Микроэлектроника для начинающих: Electronics for beginners – Arduino, DYI and how to assemble electronics / Habr – Микроэлектроника для школьников от самого истока / Habr

Микроэлектроника для школьников от самого истока / Habr

Несколько лет назад довелось мне попробовать свои силы в заманивании пытливых отроков в разработку микроэлектроники. А дальше было, как в известной пословице: «Коготок увяз — птичке пропасть!» Остановиться уже не смог. Хочу поделиться с общественностью этим опытом, возможно, другие инженеры-электронщики тоже захотят устроить что-то подобное. Грамотнее народ – лучше жизнь.

Началось все с того, что мы почти случайно договорились с Межрегиональной компьютерной школой в подмосковной Дубне о проведении для их слушателей чего-то вроде лекции о проектировании микропроцессоров. Тема эта известна мне не понаслышке, два десятка лет в ней варюсь. Довелось поработать и в отечественных, и в зарубежных фирмах. Ну и почему бы подросткам не рассказать, в чем состоит работа инженеров, выдумывающих внутренности «процов». Это не среди таких же зануд на конференции выступать — перед детьми просто оттарабанить текст не получится. Если им будет совсем не интересно, то плевать им на почетные седины, блистательные лысины и надутые щеки. Будут зевать, не стесняясь, и ерзать на стульях в надежде сбежать поскорее. Но есть и плюсы — всякие вольности, шутки, неточности и упрощения не вызовут негодования и требований сжечь еретика-докладчика. В общем, судя по количеству вопросов в процессе общения, первый блин вышел не комом, стало интересно двигаться дальше.


А дальше после подобного занятия со школьниками и преподавателями уже в лагере Goto Camp возникла идея дать попробовать детям самим собрать на макетке разнообразные «запчасти» для процессоров и пощупать их вживую. Благо в лагере среди разнообразных программистов было и логово робототехников, у которых можно было разжиться микросхемами, проводами, светодиодами и кнопками. Такой подход в тысячу раз лучше, чем разглядывать схемы и диаграммы на бумаге. Увидеть своими глазами, как нолики и единицы бегают внутри схемы, потыкать в логические вентили пальцем — что может быть надежнее для освоения материала. А то они программируют свои микроконтроллеры, как черные ящики, вообще не представляя, что у тех внутри шуршит. И даже ПЛИСы не решат задачу сделать электронику наглядной. Ну, написал ребенок на Verilog’е логическую функцию, ну, закачал ее через программатор внутрь — результат тот же, вся логика скрыта в недрах микросхемы. Поэтому — только вентили. А еще лучше — транзисторы.

Набор «рассыпухи», доступной в лагере на момент озарения, был небогатым. Но главное — он был. Нужно было на этой базе придумать нечто, что могло призывно мигать лампочками или чем-нибудь жужжать. Ситуация осложнялась тем, что я провел теоретическую беседу о микропроцессорах и уехал к себе домой за 50 км от лагеря. То есть я был тут, а детали — там.

Поэтому с одним из преподавателей пришлось устроить сеансы телеэлектроники. Я придумывал схемы, рисовал их на промокашках и пересылал фотографии ему. А он пытался разобрать эту клинопись, собрать ее на макетке и добиться правильной работы. Описывал мне результат в ответных сообщениях, а я старался определить причину неполадок и глюков, чтобы их устранить. Удивительно, но в итоге все же нам удалось победить две схемы: дешифратор адреса и мультиплексор. Еще не было ясно, как это понравится детям, но уже было что им показать.

В лагере был устроен опрос, есть ли желающие посетить уже не лекцию, а семинар с лабораторкой на тему работы внутренностей цифровых чипов. Нашлась дюжина отважных пятнадцатилетних, которым не страшно было попробовать понять материал, который, между прочим, на третьем курсе института обычно рассказывают. Сразу было ясно, что из изложения надо к черту исключить ТТЛ, ЭСЛ и прочие замшелые типы логики, которыми профессура конопатит мозг студням. Только КМОП, только мейнстрим! На свой страх и риск включил туда объяснения принципов работы МОП-транзисторов в цифровых схемах. Но без физики полупроводников и прочих ужасов.

Здесь лирическое отступление в адрес тех, кто ругает современную молодежь за лень и глупость. Пусть они не бухтят, вот что. Нормальная у нас молодежь, не слушайте старых ворчунов, парни и девчонки. Лирическое отступление окончено.

Дети так ловко схватывали материал, после объяснений и примеров смело выходили к доске, установленной прямо на лужайке под открытым небом, и рисовали по таблицам истинности вентили на транзисторном уровне — это было прекрасно. Потом вместе на этих вентилях мы «изобрели» сумматор, дешифратор и мультиплексор. А после этого — тадам! — преподаватель и добрый волшебник Алексей вынес макетки с результатами наших с ним телемучений. Это вызвало некоторый ажиотаж среди слушателей — можно потрогать руками то, что только что рисовалось на доске фломастерами, и понажимать кнопки, наблюдая за переключением светодиодов на выходах. Лучшая реплика при этом была: «Ааааа, теперь я понял, куда подевались почти все провода из лаборатории!»

После этого дети задали много вопросов по электронике. На них мне, к счастью, хватило квалификации ответить. Кроме одного: «А где почитать про то, что вы рассказывали?» А ведь и негде. Старые советские книжки, по которым мы паяли свои цветомузыки и радиоприемники, устарели с точки зрения «цифры». Институтские буквари своими формулами отобьют всякое желание изучать электронику. Есть прекрасная книжка Харрисов, но там нет экспериментов на макетке. Есть отличные наборы компонентов с макетками, но там обычно нет подробных объяснений, как все эти устройства работают. Опять пришлось уезжать с чувством, как будто что-то не доделал.

Как известно, если тебя не устраивает то, что есть, не ной, а сделай сам, как считаешь нужным. Пришлось засесть за написание и издание учебно-практического курса для толковых школьников. Для этого, конечно, потребовалось купить детали, макетку, провода и начать играть в работу дома. Внезапно это оказалось страшно увлекательно.

Вот, например, игра «кто быстрее» на двух МОП-транзисторах:

Мы эту игру потом собрали на печатной плате с младшеклассником, и она вызвала живой интерес у его школьных товарищей, которые целую неделю на переменах азартно жали кнопки, отложив смартфоны в сторону. Кто там говорит, что детей от телефонов за уши не оттащишь? Ну а герой паяльника и канифоли потребовал придумать что-нибудь еще, чтобы можно было поразить товарищей.

А вот это — вентиль XOR (исключающее ИЛИ) на дюжине транзисторов:

А вот это D-триггер, срабатывающий по уровню (триггер-защелка). На нем прекрасно отрабатываются идеи запоминания и хранения данных:

Разобравшись с работой всех видов логических вентилей на транзисторном уровне, можно перейти уже к микросхемам малой степени интеграции серии CD4000. Никаких чудес и магии в их работе уже не будет после возни с транзисторами на макетке. Вот, например, полный сумматор:

А вот, не поверите, макет оперативной памяти. Он, конечно, убогий — четыре регистра по два бита. Но это честная память с дешифраторами адреса, битовыми шинами, запоминающими ячейками и прочими узлами и проводами, в каждую точку которых можно ткнуть щупом логического пробника и по загорающимся и гаснущим светодиодам увидеть беготню нулей и единиц по схеме, разобрать в деталях процессы чтения и записи данных.

Всего в новом варианте курса для летней школы насчитывается три десятка схем, развлекательных и образовательных, которые последовательно от одного транзистора до десятка микросхем помогают детям узнать цифровую электронику, даже не умея программировать.

В общем, нынешним старшеклассникам точно по зубам освоение премудростей проектирования компьютерного железа с самого низкого уровня. Нет там ничего такого, что недоступно пытливому уму при современных компонентах и возможностях. Есть надежда, что удастся расширить и углубить пропаганду микроэлектронных ценностей среди населения.

Как России развить микроэлектронику и победить Айфон / Habr

Основа основ современных гаджетов — технология создания “систем на кристалле” (СнК, по английски System on Chip, SoC). Как обучить этой черной магии XXI века российских студентов? Об этом возник разговор на семинарах, которые организовала весной в пригороде Лос-Анджелеса британская компания Imagination Technologies, являющаяся одним из разработчиков внутренностей Apple iPhone. Через неделю такие же семинары пройдут в России — для их организации Imagination скооперировалась с ведущими российскими университетами — МГУ, МИФИ, МИЭТ и ИТМО, а также с известным производителем микроконтроллеров, аризонской компаний Microchip Technology. Помимо недели семинаров 26-30 октября, семинары в сходном формате пройдут Самарском Аэрокосмическом (5 ноября) и в МФТИ (9 ноября).


Фетиш колбасы и айфонов

Утверждение, что в России не делают айфоны, стало таким же культурным клише современности, как 40 лет назад — рассказы про 50 сортов западной колбасы, которых не было в советских гастрономах. Не так давно появившиеся российские телефоны Yotaphone не снимают все аргументы критиков, ибо эти телефоны построены на микросхемах, которые были спроектированы и произведены в других странах.

Нельзя сказать, что на российском фронте микросхем для своих айфонов и других гаджетов — полная безнадежность. В мае группа российских компаний «ЭЛВИС» и британская компания Imagination Technologies выпустили совместный пресс-релиз, в котором описали планы создания совместных микросхем (систем на кристалле), которые будут содержать как блоки, разработанные в Лондоне и Калифорнии, так и блоки, разработанные в подмосковном Зеленограде. При этом «ЭЛВИС» — известный разработчик микросхем для космоса, Imagination — партнер Apple по разработке микросхем в Apple iPhone, а в пресс-релизе упоминаются современные кремниевые технологии с размером базового транзистора 28нм-10нм.

Другая российская компания “Байкал Электроникс” также в мае назад объявила о выпуске российского высокопроизводительного микропроцессора для встроенных систем “Байкал Т1”. Это уже реальные микросхемы, которые “Байкал” начал раздавать для тестирования инженерам потенциальных заказчиков, в том числе зарубежных. “Байкал Т1” также использует блоки от Imagination и производится на Тайване, но система на кристалле была спроектирована в России, поэтому процессор может называться российским.

Значит ли это, что эпоха российских микросхем того же класса, как и в продуктах Apple, вот-вот наступит? Не совсем. Таких групп разработчиков, как “ЭЛВИС” и “Байкал Электроникс”, в России всего несколько. Вот если бы их стало несколько десятков, а сделок типа ЭЛВИС-Imagination — несколько сотен, — тогда бы можно было говорить, что Россия становится пусть не следующими США или Китаем в электронике, но хотя бы следующим электронным Израилем или Южной Кореей. Главным ограничением роста является недостаток квалифицированных кадров. Молодых инженеров для ЭЛВИС-а и подобных компаний учат всего в нескольких российских университетов. Как привести образование в большом количестве российских технических вузов к уровню лучших университетов США, Западной Европы и развитых стран Азии?

Микропроцессор своими руками

Первый шаг — обновить учебники. Недавно вышел на русском языке новый учебник для младших курсов «Цифровая схемотехника и архитектура компьютера» созданный профессорами Дэвидом и Сарой Харрис. Этот учебник распространяется бесплатно в электронной форме как часть образовательных программ Imagination Technologies, которая купила права на русское издание у издательства Elsevier и организовала его перевод большой группой профессоров российских и украинских вузов, работников российских электронных компаний, а также русских инженеров европейских и американских компаний — Imagination, AMD, Apple и других. В переводе участвовал и фонд инфраструктурных и образовательных программ РОСНАНО.


Отличительная черта нового учебника — вводит студента в проектирование микросхем и программирование одновременно, как это и нужно делать в эпоху сложных систем на кристалле, и привязывает все к практике. Студенты строят собственный простой микропроцессор и сравнивают его с реальным индустриальным микроконтроллером Microchip PIC32.

Но как это возможно — для студента сделать микросхему? Ведь начальная плата за производство коммерческой партии микросхем на фабрике типа тайваньской TSMC (сноска: Taiwan Semiconductor Manufacturing Company), как правило, превышает миллион долларов.

Ответом является технология, которая называется FPGA (аббревиатура от англ. field programmable gate array, “программируемые пользователем вентильные матрицы”). Это специальные микросхемы, которые представляют собой матрицы из ячеек, логические функции и соединения между которыми можно многократно менять после изготовления. Они гораздо дороже и медленнее, чем обычные специализированные микросхемы, но для них нет “начального взноса” на производство. Сейчас на рынке есть студенческие платы с FPGA стоимостью менее $100, поэтому студенту и университетам для экспериментирования больше не нужно выкладывать крупные суммы. Более того, он может неограниченно менять формируемую в FPGA электронную схему, просто меняя ее конфигурационную память через кабель, подсоединенный к компьютеру. По гибкости это похоже на программирование, хотя суть другая — в программировании меняется последовательность инструкций процессора (программа, software), а в FPGA можно изменить сам процессор (аппаратура, hardware).

Студент против Samsung-а

Хорошо, используя учебник Харрисов и плату с FPGA, студенты могут разрабатывать простые микропроцессоры и периферийные устройств. Но коммерческие системы на кристалле используют микропроцессорные блоки, разработанные в промышленности, лицензии на которые стоят сотни тысяч и миллионы долларов. Каким образом студенты могут получить доступ и экспериментировать с такими блоками, не заставляя университеты покупать коммерческие лицензии? Ответом стала инициатива компании Imagination под названием MIPSfpga, анонсированная этой весной, которая сразу получила замечательные отклики от президента Стэнфордского университета Джона Хеннесси, профессоров Imperial College London и старейшего в Японии университета Кэйо.

MIPSfpga — это бесплатный для университетов вариант микропроцессорного ядра MIPS microAptiv UP. Именно это ядро MIPS используется в новой платформе Samsung ARTIK 1, о которой компания Samsung объявила на последней конференции IOT World, которая прошла в Сан-Франциско. С внедрением MIPSfpga в университеты студенты могут не просто, как прежде, использовать готовые микросхемы типа ARTIK 1, но и получить доступ к исходным кодам (на языке описания аппаратуры Verilog) того же процессорного ядра, которое используется и самими инженерами Samsung-а в их продукте. Более того, после экспериментирования с MIPSfpga студенты теоретически могут привлечь деньги от венчурных капиталистов и сделать коммерческую микросхему, которая сможет конкурировать непосредственно против самого Samsung-а.

www.artik.io/hardware/artik-1

Миниатюрный (12 на 12 миллиметров) встроенный компьютер Samsung ARTIK 1 содержит микросхемы с двумя процессорными ядрами — MIPS microAptiv UP и UC, антенной и сенсором движения. Такое устройство можно использовать для “умных вещей” обменивающихся информацией с интернетом (именно так расшифровывается название конференции — The Internet of Things, “интернет вещей”).
MIPSfpga использует стандартную за последние 25 лет методологию описания и разработки цифровой электроники под названием Register Transfer Level (RTL, уровень регистровых передач). Согласно этой методологии, электронная схема описывается на специальном языке Verilog, после чего программа логического синтеза (logic synthesis) превращает описание в математический граф из проводов и логических элементов; другая программа (static timing analysis) сообщает разработчику, вписывается ли разработанная схема в бюджет скорости, а третья программа (place-and-route) раскладывает синтезированную конструкцию по площадке микросхемы.

Отлить в кремнии

FPGA — это хорошо, но может ли студент увидеть микросхему собственного проектирования, сделанную на фабрике? Согласно Дэвиду Харрису, “в США для таких нужд существует сервис MOSIS, а в Европе программа Europractice. MOSIS формирует так называемые Multi-Project Wafer (MPW) — форму заказа для мелкосерийного производства, когда на полупроводниковой пластине изготавливается одновременно несколько различных интегральных схем, разработанных командами из разных организаций. У MOSIS есть расписание, когда университеты могут присылать им “чертежи” (GDSII файлы) и они могут отправлять их на фабрики. Такое производство бесплатно для образовательных нужд и предоставляет очень привлекательные цены для исследовательских нужд. Это позволяет и студентам, и исследователям получать результаты своего труда в виде готовых микросхем”.

Теоретически, такой же сервис могло бы сделать и правительство России для зеленоградских фабрик Микрон и Ангстрем. Эти фабрики не такие передовые, как тайваньская TSMC — они используют подержанное оборудование, купленное у ST, AMD и IBM, способное производить только микросхемы на 90 нанометров. Но это не означает, что на этих фабриках нельзя производить передовые изделия. На этой технологии сделаны например популярные франко-итальянские микроконтроллеры STM32 на основе британского процессора ARM Cortex M4.

Более того, согласно Дэвиду Харрису, “Для целей обучения не нужно ничего передового. Транзистор — это всегда транзистор, что на 10 микрон (10 микрон или 10,000 нанометров — это технология, на которой был сделан первый в истории микропроцессор Intel 4004 в 1971 году), что на 90 нанометров, что на 10 нанометров.” Самая современная фабрика стоит 5-6 миллиардов долларов, фабрики в Зеленограде — 600 миллионов, но если задаться целью показать студентам, как производится транзистор, то университету достаточно купить за несколько миллионов лишнее оборудование с какой-нибудь древней фабрики, хотя после этого нужно платить за химикаты, оборудование для вентиляции и техники безопасности.”

С другой стороны, по мнению Дэвида Харриса, “я не думаю, что для хорошего проектировщика необходим непосредственный опыт на производстве. Хотя такой опыт — это, конечно, плюс.”

Советы для России

Несколько участников лос-анджелесского семинара по MIPSfpga, ответили и на вопросы, что можно сделать в России.
Джейсон Вонг, менеджер образовательных программ компании Xilinx, которая является лидером рынка FPGA, считает, что программа развития образования должна составляться с учетом культуры каждой страны: “мы не знаем, что будет работать в России, но можем сказать, что работало в других странах.”.

Его коллега по Xilinx, доктор Паримал Пател, разъяснил: “В Индии, как и в России, студенты хорошо образованы в математике и физике. Правительство выбрало несколько ведущих университетов, которые за несколько лет подготовили курсы для остальных. Через 5-6 лет система стала давать первые результаты.”

Джейсон Вонг добавил “Похожие меры были приняты и в Китае. При этом правительство требовало отчетности от вузов в форме пятилетних планов. Может быть, России стоит перенять пятилетки. Они были изобретены в России? (Смеется) Может быть”.

Профессор Даниэл Шавер (Daniel Chaver) из крупнейшего Мадридского университета Комплутенсе не видит нужды в специальных программах, с его точки расширение преподавания электроники — это чисто вопрос денег — от правительства или доходов от платного образования в университетах. В уже развившейся экосистеме Западной Европы приоритизация тех или иных направлений происходит естественно, по законам рынка доступных работ, способностей и желаний студентов.

Профессор Сара Харрис из Университета Невады в Лас-Вегасе, одна из разработчиц MIPSfpga и соавтор учебника электроники, считает, что государство должно дать профессорам возможность сами составлять программы обучения, но при этом программы должны быть привязаны к практике — студенты должны строить осязаемые вещи.

Профессор Дэвид Харрис колледжа Харви Мадд, соавтор учебника и MIPSfpga, в прошлом — один из разработчиков Intel Pentium и других чипов — подвел итог: “группы преподавателей, стремящаяся к совершенству, c относительно небольшим бюджетом могут подготовить молодых людей, которые станут будущими технологическими лидерами”.

— Если вам понравился мой текст, и при этом вы живете в Москве, вы можете примкнуть к развиртуализации всего через несколько дней. Авангардная группа развиртуализации (включая меня) встречается в 12 часов дня в воскресенье 25 октября, выход метро Смоленская синей ветки метро. После этого мы идем в 15.00 обедать в Жан-Жак на Никитском бульваре, чтобы перепозиционировать Жан-Жак из места встреч креативных гуманитариев в место встреч суровых читателей и читательниц моих постов на темы микроэлектронной промышленности.

Вот фотки из предыдущих развиртуализаций:


«закона Мура», маркетинговые ходы и почему нанометры нынче не те. Часть 3 / Habr


В третьей части автор оригинальной статьи рассуждает о Зеленограде, памяти и смысле миниатюризации на пальцах.

Disclaimer: Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.

Краткое содержание предыдущих серий


Итак, что ж мы узнали из первой и второй части?

До начала 2000-х главным приоритетом при производстве микросхем для вычислительной техники было снижение размеров элементов (транзисторов). Миниатюризация позволяла вмещать больше транзисторов на кристалл, что снижало среднюю стоимость одного транзистора в микросхеме и позволяло повышать тактовые частоты, а также интегрировать больше функционала в один кристалл. Последнее снижало необходимость обращения вовне к медленной внешней шине. Размер транзисторов почти линейно коррелировал с так называемой нормой техпроцесса: при уменьшении технормы в 2 раза линейные размеры транзисторов также уменьшались в 2 раза, а площадь — в 4 раза. Физическая структура самих транзисторов при этом не менялась, просто сокращались размеры.

С начала 2000-х стали сказываться физические ограничения. Размеры транзисторов перестали линейно зависеть от технормы. И чем меньше нанометров заявлялось в техпроцессе, тем слабее это сказывалось на реальных размерах элементов. Каждый шаг в снижении размеров технормы теперь сопровождался изменением физики процесса. Кроме того, по мере миниатюризации стали проявляться побочные эффекты в виде увеличения токов утечки и увеличении паразитного энергопотребления. Это поставило крест на дальнейшем увеличении тактовых частот процессоров. В течении 2000-х тихим сапом произошла смена приоритетов. Теперь главной задачей конструкторов стало не уменьшение размеров транзисторов, а снижение токов утечки. Результатом такой политики стал переход от плоских транзисторов к объемным.

Одним из проявлений усложнения техпроцессов стало увеличение стоимости кристалла с каждым сокращением технормы. Себестоимость производства чипов меняется по одному и тому же графику — сразу после выхода нового техпроцесса цена максимальна из-за низкого выхода годных микросхем, затрат на проектирование и оптимизацию. По мере отладки производства себестоимость снижается, выход годных микросхем увеличивается. Минимальная цена в конце цикла — перед снятием с производства. Раньше стоимость микросхемы, например, по техпроцессу 3 мкм и по 1,5 мкм, была одинаковой на одной и той же стадии жизненного цикла. А поскольку число транзисторов на той же площади вырастало в 4 раза, то цена одного транзистора снижалась в 4 раза.

image

После перехода ниже 130 нм себестоимость чипов стала расти из-за усложнения техпроцессов. Однако из-за увеличения плотности транзисторов себестоимость в пересчёте на один транзистор продолжала снижаться. Так длилось до технормы 28/32 нм. Дальше каждый шаг давался всё с большим удорожанием чипа, а реальные размеры транзисторов сокращались всё меньше. В результате один транзистор на микросхеме с нормой 22 нм и ниже стоит дороже, чем на норме 28 нм (приплыли!).

О Зеленограде


Больше всего народ интересует, конечно, ситуация с российской микроэлектроникой. К сожалению, не силен в зеленоградских делах. Всё, что знаю, что в 2014-м «Микрон» закупил у французской STMicroelectronics технологическую линию на 90 нм перед самым кризисом. А затем самостоятельно оную проапгрейдил до норм 65 нм техпроцесса. Полагаю, французам это не очень понравилось. О переходе на 65 нм отчитались еще в конце 2014-го. Периодически производили на ней опытные партии. Пошли ли они в серию — не знаю (Прим.: вроде бы да — для памяти). Тем не менее, полусуверенные 65 нм в России есть.

Прим.: про Микрон отличный текст выдал BarsMonster, ещё немного тут, ещё пара статей (1 и 2) по теме от amartology.

Главная проблема в том, что 65 нм оказались не очень востребованы. Для основной продукции Микрона достаточно и 90 нм, и 180 нм, и даже — о, ужас! — полностью суверенных 250 нм. Некоторые микросхемы для оборонки до сих поры выпускают по технологиям 3 — 5 мкм (Прим.: особенно под космос, где важна надёжность, а не быстродействие). Просто чем больше размеры транзисторов, тем выше устойчивость к помехам и радиации (UPD: статья про радиационную стойкость микросхем с иным мнением). А сверхбольшие вычислительные мощности для специализированных микросхем, как правило, не нужны.

С другой стороны, производство современных процессоров выгоднее заказывать на Тайване и Китае по технормам 28 нм и ниже (прим.: и опять передаём привет Байкалу). В этом случае разработка архитектуры и топологии полностью российская, но само изготовление кристаллов происходит на тайваньских заводах. Многих смущает, что мол это не совсем наши процессоры получаются. В качестве успокоения можно сказать, что практически все мировые лидеры в такой же ситуации. Собственное полупроводниковое производство осталось только у Intel. Такие бренды, как AMD, Apple, NVidia, Qualcomm, IBM и прочие производятся на заводах TSMC или Samsung. Так, AMD в 2009-м вывел свое производство в отдельную компанию GlobalFoundries, которую купили арабы. Последние технормы они не осилили и отказались от участия в разработке 7 нм техпроцесса, сконцентрировались на «более зрелых» техпроцессах. Сейчас находятся в предбанкротном состоянии, которое намечено на 2024 год примерно, а инженеров готово забрать к себе IBM.

В конце 2018 в Микроне подтвердили свои планы создать в Зеленограде собственное производство на 28 нм. Производство планируют развернуть уже в 2022 году на новой, построенной с нуля фабрике. Реальность сроков под большим сомнением, хотя, конечно, было бы неплохо. 28 нм – это уже другой уровень и производства, и проектирования, позволяющий начать производство принципиально новых изделий. Но об этом ниже.

Вообще ситуация в российской микроэлектронике не такая тухлая, как может показаться. Если учесть, что 12 лет назад самый «тонкий» техпроцесс в стране был 800 нм, даже нынешние полностью российские 250 нм выглядят не так уж плохо. Есть слухи, что освоили технологию «растянутого кремния», перешли с 150 мм пластин на 200 мм, наладили выпуск собственных фотошаблонов. Главной проблемой останется недостаточный спрос и конкуренция с импортом, что никак не позволяет выйти хотя бы к нулевой рентабельности.

Ведутся попытки освоить что-то прорывное. Например, фотолитографию в глубоком ультрафиолете (EUV-литографию).

В этом смысле интересна история с голландской фирмой «Mapper Lithography» (BarsMonster писал о ней, а также статья от CorneliusAgrippa ). Фирма специализировалась на оборудовании и установках многолучевой электронной литографии (МЭЛ).

Электронная литография позволяет работать с разрешениями в доли нм, однако очень энергоемкая и медленная. С помощью нее делают фотошаблоны для оптической литографии. Обычно используют один пучок электронов, который облучает всю площадь. Использование МЭЛ позволяло бы существенно ускорить процесс, хотя и энергопотребление установки сильно возросло.

Голландцы пытались вывести МЭЛ в серийное производство. Хотя бы для мелкосерийных микросхем, где создание набора фотошаблонов не окупается. Т.е. где дешевле наносить рисунок сразу на кремний, чем делать набор масок, и потом штамповать микросхемы с помощью оптической литографии. И здесь Mapper нашел единомышленников в лице РосНано. В 2012-м заключили договор на постройку заводов в Москве и Питере. Завод в Москве был открыт в 2014 году и в тот же год начал выпуск электронных линз.

О прибыльности пока нет и речи, но сами технологии есть и развиваются. С учетом удорожания процессов фотолитографии, МЭЛ может со временем сравняться с ней по стоимости. К сожалению, инвестиции РосНано не спасли саму «Mapper Lithography». Компанию выкупила голландская же ASML – крупнейший в мире производитель фотошаблонов и систем фотолитографии. Направление МЭЛ закрыли, сотрудников Mapper распихали по другим направлениям (прим.: так как в EUV вбуханы такие бабки, что Голиаф не выдержит двоих). Сейчас в мире осталось всего 2 игрока, которые продолжают развивать МЭЛ – американская Multibeam и РосНано.

Где нужны маленькие нанометры?


Рассмотрим крупнейшего контрактного производителя микроэлектроники – тайваньский TSMC. Вот отчет за 2 квартал 2018:

image

Как видим, на самые тонкие процессы приходится только 38% выручки компании, а 19% приходится на 90 нм и больше. Немецкая X-FAB, например, вообще использует технологии только 130 нм и выше, и не страдает от этого.

Рассмотрим основные направления современной электроники:

  1. Силовая электроника. Здесь тонкие процессы не только не нужны, а даже невозможны. Поскольку они работают только на напряжениях в районе 1 В. Для силовой электроники требуются другие концентрации примесей и вертикальные размеры слоев. Само понятие норма техпроцесса имеет другой смысл. Она рассчитывается, не исходя из минимально возможного технологически, а вытекает из рабочих напряжений и плотности тока. Размеры силовых элементов рассчитываются исходя из пиковой силы тока.
    Прим.: будучи на заводе ABB в славном городе Lenzburg, был приятно поражён тем, какой широкий ассортимент продукции они выпускают и как делают failure analysis битых преобразователей тока.
  2. Промышленная электроника. Это различные промышленные микроконтроллеры и системы управления механикой. Как правило работают с напряжениями в пределах от нескольких вольт до десятков вольт. Рабочие технормы там обычно от 130 нм. Для промышленной электроники не требуется миллиардов транзисторов и кэш-память в сотни МБ, т.к. выполняется обычно ограниченный набор операций. Микроконтроллеры более специализированы, чем микропроцессоры для вычислительных систем. Часть кода и инструкций там «зашиты» в сам кристалл на этапе изготовления, а не загружаются программно. Благодаря этому на родных операциях работают быстрее. Самое большое значение здесь имеет надежность.
  3. Военная, космическая и радиационно-стойкая электроника. Здесь технормы начинаются от 250 нм. Меньше просто нельзя, т.к. с уменьшение размеров транзисторов резко растет число сбоев от воздействия радиации и помех. Также как промышленная электроника, это, как правило, специализированные микросхемы с меньшими требованиями к производительности.
  4. Бытовая и автомобильная электроника. Аналоговые, аналого-цифровые схемы и цифро-аналоговые микросхемы. Тенденция здесь – объединение всего функционала (и цифрового и аналогового) в один кристалл. Кроме силовых транзисторов естественно. Например, однокристальные телевизоры. Проблема здесь в том, что, как правило, число требуемых транзисторов невелико. Для нормального функционирования устройства за глаза хватает десятков тысяч транзисторов. При технологиях меньше микрона вся занимаемая ими площадь – доли квадратного миллиметра. Часто контактные площадки под выводы занимают больше площади, чем сама логика. Поэтому и пытаются впихнуть в такие микросхемы все что можно – электронные часы с будильником, радиоприемник и прочие побочные функции в чип стиральной машинки. Себестоимость получается практически та же. Заморачиваться с маленькими нанометрами при таких раскладах смысла никакого. Тем более есть ограничения из-за наличия аналоговых биполярных транзисторов и заметных рабочих токов. Использовать меньше 90 нм даже в цифровой части нет смысла (UPD: amartology 28 nm based CMOS for ADC and DAC). Ситуация может измениться с распространением «интернета вещей» (IoT).
  5. RFID-метки. Это чипы для разных карт, электронных ключей, метки товаров. Они состоят из небольшой микросхемы и пленочной антеннки. Микросхема сделана из репрограммируемой памяти на основе КМОП и управления наведенным питанием на биполярных транзисторах. Размеры кристалла меньше 1 мм2. Число транзисторов обычно невелико, постоянного питания нет. Поэтому требования к дешевизне одного транзистора и энергопотребление не актуальны. Главное – длительность хранения значения памяти в пассивном режиме. Как писал уже, при нормах ниже 130 нм увеличиваются токи утечки, и, соответственно, в ячейках значение может быть утеряно. Техпроцесы ниже 90 нм не просто не актуальны, они вредны.
    Прим.: разбор RFID есть тут, а скоро будет ещё немного гикпорна.
  6. Вычислительная техника. Процессоры, память, контроллеры. По стоимости это львиная доля современного рынка электроники. Вот здесь действует правило: чем больше транзисторов в кристалле, тем лучше. В отличии от специализированных контроллеров здесь весь набор команд и инструкций загружается программно. Отсюда высокие требования к производительности – цена универсальности.

Российские предприятия в состоянии (прим.: с оговорками и натяжками) выпускать первые 5 групп микросхем, кроме IoT. Правда, по обороту рынка в деньгах они все вместе сильно уступают 6-й группе.

Смысл миниатюризации


Некоторые интересовались: а почему так важно впихивать максимум транзисторов на единицу площади? Что мешает сделать просто кристалл побольше или сделать 2 кристалла вместо одного.

Для вычислительной техники это очень важно. При современных частотах на размер кристалла имеется физическое ограничение. Это скорость света, она же скорость распространения электрического сигнала. Скорость всего 300 млн метров в секунду (прим.: это для вакуума, и она несколько меньше на диэлектрическую константу, из-за распространения в среде). В процессоре с тактовой частотой в 3 ГГц электрический сигнал за такт пробегает 10 см. При этом, за такт не только транзисторы должны изменить свое состояние, но и должны устояться все переходные процессы. Для этого нужен запас минимум в 3 раза. Т.е. самый дальний транзистор в кристалле не должен быть дальше 3 см от тактового генератора. Генератор ставят в центре чипа, значит вся схема должна вписываться в круг радиусом 3 см от центра кристалла (можете проверить на своих ПК 😉 ). Для кристалла квадратной формы получаем максимальный размер 4х4 см. Чем выше частота, тем меньше предельные размеры.

Теплоотвод. Чем больше размер кристалла, тем труднее отводить тепло с центральной части. А это чревато.

Чем меньше линейные размеры транзисторов, тем меньше паразитные емкости и быстрее проходят переходные процессы. Соответственно, выше быстродействие и ниже ток перезарядки.

Теперь почему один процессор с 4 млн транзисторов, например, лучше 4 процессоров по 1 млн транзисторов. Для начала вопрос цены. Кристалл с 4 млн транзисторов будет стоить ненамного дороже кристалла с 1 млн транзисторов. Поскольку создаются в едином техпроцессе. Кроме чипа микросхема состоит еще и из корпуса и золотых выводов из кристалла. А золото металл недешевый. Условно для 1-милионной микросхемы нужно 300 контактов (1200 для 4-х микросхем), для 4-милионной — 308. Выгода очевидна.

Потом 4 микросхемы будут между собой взаимодействовать через внешнюю шину, а она в разы медленнее тактовой частоты самого процессора (см. пункт про скорость света). Прим.: да есть решение от AMD с Infinity Fabric, но это отдельная тема. Получается, что 4 процессора могут работать только в режиме изолированных задач. В то время как 4 ядра внутри одной микросхемы могут работать как кластер, оперативно распределяя задачи и обмениваясь на тактовой частоте процессора.

Поэтому желание сделать транзисторы максимально мелкими, и запихать в кристалл все, что можно имеет под собой рациональное обоснование.

Перспективы


Получается, что с первыми пятью группами микроэлектроники в России все не так уж и плохо. Проблемы с рентабельностью и ценой, но технологические возможности имеются. С вычислительной техникой сложнее. Можно конечно сделать Байкал или Эльбрус по 65 нм технологии. Это эпоха Intel Pentium 4 (пичаль!). Вот только при таких мизерных сериях стоимость будет запредельной. Или, как вариант, продавать ниже себестоимости за счет бюджета. А на фига? Пока не прикрыли возможность, проще и дешевле производить на Тайване (что, собственно, и делается).

С выходом на мировой уровень и большие серии, кажется, беспросветный мрак. Но и здесь появился лучик света. Связан он с появлением новых типов электронной памяти. Чтобы объяснить, с чем связан оптимизм, придется слегка влезть в технические детали.

Основные типы электронной памяти


Статическая оперативная память или SRAM.
По сути это транзисторная схема на полевых транзисторах любых транзисторах, MOSFET, JFET, BJT, HEMT. Давно известные логические триггеры.

image

Стандартной является шеститранзисторная ячейка памяти. Хотя бывают и 8- и 10-транзисторные.

image

Благодаря перекрестной обратной связи внутри, она хранит свое состояние даже при отсутствии сигнала на входе. Пока есть питание конечно. Используются те же МОП транзисторы, потребляют они только ток переключения при изменении значений. В статическом состоянии потребляется только паразитный ток утечки.

Плюсы – высокая скорость чтения и записи (на уровне тактовой частоты), низкое энергопотребление, четкость хранения значения, стандартная технология
Минусы – энергозависимость, большая занимаемая площадь на кристалле.

Используется обычно, как встроенная кэш-память процессора. Производят и отдельные микросхемы SRAM, но сейчас это скорее экзотика.

Динамическая оперативная память или DRAM.
Ячейка динамической памяти представляет из себя один слегка модифицированный КМОП-транзистор:

image

Отличие от стандартного МОП-транзистора в том, что контакт к стоку не подключается к шине, а трансформируется в небольшой плоский тонкопленочный конденсатор Металл – Диэлектрик – Кремний. Если конденсатор заряжен – логическая «1», не заряжен – логический «0». Все управление ячейками осуществляется схемой управления – контроллером. Ячейки памяти объединены в строки и столбцы, образуют плоскую матрицу. Строки объединяются затворами, столбцы истоками.

При записи на затвор подается напряжение, транзистор открывается. Если на исток от контроллера в этот момент подается напряжение, появляется ток и конденсатор заряжается. Нет напряжения, не заряжается. Запись идет одновременно на всю строку.

Чтение аналогично, только контроллер находится в режиме чтения. Подается напряжение на затворы. Если конденсатор был заряжен, потечет ток (логическая 1), если не заряжен, тока нет (логический 0). Считывается также вся строка разом. После считывания конденсаторы разряжаются, все ячейки устанавливаются в 0. Контроллер на основе полученных данных производит повторную запись строки.

На самом деле чтение и запись происходят постоянно, даже при отсутствии активности. Дело в том, что емкость конденсатора очень маленькая, он быстро разряжается, в течении миллисекунд или десятков мс. Поэтому фоном идет постоянная регенерация (чтение и повторная запись строк). Как только регенерация останавливается, в течении сотых долей секунды данные во всех ячейках обнуляются.

Плюсы динамической памяти – компактность.
Минусы – меньшее быстродействие, высокое энергопотребление, сложность управления, энергозависимость.

Однако несмотря на все недостатки, все модули оперативной памяти сейчас типа DRAM. Кроме редкой экзотики. Компактность все пересилила.

Репрограммируемая память, Flash-память и EEPROM.
Строится на основе полевых транзисторов с плавающим затвором:

image

Под управляющим затвором есть еще один, ни к чему не подключенный и окруженный со всех сторон диэлектриком – «плавающий затвор». Заряд попадает в плавающий затвор и влияет на формирование канала. Зарядам из плавающего затвора деваться некуда, поэтому ячейка сохраняет значение даже при выключенном питании. В зависимости от деградации окружающего диэлектрика заряд может храниться от нескольких месяцев до десятков лет.

image
В простейшем случае для получения единицы можно загнать положительный заряд, тогда транзистор будет все время открытым. В реале используют отрицательный заряд, который еще сильнее «запирает» канал.

Как происходит чтение. На управляющий затвор подается положительное напряжение чуть выше порогового. Если плавающий затвор разряжен, то в базе образуется канал и транзистор открывается – логическая «1». Если заряжен, то он компенсирует напряжение управляющего затвора, и канал не образуется. Транзистор закрыт, логический «0».

С чтением все просто. Главная проблема — запись. Нужно загнать заряд в изолированный затвор или снять его. В разное время использовали облучение ультрафиолетом, лавинный пробой, инжекцию высокоэнергичных электронов, туннельный пробой.

С лавинным пробоем понятно. Дают высокое напряжение, оно пробивает диэлектрик и заряжает плавающий затвор. Для разрядки пробой в другую сторону. Но лавинный пробой такая вещь, это как удар током для человека. Убить не убьет, но после 10-го раза здоровье может пошатнуться. Поэтому число циклов перезаписи было ограничено.

При инжекции электронов пробоя не происходит, просто под действием напряжения электроны с высоким уровнем энергии прорываются сквозь окисел и попадают в плавающий затвор (или из него). Минусы метода – длительность перезаписи и высокое напряжение.

По мере утончения слоев диэлектрика до единицы нм, появилась возможность заряжать и разряжать плавающий затвор с помощью туннельного эффекта. Электрическим полем смещаем энергетическую структуру слов так, чтобы напротив затвора оказывались или заполненные электронами уровни или свободные уровни. Тогда электроны туннелируют или туда, или обратно. Благодаря этому число циклов перезаписи достигло тысяч или десятков тысяч. Зависит от материала и качества диэлектрика.

Плюсы – энегронезависимость, компактность, приличная скорость чтения.
Минусы – длительное время записи, высокие напряжения записи, деградация по мере работы.

Используется в SSD устройствах и RFID-метках.

Прим.: кстати, флешку тоже пилили в своё время для опытов…

Магниторезистивная память, MRAM.
Новый тип памяти. По принципу работы похож на DRAM, но вместо электрического конденсатора используется магниторезистивная ячейка. Магниторезистивная ячейка – это структура, электрическое сопротивление которой зависит от направленности магнитных доменов.

Состоит из 2-х слоев ферромагнетика, между которыми тонкая (около 1 нм) пленка диэлектрика. Первый слой представляет ферромагнетик с постоянной намагниченностью, второй с переменной, так называемый свободный слой. Если домены первого и второго слоя расположены сонаправленно, электроны могут активно туннелировать черед диэлектрик, высокий туннельный ток. Если домены противоположно ориентированы, то туннельный ток на порядки слабее.

Схематически магниторезистивную ячейку можно представить, как резистор с двумя значениями сопротивления – высоком и низким. Свободный слой хранит вектор намагниченности неопределенно долго и без внешнего питания. То есть этот тип памяти энергонезависим.

image

С чтением все просто: подаем напряжение на затвор транзистора, через него и магниторезист начинает течь ток. Если сопротивление маниторезиста высокое, то слабый ток, если низкое, то сильный ток. По величине тока и определяется логический «0» или «1».

image

Проблемы опять с записью. Разрабатываются десятки способов, каждый из которых имеет свою аббревиатуру.

Изначально перезапись свободного слоя производилась сильным током. Но это высокое энергопотребление при записи. Плюс, в этом случае ячейку нельзя сделать меньше сотен нм, иначе перезаряжаться будут и соседние ячейки. Микросхемы памяти такого вида имеют емкость максимум 16 МБ.

Поэтому разрабатываются другие методы – локальным термическим нагревом, ступенчато, с использованием антиферромагнетиков, спиновым током. Последний вариант сейчас представляется самым перспективным. Физика там сложная, переходящая в квантовую механику. Поэтому замнём для ясности.

Еще одним достоинством MRAM является то, что магниторезистивные ячейки не требуют отчуждения места на кристалле. Они располагаются сверху, над КМОП структурой. Т.е. сначала формируем все слои КМОП, первые слои металлизации, все покрывается окислом. Потом сверху сплошняком первый слой ферромагнетика. Вытравливаем лишнее, затем то же со слоем диэлектрика и вторым ферромагнетиком. Получается очень компактная структура.

Магниторезистивная память сейчас считается самой перспективной. Некоторые даже заявляют, что с ее внедрением в серию вообще исчезнет разделение памяти на оперативную и постоянную. Будет просто память. В частности, операционку не нужно будет загружать, она сразу будет работать из памяти при включении питания. Как TR-DOS на Синклерах в старые добрые времена. Там ядро операционки работало из ПЗУ.

Какое место здесь занимает Россия. В разработке MRAM наши хоть и не лидеры, но на передней линии. Во всяком случае пока. Есть такая российская компания «Крокус Наноэлектроника», которая занимается памятью STT MRAM, т.е. MRAM переносом спинового момента (подробнее).

Это дает нашим производителям окно возможностей, чтобы пробиться на мировой рынок производителей микросхем для вычислительной техники. Окошко не очень большое, но оно есть. Нужна воля, деньги и собственные техпроцессы на 28 нм.

Заключение


Я считаю, что одна из наших главных проблем заключается в менталитете. Это привычка впадать в эмоции, опускать руки и заниматься самобичеванием. Вместо того, чтобы методично и целенаправленно работать. В микроэлектронике это проявляется особенно остро. Надо просто вспомнить старую русскую пословицу: глаза боятся, а руки делают.

Мировые лидеры уперлись в физические ограничения, отрасль от бурного роста переходит к медленному развитию. Прорывы типа квантовых процессоров пока на далеком горизонте. Ближе чем телепортация, но, скорее всего, не в нашей жизни. В ближайшие 20 лет среди игроков на поле микроэлектроники может кардинально смениться состав лидеров. Главное тут не щелкать клювом.

Часть 1 и часть 2.



Не забудьте подписаться на блог: Вам не сложно – мне приятно!

И да, о замеченных в тексте недочётах просьба писать в ЛС.

P.S.: Минутка рекламы. В связи с последними веяниями «моды», хотел бы упомянуть, что МГУ открывает в этом году постоянный кампус (а учит уже 2 года!) совместного университета с Пекинским Политехом в Шеньчжэне. Есть возможность выучить китайский, а также получить сразу 2 диплома (IT-специальности от ВМК МГУ в наличии). Подробнее о ВУЗе, направлениях и возможностях для студентов можно узнать тут. Приём документов — до 10 июля!

Небольшое видео для наглядности о творящемся беспределе


Обзор образовательных наборов по электронике для детей (7+) / MakeItLab corporate blog / Habr

Интересный и доступный образовательный набор по электронике для детей — это, наверное, мечта любого родителя, кто хочет увлечь ребёнка чем-то «реальным».

Направление популяризации технического творчества среди детей — было в числе интересов нашего хакспейса, и с момента образования (3 года назад) мы следили за ситуацией в этой сфере — и за это время на российском рынке появилось несколько интересных образовательных наборов для детей.

Мы взяли для обзора наборы на базе макетных плат, что обеспечивает быстрый старт — позволяет получить работающую схему без необходимости пайки, разработчики наборов — российские компании, и целевой возраст от 7 лет.

Обзор будет включать три набора, от компаний Амперка, Киберфизика и Мастер-Кит:

  • Детский электронный конструктор Амперка Микроник
  • Киберфизика. Основы электроники. Начало
  • Конструктор Мастер-Кит NR03, Азбука электронщика — Основы cхемотехники

Эти наборы мы предоставили участнику хакспейса, и он с братом (7 лет) — сделали TestDrive всех наборов, и про это рассказ от первого лица:

Всем привет! Меня зовут Антон и я хочу рассказать о том, как от доброго коллеги мне и брату для обзора достались три набора для обучения электронике и схемотехнике.

Немного обо мне: 25 лет, диплом ИТ инженера. Познания в электронике заканчиваются университетским курсом. Иногда держу в руках паяльник (в основном, чтобы спаять провода), знаю, для чего нужен тот или иной элемент, если вспомню или найду формулу – могу что-то посчитать для схемы.

Брат, 7 лет от роду, учится в первом классе. Любит играть конструкторами, но не любит собирать сам. Интересуется компьютерами, телефонами, планшетами и прочими современными штуками.

Набор Микроник


Итак, первый набор, который я рассмотрел, был Микроник. Так получилось, что собирать его я начал в одиночку. Встретила опрятная с виду коробочка, внутри которой лежали аккуратно разложенные по пакетикам элементы и брошюра со схемами. До этого читал обзоры наборов от Амперки (и даже работал с одним таким) и поэтому исполнение мне показалось очень похожим. И не зря, это действительно оказался набор от Амперки. Брошюра очень красочная, все нарисовано с душой, достаточно понятно, хотя я был бы не против принципиальных схем и чутка теории.

Разложив все пакетики на столе и открыв брошюру, начал собирать схемы. Огорчило отсутствие батареек в комплекте, т.к. дома не всегда удастся найти три пальчиковых батарейки. Клеммник тоже оказался весьма капризным – провода пришлось дополнительно зачищать, но все равно оказалось сложно их крепить внутри клеммника. Доставать клеммник из макетной платы было не очень удобно, поэтому каждый раз мучался с отключением одного из проводов питания.

Сама макетная плата оказалась маленькая, а перемычки большими. Со сборкой первых схем проблем не возникло, хотя периодически приходилось поправлять и переставлять элементы, т.к. не было контакта с макетной платой. Дойдя до схемы с таймером 555 столкнулся с неожиданными трудностями. Собранная схема не работала. Примерно 20 минут потратил на внимательное изучение схемы, два раза с нуля пересобирал ее. И, наконец, после очередного раза, когда пошевелил все элементы – схема стала работать как надо.

Еще одна неприятная особенность, которая возникла при сборке набора обратно – складывать все пакетики оказалось неудобно. Места мало, крышка коробки с трудом закрылась.

В целом впечатления остались положительные – если судить по ценникам, то набор самый недорогой, и в целом вполне оправдывает свою цену – все разложено по пакетикам, все подписано, брошюра понятная и красочная, но макетная плата мне показалась маловата и ощущение, что элементы в макетке плохо держатся, т.к. иногда приходилось их поправлять, чтобы появился контакт.

Список проектов набора Микроник

Лампа
Разноцветные огни
Бочонок с электричеством
Телеграф
Диммер
Светофор
Глупый светильник
Волшебные пальцы
Кодовый замок
Маяк
Умный светильник
Стробоскоп
Железнодорожный эксперимент
Клаксон
Терменвокс
Сигнализация
Почти рояль
Таймер
Выключатель для коридора
Охота на утку


Набор “Киберфизика”


На второй день к работе с набором подключился брат. Нас встретила большая красочная коробка с кучей коробочек поменьше внутри. Пока малой разглядывал брошюру, я прошелся по коробочкам – все аккуратно разложено, все подписано, все в отдельных пакетиках. Обратил внимание, что элементы разложены по коробочкам тоже неспроста: отдельно резисторы, отдельно полупроводники, отдельно конденсаторы и так далее.

Брошюрка оказалась достаточно информативной, тут присутствует перечень элементов, необходимых для сборки каждый схемы, принципиальная схема и схема для сборки на макетной плате. Брат быстро сообразил, что надо посмотреть, какие элементы нужны для схемы, и достать из соответствующего пакетика необходимые элементы.

Порадовал размер макетной платы – много места для творчества. Я собрал первую схему с одним светодиодом, потом брат по аналогии добавил другие светодиоды. С небольшой моей помощью собрали другие схемы.

На следующий день брат уже сам спокойно собирал разные схемки, разве что иногда просил помочь, когда промахивался с выводами элементов. За первый день собрали половину схем, и я задумался, что надо бы поискать в Интернете еще простеньких схем, на будущее

От набора остались исключительно положительные впечатления – все сделано на высоком уровне, понятно даже ребенку. Из недостатков могу выделить разве что относительно высокую цену (по сравнению с Микроник), но если посмотреть цены на элементы по отдельности и цену на соответствующие учебные материалы, то вопрос отпадает – цена становится вполне адекватной.

Список проектов набора Киберфизика Основы электроники

Самая первая схема. Индикатор питания.
Световая азбука Морзе.
Кнопочный светофор.
Мягкий приглушенный свет. Диммер, или светорегулятор. Потенциометр.
Бестолковый светильник. Фоторезистор.
Копилка для электрического заряда. Конденсатор.
Человек-проводник. Биполярный транзистор.
Охранная сигнализация на одном транзисторе.
Строптивый огонёк. RC-цепочка.
Автоматический ночник.
Симметричный мультивибратор на двух транзисторах
Знакомство с самой популярной микросхемой — таймером 555. Сборка макета светофора на ж/д переезде.
Световой терменвокс. Активный зуммер.
Метроном на микросхеме NE555.
Толкай огонёк. Микросхема — кольцевой счетчик CD4017.
Бег на месте. Автомат «Бегущий огонёк».
Полицейская мигалка. Синий и красный светодиоды поочередно быстро вспыхивают по три раза, как настоящая мигалка на полицейском автомобиле.
Светодиодная рулетка. Почти как в казино.
Модель кодового замка.


Набор Мастеркит


На третий день решили посмотреть, что же за набор из себя представляем Мастеркит. Это также достаточно большая коробка с оформлением в духе школьных учебников. Внутри оказалось брошюра, макетная плата, батарейка и… один пакетик с россыпью элементов.

Лично мне понравилось наличие теоретической части в брошюре. Тут и формулы расчета сопротивления, и формулы расчета емкости конденсаторов и изложение теории лично мне показалось более понятным и приятным.

Очень не порадовала колодка для подключения батарейки – после набора Киберфизики подключать провода оказалось очень неудобно – они то и дело норовили загнуться и не попасть внутрь макетки. В саму макетную плату, по ощущениям, элементы вставлялись лучше, но прозрачный пластик оказался не очень практичен в сравнении с белым – сложно разглядеть, куда подключен элемент. Также странным показалось подключение батарейки к макетной плате на схемах – плюсовой контакт подключаем к минусовой шине. Брату также пришлось объяснять, что обозначение шин «+» и «-» лишь для удобства.

Описываемые в брошюре схемы в основном идентичные, разве что сюда добавлен инфракрасный датчик, что добавило интереса.

В наборе мне понравилась брошюра с теоретической частью и языком изложения, но все достоинства перекрыли следующие недостатки:

— упаковка всех элементов в один пакетик
— немного странные схемы подключения питания
— плохая колодка для подключения батарейки к макетной плате

Выводы


Поскольку целью было сравнить три набора, то удобнее представить их в таблице:

Итого, я бы предпочел для начала занятий электроникой и схемотехникой набор Киберфизика, т.к. в нем есть все необходимое для начала и есть потенциал для дальнейшего изучения схем самостоятельно. Но и другие наборы так же могут заинтересовать электроникой.

Цены и где купить (UPD: цена на 12.2017 )


Самостоятельное изучение схемотехники / Habr

Я решил написать ряд статей, которые должны помочь разобраться самостоятельно в предмете схемотехники. Первая часть вводная, в ней рассказывается об основных дисциплинах, которые стоит изучить для понимания принципов конструктирования и построения электрических схем. Если эта статья вам понравится, тема будет развиваться, внимание будет фокусироваться на нюансах и примерах.


Для старта в обучении требуется изучить три основные дисциплины:
1. Основы электротехники
2. Теоретические основы электроники
3. Теория автоматов

Все на так страшно, как кажется на первый взгляд.

Первый пункт необходим для понимания принципов работы с электричеством (В этом предмете изучаются основы расчета электрических схем).
Второй пункт — то же самое, что и первый, но более углубленный. Здесь будут рассматриваться частные примеры основных электронных устройств, через их электрические схемы.
Третий пункт — это очень важная дисциплина, которая рассматривает электрические схемы с точки зрения их логики работы. Эта дисциплина является вводной частью в курс схемотехники и рассматривает основные логические элементы, принципы построения принципиальных схем, процессы происходящие в схемах и многое другое.

Как изучать эти дисциплины?
Изучать их стоит по ВУЗовским учебникам, совмещаяя друг с другом. Т.е. стоит начать изучение курсов ОЭ и ТА параллельно, а после этого переходить к изучению ТОЭ и схемотехники. Уже после нескольких недель вы сможете сами разрабатывать простые логические схемы и понимать работу более сложных. Конечно, не стоит забывать и про практику, на нее нужно делать особый упор. Решайте задачи, изучайте электрические и принципиальные схемы.

Какие книги понадобятся в процессе обучения?
Для изучения электротехники и электроники пойдет любой учебник для высших учебных заведений. (Как пример А. А. Бессонов «Теоретические основы электротехники»)
Теорию автоматов можно изучать по одноименному учебнику Ю. Г. Карпова

Программное обеспечение:
В ходе обучения весьма пригодяться программы такие как
Electronic Workbench
Старая программа для построения принципиальных электрических схем. Для обучения вполне пойдет демо версия с ограниченным количеством допустимых элементов на листе. Программу можно использовать как для изучения курса теории автоматов, так и для проверки задач по электротехнике.

P-CAD
Будет использоваться на завершающих этапах обучения для разводки элементов по печатной плате.

На этом вводная часть заканчивается. Если данная тема будет интересна хабраюзерам, я продолжу писать статьи на эту тему.
Удачи вам в самообразовании.

Как быстро научиться электронике? | Практическая электроника

Как быстро научиться электронике!?  “А не сбрендил ли автор?” – подумаете вы.  Кто-то может за пару лет научиться программировать микроконтроллеры, а кто-то до сих пор будет собирать пищалки и фонарики. Это уже зависит, конечно, от самого человека. Но давайте вернемся к вопросу… Реально ли  можно быстро научиться понимать схемы, собирать по ним электронные безделушки и научиться программировать микроконтроллеры?

Как быстро научиться электронике?

Итак, начнем издалека… Жил да был один итальянец.  Звали его Вильфредо Парето. И был он очень наблюдательный, любил за всем наблюдать. Вот как-то наблюдал он за всем и всея и понял одну важную вещь во всей  Вселенной. А звучит эта вещь как-то так:  20% усилий дают 80% результата, а остальные 80% лишь 20% результата. Хм, звучит неплохо, но так ли это? И соблюдается ли этот закон во всей нашей Вселенной? А давайте проверим!  Вот некоторые статистические данные:

20 процентов стран, в которых проживает меньше 20 процентов населения земного шара, потребляют 70 процентов мировых запасов энергии, 75 процентов металла и 85 процентов древесины.

• Менее 20 процентов общей площади Земли дают 80 процентов всех минеральных ресурсов.

• Менее 20 процентов войн приносят более 80 процентов человеческих потерь.

• Где бы вы ни жили, 20 процентов облаков производят 80 процентов дождя.

• Меньше 20 процентов записанной музыки исполняется более 80 процентов времени.

• В большинстве художественных музеев 20 процентов сокровищ демонстрируются 80 процентов времени.

• Менее 20 процентов изобретений оказывают более 80 процентов влияния на нашу жизнь. В двадцатом веке атомная энергия и компьютеры обладали большим влиянием, чем, вероятно, сотни тысяч прочих изобретений и новых технологий.

20 процентов земли дают более 80 процентов продуктов питания.

20 процентов статей “Практической электроники” просматриваются 80 процентами читателей :-).

В действительности весь жизненный цикл, от желудя до гигантского дуба, от маленького зернышка до обширных пшеничных полей, является  отражением принципа 80/20, взятом в самом масштабном значении. Незначительные причины — колоссальные результаты. Вскоре это принцип был назван 80/20 или принципом Парето, в честь наблюдательного итальянца.

       

Чтобы научиться электронике я ходил на радиокружок, читал книжки по электронике, закончил вуз по специальности “Радиотехника”, но про себя я не могу сказать, что я супер-пупер электронщик… Пять лет вуза  – сплошная теория, которая вообще нахрен никому не нужна. Зачем надо было заучивать все эти трехэтажные формулы и теоремы? После окончания вуза они все равно выветрились, как семена одуванчика при легком дуновении ветерка, но все таки я благодарен вузу за то, что там меня научили быстро понимать материал и быстро соображать.

Где-то случайно на страницах Рунета я прочитал про принцип Парето и про себя подумал: “Где же зарыты эти 20% в изучении электроники?”  Проанализировав время, в течение которого я изучал эту сферу,  я все так понял: 20% – это

– сидение по вечерам с паяльником и паяние схем

– радиофорумы и сайты без копипаста с учебников и энциклопедий

– общение с такими же чайниками в электронике

– практика, практика и еще раз ПРАКТИКА!

 

Ох,  а сколько сейчас в Рунете книжек по электронике… “Радиоэлектроника для чайников”, “Занимательная электроника”, “Электроника от А до Я”.

Как быстро научиться электронике?

Сколько я их только не перечитал.  Да, согласен, есть хорошие книжки, но в основном книжки по электронике написаны каким-нибудь профессором с пятиэтажными формулами и с логарифмическими графиками. Читать книги по электронике? Думаю, это на любителя. Опять же напрашивается принцип 80/20.  20% книг дают 80% знаний. Но эти книги еще надо найти. От себя добавлю, не тратьте зря время, если книжка по электронике вас ну никак не устраивает. Начните читать другую. И все таки, я больше склоняюсь  к практической части электроники. Электроника на практике как раз и относится к тем 20%. Вы все еще сидите? А ну-ка бегом паяльник в руки!

Начинающим | Электроника для всех

Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.

Миром правит цифра!

Краеугольным камнем цифровой схемотехники служит понятие нуля и единицы, понятие это совершенно условное, т.к. фактически нет никакого нуля и нет никакой единицы, есть лишь уровни напряжения – высокий и низкий, а также некий порог после которого данный уровень напряжения принято считать высоким или низким. Скажем все, что ниже 0.7 вольт считаем за низкий уровень, т.е. 0, все что выше 2.4 вольт высоким, т.е. единица. Между 0.7 и 2.4 вольта, когда не ясно какой уровень, это состояние совершенно неопределенное его нельзя оценивать как входную величину, иначе на выходе системы в таком случае будет непредсказуемый результат.
Сопротивление входов очень высокое, практически можно считать его бесконечным.

Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =)

Выход в микросхеме бывает разных типов. Различают push-pull и open drain (в нашей литературе его называют Открытым Коллектором или ОК). Отличие заключается в способе выдачи сигнала на выход. В Push-Pull выходе когда нужен низкий уровень, то выход тупо и беспрекословно замыкается на землю, имеющую нулевой потенциал, а когда высокий, то на напряжение питания.
В открытом коллекторе все несколько иначе. Когда нам надо получить низкий уровень, то мы сажаем ногу на землю, а вот высокий уровень получается подтягивающим резистором (pullup), который, в отсутствии посадки на землю и большого сопротивления висящей на выходе нагрузке, заводит на ногу высокий потенциал. Тут можешь вспомнить закон Ома и посчитать какое будет напряжение выхода на открытом коллекторе если подтягивающий резистор обычно порядка 1КилоОм, а сопротивление входа больше 1МегаОм. Тип выхода определяется из документации на микросхему, некоторые микрухи имеют программируемый выход, например, все контроллеры AVR. Исходя из этого становится понятен смысл регистров Port и DDR в контроллере AVR – они определяют тип выхода Open Drain+PullUp, Push-Pull или просто Open Drain.

(далее…)

Read More »

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *