 90. Они производятся с помощью уникального процесса формования стекловидной эмали… Подробнее

Посмотреть в каталоге

Скачать PDF

ARCOL в алюминиевом корпусе

HS Резисторы в алюминиевом корпусе Изготовлен в соответствии с требованиями MIL 18546 и IEC 115, предназначен для непосредственного монтажа радиатора с термопастой для достижения максимальной производительности.Высокий… Подробнее

Скачать PDF

ARCOL HS серии 400-600
Резисторы в алюминиевом корпусе серии

HS Эти резисторы в алюминиевом корпусе, являющиеся продолжением популярной серии Arcol HS, предназначены для установки на радиаторе для достижения максимальной мощности. Рана в… Подробнее

Скачать PDF

ARCOL ARF серии
Низкопрофильные резисторы

ARF с проволочной обмоткой в ​​металлической оболочке имеют гибкую конструкцию с высокой импульсной способностью.Они идеально подходят для систем торможения и инверторов / преобразователей. Повышенные уровни мощности… Подробнее

Посмотреть в каталоге

Скачать PDF

ARCOL RWS серии

RWS Прецизионный силовой резистор SMD с проволочной обмоткой Компактный и точный силовой резистор, изготовленный по высочайшим стандартам; надежен и прочен, но при этом обеспечивает отклонение менее 1% и TCR… Подробнее

Скачать PDF

ARG серии

Серия ARG представляет собой высокоэффективный резистор в алюминиевом корпусе с теплоотводом.Эти резисторы в алюминиевом корпусе подходят для работы в промышленных условиях, которые могут включать вибрацию, удары и т. Д. Подробнее

Скачать PDF

Золотые аудиорезисторы

Трубчатая обмотка Ohmite теперь предлагает семейство Audio Gold Resistor, специально разработанное для высококачественных громкоговорителей и усилителей.В этих резисторах используется высококачественное сопротивление… Подробнее

Посмотреть в каталоге

Скачать PDF

Axiohm серии
Серия

Ohmite Axiohm известна своим неорганическим огнестойким покрытием и возможностью производства с жесткими допусками.Серия Axiohm была разработана, чтобы соответствовать или превосходить характеристики… Подробнее

Скачать PDF

BA Серия
Резисторы в алюминиевом корпусе серии

BA Резисторы в алюминиевом корпусе Ohmite серии BA идеально подходят для динамического торможения, запуска двигателя и других приложений управления мощностью.В прочной конструкции используется проволочная обмотка… Подробнее

Посмотреть в каталоге

Скачать PDF

Euro-Power Wirewound

Сила стекловидной эмали Выбирайте фиксированные резисторы серии Euro для приложений, требующих номинальной мощности от 72 до 1000 Вт.Резисторы Euro-Power подходят для тяжелых условий эксплуатации и сварены точечной сваркой… Подробнее

Посмотреть в каталоге

Скачать PDF

G серии

Крепление для конденсатора, разрядка и симметрия Резисторы Ohmite серии G предназначены для установки на конденсаторы самых популярных размеров.Серия G обеспечивает рассеиваемую мощность до 13 Вт при 25 ° C… Подробнее

Посмотреть в каталоге

Скачать PDF

HCLB серии

резистивные блоки нагрузки Сильноточный овал с обмоткой по краю Выбор, когда условия требуют первоклассной производительности, эти блоки нагрузки резисторов обычно используются для динамического торможения в транспортных приложениях… Подробнее

Посмотреть в каталоге

Скачать PDF

HPW серии

Серия резисторов HPW с проволочной обмоткой предназначена для высокоточных приложений.По запросу серия HPW может быть произведена с концентрацией менее 0,1% с температурным коэффициентом, соответствующим 1 ppm. HPW… Подробнее

Посмотреть в каталоге

Скачать PDF

HSP серии

Серия HSP от Ohmite представляет собой прецизионный резистор с осевой заделкой с проволочной обмоткой.Серия HSP чрезвычайно стабильна с температурным коэффициентом до 3 частей на миллион. Эта стабильность достигается с помощью … Подробнее

Скачать PDF

Metalohm серии
Серия

Metalohm Серия Metalohm от Ohmite — это холоднокатаные резисторы с проволочной обмоткой в ​​стальном корпусе, которые являются взрывонепроницаемыми и негигроскопичными.Емкость радиатора обеспечивает… Подробнее

Посмотреть в каталоге

Скачать PDF

PC-58 серии

Серия PC-58 предназначена для непосредственной вставки в печатные платы; подходят для стандартных матричных плат 0,10 дюйма со стандартными 0.Отверстия диаметром 046 дюймов. Радиальная конструкция ПК-58 и… Подробнее

Посмотреть в каталоге

Скачать PDF

RC, RF, RW, RP, RM серии

Серия для литого поверхностного монтажа чрезвычайно универсальна. 5 различных типов конструкции: композит, металлическая пленка, проволочная обмотка, силовая пленка и толстая пленка.Каждая конструкция используется для оптимизации… Подробнее

Посмотреть в каталоге

Скачать PDF

Реостаты
Реостаты высокой мощности

Ohmite используются с 1925 года. Такая же прочная конструкция с проволочной обмоткой используется сегодня и продолжает находить новые применения.Использование провода сопротивления… Подробнее

Посмотреть в каталоге

Скачать PDF

RW5 и RW7 серии

Компания Ohmite использовала свой опыт управления температурным режимом для создания резистора уникальной конструкции. Корпус резистора состоит из ребер, идентичных радиатору.Эти ребра, как и радиатор, увеличивают… Подробнее

Посмотреть в каталоге

Скачать PDF

TUM / TUW серии

Резисторы серии TUM / TUW — самые экономичные силовые резисторы Ohmite. Доступны мощности до 15 Вт и значения сопротивления до 150 кОм.Две конструкции используются для получения широкого… Подробнее

Посмотреть в каталоге

Скачать PDF

TWM / TWW серии

Радиальные оконечные силовые резисторы серии TWM / TWW обеспечивают значительную экономию места на плате по сравнению с осевыми клеммами и удерживают выделяемое тепло вдали от печатной платы.Их рекомендуют… Подробнее

Посмотреть в каталоге

Скачать PDF

WFH серии

Блок питания с проволочной обмоткой в ​​алюминиевом корпусе Новая технология обмотки с плоским сердечником Ohmite позволяет создавать резисторы с проволочной обмоткой с очень низким профилем и превосходными характеристиками теплопередачи. Подробнее

Посмотреть в каталоге

Скачать PDF

WL серии

Миниатюрная проволочная обмотка Текущее чувство Серия WL со сверхнизким омическим значением для приложений измерения тока имеет очень низкую индуктивность (Подробнее

Посмотреть в каталоге

Скачать PDF

WLRD6G серии

Сильноточные резисторы с овальной окантовкой и окантовкой Выбор, когда условия требуют первоклассных характеристик, эти резисторы обычно используются для динамического торможения в транспортных средствах.Выберите из пяти… Подробнее

Скачать PDF

WLRH серии

Heliohm Wirewound (Гелиом с проволочной обмоткой) WLRH — прочный универсальный резистор, подходящий для следующих применений: запуск двигателя и управление скоростью, заземление нейтрали, пускорегулирующие аппараты и компрессор переменного тока… Подробнее

Скачать PDF

WH / WN серии
Серия

WH / WN включает две технологии намотки.WH представляет собой стандартный резистор с проволочной обмоткой, а WN намотан в неиндуктивном стиле Aryton Perry. Индуктивность WN Подробнее

Посмотреть в каталоге

Скачать PDF

Vishay Intertechnology улучшает толстопленочный чип-резистор в модели

МАЛВЕРН, Пенсильвания, 22 сентября 2021 г. (ГЛОБУС НОВОСТЕЙ) — Vishay Intertechnology, Inc.(NYSE: VSH) сегодня объявила об улучшении толстопленочного чип-резистора Vishay Draloric RCC1206 e3 в корпусе 1206 с более высокой номинальной мощностью 0,5 Вт.

Предлагая вдвое большую мощность, чем стандартные толстопленочные чип-резисторы этого размера RCC1206 e3 может использоваться вместо двух параллельных устройств 1206 или одного устройства в корпусе большего размера 1210. Это позволяет разработчикам экономить место на плате в автомобильных, промышленных, телекоммуникационных и медицинских приложениях, сокращая при этом количество компонентов и затраты на размещение.

AEC-Q200, RCC1206 e3 имеет диапазон сопротивления от 1 Ом до 1 МОм и перемычку 0 Ом с допусками ± 1% и ± 5% и TCR ± 100 ppm / K и ± 200 ppm / K . Резистор обеспечивает рабочее напряжение 200 В и диапазон рабочих температур от -55 ° C до +155 ° C. Соответствующее директиве RoHS и не содержащее галогенов, устройство подходит для обработки в автоматических сборочных системах, а также для пайки волной, оплавлением или паровой фазой в соответствии с IEC 61760-1.

Образцы и серийные количества RCC1206 e3 доступны уже сейчас, время выполнения заказа составляет 10 недель.

Vishay производит один из крупнейших в мире портфелей дискретных полупроводников и пассивных электронных компонентов, которые необходимы для инновационных разработок на автомобильном, промышленном, вычислительном, потребительском, телекоммуникационном, военном, аэрокосмическом и медицинском рынках. Обслуживая клиентов по всему миру, Vishay — это ДНК технологий. ™ Vishay Intertechnology, Inc. — компания из списка Fortune 1000, зарегистрированная на NYSE (VSH). Больше о Vishay на www.Vishay.com.

ДНК технологии ™ является товарным знаком Vishay Intertechnology.

Ссылка на техническое описание продукта:
http://www.vishay.com/ppg?20066 (RCC e3)

Ссылка на фото продукта:
https://www.flickr.com/photos/vishay / альбомы / 72157719852363485

Vishay на Facebook: http://www.facebook.com/VishayIntertechnology
Vishay Twitter feed: http://twitter.com/vishayindust

Поделиться в Twitter: http: //twitter.com/intent/tweet?text=.@vishayindust улучшает толстопленочный чип-резистор Vishay Draloric RCC1206 e3 в корпусе размером 1206.Предлагая в 2 раза большую мощность стандартных резисторов 1206, RCC1206 e3 может использоваться вместо двух параллельных устройств 1206 или одного устройства размером с корпус 1210. — https://bit.ly/3AxphHR

За дополнительной информацией обращайтесь:
Vishay Intertechnology
Peter Henrici, +1 408 567-8400
[email protected]
или
Redpines
Bob Decker, + 1415409-0233
[email protected]


Высоковольтные конденсаторы и силовые резисторы

Механические характеристики

Шт. Размеры
А B С D E F G H Дж К L
мм 10.3 10,1 15,3 5,08 1,5 0,75 2,2 4,5 0,5 2,5 5.0
доп. (± мм) 0,2 ​​ 0,2 ​​ 1,0 0,1 0,05 0,05 0,2 ​​ 0,05 0.5 0,5 1,0
дюймы 0,405 0,400 4,54 0.200 0,060 0,030 0.087 0,177 0,020 0,10 0,20

Технические характеристики

Технические характеристики Значения
Материал резистора Тонкая пленка
Клеммы 2
Номинальная мощность (с радиатором) 35 Вт (2 Вт на простой контактной площадке)
Индуктивность 8.4 нГн
Температурный коэффициент ± 250 ppm / ° C ± 100 ppm / ° C ± 50 ppm / ° C
Допуски (другие значения уточняйте на заводе-изготовителе) 5% 1% / 5% 1%
Диапазон сопротивления от 0,01 до 0,099 Ом от 0,1 до 9,9 Ом от 10 до 51 кОм
Рабочая температура от -55 ° C до 155 ° C
Тепловое сопротивление Rthj-c 3.3 К / Вт
Максимальное рабочее напряжение 500 В
Доказательство напряжения 2,0 кВ постоянного тока
Сопротивление изоляции Более 1000 МОм
Срок службы ± 1% 90 мин ВКЛ, 30 мин ВЫКЛ, 1000 часов при 25 ° C
Влажность ± 1% 90-95% RH, 0.1 Вт, 1000 часов при 40 ° C
Температурный цикл ± 0,25% -55 ° C в течение 30 минут, + 155 ° C в течение 30 минут, 5 циклов
Нагрев припоя ± 0,1% 350 ° C ± 5C в течение 3 секунд
Вибрация ± 0,25% IEC60068-2-6

* Уровень чувствительности к влаге: MSL-1

ПРИМЕЧАНИЯ ПО НОМИНАЛЬНОЙ МОЩНОСТИ:

  • Резисторы RHF необходимо прикрепить к подходящему радиатору.
  • Максимальная температура внутреннего резистора составляет 155 ° C.
  • Используйте следующую формулу, чтобы указать подходящий радиатор:

Как заказать

Пример P / N: RHFh5Q038K0FE — резистор Power Thin, 35 Вт, ± 50 ppm / ºC, 38,0 кОм, ± 1,0%, тисненая лента и катушка
* Для проводов с оловянным / свинцовым покрытием добавьте «-Pb» к номерам деталей

Более высокие стандарты для резисторов | Промышленные устройства Panasonic

Резисторы

, возможно, являются одними из самых фундаментальных электронных компонентов и являются ключевыми для каждой существующей электронной схемы.Некоторые резисторы представляют собой устаревшие детали с проволочной обмоткой, припаянные к печатным платам вручную, в то время как другие интегрированы в микросхемы непосредственно в виде следов поликремния.

В этой статье мы рассмотрим важность резисторов в современной электронной конструкции и то, как новейшая линейка резисторов Panasonic может помочь инженерам снизить стоимость своей продукции, сделав ее более эффективной.

Резисторы в истории

Одним из самых старых резисторов, выпускаемых серийно, является резистор из углеродистой стали.Он состоит из цилиндра, изготовленного из смеси углерода и керамики, который склеен смолой, и пары металлических колпачков с ножками компонентов, прикрепленных к каждому концу. Хотя эти резисторы были полезны для ранней электроники (такой как усилители и радиоприемники), они быстро стали проблематичными по множеству причин.

Излишне говорить, что промышленность не заставила себя долго ждать, чтобы разработать широкий спектр типов резисторов, каждый из которых имел свои достоинства и недостатки. Резисторы с проволочной обмоткой используются в силовых приложениях, в которых испаряется стандартный углеродный резистор, в то время как некоторые резисторы с металлической пленкой оказались невероятно популярными в прецизионных схемах, которые требуют допусков сопротивления менее 1%.

Сегодняшний рынок резисторов поразит даже самого опытного инженера — детали бывают самых разных форм и размеров, все для использования в определенных приложениях. Ситуация усложняется тем, что технологии постоянно меняются, и интерес к технологиям и решениям Интернета вещей быстро растет, и для них требуется постоянно уменьшать размеры цепей. И это не говоря уже о носимой электронике, для которой потребуются гибкие схемы и силовые схемы, которые должны выдерживать большую мощность в небольших помещениях.

Новая стандартная линейка резисторов от Panasonic

Panasonic не только осознает важность резисторов, но и выпускает новую линейку резисторов, чтобы помочь инженерам создавать более дешевые, компактные и более эффективные конструкции. Прежняя линейка резисторов (линия ERJ) была либо уменьшена при увеличении или уменьшении мощности, либо увеличена рассеиваемая мощность при сохранении той же площади основания.

При более внимательном рассмотрении компания Panasonic смогла увеличить рассеиваемую мощность резисторов для поверхностного монтажа благодаря усовершенствованной технологии подстройки.Видите ли, стандартные резисторы SMD используют прямые линии в форме буквы L для подгонки резистора до указанного сопротивления. Проблема здесь в том, что это приводит к образованию острых углов материала, что приводит к появлению «горячих точек». Несмотря на то, что остальная часть резистора может выдерживать большую мощность, именно эти горячие точки ограничивают максимальное рассеивание мощности, а также ограничивают максимальный импульсный ток.

В новой технике обрезки Panasonic используются изогнутые линии с обеих сторон резистора. Это почти полностью устраняет вышеупомянутые горячие точки из-за общего снижения их коэффициента мощности на 64%.Более того, эта технология подстройки также улучшает характеристики импульса, позволяя серии ERJP, как правило, обрабатывать удвоенную мощность при том же размере корпуса.

Использование изогнутых и извилистых планок в новой линейке резисторов привело к тому, что детали меньшего размера могут выдерживать большую мощность. Это уменьшило их общую занимаемую площадь и вес. Например, продукт, использующий 10 000 стандартных резисторов SMD 1206, может использовать вместо них детали высокой мощности 0805 и уменьшить общий вес на 40 г (уменьшение на 60%) и использовать до 50% меньше места на печатной плате.

Также стоит отметить, что новая линейка резисторов Panasonic представлена ​​в нескольких вариантах для различных приложений. Например, ERJUP6 представляет собой резистор 0,5 Вт в корпусе 0805 с защитой от серы и перенапряжения, в то время как ERJT06 представляет собой резистор 0,25 Вт также в корпусе 0805, но специализируется на антиимпульсных приложениях.

Новая линейка резисторов ERJP имеет допуски до ± 0,5%, доступны с сопротивлением от 1 Ом до 10 МОм, TCR ± 100 ppm / ° C и температурным диапазоном от -55 ° C до + 155 ° C. .

Примеры реализации использования новой линейки резисторов

ERJPA2

ERJPA2 — это резистор SMD 0402, способный рассеивать мощность 0,2 Вт, который может быть заменен на более старый ERJ2 или может использоваться для замены ERJ3 или ERJ6, если требуется меньшая площадка и более высокое рассеивание мощности.

ERJPA3

ERJPA3 — это резистор SMD 0603, который способен рассеивать мощность 0,25 Вт и является потенциальной заменой для более старого ERJ3 или может использоваться для замены ERJ6, если требуется меньшая площадка и более высокое рассеивание мощности.

ERJP03

ERJP03 — это резистор SMD 0603, который способен рассеивать мощность 0,2 Вт и является потенциальной заменой для более старого ERJ3 или может использоваться для замены ERJ6, если требуется меньшая площадка и более высокое рассеивание мощности.

ERJP06

ERJP06 — это резистор SMD 0805, способный рассеивать мощность 0,5 Вт и потенциально заменяющий старый ERJ6, или его можно использовать для замены ERJ8, если требуется меньшая площадка и более высокое рассеивание мощности.

ERJP08

ERJP08 — это SMD-резистор 1206, способный рассеивать мощность 0,66 Вт, и он является потенциальной заменой для более старого ERJ8 или может использоваться для замены ERJ14, если требуется меньшая площадка и более высокое рассеивание мощности.

Видно, что новая линейка резисторов не только уменьшает размер резистора при той же мощности, но также может увеличить допустимую мощность. Но как уменьшенный размер резистора и более высокая рассеиваемая мощность помогают дизайнерам и чего ожидать инженеру при использовании новой линейки резисторов Panasonic?

Преимущества более мощных резисторов меньшего размера

Использование меньших по размеру деталей, способных выдерживать большую мощность, имеет много преимуществ, некоторые из которых поначалу не совсем очевидны.

Во-первых, резисторы, такие как ERJP03, не только действуют как потенциальная замена для более старого ERJ3 (т.е. нет необходимости менять посадочные места на старых конструкциях печатных плат), но они могут выдерживать большую мощность и, следовательно, могут использоваться для либо замените более крупные резисторы, либо объедините несколько небольших резисторов, используемых параллельно, для улучшения рассеиваемой мощности. Уменьшение количества деталей может помочь снизить стоимость спецификации и, следовательно, стоимость всего производственного процесса.

Замена старых резисторов (например,грамм. ERJ8) с резисторами меньшего размера (например, ERJP06) с такой же или большей рассеиваемой мощностью, может иметь огромное влияние на общий дизайн печатной платы. Использование компонентов меньшего размера помогает сэкономить место на розничной продаже печатных плат, что снижает стоимость печатных плат. Экономия места также помогает уменьшить общий размер схемы, что дает ряд преимуществ. Во-первых, цепи меньшего размера часто имеют меньшую длину трассы, что может быть очень полезно в средах, в которых электромагнитная совместимость может быть проблемой.Во-вторых, схемы меньшего размера более портативны и их легче интегрировать в тесные среды, такие как носимая электроника. Если используются меньшие компоненты, но размер печатной платы остается неизменным, то разработчик имеет возможность интегрировать больше функций в свой продукт и, следовательно, улучшить возможности конечного продукта.

Сочетание использования меньшего и меньшего количества деталей также влияет на производственный аспект. Меньшее количество компонентов для размещения в меньшем пространстве позволяет разместить больше печатных плат на одной панели и сокращает время, необходимое для установки и установки машин для заполнения печатной платы.Меньшее количество паяных соединений также снижает количество потенциальных точек отказа как во время производства, так и во время эксплуатации. Использование меньшего количества паяных соединений также помогает сократить время, необходимое для автоматического оптического контроля (AOI), или позволяет проверить большее количество компонентов за то же время.

Заключение

Выбор подходящего резистора для вашей конструкции — важная задача, а с таким большим количеством доступных резисторов она может быть поистине сложной. Panasonic не только осознает важность резисторов, но и постоянно расширяет границы технологий, чтобы производить резисторы меньшего размера и более эффективные.

Если вам нужна помощь в интеграции технологии резисторов в ваши проекты, посетите страницу контактов Panasonic.

Практические резисторы: номинальная мощность (мощность)

Ultimate Electronics: практическое проектирование и анализ схем


Теплоотвод резистора, максимальная рабочая температура, предохранители, отказы и конструкция большой мощности. Читать 5 мин

Как обсуждалось в разделе о сопротивлении и законе Ома, неупругие столкновения между электронами и резистивными материалами означают, что внутри резистора электрическая энергия преобразуется (на короткое время) в кинетическую энергию электрона, которая затем при столкновении преобразуется в тепло.

Это вызывает нагрев самого резистора.

Если это тепло не удалить, температура резистора повысится.

По мере повышения температуры резистора тепло естественно отводится быстрее тремя способами:

  • Проводимость. Резистор может проводить тепло через свои металлические выводы к ближайшей подложке. Естественно, это происходит быстрее при более высоких перепадах температур.
  • Конвекция. Резистор вызывает конвекцию в окружающий воздух, которая, естественно, быстрее происходит при более высоких перепадах температур.
  • Радиация. Внешний вид резистора будет излучать тепло от своей поверхности, что сильно зависит от температуры.

(Кроме того, когда температура резистора повышается, само сопротивление изменяется, что мы обсудим в следующем разделе, посвященном температурному коэффициенту резистора.)

Со временем достигается равновесие при температуре, превышающей температуру окружающей среды.В этой точке равновесия резистор преобразует электрическую энергию в тепло с той же скоростью, с которой тепло отводится одним или несколькими путями теплопередачи, перечисленными выше.

Или, если равновесие не установлено, температура резистора продолжает расти, пока резистор не выйдет из строя.


Если температура резистора продолжает расти, материал внутри в конечном итоге достигает точки плавления или испарения. Пуф! Резистор перегорает и замыкает цепь.

В любой точке локального перегрева (или более слабого материала) потеря материала вызывает увеличение местного сопротивления. Это вызывает еще больший нагрев именно в этом слабом месте, что вызывает каскад дальнейших потерь материала, пока резистор не прогорит полностью, разомкнув цепь.

Этот отказ может быть нежелательным: например, след печатной платы может оборваться из-за перегрузки по току, оставив поврежденную цепь.

В качестве альтернативы, этот отказ может быть преднамеренным и желательным: предохранитель представляет собой резистор , предназначенный для отказа при определенном токе .На практике мы хотим разместить преднамеренно легко заменяемые предохранители (или сбрасываемые автоматические выключатели) в местах, где они будут защищать нежелательных предохранителей (например, постоянные следы на печатной плате или другие ценные или трудно заменяемые компоненты) .


Каждый резистор продается с номинальной мощностью. Эта мощность может составлять 14 Вт. или это может быть 10 Вт . Это значение связано с размером резистора и, в частности, с его площадью для рассеивания тепла. Это также связано с материалами резистора.

Хотя резистор продается с номинальной мощностью, эта номинальная мощность на самом деле основана на температурном рейтинге — температуре, при которой с резистором начнут происходить плохие вещи.

Обычно эта номинальная мощность рассчитывается исходя из предположения, что тепло отводится естественной конвекцией в неподвижный воздух. Но, например, если вы используете этот резистор в вакууме, истинная максимальная мощность может быть ниже, потому что нет воздуха, который бы отводил тепло. Или, если у вас хорошее охлаждение (например, огромный радиатор и / или большой вентилятор), истинная максимальная мощность может быть выше, потому что температура будет ниже.

Мы еще не говорили о постоянных времени, но в случае резистора интересующей нас постоянной времени является тепловая постоянная времени, которая имеет отношение к массе, материалу, форме и теплопередаче. Во многих случаях это может быть порядка секунды или около того. Это означает, что вы можете ненадолго превысить номинальную мощность, если не превышаете ее в среднем.

Например, если у вас есть резистор на 14 Вт , наверное через него разрядить можно на 10 Вт всего за 1 мс один раз в секунду, с отключенным резистором до конца секунды.У средняя мощность составляет всего 10 мВт. , намного меньше, чем 250 мВт номинальная мощность, а это происходит в течение гораздо меньшего, чем тепловая постоянная времени, поэтому температура никогда не становится очень высокой. Однако помните, что такой вид циклирования может вызвать напряжения в материале: см. Обсуждение Physical Stress of Mode Transition в разделе «Устойчивое состояние и переходные процессы».

Если вы оказались в проектной ситуации, когда вам необходимо определенное сопротивление, но необходимо превысить номинальную мощность, у вас обычно есть три варианта:

  • Купите резисторы повышенной мощности. Обычно они физически больше и дороже.
  • Разделим на несколько резисторов. Вы можете использовать несколько резисторов последовательно и параллельно, чтобы достичь того же эффекта и распределить нагрев между несколькими компонентами.
  • Чтобы избежать перепроектирования схемы. С точки зрения энергоэффективности никогда не здорово сжигать много энергии в резисторе. Рассмотрите другие способы достижения вашей цели дизайна.

В отличие от резисторов, предохранители обычно продаются с номинальным током .Выше этого тока они будут «хлопать» и размыкаться.

Предохранители

номинально имеют близкое к нулю сопротивление в открытом состоянии, но на самом деле оно часто составляет от нескольких миллиомов до десятков миллиомов. Это ненулевое сопротивление важно: оно создает самонагрев, который заставляет предохранитель выполнять свою работу.

(Восстанавливаемые автоматические выключатели используют связанный эффект, когда биметаллическая полоса изгибается при нагревании, а не нагревается до точки плавления или испарения).


В следующем разделе «Практические резисторы: температурный коэффициент» мы обсудим, как сопротивление изменяется в зависимости от температуры до точки отказа.


Роббинс, Майкл Ф. Ultimate Electronics: Практическое проектирование и анализ схем. CircuitLab, Inc., 2021, ultimateelectronicsbook.com. Доступно. (Авторское право © CircuitLab, Inc., 2021)

Номинальная мощность резистора —

Резисторы

могут использоваться для различных целей в схеме. При проектировании схемы следует учитывать номинальную мощность резистора, чтобы обеспечить достаточную мощность. Если мы используем неправильное значение резисторов (номинальная мощность), то резистор будет

1.повреждены или перегреты и тратят много энергии

2. Не обеспечивает достаточной мощности для работы нагрузок (индуктивные, емкостные, резистивные нагрузки)

3. Если мы используем резистор, номинальная мощность которого ниже требуемой, тогда схема не будет работать.

Номинальная мощность резистора и размер резистора связаны друг с другом, потому что, если номинальная мощность резистора увеличивается, его размер также увеличивается.

( Больше номинальной мощности — больше

Меньше номинальная мощность — меньше размер)

Номинальная мощность общего резистора: 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт, 25 Вт.

Ex; Если резистор имеет 0,5 Вт, значит, он может пропускать только 0,5 Вт. До 0,5 Вт он может работать без каких-либо проблем, но если мы предоставим больше, резистор будет нагреваться и может быть поврежден.

При проектировании схем проектировщик должен учитывать это для резисторов.

Расчет номинальной мощности резистора

Из приведенной выше схемы источник питания может обеспечивать максимальное значение тока до 10 В и 2 А. Общая мощность, которую может вырабатывать источник, составляет 20Вт

P = V I; P = 10 X 2 = 20 Вт

Если мы последовательно разместим резистор 100 Ом, он может обеспечить мощность 1 Вт (10 В, 0.1 А).

Ток 0,1 А (или) 100 мА будет течь по цепи при 10 В.

Если номинальная мощность резистора составляет 1 Вт, то конструкция нормальная, и резистор будет работать правильно. Он не выделяет нежелательного тепла. Теперь давайте рассмотрим эту схему с последовательным соединением светодиода с резистором, имеющим номинальную мощность 5 Вт (5 В и 1 А. ).

Из приведенной выше схемы вычтите падение напряжения светодиода из общего падения напряжения, чтобы получить общее доступное напряжение.

В общее — V светодиод = 10-5 = 5 В

I = V / R; 5/100 = 0,05 А

0,05 А (или) 50 миллиампер тока может протекать через светодиод при 5 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *