Простой цифровой милливольтметр постоянного тока
Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 – 0,001 – 0,999 V, 2 – 0,01-9,99 V, 3 – 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля и времени реакции на событие. Программная калибровка. Функция амперметра, возможность использования для преобразования напряжения шунта для индикации тока. Устройство выполнено на универсальной плате ch-4000.
Rotator powered by EasyRotator for WordPress, a free and easy jQuery slider builder from DWUser.com. Please enable JavaScript to view.
Функциональная схема вольтметра.
АЦП – выполняет измерение напряжения и передает данные в модуль контроля. Модули контроля позволяют выполнять контроль напряжения по 4 функциям. 1-контроль наличия напряжения в заданных пределах, если напряжение находиться внутри диапазона заданных напряжений реле замкнуто. 2 – контроль выхода напряжение за установленные границы. Если напряжение выше или ниже заданных параметров – реле замкнуто. 3 – реле замкнуто если напряжение ниже минимального уровня и отключено если выше максимального. 4-реле замкнуто если напряжение выше максимального уровня и разомкнуто если напряжение ниже минимального уровня.
Схема вольтметра.
Это конфигурации платы для функции аналогового входа. Это вариант для простого вольтметра с одним диапазоном от 0,01 до 10.00 вольт, если R1=180 k, R3=20k (1/10). Если удалить R3, будет диапазон от 0,001 до 1,000 вольта. Если R1=180 k, а R3=1,8 k, это будет 1/100 диапазон от 0,1 до 100,0 вольт.
Но плата позволяет сделать 2 автоматических диапазона, ну а если и еще извратиться (бросить проводок), то трех диапазонный. проблема только в том, что логический ноль на выходе контроллера не совсем ноль, это уровень порядка до 20 милливольт, но это терпимо, для диапазон измерения до 10 и 100 вольт. Эти вносимые погрешности можно программно скомпенсировать.
Монтажная схема платы.
Оставлены только используемые компоненты. Расположение элементов на верней стороне платы.
Расположение элементов на нижней стороне платы.
Перечень элементов необходимых для сборки.
Наименование | Типоразмер | Тип (замена) | Количество | Примечание |
Микроконтроллер | PIC16F1829 | 1 | PIC1 | |
Стабилизатор | SO-8 | 78L05 | 1 | ST1 |
Ключи | SO-14 | ULN2003D | 1 | U1 |
Индикатор | SR410561N/32 | 1 | LD1 | |
Диод | SM4007 | 1 | D1 | |
Резистор | 1206 | 0 | 1 | R4 |
1206 | 22 | 1 | R5 | |
Резистор | 0805 | 680 | 8 | R7,R8,R9,R24, R25,R26,R27,R28 |
Резистор | 0805 | 1K | 4 | R30,R31,R32,R33 |
0805 | 10K | 1 | R12 | |
Резистор | 0805 | 180K | 1 | R1 |
Резистор | 0805 | 1.8K | 1 | R13 |
CHIP BEADS | 0805 | LCBB-601 | 1 | R11 |
Резистор | 0603 | 0 | 1 | R37,R39 |
Конденсатор | 0805 | 3 | C4,C7,C5 | |
Тактовая кнопка | SMD | TACT 6×6-15.0 | 4 | PB1-PB4 |
Конденсатор керамический | 1206 | 10,0х25v | 1 | C8 |
Конденсатор электролитический | 220,0х25v | 1 | C3 | |
Конденсатор электролитический | 100,0х16v | 1 | C6 | |
Стабилитрон | SOT23 | BZX84-C5V1 | Z1 | |
Стабилитрон | SOT23 | BZX84-C30 | 1 | Z6 |
Проблема простоты и точности.
Первая простота заключена в самом микроконтроллере. в нем встроен источник опорного напряжения, который позволяет нам получить опорное напряжение 1024 милливольта. Т.е. мы сразу имеем точный отсчет. Это даст без преобразования измерять, просто подавая на вход контролера напряжения от 0,001 до 1,000 вольта.
Простота конструкции не дает возможности сделать высокую точность измерения. Дело в том, что на уровне 1 милливольта всегда присутствуют электронаводки от радио и электросети. Тем более в этом микроконтроллере нет отдельных цепей для аналоговой части, и здесь будет проблематично выполнить измерения в спящем режиме, так как динамическая индикация требует, чтобы контроллер был всегда в работе, ну и плюс цифровой шум, от самого контроллера будет мешать точности измерения. Но микроконтроллер и для того называется микроконтроллером, что здесь есть много вариантов для программной обработки данных.
Для удешевления конструкции мы используем в делители обычные резисторы с 5% допуском, это нам добавит нелинейности которую необходимо будет скорректировать программно, эта функция и функция коррекции нуля на уровнях 10 и 100, реализовано в режиме настройки.
Для реализации механизма устранения “блыманья” надо будет применить три метода, что-бы получить индикацию приемлемого вида.
Для борьбы с помехами мы применим три метода
- Вычисление среднего из N – измерений.
- Применение “накапливающего интегратора”.
- Поиск минимального сигнала в циклах “накапливающего интегратора”.
Что дает каждый метод в отдельности.
1. Вычисление среднего их N – измерений. Позволяет выполнить несколько измерений и найти среднее значение, что естественно “сгладит” поверхностные пульсации вызванные электронаводками и цифровым шумом.
if(GO==0) { //—————————————— volt[ctetizm]=ADRESL; // чтение данных их АЦП volt[ctetizm]+=ADRESH<<8; // ADC data read them if(++ctetizm>IZMR)ctetizm=0; GO=1; // запуск измерения/start of measurement voltage=0; for(a=0;a<IZMR;a++) { voltage+=volt[a]; } voltage=voltage/IZMR; <span><strong>if(voltage<voltageMIN)voltageMIN=voltage;</strong></span>
if(GO==0) { //—————————————— volt[ctetizm]=ADRESL; // чтение данных их АЦП volt[ctetizm]+=ADRESH<<8; // ADC data read them if(++ctetizm>IZMR)ctetizm=0; GO=1; // запуск измерения/start of measurement voltage=0; for(a=0;a<IZMR;a++) { voltage+=volt[a]; } voltage=voltage/IZMR; <span><strong>if(voltage<voltageMIN)voltageMIN=voltage;</strong></span> |
2. Применение “накапливающего интегратора”. Позволит выполнять смену индикации напряжения с “первого” показания (которое в настоящий момент на индикаторе) на “второе” (которое подготовлено блоком обработки сигнала), когда “второе” встречается в N раз чаще чем “первое”.
// ФИЛЬТР устранения дрожания индикации при смене напряжения «накапливающий интегратор» // FILTER jitter display by changing the voltage to «accumulate integrator» if(voltage!=voltager && timery)timery—; else { <span><strong>voltager=voltageMIN;</strong></span> timery=500; // нельзя делать очень большим, появится эффект тригерности voltageMIN=1023; }
// ФИЛЬТР устранения дрожания индикации при смене напряжения «накапливающий интегратор» // FILTER jitter display by changing the voltage to «accumulate integrator» if(voltage!=voltager && timery)timery—; else { <span><strong>voltager=voltageMIN;</strong></span> timery=500; // нельзя делать очень большим, появится эффект тригерности voltageMIN=1023; } |
3. Поиск минимального сигнала в циклах “накапливающего интегратора”. Будут выводить на индикатор минимальное значение, что как показала практика, является более достоверным. А так-ка поиск минимума, должен происходить не во всем времени, а только в моменты периода работы “накапливающего интегратора”, то как раз в эти моменты будет происходить сброс минимума текущего измерения. Сброс будет выполняться к максимальному значению АЦП.
Для автоматического выбора пределов используем условие превышения уровня сигнала выше 1000, для возврата на уровень ниже если ниже 99. Для предотвращения перепрыгивания на уровень выше необходимо сбросить уровень сигнала в буфере на среднее значение.
// функция автоматического переключения на нужный уровень if(voltage>1000&&tochraraz==1) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс значение в среднее хначение { volt[a]=200; } } else if(voltage>1000&&tochraraz==2) { // выбор уровня 3 LEVEL01=1; LEVEL02=0; tochraraz=3; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==3) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==2) { LEVEL01=1; LEVEL02=1; tochraraz=1; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
// функция автоматического переключения на нужный уровень if(voltage>1000&&tochraraz==1) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс значение в среднее хначение { volt[a]=200; } } else if(voltage>1000&&tochraraz==2) { // выбор уровня 3 LEVEL01=1; LEVEL02=0; tochraraz=3; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==3) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==2) { LEVEL01=1; LEVEL02=1; tochraraz=1; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } |
Расширение функций.
Простое измерение напряжения – малофункционально, поэтому в вольтметре предусмотрено два модуля для контроля напряжения. (для варианта трехдиапазонного измерителя, если использовать один диапазон, то можно сделать 4 управляющих выхода). Функция таймера задержи включения работы модулей-регуляторов, которые задерживают работу модулей от момента включения или изменения параметров настройки.
Описание назначений клавиш управления.
Позиционное расположение клавиш:
[←][→][↓][↑]
Основной режим работы:
[←] выключение или уменьшение задания таймера.
[→] запуск таймера и задание времени его работы.
[↓] вход в режим настройки параметров милливольтметра.
[↑] выбор предела измерений (АВТО/0,000/00,00/000,0).
Режим ввода пароля:
Сообщение [PASS] предупреждает о необходимости ввода пароля. Сообщение [0.000] говорит от необходимости ввода пароля. Клавишей [→] выбираем разряд в который необходимо ввести число. Клавишей [←] вводится число, диапазон вводимого числа 0-9, A, B, C, D, E, F, G, H. Цифры выбираются последовательно и повторяются по кругу. При вводе пароля нажать клавишу [↓] – для перехода на уровень программирования функций. Каждый уровень имеет свой индивидуальный пароль. Если пароль введен, то до входа в основной режим работы, при движении по уровням, пароль в дальнейшем вводить не надо.
Режим настройки параметров:
[←] выбор функций на уровне функций, уменьшение задания параметра на уровне параметра функции.
[→] выбор функций на уровне функций, увеличение задания параметра на уровне параметра функции.
[↓] вход/выход в режим настройки параметра или переход на уровень ниже.
[↑] выход из режима настройки или настройки параметра функции.
Функции меню.
Для входа в режим настройки используйте клавишу [↓].
↑ Необязательная функция ввода пароля, для перехода на пользовательский уровень 1, настройки параметров милливольтметра. По умолчанию – Отключена. PASS↓ | ||||||
×Индикатор выбранного уровня функцийПри нажатии на клавишу ↓ переход на уровень U2 U1←↓→ | ×Модуль 1 — верхний уровеньЗадание верхнего уровня контроля напряжения модуля 1. Нажмите клавишу ↓ переход на уровень задания параметра. r1- —←↑↓→ | ×Модуль 1 — нижний уровеньЗадание нижнего уровня контроля напряжения модуля 1. Нажмите клавишу ↓ переход на уровень задания параметра. r1__←↑↓→ | ×Модуль 2 — верхний уровеньЗадание верхнего уровня контроля напряжения модуля 2. На |
Милливольтметр и вольтметр | Все своими руками
Опубликовал admin | Дата 23 июля, 2016Эта статья посвящена двум вольтметрам, реализованных на микроконтроллере PIC16F676. Один вольтметр имеет диапазон измеряемых напряжений от 0,001 до 1,023 вольта, другой, с соответствующим резистивным делителем 1:10, может измерять напряжения от 0,01 до 10,02 вольта. Ток потребления всего устройства при выходном напряжении стабилизатора +5 вольт составляет примерно 13,7 мА. Схема вольтметра изображена на рисунке 1.
Два вольтметра схема
Цифровой вольтметр, работа схемы
Для реализации двух вольтметров использованы два вывода микроконтроллера, сконфигурированных на вход для модуля цифрового преобразования. Вход RA2 используется для измерения малых напряжений, в районе вольта, а к входу RA0 подключен делитель напряжения 1:10, состоящий из резисторов R1 и R2, позволяющий измерять напряжение до 10 вольт. В данном микроконтроллере используется десятиразрядный модуль АЦП и чтобы реализовать измерение напряжения с точностью до 0,001 вольта для диапазона 1 В, пришлось применить внешнее опорное напряжение от ИОН микросхемы DA1 К157ХП2. Так как мощность ИОН микросхемы очень маленькая, и чтобы исключить влияние внешних цепей на этот ИОН, в схему введен буферный ОУ на микросхеме DA2.1 LM358N. Это неинвертирующий повторитель напряжения, имеющий стопроцентную отрицательную обратную связь — ООС. Выход этого ОУ нагружен на нагрузку, состоящую из резисторов R4 и R5. С движка подстроечного резистора R4, опорное напряжение величиной 1,024 В подается на вывод 12 микроконтроллера DD1, сконфигурированного, как вход опорного напряжения для работы модуля АЦП. При таком напряжении каждый разряд оцифрованного сигнала будет равен 0,001 В. Чтобы уменьшить влияние шумов, при измерении малых величин напряжения применен еще один повторитель напряжения, реализованный на втором ОУ микросхемы DA2. ООС этого усилителя резко уменьшает шумовую составляющую измеряемой величины напряжения. Так же уменьшается напряжение импульсных помех измеряемого напряжения.
Для вывода информации об измеряемых величинах применен двухстрочный ЖКИ, хотя для этой конструкции хватило бы и одной строки. Но иметь в запасе возможность вывода еще какой ни будь информации, тоже не плохо. Яркость подсветки индикатора регулируется резистором R6, контрастность выводимых символов зависит от величины резисторов делителя напряжения R7 и R8. Питается устройство от стабилизатора напряжения собранного на микросхеме DA1. Выходное напряжение +5 В устанавливается резистором R3. Для уменьшения общего тока потребления, напряжение питания самого контроллера можно уменьшить до величины, при которой сохранялась бы работоспособность контроллера индикатора. При проверке данной схемы индикатор устойчиво работал при напряжении питания микроконтроллера 3,3 вольта.
Настройка вольтметра
Для настрой данного вольтметра необходим, как минимум цифровой мультиметр, способный измерять напряжение 1,023 вольта, для настройки опорного напряжения ИОН. И так, с помощью контрольного вольтметра выставляем на выводе 12 микросхемы DD1 напряжение величиной 1,024 вольта. Затем на вход ОУ DA2.2, вывод 5 подаем напряжение известной величины, например 1,000 вольт. Если показания контрольного и настраиваемого вольтметров не совпадают, то подстроечным резистором R4, изменяя величину опорного напряжения, добиваются равнозначных показаний. Затем на вход U2 подают контрольное напряжение известной величины, например 10,00 вольт и подборкой величины сопротивления резистора R1, можно и R2, а можно и тем и другим добиваются равнозначных показаний обоих вольтметров. На этом регулировка заканчивается.
Фото устройства на макетной плате
Внешний вид собранного устройства на макетной плате показан на фото 1. Успехов. К.В.Ю. Скачать файл прошивки
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:4 427
МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА
Как-то, года два назад, для «сведения» катушек металлодетектора понадобился точный милливольтметр переменного тока, отвлекаться на поиски подходящей схемы и подбирать детали уж очень не хотелось, и тогда взял и купил готовый набор «Милливольтметр переменного тока». Когда вник в инструкцию выяснилось, что у меня на руках только половина того что нужно. Оставил эту затею и купил на базаре древний, но в почти отличном состоянии осциллограф ЛО-70 и прекрасно всё сделал. А так как за последующее время изрядно надоело перекладывать этот пакетик с конструктором с места на место, решил всё же его собрать. Также присутствует любопытство по поводу того насколько хорош он будет.
В набор входит микросхема К544УД1Б которая представляет собой операционный дифференциальный усилитель с высоким входным сопротивлением и низким уровнем входных токов, с внутренней частотной коррекцией. Плюс печатная плата с двумя конденсаторами, с двумя парами резисторов и диодов. Также имеется инструкция по сборке. Всё скромно, но обид нет, стоит набор меньше чем одна микросхема из него в розничной продаже.
Милливольтметр, собранный по данной схеме позволяет измерять напряжение с пределами:
- 1 – до 100 мВ
- 2 – до 1 В
- 3 – до 5 В
В диапазоне 20 Гц – 100 кГц, входное сопротивление около 1 МОм, напряжение питания
от + 6 до 15 В.
Печатная плата милливольтметра переменного тока изображена со стороны печатных дорожек, для «отрисовки» в Sprint-Layout («зеркалить» не нужно), если понадобиться.
Сборка началась с изменений в компонентном составе: под микросхему поставил панельку (сохранней будет), керамический конденсатор поменял на плёночный, номинал естественно прежний. Один из диодов Д9Б при монтаже пришёл в негодность – запаял все Д9И, благо в инструкции последняя буква диода вообще не прописана. Номиналы всех устанавливаемых на плату компонентов были измерены, они соответствуют указанным в схеме (у электролита проверил ещё и ESR).
В набор были включены три резистора номиналом R2 — 910 Ом, R3 — 9,1 кОм и R4 — 47 кОм однако при этом в руководстве по сборке есть оговорка что их номиналы необходимо подбирать в процессе настройки, так что сразу поставил подстроечные резисторы на 3,3 кОм, 22 кОм и 100 кОм. Их было нужно смонтировать на любой подходящий переключатель, взял имевшийся в наличии марки ПД17-1. Показался весьма удобным, миниатюрен, есть за что крепить на плате, имеет три фиксированных положения переключения.
В итоге все узлы из электронных компонентов поместил на монтажную плату, соединил их между собой и подсоединил к маломощному источнику переменного тока – трансформатору ТП-8-3, который подаст на схему напряжение 8,5 вольт.
А теперь заключительная операция – калибровка. В качестве генератора звуковой частоты использован виртуальный. Звуковая карта компьютера (даже самая посредственная) вполне прилично справляется с работой на частотах до 5 кГц. На вход милливольтметра подан от генератора звуковой частоты сигнал частотой 1000 Гц, действующее значение которого соответствует предельному напряжению выбранного поддиапазона.
Звук берётся с разъёма «наушники» (зелёного цвета). Если после подсоединения к схеме и включения виртуального звукового генератора звук «не пойдёт» и даже подключив наушники его, не будет слышно, то в меню «пуск» наведите курсор на «настройки» и выберите «панель управления», где выберите «диспетчер звуковых эффектов» и в нём нажмите на «Выход S/PDIF», где будет указано несколько вариантов. Наш тот, где есть слова «аналоговый выход». И звук «пойдёт».
Был выбран поддиапазон «до 100 мВ» и при помощи подстроечного резистора достигнуто отклонение стрелки на конечное деление шкалы микроамперметра (внимание на символ частоты, на шкале, обращать не нужно). То же самое было успешно проделано с другими поддиапазонами. Инструкция производителя в архиве. Несмотря на свою простоту, радиоконструктор оказался вполне работоспособным, и что особенно понравилось – адекватным в настройке. Одним словом набор хорош. Поместить всё в подходящий корпус (если нужно), установить разъёмы и прочее будет делом техники.
Форум по измерителям
Обсудить статью МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА
Простой цифровой милливольтметр постоянного тока — OpenVoron
Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 — 0,001 — 0,999 V, 2 — 0,01-9,99 V, 3 — 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля и времени реакции на событие. Программная калибровка. Функция амперметра, возможность использования для преобразования напряжения шунта для индикации тока. Устройство выполнено на универсальной плате ch-4000.
Схема вольтметра.
Это конфигурации платы для функции аналогового входа. Это вариант для простого вольтметра с одним диапазоном от 0,01 до 10.00 вольт, если R1=180 k, R3=20k (1/10). Если удалить R3, будет диапазон от 0,001 до 1,000 вольта. Если R1=180 k, а R3=1,8 k, это будет 1/100 диапазон от 0,1 до 100,0 вольт.
Но плата позволяет сделать 2 автоматических диапазона, ну а если и еще извратиться (бросить проводок), то трех диапазонный. проблема только в том, что логический ноль на выходе контроллера не совсем ноль, это уровень порядка до 20 милливольт, но это терпимо, для диапазон измерения до 10 и 100 вольт. Эти вносимые погрешности можно программно скомпенсировать.
Монтажная схема платы.
Оставлены только используемые компоненты. Расположение элементов на верней стороне платы.
Расположение элементов на нижней стороне платы.
Перечень элементов необходимых для сборки.
Наименование | Типоразмер | Тип (замена) | Количество | Примечание |
Микроконтроллер | SSOP | PIC16F1829 | 1 | PIC1 |
Стабилизатор | SO-8 | 78L05 | 1 | ST1 |
Ключи | SO-14 | ULN2003D | 1 | U1 |
Индикатор | SR410561N/32 | 1 | LD1 | |
Диод | SM4007 | 1 | D1 | |
Резистор | 1206 | 0 | 1 | R4 |
Резистор | 1206 | 22 | 1 | R5 |
Резистор | 0805 | 680 | 8 | R7,R8,R9,R24, R25,R26,R27,R28 |
Резистор | 0805 | 1K | 4 | R30,R31,R32,R33 |
Резистор | 0805 | 10K | 1 | R12 |
Резистор | 0805 | 180K | 1 | R1 |
Резистор | 0805 | 1.8K | 1 | R13 |
CHIP BEADS | 0805 | LCBB-601 | 1 | R11 |
Резистор | 0603 | 0 | 1 | R37,R39 |
Конденсатор | 0805 | 0.1x50v | 3 | C4,C7,C5 |
Тактовая кнопка | SMD | TACT 6×6-15.0 | 4 | PB1-PB4 |
Конденсатор керамический | 1206 | 10,0х25v | 1 | C8 |
Конденсатор электролитический | 220,0х25v | 1 | C3 | |
Конденсатор электролитический | 100,0х16v | 1 | C6 | |
Стабилитрон | SOT23 | BZX84-C5V1 | 1 | Z1 |
Стабилитрон | SOT23 | BZX84-C30 | 1 | Z6 |
Проблема простоты и точности.
Первая простота заключена в самом микроконтроллере. в нем встроен источник опорного напряжения, который позволяет нам получить опорное напряжение 1024 милливольта. Т.е. мы сразу имеем точный отсчет. Это даст без преобразования измерять, просто подавая на вход контролера напряжения от 0,001 до 1,000 вольта.
Простота конструкции не дает возможности сделать высокую точность измерения. Дело в том, что на уровне 1 милливольта всегда присутствуют электронаводки от радио и электросети. Тем более в этом микроконтроллере нет отдельных цепей для аналоговой части, и здесь будет проблематично выполнить измерения в спящем режиме, так как динамическая индикация требует, чтобы контроллер был всегда в работе, ну и плюс цифровой шум, от самого контроллера будет мешать точности измерения. Но микроконтроллер и для того называется микроконтроллером, что здесь есть много вариантов для программной обработки данных.
Для удешевления конструкции мы используем в делители обычные резисторы с 5% допуском, это нам добавит нелинейности которую необходимо будет скорректировать программно, эта функция и функция коррекции нуля на уровнях 10 и 100, реализовано в режиме настройки.
Для реализации механизма устранения «блыманья» надо будет применить три метода, что-бы получить индикацию приемлемого вида.
Для борьбы с помехами мы применим три метода
- Вычисление среднего из N — измерений.
- Применение «накапливающего интегратора».
- Поиск минимального сигнала в циклах «накапливающего интегратора».
Что дает каждый метод в отдельности.
1. Вычисление среднего их N — измерений. Позволяет выполнить несколько измерений и найти среднее значение, что естественно «сгладит» поверхностные пульсации вызванные электронаводками и цифровым шумом.
if(GO==0) { //------------------------------------------ volt[ctetizm]=ADRESL; // чтение данных их АЦП volt[ctetizm]+=ADRESH<<8; // ADC data read them if(++ctetizm>IZMR)ctetizm=0; GO=1; // запуск измерения/start of measurement voltage=0; for(a=0;a<IZMR;a++) { voltage+=volt[a]; } voltage=voltage/IZMR; if(voltage<voltageMIN)voltageMIN=voltage;
2. Применение «накапливающего интегратора». Позволит выполнять смену индикации напряжения с «первого» показания (которое в настоящий момент на индикаторе) на «второе» (которое подготовлено блоком обработки сигнала), когда «второе» встречается в N раз чаще чем «первое».
// ФИЛЬТР устранения дрожания индикации при смене напряжения "накапливающий интегратор" // FILTER jitter display by changing the voltage to "accumulate integrator" if(voltage!=voltager && timery)timery--; else { voltager=voltageMIN; timery=500; // нельзя делать очень большим, появится эффект тригерности voltageMIN=1023; }
3. Поиск минимального сигнала в циклах «накапливающего интегратора». Будут выводить на индикатор минимальное значение, что как показала практика, является более достоверным. А так-ка поиск минимума, должен происходить не во всем времени, а только в моменты периода работы «накапливающего интегратора», то как раз в эти моменты будет происходить сброс минимума текущего измерения. Сброс будет выполняться к максимальному значению АЦП.
Для автоматического выбора пределов используем условие превышения уровня сигнала выше 1000, для возврата на уровень ниже если ниже 99. Для предотвращения перепрыгивания на уровень выше необходимо сбросить уровень сигнала в буфере на среднее значение.
// функция автоматического переключения на нужный уровень if(voltage>1000&&tochraraz==1) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс значение в среднее хначение { volt[a]=200; } } else if(voltage>1000&&tochraraz==2) { // выбор уровня 3 LEVEL01=1; LEVEL02=0; tochraraz=3; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==3) { // выбор уровня 2 LEVEL01=0; LEVEL02=1; tochraraz=2; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } } else if(voltage<99&&tochraraz==2) { LEVEL01=1; LEVEL02=1; tochraraz=1; for(a=0;a<IZMR;a++)// сброс измерение в среднее значение { volt[a]=200; } }
Расширение функций.
Простое измерение напряжения — неинтересно, поэтому в вольтметре предусмотрено два задатчика (для варианта трехдиапазонного измерителя, если использовать один диапазон, то можно сделать 4 управляющих выхода).
…
[box title=»Файлы для загрузки» color=»#521BDE»] СТРАНИЦА ЗАГРУЗКИ[/box]
Назначение: Вольтметр цифровой щитовые приборы постоянного тока Щ00, Щ01, Щ02, Щ02.01, Щ72, Щ96, Щ120 Милливольтметр цифровой щитовые приборы постоянного тока Щ00, Щ01, Щ02, Щ02.01, Щ72, Щ96, Щ120 Приборы щитовые цифровые электроизмерительные Щ00, Щ01, Щ02, Щ02.01, Щ72, Щ96, Щ120 предназначены для измерения силы тока или напряжения в цепях постоянного тока. Они могут применяться в энергетике и других областях промышленности для контроля электрических параметров. Приборы являются однопредельными и имеют исполнения по конструкции, диапазону измерений, числу десятичных разрядов, напряжению питания, наличию интерфейса, цвету индикаторов, классу точности.
Данный тип прибора Щ00, Щ01, Щ02, Щ02.01, Щ72, Щ96, Щ120.
Щ00 Щ01 Щ02.01
Щ72 Щ96 Щ120
Подсоединение проводов осуществляется под винт. Сечение проводов, подключаемых непосредственно к клеммам, не более 1,5мм2 для приборов Щ00, Щ01, Щ02.01 и не более 2,0мм2 для приборов Щ02, Щ72, Щ96, Щ120.
Форма заказа
Выбор Шунт
Пример записи при заказе: Вольтметр цифровой Щ01, диапазон измерения 2В, номинальное напряжение шунта 75мВ, число десятичных разрядов 3,5, напряжение питания 5В постоянного тока, зеленый цвет индикаторов, класс точности 0,2 ТУ 25-7504.194-2006 » «Милливольтметр Щ96-200мВ-3,5-220ВУ-К, класс точности 0,4 ТУ 25-7504.194-2006. Милливольтметр Щ96, диапазон измерения 200мВ, число десятичных разрядов 3,5, напряжение питания 85В до 242В переменного тока частотой 50Гц или от 100В до 265В постоянного, красный цвет индикаторов, класс точности 0,4 ТУ 25-7504.194-2006»
Габаритные и установочные размеры Щ00, Щ01, Щ02.01.
1 – Кронштейн, 2 – Винт М3, 3 – Клеммы подключения входного сигнала, 4 – Клеммы подключения питания Примечание – На передней панели для ЩП02.01 дополнительно имеются единичные индикаторы.
Габаритные и установочные размеры Щ02.
1 – Кронштейн, 2 – Винт М3, 3 – Крышка, 4 – Единичные индикаторы (в зависимости от исполнения, кроме приборов ЩЧ02), 5 – Перемычки (в зависимости от исполнения), 6 – Клеммы подключения входного сигнала, 7 – Клеммы подключения интерфейса RS485 (при наличии интерфейса), 8 – Клеммы подключения питания и заземления.
Габаритные и установочные размеры Щ72.
Габаритные и установочные размеры Щ96.
Габаритные и установочные размеры Щ120.
|
Цифровой милливольтметр от –99 до +999 мВ.
- Подробности
- Категория: Измерения
Цифровой милливольтметр сделан в форме модуля, который может быть использован как панельный вольтметр, измеритель напряжения или тока в регулируемом источнике тока, а также после создания входных контуров, может быть использован для конструирования цифрового мультиметра своими руками. Измеритель построен с использованием трехразрядного преобразователя типа С520D. Измеритель позволяет проводить измерения постоянных напряжений от –99 до +999 мВ с погрешностью не более 0,1% измеряемой величины.
Рис. 1. Схема электрическая принципиальная
Преобразователь автоматически определяет знак измеряемого напряжения. В случае применения интегральной схемы 40511 как декодера, при измерении положительного напряжения, на семисегментном индикаторе его значение высвечивается без знака, а перед отрицательной величиной высвечивается буква А. О превышении пределов диапазона измерений сигнализирует индикация символов В-В для положительных напряжений и А-А – для отрицательных. В устройстве необходимо выполнить две регулировки: с помощью потенциометра Р2 регулируется величина напряжения нестабильности входной системы преобразователя, по окончании Hi соединяется с «массой», потенциометр P1 служит для калибровки преобразователя. На вход измерителя необходимо подать напряжение 900 мВ и с помощью потенциометра Р1 установить на индикаторе 900.
Прибор необходимо питать стабилизированным напряжением 5 В.
Рис. 2. Монтажная плата
Из-за использования доступных и дешевых индикаторов VQE23 одна часть индикатора не используется. Печатная плата милливольтметра разработана так, чтобы максимально упростить монтаж. Плату с индикаторами необходимо припаять перпендикулярно к главной плате. При не подключенном входе Hi измеритель показывает состояние превышения диапазона.
Рис. 3. Расположение плат.
US1 | C520D | R1 | 330 Ом |
US2 | 40511 | R2, R3 | 18 кОм |
T1–T3 | BC307, BC557 или анал. | R4–R9 | 100 кОм |
Q1, Q2 | VQE23, VQE13 | R10–R16 | 120–160 Ом |
P1, P2 | 22 кОм | C1 | 220–230 нФ |
C3 | 100 нФ | C4 | 100 мкФ/10 В |