Метод контурных токов с источником тока – 2.2.2. Особенности использования метода контурных токов для схем с источниками тока

Извините такой страницы Wp-content Uploads 2014 02 Dz-1 Metod-konturnyh-tokov Pdf не существует!

Выбор статьи по меткам03 (1)9 класс (3)10 класс (1)11 класс (2)12 (1)13 (С1) (3)14 ноября (2)14 февраля (1)15 задание ЕГЭ (2)16 задача профиль (1)16 профильного ЕГЭ (1)16 января Статград (1)18 (С5) (2)18 задача ЕГЭ (2)23 марта (1)31 января (1)2016 (2)140319 (1)14032019 (1)C5 (1)RC-цепь (1)А9 (1)Александрова (2)Ампера (2)Архимед (1)Бернулли (1)Бойля-Мариотта (1)В8 (1)В12 (1)В13 (1)В15 (1)ВК (1)ВШЭ (2)ГИА физика задания 5 (1)Герона (1)Герцшпрунга-Рассела (1)Гринвич (1)ДВИ (1)ДПТ (1)Десятичные приставки (1)Дж (1)Диэлектрические проницаемости веществ (1)ЕГЭ 11 (2)ЕГЭ 14 (1)ЕГЭ 15 (2)ЕГЭ 18 (1)ЕГЭ С1 (1)ЕГЭ по математике (25)ЕГЭ по физике (49)ЕГЭ профиль (6)Европа (1)Задача 17 ЕГЭ (6)Задачи на движение (1)Закон Архимеда (2)Законы Ньютона (1)Земля (1)Ио (1)КПД (9)Каллисто (1)Кельвин (1)Кирхгоф (1)Кирхгофа (1)Койпера (1)Колебания (1)Коши (1)Коэффициенты поверхностного натяжения жидкостей (1)Кулона-Амонтона (1)Ломоносов (2)Лоренца (1)Луна (1)МГУ (1)МКТ (7)Максвелл (2)Максвелла (1)Максимальное удаление тела от точки бросания (1)Менделеева-Клапейрона (3)Менелая (3)Метод наложения (2)Метод узловых потенциалов (1)Метод эквивалентных преобразований (1)НОД (1)Нансен (1)НеИСО (1)ОГЭ (11)ОГЭ (ГИА) по математике (27)ОГЭ 3 (ГИА В1) (1)ОГЭ 21 (3)ОГЭ 21 (ГИА С1) (4)ОГЭ 22 (2)ОГЭ 25 (3)ОГЭ 26 (1)ОГЭ 26 (ГИА С6) (1)ОГЭ по физике 5 (1)ОДЗ (12)Обыкновенная дробь (1)Оорта (1)Основные физические константы (1)Отношение объемов (1)Плюк (1)Показатели преломления (1)Показательные неравенства (1)Противо-эдс (1)Работа выхода электронов (1)Радиус кривизны траектории (1)Релятивистское замедление времени (1)Релятивистское изменение массы (1)С1 (1)С1 ЕГЭ (1)С2 (2)С3 (1)С4 (3)С6 (5)СУНЦ МГУ (2)Сиена (1)Синхронная машина (1)Снеллиуса (2)Солнечной системы (1)Солнце (2)СпБ ГУ вступительный (1)Средняя кинетическая энергия молекул (1)Статград физика (3)Таблица Менделеева (1)Текстовые задачи (8)Тьерри Даксу (1)ФИПИ (1)Фазовые переходы (1)Фаренгейт (1)Фобос (1)Френеля (1)Цельсий (1)ЭДС (6)ЭДС индукции (2)Эйлера (1)Электрохимические эквиваленты (1)Эрастофен (1)абсолютная (1)абсолютная влажность (2)абсолютная звездная величина (3)абсолютная температура (1)абсолютный ноль (1)адиабаты (1)аксиомы (1)алгоритм Евклида (2)алгоритм Робертса (1)аморфное (1)амплитуда (3)аналитическое решение (1)анекдоты (1)апериодический переходной процесс (2)аргумент (1)арифметическая прогрессия (5)арифметической прогрессии (1)арки (1)арккосинус (1)арккотангенс (1)арксинус (1)арктангенс (1)архимеда (3)асинхронный (1)атмосферное (2)атмосферном (1)атомная масса (2)афелий (2)база (1)балка (1)банк (1)без калькулятора (1)белого карлика (1)бензин (1)бесконечная периодическая дробь (1)бесконечный предел (1)биквадратные уравнения (1)бипризма (1)биссектриса (4)биссектрисы (2)благоприятный исход (1)блеск (4)блок (2)боковой поверхности (1)большая полуось (1)большем давлении (1)бревно (2)бригада (2)бросили вертикально (1)бросили под углом (3)бросили со скоростью (2)броуновское движение (1)брошенного горизонтально (2)бруски (1)брусок (3)брусок распилили (1)бусинка (1)быстрый способ извлечения (1)вариант (3)вариант ЕГЭ (12)вариант ЕГЭ по физике (18)вариант по физике (1)варианты ЕГЭ (6)вариент по физике (1)введение дополнительного угла (1)вектор (5)векторное произведение (2)велосипедисты (1)вероятность (1)вертикальная составляющая (1)вертикально вверх (1)вертикальные углы (1)вес (3)весов (1)вес тела (1)ветви (1)ветвь (2)ветер (1)взаимодействие зарядов (1)видеоразбор (2)видеоразбор варианта (1)видимая звездная величина (2)виртуальная работа (1)виртуальный банк (1)виртуальных перемещений (1)витка (1)витков (1)виток (1)вклад (1)влажность (3)влажность воздуха (1)влетает (2)вневписанная окружность (2)внутреннее сопротивление (1)внутреннее сопротивление источника (1)внутреннюю энергию (1)внутренняя энергия (8)вода течет (1)воды (1)возведение в квадрат (1)возвратное уравнение (1)возвратность (1)возвратные уравнения (2)воздушный шар (1)возрастающая (1)возрастет (1)волны (1)вписанная (1)вписанная окружность (3)вписанной окружности (1)вписанный угол (4)в правильной пирамиде (1)вращение (1)времени (2)время (24)время в минутах (1)время выполнения (1)время движения (2)время минимально (1)время падения (1)всесибирская олимпиада (1)в стоячей воде (1)встретились (1)встретятся (1)вступительный (1)вступительный экзамен (1)вторая половина пути (1)вторичная (1)вторичная обмотка (1)вторичные изображения (1)второй закон Ньютона (4)выбор двигателя (1)выборка корней (4)выколотая точка (1)выплаты (2)выразить вектор (1)высота (5)высота Солнца (1)высота столба (1)высота столба жидкости (1)высота столбика (1)высоте (3)высоту (1)высоты (3)выталкивающая сила (2)вычисления (2)газ (3)газа (1)газов (1)газовая атмосфера (1)галочка (1)гамма-лучей (1)гармоника (2)гвоздя (1)геометрическая вероятность (1)геометрическая прогрессия (4)геометрические высказывания (1)геометрический смысл (2)геометрическую прогрессию (1)геометрия (7)гигрометр (1)гидродинамика (1)гидростатика (3)гимназия при ВШЭ (1)гипербола (2)гипотенуза (3)гистерезисный двигатель (1)главный период (1)глубина (1)глухозаземленная нейтраль (1)гомотетия (2)гонщик (1)горизонтальная сила (1)горизонтальной спицы (1)горизонтальную силу (1)горка (1)гравитационная постоянная (1)градус (1)грани (2)график (2)графики функций (5)графически (1)графический способ (1)графическое решение (2)груз (2)грузик (2)группа (1)давление (28)давление жидкости (3)давление пара (1)дальность полета (1)двигатель с активным ротором (1)движение под углом (1)движение под углом к горизонту (4)движение по кругу (1)движение по течению (1)движение с постоянной скоростью (2)двойное неравенство (1)двойной фокус (1)двугранный угол при вершине (1)девальвация (1)действительная часть (1)действующее значение (2)деление (1)деление многочленов (2)деление уголком (1)делимость (15)делимость чисел (1)делители (1)делитель (2)делится (3)демонстрационный варант (1)деталей в час (1)диаграмма (1)диаметр (2)диаметру (1)динамика (4)диод (1)диск (1)дискриминант (4)дифракционная решетка (2)дифференцированный платеж (1)диффузия (1)диэлектрик (1)диэлектрическая проницаемость (1)длина (4)длина вектора (1)длина волны (7)длина отрезка (2)длина пружины (1)длина тени (1)длиной волны (2)длину нити (1)длительность разгона (1)длительный режим (1)добротность (1)догнал (1)догоняет (1)докажите (1)долг (1)доля (1)дополнительный угол (1)досок (1)досрочный (2)досрочный вариант (1)дптр (1)дуга (1)единицы продукции (1)единичный источник (1)единичных кубов (1)единственный корень (1)ежесекундно (1)емкость (7)емкость заряженного шара (1)естественная область определения (1)желоб (2)жесткость (6)жеткость (1)живая математика (2)жидкости (1)жидкость (1)завод (1)загадка (2)задание 13 (2)задание 15 (3)задание 23 (1)задания 1-14 ЕГЭ (1)задача 9 (1)задача 13 профиль (1)задача 14 профиль (3)задача 16 (1)задача 16 ЕГЭ (1)задача 16 профиль (3)задача 17 (1)задача 18 (1)задача 26 ОГЭ (2)задача с параметром (6)задачи (1)задачи на доказательство (4)задачи на разрезание (4)задачи на совместную работу (3)задачи про часы (1)задачи с фантазией (1)задерживающее напряжение (1)заземление (1)заказ (1)закон Бернулли (1)закон Гука (1)закон Ома (3)закон Снеллиуса (1)закона сохранения (1)закон движения (1)закон кулона (7)закон палочки (3)закон сложения классических скоростей (1)закон сохранения импульса (6)закон сохранения энергии (4)законы Кирхгофа (6)законы коммутации (1)законы сохранения (1)закрытым концом (1)замена переменной (2)замкнутая система (2)зануление (1)запаянная (2)заряд (9)заряда (1)заряд конденсатора (1)защитная характеристика (1)звездочка (1)звезды (1)зенит (1)зенитное расстояние (1)зеркало (2)знак неравенства (1)знаменатель (1)знаменатель прогрессии (4)значение выражения (1)идеальный блок (1)идеальный газ (5)извлечение в столбик (1)излом (1)излучение (2)изменение длины (2)изобара (1)изобаричесикй (1)изобарический (2)изобарный (1)изобарный процесс (1)изображение (3)изолированная нейтраль (1)изопроцессы (1)изотерма (2)изотермически (1)изотермический (2)изотермический процесс (1)изотоп (1)изохора (1)изохорический (1)изохорный процесс (1)импульс (9)импульса (1)импульс силы (1)импульс системы (1)импульс системы тел (4)импульс тела (4)импульс частицы (1)инвариантность (1)индуктивно-связанные цепи (1)индуктивное сопротивление (1)индуктивность (1)индукцией (1)индукция (8)интеграл Дюамеля (1)интервал (1)интересное (3)интерференционных полос (1)иррациональность (2)испарение (2)исследование функции (4)источник (1)источник света (1)исход (1)камень (1)камешек (1)капилляр (1)карлик (2)касательная (4)касательного (1)касательные (1)касаются (1)катер (2)катет (3)катушка (4)качаний (2)квадлратичная зависимость (1)квадрант (1)квадрат (3)квадратичная функция (3)квадратное (1)квадратное уравнение (4)квадратную рамку (1)квазар (1)квант (1)квантов (1)кинематика (2)кинематическая связь (1)кинематические связи (4)кинетическая (12)кинетическая энергия (4)кинетической (1)кинетической энергии (1)кинетическую энегрию (1)классический метод (3)классический метод расчета (1)клин (2)ключ (1)кодификатор (1)колебаний (1)колене (1)количество вещества (1)количество теплоты (9)коллектор (1)кольцо (2)комбинаторика (1)комбинированное (1)коммутация (1)комплексное сопротивление (1)комплексное число (1)комплексные числа (1)компонент (1)конвекция (3)конденсатор (10)конденсаторы (1)конденсации (1)конечная скорость (1)конечная температура (1)конечная температура смеси (1)конечный предел (1)консоль (1)контрольная (1)контрольные (1)контур (5)конус (4)концентрация (7)концентрическим (1)координата (5)координаты (3)координаты вектора (2)координаты середины отрезка (1)координаты точки (1)корабля (1)корень (2)корень квадратный (1)корень кубический (1)корни (2)корни иррациональные (1)корни квадратного уравнения (3)корни уравнения (1)корпоративных (1)косинус (2)косинусы (1)котангенс (1)коэффициент (1)коэффициент жесткости (1)коэффициент наклона (3)коэффициент поверхностного натяжения (3)коэффициент подобия (5)коэффициент трансформации (1)коэффициент трения (5)коэффициенты (1)красное смещение (1)красной границы (1)красный (1)кратковременный режим (1)кратные звезды (1)кредит (11)кредитная ставка (4)кредиты (1)криволинейная трапеция (2)кристаллизация (1)критерии оценки (1)круговая частота (1)круговой контур (1)кружок (1)кубическая парабола (1)кулонова сила (1)кульминация (1)кусочная функция (1)левом колене (1)лед (2)лет (1)линейная скорость (2)линейное напряжение (1)линейное уравнение (2)линейный размер (1)линза (2)линзы (2)линии излома (1)линиями поля (1)линия отвеса (1)литров (1)лифт (1)лифта (1)лифте (1)логарифм (10)логарифмические неравенства (3)логарифмические уравнения (1)логарифмическое неравенство (3)логарифмы (1)лунка (1)лучевая (1)льда (1)магнитное поле (2)магнитном поле (2)магнитные цепи (1)максимальная высота (1)максимальная скорость (1)максимум (1)малых колебаний (1)масса (23)масса воздуха (1)массе (1)массивная звезда (1)массовое содержание (1)массой (1)массу (1)математика (4)математический маятник (1)математического маятника (1)маятник (4)мгновенный центр вращения (1)медиана (2)меридиан (1)мертвая вода (1)мертвая петля (1)метод виртуальных (1)метод внутреннего проецирования (1)метод замены переменной (4)метод интервалов (3)метод комплексных амплитуд (3)метод контурных токов (1)метод координат (1)метод линий (1)методом внутреннего проецирования (1)метод переброски (1)метод переменных состояния (1)метод подстановки (4)метод рационализации (4)метод решетки (1)метод следов (5)метод сложения (4)метод телескопирования (1)метод узловых напряжений (1)методы расчета цепей (2)методы расчета цепей постоянного тока (1)метод эквивалентного генератора (2)механика (1)механическая характеристика (1)механическое напряжение (1)миля (1)минимальная скорость (1)минимальное (1)минимальной высоты (1)минимальной скоростью (1)минимум (2)мишени (1)мнимая единица (1)мнимая часть (1)многоугольник (1)многочлены (1)мода (2)модули (1)модуль (13)модуль Юнга (1)модуль средней скорости (1)молекулярно-кинетическая теория (2)моль (2)молярная масса (5)момент (7)момент инерции (1)момент инерции двигателя (1)момент нагрузки (1)момент сил (1)монета (1)монотонная (1)монотонность функции (1)монохроматического (1)мощности силы тяжести (1)мощность (9)мощностью (1)мяч (1)наблюдатель (1)нагревание (1)нагреватель (1)нагревателя (1)нагрели (1)наибольшее (1)наивысшая точка (1)наименьшее (1)наименьшее общее кратное (1)наклон (1)наклонная плоскость (2)налог (1)на направление (2)на подумать (2)направление (1)направление обхода (3)направлении (1)направляющий вектор (1)напряжение (9)напряжение на зажимах (1)напряжение смещения нейтрали (2)напряженность (4)напряженность поля (6)насос (2)насоса (1)насыщенный пар (4)натуральное (7)натуральные (7)натуральных (1)натяжение нити (5)натяжения (1)находился в полете (2)начальная температура (1)начальной скоростью (1)недовозбуждение (1)незамкнутая система (2)нелинейное сопротивление (1)неопределенность типа бесконечность на бесконечность (1)неопределенность типа ноль на ноль (1)непериодическая дробь (1)неравенства (8)неравенство (22)неразрывности струи (1)нерастяжимой (1)нерастяжимой нити (1)нерастянутой резинки (1)несимметричная нагрузка (1)несинусоидальный ток (3)нестандартные задачи (1)нестрогое (1)неупругим (1)нецентральный (1)нечетная функция (2)нечетное (1)нечетность (1)неявнополюсный (1)нити (2)нити паутины (1)нить (2)нить нерастяжима (1)новости (1)нормаль (1)нормальное ускорение (11)нулевой ток (2)обкладками (1)обкладках (1)обкладки (1)область допустимых значений (9)область значений (1)область определения (8)область определения функции (4)оборот (1)обратные тригонометрические функции (1)обратные функции (1)общая хорда (1)общее сопротивление (1)общее сопротивление цепи (1)объем (36)объемный расход (1)объемом (1)объем пара (1)объем параллелепипеда (1)объем пирамиды (1)одинаковые части (1)одновременно (1)одновременно из одной точки (1)окружность (13)окружность описанная (1)олимпиада (2)олимпиады по физике (2)они встретятся (1)операторный метод (4)описанная (1)оптика (1)оптимальный выбор (1)оптимизация (1)оптическая разность хода (1)оптический центр (1)орбитам (1)орбитой (1)оригинал (1)осевое сечение (1)оси (1)основание (2)основание логарифма (2)основания трапеции (1)основное тригонометрическое тождество (1)основное уравнение МКТ (2)основной газовый закон (1)основной период (1)основной уровень (1)основные углы (1)остаток (1)ось (1)отбор корней (5)ответ (1)отданное (1)относительная (1)относительная влажность (3)относительная скорость (1)относительно (2)относительность движениия (1)относительность движения (2)относительность скоростей (1)отношение (5)отношение времен (1)отношение длин (1)отношение площадей (3)отношение скоростей (2)отрезок (1)отсечение невидимых граней (1)очки (1)падает (1)падает луч (1)падает под углом (1)падение (3)падение напряжения (2)падения (1)пар (3)парабола (5)параболы (1)параллакс (5)параллелепепед (2)параллелепипед (3)параллелограмм (4)параллелограмм Виньера (1)параллельно (2)параллельно двум векторам (1)параллельное соединение (3)параллельные прямые (1)параллельными граням (1)параметр (30)параметры (1)парообразование (1)парсек (1)парциальное (1)парциальное давление (1)паскаль (1)первая треть (1)первичная (1)переброски (1)перевозбуждение (1)перегородка (1)перегрузок (1)перелетит (1)переливания (1)переменное магнитное поле (1)переменное основание (2)перемещение (6)перемычка (5)перемычке (1)перемычку (1)переносная скорость (1)пересекает (1)пересечение (1)пересечения (1)переходная проводимость (1)переходное сопротивление (1)переходной процесс (1)переходные процессы (9)перигелий (2)периметр (3)период (15)периодическая дробь (1)период колебаний (2)период малых колебаний (1)период обращения (2)период функции (1)периоды (1)перпендикулярно (1)песок (1)пион (1)пипетка (1)пирамида (7)пирамида шестиугольная (1)пирамиды (2)пирсона (1)плавание (1)плавкие предохранители (1)плавление (1)план (1)планете (1)планеты (3)планиметрия (13)планиметрия профиль (1)пластинами (1)пластинка (1)платеж (8)плечо (2)плоского зеркала (1)плоскопараллельная (1)плоскость (4)плоскость сечения (1)плотности веществ (1)плотность (22)плотность пара (3)плотность сосуда (1)плотность энергии (1)площади (2)площади фигур на клетчатой бумаге (1)площадь (30)площадь круга (1)площадь пластин (1)площадь поверхности (1)площадь под кривой (2)площадь проекции (1)площадь проекции сечения (1)площадь сектора (1)площадь сечения (5)площадь треугольника (1)поверхностная плотность заряда (1)поворот (1)повторно-кратковременный режим (1)погрешность (1)погружено (1)подвесили (1)подготовка к контрольным (3)под каким углом (1)подмодульное (1)подмодульных выражений (1)подобен (1)подобие (7)подобия треугольников (1)подобны (1)подпереть (1)под углом (2)под углом к горизонту (3)показателем преломления (1)показательное (1)показатель преломления (4)поле (1)полезной работы (1)полезную мощность (1)полигон частот (1)по линиям сетки (1)полное ускорение (1)половина времени (1)половинный угол (1)положительный знаменатель (1)полония (1)полость (1)полуокружность (1)полупроводник (1)полученное (1)понижение горизонта (1)по окружности (1)по переменному основанию (1)поправка часов (1)по прямой (1)поршень (4)поршня (1)порядок решетки (2)последовательно (1)последовательное соединение (3)последовательность (3)по сторонам клеток (1)посторонние корни (4)постоянная Авогадро (1)постоянная Хаббла (1)постоянная времени (1)постоянная скорость (1)постоянная составляющая (2)постоянный ток (5)построение (2)построение графика функции (1)потенциал (5)потенциал шара (1)потенциальная (13)потенциальная энергия (3)потенциальной (1)потери в стали (2)потеря корней (4)поток (5)по физике (1)правило левой (1)правило моментов (3)правильную пирамиду (1)правильный многоугольник (1)правом колене (1)предел функции (1)преломляющий угол (1)преобразование графиков функций (1)преобразования (3)преподаватели (2)пресс (2)призма (6)призмы (3)признаки подобия (4)признаки равенства треугольников (3)пробн (1)пробник (171)пробник по физике (8)пробниук (1)пробный (1)пробный ЕГЭ (2)пробный ЕГЭ по физике (3)пробный вариант (25)пробный вариант ЕГЭ (17)пробный вариант ЕГЭ по физике (111)пробный вариант по физике (1)провода (1)проводник (1)проводник с током (1)проводящего шара (1)проволока (1)проволоки (1)прогрессия (5)проекции скоростей (1)проекции ускорения (2)проекция (7)проекция перемещения (1)проекция скорости (6)проекция ускорения (2)производительность (2)производная (3)промежутка времени (1)промежуток (1)промежуток знакопостоянства (1)пропорциональны (1)проскальзывает (1)проскальзывания (1)противоположное событие (1)противостояние (1)протона (1)прототипы (1)профиль (2)профильный ЕГЭ (1)процент (5)процентная ставка (6)процентное отношение (1)процентное содержание (2)проценты (3)пружин (1)пружина (6)пружинный маятник (1)пружины (1)прямая (6)прямое восхождение (2)прямой (1)прямой АВ (1)прямоугольник (1)пузырек (1)пульсар (1)пуля (1)пути (1)путь (27)пять корней (1)работа (15)работа газа (5)работа тока (1)работу выхода (2)рабочее тело (1)рабочие (1)равнобедренный (1)равновеликий (1)равновесие (4)равновесия (1)равновесное (1)равнодействующая (1)равномерно (1)равноускоренно (2)равноускоренное (3)равные (1)равные фигуры (1)радиальную ось (1)радикал (1)радиус (11)радиус колеса (1)радиус кривизны (2)радиус описанной сферы (1)радиус темного кольца в отраженном свете (1)разбор (1)разбор Статграда по физике (1)разложение на множители (2)размах (1)разности температур (1)разность (2)разность потенциалов (2)разность прогрессии (3)разность хода (1)разрежьте (2)разрезание (5)разрешающая сила (1)разрыв функции (1)рамка (8)рамка с током (1)раскрытие модуля (1)расписание (1)расположение корней квадратного трехчлена (1)распределение частот (1)рассеивающая (1)расстояние (21)расстояние между зарядами (1)расстояние на карте (1)расстояние от точки (1)расстояния (2)раствор (2)растяжение (2)расходуется (1)расцепители (1)расчеты по формулам (1)рационализация (4)рациональные неравенства (1)реактивные элементы (1)реактивный двигатель (1)реакция опоры (4)реакция якоря (1)ребра (1)ребус (2)резервуар (1)резистор (1)рейки (1)рельса (1)рентгеновскую трубку (1)репетитор (1)решебник (1)решение тригонометрических уравнений (1)решение уравнений (2)решение уравнений больших степеней (1)решить в натуральных (1)решить в целых (1)розетка (1)ромб (1)ряд Фурье (1)сарай с покатой крышей (1)сближаются (1)сближения (1)сбрасывают с высоты (1)сверхгигант (2)сверхновая (1)светимость (3)свободно (1)свободного падения (1)свободно падает (2)свойства (2)свойства отрезков (1)свойства степени (1)свойства функции (1)свойства функций (2)свойства чисел (1)свойство биссектрисы (2)свойству биссектрисы (1)сдвинуть (1)сегмент (1)сектор (1)секущая (2)серия решений (1)сертификация (6)сессия (1)сечение (14)сечение наклонной плоскостью (1)сидерический (1)сила (7)сила Архимеда (5)сила Лоренца (4)сила ампера (9)сила взаимодействия (4)сила давления (1)сила на дно (1)сила натяжения (7)сила натяжения нити (4)сила поверхностного натяжения (3)сила реакции опоры (1)сила трения (3)сила тяготения (1)сила тяжести (5)сила упругости (2)силой (2)силу (1)силу натяжения (1)силы трения (2)символический метод (3)симметричная нагрузка (1)симметрия (3)синодический (1)синус (4)синусоида (1)синусоидальный закон (1)синусоидальный ток (5)синусы (1)синхронный компенсатор (1)система (3)система неравенств (7)система отсчета (3)система счисления (1)система уравнений (3)системы уравнений (3)скалярное произведение (3)склонение (1)скольжение (2)скользит (1)скользит равномерно (1)скоросмть (1)скоростей (1)скорости (3)скорости течения (1)скорость (43)скорость реки (1)скорость сближения (3)скорость света (1)скорость теплохода (1)скорость удаления (1)скорость частицы (1)скоростью (1)с лестницы (1)сложение векторов (1)сложная функция (1)смежные углы (1)смекалка (2)смеси (1)смешанное число (1)смещение (2)снаряд (1)собирающая (2)событие (1)соединение звездой (1)соединение треугольником (1)сокращение (1)сокращение дробей (1)соленоид (1)солнечная постоянная (3)солнечная система (1)сообразительность (1)сообщающиеся сосуды (2)соприкосновения (1)сопротивление (13)сопротивления (1)сопряженное (3)составить квадрат (1)составляет с направлением (1)составляющая скорости (2)составляющие (1)составляющие скорости (3)сосуд (1)сосудах (1)сосуде (1)сохранение энергии (1)спектра (2)спектральный класс (2)спецификация (1)спирт (1)сплава (1)сплавы (1)справочные данные (3)справочные материалы (12)спрос (1)сравнение чисел (2)среднее (1)среднее значение (1)среднеквадратичная скорость (1)среднюю линию (1)средняя квадратичная скорость (1)средняя скорость (6)срок (1)срок кредитования (1)стадии (1)стакан (2)статград (17)статика (2)стенка (1)степенная функция (1)степенные уравнения (1)степень (2)стереометрия (4)стержень (3)стержня (1)столб жидкости (3)столбик (3)столбик жидкости (2)столбик ртути (1)столбчатая диаграмма (1)стрелки поравняются (1)строгое (1)струю (1)студенты (2)ступеньку (1)сумма косинусов (1)сумма прогрессии (1)суммарный импульс (1)сумма ряда (1)сумма синусов (1)сумма углов (2)суммирование (2)сумму (1)суперпозиция (1)сутки (1)сфера (5)сферы (2)таблица (1)таблица частот (1)тангенс (3)тангенс разности (1)тангенс суммы (1)тангенциальная (1)тангенциальное ускорение (1)твердое тело (1)тела вращения (1)тележка (2)телескоп (1)телескопирование (1)тело (1)температура (21)температурный коэффициент сопротивления (1)температуры (2)тени (1)тень (1)теорема Пифагора (3)теорема Штейнера (1)теорема виета (5)теорема косинусов (4)теорема синусов (2)теореме косинусов (1)теоремы (1)теоретическое разрешение (1)теория вероятности (1)теплового двигателя (1)тепловое действие (1)тепловое равновесие (2)тепловой баланс (1)тепловой двигатель (1)теплоемкость (1)теплообмен (1)теплопередача (4)теплопроводность (2)теплота (1)теплота сгорания (1)теплоты (5)техника быстрого счета (1)товар (1)ток (11)ток насыщения (1)топливо (1)точечный источник (1)точка касания (1)точка росы (1)точки перемены знака (1)траектории (1)траекторию (1)траектория (1)транзистор (1)трансформатор (1)трапеция (4)трение (1)тренировочная работа (1)тренировочная статград (3)тренировочные работы (1)тренировочный вариант (23)тренировочный вариант ЕГЭ (57)тренировочный вариант ЕГЭ по физике (60)трения (2)трения покоя (1)трения скольжения (1)треугольная пирамида (1)треугольник (4)треугольник Паскаля (1)треугольника (1)треугольники (2)треугольник перемещений (1)трехфазные цепи (2)тригонометрические выражения (2)тригонометрические уравнения (1)тригонометрия (10)троса (1)трубка (5)трубы (1)увеличение (1)угловая скорость (2)угловая частота (2)угловой скоростью (3)углом (1)углы (4)угол между боковыми ребрами (1)угол между векторами (1)угол между плоскостями (2)угол между прямой и плоскостью (1)угол между прямыми (1)угол наклона (1)уголь (12)удар (1)удельная (1)удельная теплоемкость (2)удельная теплота (1)удельная теплота парообразования (2)удельное сопротивление (1)удержать (1)удлинение (3)узел (2)узкую трубку (1)умножение (1)умножение вектора на число (1)умножение на пальцах (1)упростить (1)упрощение (3)упрощение выражений (1)упругий удар (1)уравнение (5)уравнение Менделеева-Клапейрона (8)уравнение окружности (2)уравнение плоскости (3)уравнение теплового баланса (1)уравнению (1)уравнения (2)уравнения высоких степеней (1)уравнения высших степеней (1)урана (1)усеченный конус (1)ускорение (29)ускорением (1)ускорение свободного падения (4)ускорений (1)ускоряющая разность потенциалов (1)условие плавания (2)условие равновесия (1)условия возврата (1)фазное напряжение (1)фигуры (2)физика (29)физика статград (1)фиолетовый (1)фирмы (1)фокальная плоскость (1)фокус (5)фокусное расстояние (1)фонтан (1)формула (1)формула Герона (1)формула Пика (1)формулы сокращенного умножения (2)фотон (4)фотонов (1)функции (1)функция (1)холодильник (1)холодильнику (1)хорда (3)целое (10)целые (8)целые числа (1)целых (1)цель (1)центральный угол (4)центр вращения (1)центр масс (1)центр масс системы (1)центробежная сила (1)центростремительное ускорение (1)центр тяжести (1)центр тяжести системы (1)цепи постоянного тока (13)цепь второго порядка (1)цепь первого порядка (4)цикл Карно (1)циклическая частота (3)цилиндр (2)часовой угол (1)части (4)частица (2)частных клиентов (1)частота (10)частота излучения (1)часть объема (1)человека (1)черная дыра (1)четная функция (3)четное (7)четность (3)чисел (1)числовая пряма%D (1)число витков (1)член (1)шайбы (1)шар (2)шарик (2)шарик на нитке (1)шарик прыгает (1)шарнир (2)шестерня (1)шесть различных решен

2.2.2. Особенности использования метода контурных токов для схем с источниками тока

Ветвь с источником тока выделяется как ветвь связи, поэтому контурный ток для этого контура равен току источника тока. Для этого контура составления уравнения не требуется. При составлении уравнений для других контуров используем общее правило с учетом известного контурного тока.

Пример 2.8. Рассмотрим рекомендованный порядок расчета на примере электрической цепи, приведенной рисунке 2.22, параметры которой Jk3= 3 А, Е2= 50 В, Е5= 60 В, r1 = 6 Ом, r2 = 10 Ом, r4= 8 Ом, r5 = 10 Ом, r6 = 5 Ом.

Рисунок 2.22 – Электрическая цепь постоянного тока

1. Осуществляем предварительный анализ схемы.

    1. Количество ветвей – , количество узлов –.

1.2. Вычерчиваем граф схемы. Для данной схемы граф имеет вид, представленный на рисунке 2.23.

Рисунок 2.23 – Граф исходной электрической цепи

1.3. Используя граф схемы, формируем независимые (главные) контуры. При формировании первого независимого контура используем 1-ю ветвь связи, дополненную 4 и 5 ветвями дерева. Соответственно, второй главный контур состоит из ветви связи 2, дополненной 4 и 6 ветвями дерева; третий главный контур состоит из ветви связи 3, дополненной 5 и 6 ветвями дерева. Положительное направление обхода контура совпадает с направлением тока в ветви связи.

2. Составляем уравнения для определения контурных токов. Уравнения составляем для контуров, не содержащих источник тока. Контурный ток в ветви с источником тока :

=> ;

=> .

3. Подставляем числовые значения и решаем систему уравнений:

3.1. Сумма сопротивлений ветвей контуров

Ом;

Ом.

Сумма сопротивлений, принадлежащих соприкасающимся контурам

Ом;

Ом;

Ом.

Контурные ЭДС В;В.

Величины и соответственно равны:

В, В.

3.2. После подстановки цифровых данных система имеет вид

Решая полученную систему уравнений произвольным методом, определяем контурные токи:

А,

А.

3.3. Определяем токи в ветвях электрической цепи, приведенной на рисунке 2.22.

А;

А;

А;

А;

А.

4. Определяем напряжение на зажимах источника тока. С этой целью составляем уравнение по второму закону Кирхгофа для III контура:

.

Тогда . Подставляя числовые значения рассчитанных токов, получим:

В.

5. Проверяем решение системы уравнений, составив баланс мощностей.

5.1. Мощность источников:

Вт,

Вт,

Вт.

Суммарная мощность источников:

Вт.

5.2. Мощность приемников:

Вт,

Вт,

Вт,

Вт,

Вт,

Суммарная мощность приемников:

Вт.

5.3. Из сравнения генерируемой мощности источниками и потребляемой мощности приемниками, следует, что погрешность вычислений и непревышает 0,5%.

2.2.3. Матричные уравнения контурных токов

Уравнения контурных токов можно записать в матричной форме:

,

где — квадратная матрица контурных сопротивлений;

— матрица-столбец контурных токов;

— матрица-столбец контурных ЭДС, учитывающая источники напряжений и эквивалентные ЭДС от источников тока.

Матрица контурных сопротивлений может быть получена по схеме при помощи матрицы контуров:

,

где — диагональная матрица сопротивлений ветвей;

— транспортированная матрица контуров.

Рассмотрим схему, приведенную на рисунке 2.24. Направление обхода каждого контура совпадает с положительным направлением соответствующего контурного тока, а направление ветвей – с положительными направлениями токов в ветвях.

Рисунок 2.24 – Электрическая цепь постоянного тока

Граф электрической цепи, с выбранным деревом из четвертой, пятой и шестой ветви, приведен на рисунке 2.25.

Рисунок 2.25 – Граф цепи постоянного тока

В данной схеме, независимые контуры содержат контурные токи ,,, что соответствует первой, второй и третьей ветвям связи.

Матрица контуров состоит из трех строк и шести столбцов:

.

Диагональная матрица сопротивлений .

Произведение матриц иравно:

.

Квадратная матрица контурных сопротивлений

.

Матрица-столбец контурных токов .

Матрица-столбец контурных ЭДС

.

Пользуясь матрицами ,,и уравнением, можно получить систему уравнений, составленную на основании второго закона Кирхгофа для контуров, каждый из которых включает только одну ветвь связи.

Матрица токов ветвей определяется через матрицу контурных токовпо формуле.

Например, для электрической цепи (рис. 2.24):

.

Из этого матричного уравнения получаем равенства, определяющие токи ветвей через контурные токи:

; ;;;;.

Пример 2.9. Решить задачу, приведенную в примере 2.5 с помощью матричных уравнений контурных токов.

Матрица контуров В состоит из пяти строк и десяти столбцов:

.

Диагональная матрица сопротивлений

.

Произведение матриц иравно:

.

Квадратная матрица контурных сопротивлений

.

Матрица-столбец контурных токов

.

Матрица-столбец контурных ЭДС

.

Определяем матрицу контурных токов =

.

Контурные токи соответственно равны

А, А, А,

А, А.

Матрица токов ветвей определяем через матрицу контурных токов:

.

Токи в ветвях соответственно равны

А, А,А,А,А,

А, А,А,А,А.

Токи, рассчитанные в примерах 2.5 и 2.9, совпадают.

Метод контурных токов

    Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 — контурные токи.

Рис. 4.2 Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Порядок расчета

    Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

 Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы

,     .

    Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

  где R12 — общее сопротивление между первым и вторым контурами; R21 — общее сопротивление между вторым и первым контурами. E11 = E1 и E22 = E2 — контурные ЭДС. В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

, .

       Собственные сопротивления всегда имеют знак «плюс». Общее сопротивление имеет знак «минус», если в данном сопротивлении контурные токи направлены встречно друг другу, и знак «плюс», если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.         В схеме на Рис. 4.2

.

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково (по часовой стрелке или против). Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

 

4.3. Метод узловых потенциалов

 Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы ?4 = 0.                                Рис. 4.3

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

    В соответствии с законами Ома для активной и пассивной ветви

,

     где — проводимость первой ветви.

,

      где — проводимость второй ветви.

  Подставим выражения токов в уравнение (4.6).

(4.7)

    где g11 = g1 + g2 — собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12 = g2 — общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

      сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком «плюс», если от узла — со знаком «минус». По аналогии запишем для узла 2:

Метод контурных токов

Является самым удобным для определения токов в сложных многоконтурных схемах. Несмотря на то, что в основе лежат те же законы Кирхгофа, этот метод позволяет использовать меньшее количество уравнений. (их количество равно числу независимых контуров). Расчет ведется в несколько этапов.

  1. Реальные токи в схеме на время исключаем и вводим искусственные контурные токи. Это является расчетным приемом и в реальных схемах их нет.

  2. Составляем систему уравнений по второму закону Кирхгофа используя контурные токи

  3. По найденным контурным током определяем реальные токи в ветвях.

Исключаем источник тока, тогда ветвь с источником тока I обрываем и при составлении уравнении не учитываем. Eэкв=I*R6

Ik1(R1+R2+R3)-Ik2*R3-Ik3*R2=E3-E1

Ik2(R3+R4+R5)-Ik1*R3-Ik3*R5=E4-E3

Ik3(R2+R6+R5)-Ik1*R2-Ik2*R5=E6+Eэкв

Решив эту систему мы найдем 3 неизвестных контурных тока, через них можно найти реальные токи в схеме.

I1=-Ik1

I2=Ik1-IK3

I3=Ik1-Ik2

I4=Ik2

I5=Ik3-Ik2

При определении 6го тока необходимо учесть влияние тока от источника тока. Следует его считать как отдельный контурный ток.

I6=Ik3-I

Баланс мощности:

I12*R1+I32*R3+I42*R4+I52*R5+I22*R2+I62*R6=I1E1+I3E3+I4E4+I6E6+Pист

Pист=I*Uy , где Uy=-I6R6+E6

Ибо I6R6+Uу=E6

Метод двух узлов

Является разновидностью метода узловых потенциалов и применяется только для схем, в которых есть 2 узла. Количество параллельных ветвей, подключенных к этим узлам может быть любым.

Будет заданы все ЭДС источников и сопротивление ветвей, а также токи источников тока. Требуется найти токи в ветвях. Их направления выбираем произвольно.

Расчет ведется в 2 этапа

  1. Определяем узловое напряжение (общее для всех параллельных ветвей)

Uab – узловое напряжение.

Uab=

В числителе находится алгебраическая сумма токов от источников тока и алгебраическая сумма ЭДС ветвей умноженное на проводимость этой же ветви.

“+” если направления Uab и У или Е не совпадают

“-“ если направления совпадают

В знаменателе находится сумма проводимости всех ветвей (знака – быть не может)

Учтем, что g3=g4=g5=

Uab=

  1. Определяем токи в ветвях схемы используя закон Ома для участка цепи с ЭДС.

I3=

I4=

I5=

Метод наложения

Этот метод применим к схемам в которых есть несколько источников. Тогда ток в каждой ветви мб рассчитан как сумма отдельных составляющих, а каждая составляющая определяется только от одного источника.

Так как в схема 3 источника, то каждый ток будет иметь 3 составляющие.

I1=±I1’+I1’’+I1’’’ +- везде

I2=I2’+I2’’+I3’’’

I3=I3’+I3’’+I3’’’

Составляющие I1′ I2′ I3’ рассчитываются для схемы, в которой оставлен источник тока I, но исключены E1 и E3

Составляющие I1’’ I2’’ I3’’ – для схемы с E1( без Y и Е3)

Составляющие I1’’’ I2’’’ I3’’’ – для схемы с Е3 (без У и Е1)

Исключение источника происходит по правилам. Источник тока при исключение обрывается, а источник ЭДС закорачивается.

Схема А

Схема Б

Схема С

Входные и взаимные проводимости

Входной проводимостью (собственной) какой либо ветви называется отношение тока в этой же ветви и величина источника ЭДС этой же ветви. При этом в скале все остальные источники должны быть исключены.

E=0 I=0

Взаимной проводимостью является отношения тока в ветви m к ЭДС в этой ветви, при всех остальных источниках равных 0

[Cи]

Обычно эти проводимости определяется в задачах решения которых связано с методом наложения. Правило исключения источников такая же: Источник ЭДС условно закорачивается а ветвь с источником тока обрывается.

R3

Допустим, имеется схема

I2

R2

R1

Y

I1

R4

E5

I3

I4

I5

g55=? g25=?

R5

g55=g25=I=0!!!

Схема для определения проводимости следующая: Исключить Y т.е. ветвь оборвать

Определением для этой схемы все токи любым методом и находим нужные проводимости.

2.2 Метод контурных токов

2.2.1. Использования метода контурных токов для схем с источниками напряжений

Идея метода контурных токов основана на доказательстве о том, что вдоль каждого контура протекает независимый ток, называемый контурным.

Токи в ветвях определяются совместным действием контурных токов протекаемых по этим ветвям.

В качестве примера рассмотрим электрическую цепь, приведенную на рисунке 2.17.

Рисунок 2.17 – Электрическая цепь

Граф данной схемы, с выделенными ветвями связи и дерева, приведен на рисунке 2.18. В схеме три независимых контура, вдоль которых протекают контурные токи .

В ветвях связи протекает только один контурный ток, соответственно равный .

В ветвях дерева – несколько токов, соответственно равных:

,

Из вышеуказанного следует, что достаточно рассчитать контурные токи, по которым легко определяются токи в ветвях.

Рисунок 2.18 – Граф исходной электрической цепи

Систему уравнений для определения контурных токов можно получить из уравнений Кирхгофа, которые для вышеуказанной схемы (рис. 2.17), имеют вид:

По первому закону Кирхгофа

;

;

.

По второму закону Кирхгофа:

;

;

.

Из уравнений, составленных по первому закону Кирхгофа, выразим токи в ветвях дерева через токи ветвей связи. Принимая во внимание, что токи в ветвях связи равны контурным токам, имеем:

;

;

.

Полученные выражения подставим в уравнения второго закона Кирхгофа. В результате имеем:

;

;

.

Таким образом, получили систему трех уравнений с тремя неизвестными токами. Проанализируем свойства полученной системы уравнений. При составлении уравнения для I контура, контурный ток умножаем на сумму сопротивлений ветвей первого контура. Влияние второго контурного тока на первый, осуществляется введением выражения. Здесь— сопротивление ветви, принадлежащей одновременно иI и II контурам. Знак ”+” перед выражением указывает на то, что контурные токииво второй ветви, направлены в одну сторону. Влияние третьего контурного тока на первый, осуществляется введением выражения. Здесь— сопротивление ветви, принадлежащей одновременно иI и III контурам. Знак ”+” перед выражением указывает на то, что контурные токиив четвертой ветви сонаправлены.

Аналогичными свойствами обладают уравнения, составленные для II и III контура.

Используя вышеуказанные свойства, составим уравнения для определения контурных токов произвольной схемы.

Допустим, имеется цепь, включающая n независимых контуров.

Имеем n независимых токов, и n – уравнений с n – неизвестными. Система уравнений для определения токов имеет вид:

,

где – соответственно сумма сопротивлений ветвейI, II n – ного контура;

–сумма сопротивлений, принадлежащих I и II контурам — ветви дерева;

— контурная ЭДС первого контура, равная алгебраической сумме ЭДС ветвей первого контура.

Правило знаков: элементы, содержащие , всегда принимаются со знаком ”+”. Знаки на разноименных элементах , , и т.д., определяются совместным направлением контурных токов в указанных ветвях. При совпадении контурных токов ставят знак ”+”, при встречном – знак ”-”. Знаки ЭДС пишутся также как и по второму закону Кирхгофа.

Пример 2.6. Рассмотрим рекомендованный порядок расчета на примере электрической цепи, приведенной на рисунке 2.19, параметры которой E4 = 60 (B), Е5= 20 В, Е6= 40 В, r1 = 6 Ом, r2 = 10 Ом, r3 = 9 Ом, r4= 8 Ом, r5 = 10 Ом, r6 = 7 Ом.

Рисунок 2.19 – Электрическая цепь постоянного тока

  1. Осуществляем предварительный анализ схемы.

    1. Количество ветвей – , количество узлов –.

1.2. Вычерчиваем граф схемы. Для данной схемы граф имеет вид, представленный на рисунке 2.20.

Ветвями дерева приняты ветви 4,5,6, ветвями связи – ветви 1,2,3.

Рисунок 2.20 – Граф исходной электрической цепи

1.3. Используя граф схемы, формируем независимые (главные) контуры. При формировании первого независимого контура используем 1-ю ветвь связи, дополненную 4 и 5 ветвями дерева. Соответственно, второй главный контур состоит из ветви связи 2, дополненной 4 и 6 ветвями дерева; третий главный контур состоит из ветви связи 3, дополненной 5 и 6 ветвями дерева. Положительное направление обхода контура рекомендуется принимать совпадающим с направлением тока в ветви связи.

2. Составляем уравнения для определения контурных токов:

;

;

.

3. Подставляем числовые значения и решаем систему уравнений:

3.1. Контурные сопротивления

Ом;

Ом;

Ом.

Сумма сопротивлений, принадлежащих нескольким контурам

Ом;

Ом;

Ом.

Контурные ЭДС В;

В;

В.

3.2. После подстановки цифровых данных система имеет вид

3.3. Решая данную систему уравнений, определяем контурные токи:

А,

А,

А.

3.4. Определяем токи в ветвях электрической цепи, приведенной на рисунке 2.19.

А;

А;

А;

А;

А;

А.

4. Проверяем решение системы уравнений, составив баланс мощностей.

4.1. Мощность источников:

Вт,

Вт,

Вт.

Суммарная мощность источников:

Вт.

4.2.Мощность приемников:

Вт,

Вт,

Вт,

Вт,

Вт,

Вт,

Суммарная мощность приемников:

Вт.

4.3. Из сравнения генерируемой мощности источниками и потребляемой мощности приемниками, следует, что погрешность вычислений и непревышает 0,5%.

Пример 2.7. Рассмотрим решение задачи, приведенной в примере 2.2, методом контурных токов. Электрическая цепь для рассматриваемого метода, приведена на рисунке 2.21.

Рисунок 2.21 – Электрическая цепь постоянного тока

1. Осуществляем предварительный анализ схемы.

Количество ветвей – , количество узлов –.

2. Составляем уравнения для определения контурных токов:

;

;

.

3. Подставляем числовые значения и решаем систему уравнений:

3.1. Контурные сопротивления

Ом;

Ом;

Ом.

Сумма сопротивлений, принадлежащих нескольким контурам

Ом;

Ом.

Контурные ЭДС В;

В;

В.

3.2. После подстановки цифровых данных система имеет вид

3.3. Решая данную систему уравнений, определяем контурные токи:

мА,

мА,

мА.

3.4. Определяем токи в ветвях электрической цепи, приведенной на рисунке 2.21.

мА;

мА;

мА;

мА;

мА.

Токи в ветвях, рассчитанные в примерах 2.2 и 2.7, совпадают.

Метод контурных токов

Метод контурных токов является одним из основных методов расчета сложных электрических цепей, которым широко пользуются на практике.

При расчете методом контурных токов полагают, что в каждом независимом контуре течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего определяют токи ветвей через контурные токи.

Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. . Следовательно, этот метод более экономичен при вычислениях, чем метод уравнений Кирхгофа.

Разработаем алгоритм расчета цепей методом контурных токов на примере приведенной на рис. 2.3. схемы, в которой три независимых контура. Предположим, что в каждом контуре протекает свой контурный ток в указанном направлении. Для каждого из контуров составим уравнения по II закону Кирхгофа. При этом учтем, что по смежной ветви для контурных токов и(ветвьbd, содержащая сопротивление ) протекает ток, по смежной ветви для контурных токови(ветвьdс, содержащая сопротивление ) протекает ток, по смежной ветви для контурных токови(ветвьаd, содержащая сопротивление ) протекает ток.

Тогда уравнения по II закону Кирхгофа для каждого контура принимают следующий вид:

Сгруппируем слагаемые при одноименных токах:

(2.5)

Введем обозначения:

В окончательном виде система уравнений для контурных токов приобретает следующий вид:

(2.6)

в матричной форме

(2.7)

Собственное сопротивление контура (Rii) представляет собой арифметическую сумму сопротивлений всех потребителей, находящихся в i-ом контуре.

Общее сопротивление контура (Rij = Rji) представляет собой алгебраическую сумму сопротивлений потребителей ветви (нескольких ветвей), одновременно принадлежащих i-ому и j-ому контурам. В эту сумму сопротивление входит со знаком «+», если контурные токи протекают через данное сопротивление в одном направлении (согласно), и знак «–», если они протекают встречно.

Контурные ЭДС представляют собой алгебраическую сумму ЭДС источников, входящих в контур. Со знаком «+» в эту сумму входят ЭДС источников, действующих согласно с обходом контура, со знаком «–» входят ЭДС источников, действующих встречно.

Решение полученной системы удобно выполнить методом Крамера

, (2.8)

где , 1, 2, 3, – соответственно определители матриц:

(2.9)

По найденным контурным токам при помощи I закона Кирхгофа определяются токи ветвей.

Таким образом, методика расчета цепи постоянного тока методом контурных токов следующая:

  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.

  3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида (2.3).

  4. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.

  5. Определить токи ветвей через контурные токи по I закону Кирхгофа.

  6. В случае необходимости, с помощью обобщенного закона Ома определить потенциалы узлов.

  7. Проверить правильность расчетов при помощи баланса мощности.

Если в цепи содержится q источников тока, количество совместно рассматриваемых уравнений сокращается на q и становится равным р – q, поскольку токи в таких ветвях известны (для контуров с Iii = J уравнение можно не записывать). В этом случае следует выбирать такую совокупность независимых контурных токов, чтобы часть из них стала известными. Для этого необходимо, чтобы каждый источник тока входил только в один контур. Напряжения UJ источников войдут в качестве неизвестных в правые части уравнений, т.е. в состав контурных ЭДС.

Пример.

Тогда система уравнений по методу контурных токов примет следующий вид:

Причем, , решив первое уравнение, можно получить. Далее

UJ можно определить из второго уравнения системы или, составив уравнение по II закону Кирхгофа для любого контура, в который входит источник тока.

Баланс мощности:

ТОЭ Лекции — №5 Метод контурных токов

Для каждого из взаимно независимых контуров назначается так называемый контурный ток, замыкающийся по всем ветвям контура. Направления этих токов произвольны.

На рис. 1.9 они обозначены дугообразными стрелками, рядом с которыми стоят буквы IK1, IK2, IK3 и IK4. Для выбранных контурных токов записываются уравнения по второму закону Кирхгофа. Контур при этом обходится по направлению контурного тока. Рассмотрим порядок составления уравнения на примере третьего контура. Контурный ток IK3, протекая по сопротивлениям своего контура, создает на них падение напряжения

По сопротивлению R4, являющемуся элементом третьего контура, протекает контурный ток IK2. Создаваемое им падение напряжения IK2*R4 вычитается из предыдущего, так как направление тока IK2 в сопротивлении R4 противоположно току IK3. Сопротивление R6 также входит в третий контур. Падение напряжения на нем, создаваемое контурным током IK4, складывается с суммой (1.10), так как направления IK4 и IK3 в R6 одинаковы. В правой части уравнения записывается алгебраическая сумма всех ЭДС контура, в данном случае – единственная ЭДС E4.

Итак, для третьего контура имеем:

Аналогично составляются и остальные контурные уравнения:

После решения последней системы действительные токи ветвей определяются по найденным контурным:

Контурные уравнения получаются подстановкой формул (1.11) в уравнения второго закона Кирхгофа (1.7).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *