Маркировка стабилитронов smd в стеклянном корпусе импортные: Маркировка стабилитронов в стеклянном корпусе

Содержание

Маркировка стабилитронов в стеклянном корпусе

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Схемы подключения стабилитрона и стабистора в схему

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Указание паспортных характеристик

Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.

  1. UCT – указывает, какое номинальное значение модуль способен стабилизировать.
  2. ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
  3. ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
  4. ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
  5. ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.

На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.

Маркировка расположения катода и анода

Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В

Маркированный стабилитрон

Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Маркировка стабилитронов в стеклянном корпусе импортные. Стабилитрон. Принцип действия. Маркировка

Программа Color and Code имеет обширный сервис и позволяет решать комплекс задач разнообразного характера в одном приложении: находить номинал или вид радиокомпонентов по кодовой или цветовой маркировке, определять электрические параметры радиокомпонентов; выполнять радиотехнические расчеты; находить тип и выбирать нужные размеры радиокомпонентов; подбирать аналоги радиодеталей; изучать назначения ножек микросхем.

Описание программы Color and Code

В программе имеется возможность определять параметры большого спектра радиодеталей таких как – варикапов, транзисторов, конденсаторов, диодов, стабилитронов, резисторов, индуктивностей и чип-компонентов, как по кодовой цветовой, так и цветовой маркировке.

Цветовая маркировка резисторов


Кодовая и цветовая маркировка транзисторов

Можно определять тип транзистора по двум и четырем цветным точкам. Также есть функция определения по графическим символам, горизонтальное и вертикальное обозначение, смешанной и нестандартной.



Маркировка диодов, стабилитронов, варикапов

Диоды, стабилитроны, варикапы определяются по цветным кольцам от 1 до 3 колец.

Стабилитрон еще называют опорным диодом. Предназначены стабилитроны для стабилизации выходного напряжения при колебания входного или при изменении величины нагрузки (рис. 1 ).

Рис. 1 – Функциональная схема работы стабилитрона

Например, если на нагрузке нужно получить 5 В, а напряжение источника питания колеблется в пределах 9 В. Чтобы снизить и стабилизировать напряжение, подводимое от источника питания, до необходимых 5 В применяют стабилитроны. Конечно, можно применять и стабилизаторы напряжения, в данном случае подойдут или . Однако, применение их не всегда оправдано, поэтому в ряде случаев используют стабилитроны.

Внешне они похожи на диоды и имею вид, показанный на рис. 2 .


Рис. 2 – Внешний вид стабилитронов

Обозначение стабилитронов на схемах приведено на рис. 3 .


Принцип действия стабилитрона

Теперь давайте разберемся каким образом стабилитрон выполняет стабилизацию напряжение.

Основной характеристикой стабилитрона, впрочем, как и диода, является вольтамперная характеристика (ВАХ). Она показывается зависимость величины тока, протекающего через стабилитрон, от величины приложенного к нему напряжения (рис. 4 ).

ВАХ стабилитрона имеет две ветви.


Рис. 4 – ВАХ стабилитрона

Прямая ветвь стабилитрона практически не отличается от прямых ветвей обычных диодов и для последних она же будет рабочей.

Нормальный режим работы стабилитрона является когда он находится под обратным напряжением. Поэтому для него рабочей будет обратная ветвь. Она расположена практически параллельно оси обратных токов. На этой кривой характерными есть две точки:

1 и 2 (рис. 4 ), между ними находится рабочая область стабилитрона.

При некоторой величине обратного напряжения U ст наступает электрический пробой p n перехода стабилитрона и через наго протекает уже значительный ток. Однако при изменении в широких пределах тока от значения Imin до Imax падение напряжения на стабилитроне U ст практически не изменяется (рис. 4 ). Благодаря этому свойству и осуществляется стабилизация напряжения.

Если ток, протекающий через стабилитрон, превысит значение

Imax , то произойдет перегрев полупроводниковой структуры, наступит тепловой пробой и стабилитрон выйдет из строя.

К источнику питания Uип стабилитрон подключается через токоограничивающий резистор Rогр , который служит для ограничения тока, протекающего через стабилитрон, а также совместно с ним образует делитель напряжения (рис. 5 ).


Рис. 5 – Схема включения стабилитрона

Обратите внимание, в отличие от диода стабилитрон подключается в обратном направлении, т. е. на катод подается «+» источника питания, а на анод «-».

Параллельно к выводам стабилитрона подключается нагрузка

R н , на зажимах которой требуется поддерживать стабильное напряжение.

Процесс стабилизации напряжения заключается в следующем. При увеличении напряжения источника питания возрастает общий ток цепи I , а следовательно и ток Iст , протекающий через стабилитрон VD , а также увеличивается падение напряжения на токоограничивающем резисторе R огр . При этом напряжение на стабилитроне и соответственно на нагрузке остается почти неизменным.

При изменении сопротивления нагрузки, происходит перераспределение общего тока I между стабилитроном и нагрузкой, а величина напряжения на них практически не меняется.

Если напряжение на нагрузке больше напряжения стабилизации стабилитрона, то применяют несколько последовательно включенных стабилитронов. Например, если необходимо получить 10 В стабильного напряжения, то за неимением нужного стабилитрона, можно включить последовательно два стабилитрона по 5 В (рис. 6 ).


Рис. 6 – Последовательное соединение стабилитронов

Также стабилитроны успешно используются в системах автоматики в качестве датчиков, реагирующих на изменение напряжения. Например, если величина напряжения превысит определенное значение, то стабилитрон откроется и через катушку реле будет протекать ток. В результате реле сработает и даст команду другим устройствам либо просто просигнализирует о превышении некоторого уровня напряжения.

Помимо стабилизации постоянного напряжения, с помощью стабилитронов можно стабилизировать и переменное напряжения. Для этого используют последовательное встречное включение двух стабилитронов (рис. 7 ).


Рис. 7 – Схема включения стабилитрона на переменное напряжение

Только на выходе будет не идеальная синусоида, а со срезанными верхами, т. е. форма напряжения будут приближена к трапеции (рис. 8, 9 ).


Рис. 8 – Осциллограмма входного напряжения


Рис. 9 – Осциллограмма напряжения на стабилитроне

Применяются несколько способом маркировки стабилитронов. Стабилитроны в стеклянному корпусе, имеющие гибкие выводы, маркируются самым понятным способом. Как правило на корпус наносятся цифры, разделённые латинской буквой «V». Например, 4 V 7 обозначает, что напряжение стабилизации 4,7 В; 9 V 1 – 9,1 В и так далее (рис. 10 ).


Рис. 10 – Маркировка стабилитронов в стеклянных корпусах

Стабилитроны в пластиковом корпусе имеют маркировку в виде цифр и букв. Сами по себе эти цифры ни о чем не говорят, однако, с помощью даташита их можно легко расшифровать. Например обозначение 1N5349B означает, что напряжение стабилизации 12 В (рис. 11 ). Кроме напряжения такая маркировка учитывает и другие параметры стабилитрона.


Рис. 10 – Маркировка стабилитронов в пластиковых корпусах

Черное либо серое кольцо, нанесенное на корпус стабилитрона, обозначает его катод (рис. 12 ).


Рис. 12 –

Маркировка smd стабилитронов

В качестве маркировка smd стабилитронов применяются цветные кольца. Подобная маркировка применяется также для советские не smd стабилитронов. В импортных стабилитронах цветное кольцо наносится со стороны катода (рис. 13 ). Для расшифровки цветных колец используют даташити или онлайн расшифровщики.


Рис. 13 – SMD стабилитрон в стеклянном корпусе

Еще изготавливаются smd стабилитроны с тремя выводами (рис. 14 ). Один из них не задействован. Эти выводы можно определить с помощью мультиметра.


Рис. 14 – SMD стабилитрон с тремя выводами

При отсутствии справочника, даташита или нечеткой маркировки номинальное напряжение стабилитрона можно определить опытным путем. Сначала с помощью мультиметра нужно узнать соответствующие выводы и подключить стабилитрон через токоограничивающий резистор (см. рис. 5 ). Затем подать напряжение от регулируемого источника питания. Плавно изменяя подведенное напряжение нужно следить за изменение напряжения на стабилитроне. Если при изменении величины напряжения источника питания напряжение на стабилитроне не изменяется, то это и будет его напряжение стабилизации.

Выводы стабилитрона определяются точно также, как и . Мультиметр следует установить в режим прозвонки и коснуться щупами соответствующий выводов (рис. 15, 16 ).


Рис. 15 – Прямое напряжение


Рис. 16 – Обратное напряжение

Под действием протекающего тока через стабилитрон он нагревается. Выделившееся тепло рассеивается в окружающее пространство. Чем больше стабилитрон способен рассеять тепла не перегреваясь, тем выше его мощность рассеивания и тем больший ток можно пропустить через него. Как правило, чем больше габариты стабилитрона, тем большая у него мощность рассеяния (рис. 17 ).


Рис. 17 – Мощность рассеивания стабилитронов

Маркировка диодов – краткое графическое условное обозначение элемента, на корпус которого нанесено. Элементная база в настоящее время настолько разнообразна, сокращения отличаются весьма существенно. Сложно идентифицировать диод: стабилитрон, туннельный, Ганна. Выпущены разновидности, напоминающие газоразрядную лампочку. Светодиоды горят, дополняя путаницу.

Диоды полупроводниковые

Быть может, раздел называется несколько тривиально, нужно было обычные диоды отличить от морально устаревших электронных ламп, современнейших SMD модификаций. Рядовые полупроводниковые диоды – самое простое горе радиолюбителя. Боковина цилиндрического корпуса с дисковым основанием, ножками содержит нанесенную краской легко различимую надпись.

Полупроводниковые резисторы. Отличите невооруженным глазом?

Цвет корпуса значения не играет, размер косвенно указывает рассеиваемую мощность. У мощных диодов зачастую в наличии резьба под гайку крепления радиатора. Итог расчета теплового режима показывает недостаток собственных возможностей корпуса, система охлаждения дополняется навесным элементом. Сегодня потребляемая мощность падает, снижая линейные размеры корпусов приборов. Указанное позволило использовать стекло. Новый материал корпуса дешевле, долговечнее, безопаснее.

  • Первое место занимает буква или цифра, кратко характеризующая материал элемента:
  1. Г (1) – соединения германия.
  2. К (2) – соединения кремния.
  3. А (3) – арсенид галлия.
  4. И (4) – соединения индия.
  • Вторая буква в нашем случае Д. Диод выпрямительный, либо импульсный.
  • Третье место облюбовала цифра, характеризующая применимость диода:
  1. Низкочастотные, током ниже 0,3 А.
  2. Низкочастотные, током 0,3 — 10 А.
  3. Не используется.
  4. Импульсные, время восстановления свыше 500 нс.
  5. Импульсные, время восстановления 150 — 500 нс.
  6. То же, время восстановления 30 — 150 нс.
  7. То же, время восстановления 5 — 30 нс.
  8. То же, время восстановления 1 — 5 нс.
  9. Импульсные, время жизни неосновных носителей ниже 1 нс.
  • Номер разработки составлен двумя цифрами, может отсутствовать вовсе. Номинал ниже 10 дополняется слева нулем. Например, 07.
  • Номер группы обозначается буквой, определяет различия свойств, параметров. Буква зачастую является ключевой, может указывать рабочее напряжение, прямой ток, многое другое.

В дополнение к маркировке справочники приводят графики, по которым можно решить задачи выбора рабочей точки радиоэлемента. Могут указываться сведения о технологии производства, материале корпуса, массе. Помогает информация проектировщику аппаратуры, любителям практического смысла не несет.

Импортные системы обозначения отличаются от отечественных, хорошо стандартизированы. Поэтому при помощи специальных таблиц достаточно просто отыскать подходящие аналоги.

Цветовая маркировка

Каждый радиолюбитель знает сложность идентификации диодов, окруженных стеклянным корпусом. На одно лицо. Временами производитель удосуживается нанести четкие метки, разноцветные кольца. Согласно системе обозначений, вводится три признака:

  1. Метки областей катода, анода.
  2. Цвет корпуса, заменяемый цветной точкой.

Согласно положению вещей, с первого взгляда отличим типы диодов:

  1. Семейство Д9 маркируется одним-двумя цветными кольцами района анода.
  2. Диоды КД102 в районе анода обозначаются цветной точкой. Корпус прозрачный.
  3. КД103 имеют дополняющий точку цветной корпус, исключая 2Д103А, обозначаемый белой точкой области анода.
  4. Семейства КД226, 243 маркируются кольцом области катода. Прочих меток не предусмотрено.
  5. Два цветных кольца в районе катода можно увидеть у семейства КД247.
  6. Диоды КД410 обозначаются точкой в районе анода.

Имеются другие явно различимые метки. Более подробную классификацию найдете, проштудировав издание Кашкарова А.П. По маркировке радиоэлементов. Новичков тревожит вопрос определения расположения катода и анода.

  1. Видите: одна боковина цилиндра снабжена темной полосой — найден катод. Цветная может являться частью обсуждаемой сегодня маркировки.
  2. Умея эксплуатировать мультиметр, анод легко отыскать. Электрод, куда приложим красный щуп, чтобы открыть вентиль (услышим звонок).
  3. Новый диод снабжен усиком анода более длинным, нежели катода.
  4. Сквозь стеклянный корпус светодиода посмотрим через увеличительное стекло: металлический анод напоминает наконечник копья, размерами меньше катода.
  5. Старые диоды содержали стрелочную маркировку. Острие — катод. Позволит определять направление включения визуально. Современным радиомонтажникам приходится тренировать сообразительность, остроту зрения, точность манипуляций.

Зарубежные изделия получили другую систему обозначений. Выбирая аналог, используйте специальные таблицы соответствия. Остальным импортная база мало отличается от отечественной. Маркировка проводится согласно стандартам JEDEC (США), европейской системе (PRO ELECTRON). Красочные таблицы расшифровки цветового кода широко представлены сетевыми источниками.


Цветовая маркировка

SMD диоды

В SMD исполнении корпус диода иногда настолько мал, маркировка отсутствует вовсе. Характеристики приборов мало зависят от габаритов. Последние сильно влияют на рассеиваемую мощность. Больший ток проходит по цепи, большие размеры должен иметь диод, отводящий возникающее (закон Джоуля-Ленца) тепло. Сообразно написанному маркировка SMD диода может быть:

  1. Полная.
  2. Сокращенная.
  3. Отсутствие маркировки.

SMD элементы в общем объеме электроники занимают примерно 80% объема. Поверхностный монтаж. Изобретенный способ электрического соединения максимально удобен автоматизированным линиям сборки. Маркировка диода SMD может не совпадать с наполнением корпуса. При большом объеме производства изготовители начинают хитрить, ставить внутрь вовсе не то, что нанесено условным обозначением. От большого количества несогласованных между собою стандартов возникает путаница использования выводов микросхем (для диодов — микросборки).

Корпус

Маркировка может включать 4 цифры, указывающие типоразмер корпуса. Прямо никак не соответствуют габаритам, поинтересуйтесь подробнее вопросом в ГОСТ Р1-12-0.062, ГОСТ Р1-12-0.125. Любителям, которым не по карману достать нормативные акты, проще использовать справочные таблицы. Держим в уме факт: корпусы SMD от фирмы к фирме могут мелочами отличаться. Поскольку каждый производитель подгадывает элементную базу под собственную продукцию. У Samsung от материнской платы стиральной машины одно расстояние, LG — другое. Габариты SMD корпусов потребуются разные, условия отвода тепла, прочие требования выполняются.

Посему, приобретая, согласно цифрам справочника элемент, производите дополнительные замеры, если это важно. Например, в случае ремонта бытовой техники. В противном случае закупленные диоды могут не встать по месту назначения. Любители с SMD не связываются ввиду кажущейся сложности монтажа, но для мастеров это обычное дело, поскольку микроэлектроника невозможна без столь удачной технологии.

Выбирая диод, стоит держать в уме факт: многие корпусы могут быть по сути одним и тем же, но маркироваться по-разному. Некоторые обозначения вовсе лишены цифр. Удобно пользоваться поисковиками. Приведенная перекрестная таблица соответствия типоразмеров взята с сайта selixgroup.spb.ru.

SMD диоды часто выпускаются в корпусе SOD123. Если по одному торцы имеется полоса какого-либо цвета, либо тиснение, то это катод (то место, куда нужно подать отрицательную полярность, чтобы открыть p-n-переход). Если только на корпусе имеются надписи, то это обозначение корпуса. Если строчек свыше одной – характеризующая оболочку покрупнее.

Тип элемента и производитель

Понятно, тип корпуса для конструктора вещь второстепенная. Через поверхность элемента будет рассеиваться некоторое тепло. С этой точки зрения и нужно рассматривать диод. В остальном важны характеристики:

  • Рабочее и обратное напряжение.
  • Максимально допустимый ток через p-n-переход.
  • Мощность рассеяния и пр.

Эти параметры для полупроводниковых диодов указаны справочниками. Маркировка помогает найти нужное среди горы макулатуры. В случае SMD элемента ситуация намного сложнее. Нет единой системы обозначений. И в то же время легче – параметры от одного диода к другому меняются не слишком сильно. Разнятся по большому счету рассеиваемая мощность, рабочее напряжение. Каждый SMD элемент маркируется последовательностью из 8 букв и цифр, причём часть из знакомест может не использоваться вовсе. Так бывает в случае с ветеранами отрасли, гигантами электронной промышленности:

  1. Motorola (2).
  2. Texas Instruments.
  3. Ныне преобразованная и частично проданная Siemens (2).
  4. Maxim Integrated Product.

Упомянутые производители маркируются временами двойками литер MO, TI, SI, MX. Помимо этого пара букв адресует:

  • AD – Analog Devices;
  • HP – Hewlett-Packard;
  • NS – National Semiconductors;
  • PC, PS – Philips Components, Semiconductors, соответственно;
  • SE – Seiko Instruments.

Разумеется, внешний вид корпуса не всегда дает определить производителя, тогда в поисковик нужно немедленно набрать цифро-буквенную последовательность. Замечены другие примеры: диодная сборка NXP в корпусе SOD123W не несет никакой информации, помимо указанной строкой выше. Производитель приведенные сведения считает достаточными. Потому что SOD само по себе расшифровывается, как small outline diode. Прочее найдем на официальном сайте компании (nxp.com/documents/outline_drawing/SOD123W.pdf).

Пространство для печати ограничено, чем и объясняются такие упрощения. Производитель старается минимально затруднить себя выполнением маркировки. Часто применяется лазерная или трафаретная печать. Это позволит уместить 8 знаков на площади всего 4 квадратных миллиметра (Кашкаров А.П. «Маркировка радиоэлементов»). Помимо указанных для диодов используют следующие типы корпусов:

  1. Цилиндрический стеклянный MELF (Mini MELF).
  2. SMA, SMB, SMC.
  3. MB-S.

В довершение один и тот же цифро-буквенный код порой соответствует разным элементам. В этом случае придется анализировать электрическую схему. В зависимости от назначения диода предполагаются рабочий ток, напряжение, некоторые другие параметры. Согласно каталогам рекомендуется попытаться определить производителя, поскольку параметры имеют разброс несущественный, затрудняя правильную идентификацию изделия.

Прочая информация

Помимо указанных временами присутствуют иные сведения. Номер партии, дата выпуска. Такие меры предпринимаются, делая возможным отслеживания новых модификаций товара. Конструкторский отдел выпускает корректирующую документацию, снабженную номером, присутствует дата. И если сборочному цеху особенность нужно учесть, отрабатывая внесенные изменениями, мастерам следует читать маркировки.

Если же собрать аппаратуру по новым чертежам (электрическим схемам), применяя старые детали, то получится не то, что ожидалось. Проще говоря, изделие выйдет в отказ, отрадно, если это будет обратимый процесс. Ничего не сгорит. Но даже в этом случае начальник цеха наверняка получит по шапке, товар придется переделать в части неучтенного фактора.

Кроме диодов

На основе p-n-переходов создан миллиард модификаций диодов. Сюда относятся варикапы, стабилитроны и даже тиристоры. Каждому семейству присущи особенности, с диодами много сходства. Видим три глобальных вида:

  • устаревшая сегодня элементная база сравнительно большого размера, явно различимая маркировка, сформированная стандартными буквами, цифрами;
  • стеклянные корпусы, снабженные цветовой символикой;
  • SMD элементы.

Аналоги подбираются исходя из условий, указанных выше: мощность рассеяния, предельные напряжение, пропускаемый ток.

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Указание паспортных характеристик

Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.

  1. UCT – указывает, какое номинальное значение модуль способен стабилизировать.
  2. ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
  3. ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
  4. ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
  5. ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.

На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.


Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В


Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Маркировка smd стабилитронов в стеклянном корпусе импортные

Стабилитроны серии BZV55 – это кремниевые стабилитроны мощностью 0,5 Ватта для поверхностного монтажа. По существу, эти стабилитроны являются SMD аналогами стабилитронов серии BZX55. Диапазон стабилизации напряжения обычно составляет от 2,4 В до 75 В, хотя некоторые производители выпускают стабилитроны с напряжением стабилизации до 200 В .

Цветовая маркировка диодов в корпусах SOD-123

Диоды в корпусах SOD-123 кодируются цветными кольцами, расположенными со стороны катода. Соответствующие этим цветам, марки диодов показаны в таблице.
Полоса на катодеПрибор
Красная (Red)BA620, BB620
Желтая (Yellow)BA619, BB619
Зеленая (Green)BA585
Голубая (Blue)BA582, 583, 584
Белая (White)BA512, 515, BB515, 811

Цветовая маркировка диодов в корпусах SOD-80

Корпус SOD-80, известный также как MELF, представляет из себя маленький стеклянный цилиндр с металлическими выводами.

Примеры маркировки диодов.

Маркировка 2Y4 к 75Y (E24 серия) BZV49 1W кремниевый стабилитрон (2.4 – 75V)
Маркировка C2V4 к C75 (E24 серия) BZV55 500mW кремниевый стабилитрон (2.4 – 75V)

Катодный вывод помечен цветным кольцом.

Маркировка приборов цветными кольцами.

Вывод
катода
Прибор
Черный
(Black)
BAS32, BAS45,
BAV105 LL4148, 50, 51,53, LL4448 BB241,BB249
Черный и
кочичневый (Black Brown)
LL4148,
LL914
Черный и
оранжевый (Black Orange)
LL4150,
BB219
Коричневый и
зеленый (Brown Green)
LL300
Коричневый и
черный (Brown Black)
LL4448
Красный
(Red)
BA682
Красный и
оранжевый (Red Orange)
BA683
Красный и
зеленый (Red Green)
BA423L
Красный и
белый (Red White)
LL600
Оранжевый и
желтый (Orange Yellow)
LL3595
Желтый
(Yellow)
BZV55,BZV80,BZV81
series zeners
Зеленый
(Green)
BAV105,
BB240
Зеленый и
черный (Green Black)
BAV100
Зеленый и
кочичневый (Green Brown)
BAV101
Зеленый и
красный (Green Red)
BAV102
Зеленыый и
оранжевый (Green Orange)
BAV103
Серый
(Gray)
BAS81, 82, 83, 85,
86
Белый
(White)
BB219
Белый и
зеленый (White Green)
BB215

Некоторые SMD-диоды в цилиндрических корпусах MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41) часто маркируются цветными полосками (первая, ближняя к краю полоска расположена у катода) в соответствии с таблицей слева.

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Указание паспортных характеристик

Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.

  1. UCT – указывает, какое номинальное значение модуль способен стабилизировать.
  2. ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
  3. ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
  4. ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
  5. ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.

На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.

Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В

Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

«>

Маркировка стабилитронов: детальное описание | 1posvetu.ru

 

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

 

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Маркировка стабилитрона

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

В ней:

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

 

Импортные стабилитроны

Стабилитрон 4.3V 0.5W BZX55C 4V3, BZX79 C4V3
Стабилитрон 4.3V 1.3W 1N4731A, BZV85C-4V3
Стабилитрон 4.7V 0.5W BZX55C 4V7, BZX79 C4V7
Стабилитрон 4.7V 1.3W 1N4732A, BZV85C-4V7
Стабилитрон 5.1V 0.5W BZX55C 5V1, BZX79 C5V1
Стабилитрон 5.1V 1.3W 1N4733A, BZV85C-5V1
Стабилитрон 5.6V 0.5W BZX55C 5V6, BZX79 C5V6
Стабилитрон 5.6V 1.3W 1N4734A, BZV85C-5V6
Стабилитрон 6.2V 0.5W BZX55C 6V2, BZX79 C6V2
Стабилитрон 6.2V 1.3W 1N4735A, BZV85C-6V2
Стабилитрон 6.8V 0.5W BZX55C 6V8, BZX79 C6V8
Стабилитрон 6.8V 1.3W 1N4736A, BZV85C-6V8
Стабилитрон 7.5V 0.5W BZX55C 7V5, BZX79 C7V5
Стабилитрон 7.5V 1.3W 1N4737A, BZV85C-7V5
Стабилитрон 8.2V 0.5W BZX55C 8V2, BZX79 C8V2
Стабилитрон 8.2V 1.3W 1N4738A, BZV85C-8V2
Стабилитрон 9.1V 0.5W BZX55C 9V1, BZX79 C9V1
Стабилитрон 9.1V 1.3W 1N4739A, BZV85C-9V1
Стабилитрон 10V 0.5W BZX55C,79 10V, 1N5240, 1N758
Стабилитрон 10V 1.3W 1N4740A, BZV85C-10V
Стабилитрон 11V 0.5W BZX55C 11V, BZX79 C11V
Стабилитрон 12V 0.5W BZX55C 12V, BZX79 C12V
Стабилитрон 12V 1.3W 1N4742A, BZV85C-12V
Стабилитрон 13V 0.5W BZX55C 13V, BZX79 C13V
Стабилитрон 13V 1.3W 1N4743A, BZV85C-13V
Стабилитрон 15V 0.5W BZX55C 15V, BZX79 C15V
Стабилитрон 15V 1.3W 1N4744A, BZV85C-15V
Стабилитрон 18V 0.5W BZX55C 18V, BZX79 C18V
Стабилитрон 18V 1.3W 1N4746A, BZV85C-18V
Стабилитрон 20V 0.5W BZX55C 20V, BZX79 C20V
Стабилитрон 20V 1.3W 1N4747A, BZV85C-20V
Стабилитрон 22V 0.5W BZX55C 22V, BZX79 C22V
Стабилитрон 22V 1.3W 1N4748A, BZV85C-22V
Стабилитрон 24V 0.5W BZX55C 24V, BZX79 C24V
Стабилитрон 24V 1.3W 1N4749A, BZV85C-24V
Стабилитрон 27V 0.5W BZX55C 27V, BZX79 C27V
Стабилитрон 27V 1.3W 1N4750A, BZV85C-27V
Стабилитрон 30V 0.5W BZX55C 30V, BZX79 C30V
Стабилитрон 30V 1.3W 1N4751A, BZV85C-30V
Стабилитрон 33V 0.5W BZX55C 33V, BZX79 C33V
Стабилитрон 33V 1.3W 1N4752A, BZV85C-33V
Стабилитрон 36V 0.5W BZX55C 36V, BZX79 C36V
Стабилитрон 36V 1.3W 1N4753A, BZV85C-36V
Стабилитрон 39V 1.3W 1N4754A, BZV85C-39V
Стабилитрон 43V 1.3W 1N4755A, BZV85C-43V
Стабилитрон 47V 0.5W BZX55C 47V, BZX79 C47V
Стабилитрон 47V 1.3W 1N4756A, BZV85C-47V
Стабилитрон 51V 1.3W 1N4757A, BZV85C-51V
Стабилитрон 56V 1.3W 1N4758A, BZV85C-56V
Стабилитрон 75V 1.3W 1N4761A, BZV85C-75V
Стабилитрон 82V 1.3W 1N4762A, BZV85C-82V
Стабилитрон 91V 1.3W 1N4763A, BZV85C-91V
Стабилитрон 100V 0.5W BZX55C 100V, BZX79 C100V
Стабилитрон R2K 150v do-201
Стабилитрон R2KN Vz=150-170 V
Стабилитрон R2KY Vz=130-155 V
Стабилитрон R2M Vz=135-180 V
Стабилитрон RM25 (MA2560) 56V

Принцип работы и маркировка стабилитронов ⋆ diodov.net

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Еще статьи по данной теме

Маркировка импортных стеклянных диодов. Маркировка диодов: типы, особенности, производители

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.


Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:


Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода


Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:


Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

Как выбрать датчик движения для туалета Как правильно выбрать для дома радиовыключатель света с пультом, как подключить

Программа Color and Code имеет обширный сервис и позволяет решать комплекс задач разнообразного характера в одном приложении: находить номинал или вид радиокомпонентов по кодовой или цветовой маркировке, определять электрические параметры радиокомпонентов; выполнять радиотехнические расчеты; находить тип и выбирать нужные размеры радиокомпонентов; подбирать аналоги радиодеталей; изучать назначения ножек микросхем.

Описание программы Color and Code

В программе имеется возможность определять параметры большого спектра радиодеталей таких как – варикапов, транзисторов, конденсаторов, диодов, стабилитронов, резисторов, индуктивностей и чип-компонентов, как по кодовой цветовой, так и цветовой маркировке.

Цветовая маркировка резисторов


Кодовая и цветовая маркировка транзисторов

Можно определять тип транзистора по двум и четырем цветным точкам. Также есть функция определения по графическим символам, горизонтальное и вертикальное обозначение, смешанной и нестандартной.



Маркировка диодов, стабилитронов, варикапов

Диоды, стабилитроны, варикапы определяются по цветным кольцам от 1 до 3 колец.

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Указание паспортных характеристик

Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.

  1. UCT – указывает, какое номинальное значение модуль способен стабилизировать.
  2. ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
  3. ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
  4. ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
  5. ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.

На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.


Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В


Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Маркировка диодов – краткое графическое условное обозначение элемента, на корпус которого нанесено. Элементная база в настоящее время настолько разнообразна, сокращения отличаются весьма существенно. Сложно идентифицировать диод: стабилитрон, туннельный, Ганна. Выпущены разновидности, напоминающие газоразрядную лампочку. Светодиоды горят, дополняя путаницу.

Диоды полупроводниковые

Быть может, раздел называется несколько тривиально, нужно было обычные диоды отличить от морально устаревших электронных ламп, современнейших SMD модификаций. Рядовые полупроводниковые диоды – самое простое горе радиолюбителя. Боковина цилиндрического корпуса с дисковым основанием, ножками содержит нанесенную краской легко различимую надпись.

Полупроводниковые резисторы. Отличите невооруженным глазом?

Цвет корпуса значения не играет, размер косвенно указывает рассеиваемую мощность. У мощных диодов зачастую в наличии резьба под гайку крепления радиатора. Итог расчета теплового режима показывает недостаток собственных возможностей корпуса, система охлаждения дополняется навесным элементом. Сегодня потребляемая мощность падает, снижая линейные размеры корпусов приборов. Указанное позволило использовать стекло. Новый материал корпуса дешевле, долговечнее, безопаснее.

  • Первое место занимает буква или цифра, кратко характеризующая материал элемента:
  1. Г (1) – соединения германия.
  2. К (2) – соединения кремния.
  3. А (3) – арсенид галлия.
  4. И (4) – соединения индия.
  • Вторая буква в нашем случае Д. Диод выпрямительный, либо импульсный.
  • Третье место облюбовала цифра, характеризующая применимость диода:
  1. Низкочастотные, током ниже 0,3 А.
  2. Низкочастотные, током 0,3 — 10 А.
  3. Не используется.
  4. Импульсные, время восстановления свыше 500 нс.
  5. Импульсные, время восстановления 150 — 500 нс.
  6. То же, время восстановления 30 — 150 нс.
  7. То же, время восстановления 5 — 30 нс.
  8. То же, время восстановления 1 — 5 нс.
  9. Импульсные, время жизни неосновных носителей ниже 1 нс.
  • Номер разработки составлен двумя цифрами, может отсутствовать вовсе. Номинал ниже 10 дополняется слева нулем. Например, 07.
  • Номер группы обозначается буквой, определяет различия свойств, параметров. Буква зачастую является ключевой, может указывать рабочее напряжение, прямой ток, многое другое.

В дополнение к маркировке справочники приводят графики, по которым можно решить задачи выбора рабочей точки радиоэлемента. Могут указываться сведения о технологии производства, материале корпуса, массе. Помогает информация проектировщику аппаратуры, любителям практического смысла не несет.

Импортные системы обозначения отличаются от отечественных, хорошо стандартизированы. Поэтому при помощи специальных таблиц достаточно просто отыскать подходящие аналоги.

Цветовая маркировка

Каждый радиолюбитель знает сложность идентификации диодов, окруженных стеклянным корпусом. На одно лицо. Временами производитель удосуживается нанести четкие метки, разноцветные кольца. Согласно системе обозначений, вводится три признака:

  1. Метки областей катода, анода.
  2. Цвет корпуса, заменяемый цветной точкой.

Согласно положению вещей, с первого взгляда отличим типы диодов:

  1. Семейство Д9 маркируется одним-двумя цветными кольцами района анода.
  2. Диоды КД102 в районе анода обозначаются цветной точкой. Корпус прозрачный.
  3. КД103 имеют дополняющий точку цветной корпус, исключая 2Д103А, обозначаемый белой точкой области анода.
  4. Семейства КД226, 243 маркируются кольцом области катода. Прочих меток не предусмотрено.
  5. Два цветных кольца в районе катода можно увидеть у семейства КД247.
  6. Диоды КД410 обозначаются точкой в районе анода.

Имеются другие явно различимые метки. Более подробную классификацию найдете, проштудировав издание Кашкарова А.П. По маркировке радиоэлементов. Новичков тревожит вопрос определения расположения катода и анода.

  1. Видите: одна боковина цилиндра снабжена темной полосой — найден катод. Цветная может являться частью обсуждаемой сегодня маркировки.
  2. Умея эксплуатировать мультиметр, анод легко отыскать. Электрод, куда приложим красный щуп, чтобы открыть вентиль (услышим звонок).
  3. Новый диод снабжен усиком анода более длинным, нежели катода.
  4. Сквозь стеклянный корпус светодиода посмотрим через увеличительное стекло: металлический анод напоминает наконечник копья, размерами меньше катода.
  5. Старые диоды содержали стрелочную маркировку. Острие — катод. Позволит определять направление включения визуально. Современным радиомонтажникам приходится тренировать сообразительность, остроту зрения, точность манипуляций.

Зарубежные изделия получили другую систему обозначений. Выбирая аналог, используйте специальные таблицы соответствия. Остальным импортная база мало отличается от отечественной. Маркировка проводится согласно стандартам JEDEC (США), европейской системе (PRO ELECTRON). Красочные таблицы расшифровки цветового кода широко представлены сетевыми источниками.


Цветовая маркировка

SMD диоды

В SMD исполнении корпус диода иногда настолько мал, маркировка отсутствует вовсе. Характеристики приборов мало зависят от габаритов. Последние сильно влияют на рассеиваемую мощность. Больший ток проходит по цепи, большие размеры должен иметь диод, отводящий возникающее (закон Джоуля-Ленца) тепло. Сообразно написанному маркировка SMD диода может быть:

  1. Полная.
  2. Сокращенная.
  3. Отсутствие маркировки.

SMD элементы в общем объеме электроники занимают примерно 80% объема. Поверхностный монтаж. Изобретенный способ электрического соединения максимально удобен автоматизированным линиям сборки. Маркировка диода SMD может не совпадать с наполнением корпуса. При большом объеме производства изготовители начинают хитрить, ставить внутрь вовсе не то, что нанесено условным обозначением. От большого количества несогласованных между собою стандартов возникает путаница использования выводов микросхем (для диодов — микросборки).

Корпус

Маркировка может включать 4 цифры, указывающие типоразмер корпуса. Прямо никак не соответствуют габаритам, поинтересуйтесь подробнее вопросом в ГОСТ Р1-12-0.062, ГОСТ Р1-12-0.125. Любителям, которым не по карману достать нормативные акты, проще использовать справочные таблицы. Держим в уме факт: корпусы SMD от фирмы к фирме могут мелочами отличаться. Поскольку каждый производитель подгадывает элементную базу под собственную продукцию. У Samsung от материнской платы стиральной машины одно расстояние, LG — другое. Габариты SMD корпусов потребуются разные, условия отвода тепла, прочие требования выполняются.

Посему, приобретая, согласно цифрам справочника элемент, производите дополнительные замеры, если это важно. Например, в случае ремонта бытовой техники. В противном случае закупленные диоды могут не встать по месту назначения. Любители с SMD не связываются ввиду кажущейся сложности монтажа, но для мастеров это обычное дело, поскольку микроэлектроника невозможна без столь удачной технологии.

Выбирая диод, стоит держать в уме факт: многие корпусы могут быть по сути одним и тем же, но маркироваться по-разному. Некоторые обозначения вовсе лишены цифр. Удобно пользоваться поисковиками. Приведенная перекрестная таблица соответствия типоразмеров взята с сайта selixgroup.spb.ru.

SMD диоды часто выпускаются в корпусе SOD123. Если по одному торцы имеется полоса какого-либо цвета, либо тиснение, то это катод (то место, куда нужно подать отрицательную полярность, чтобы открыть p-n-переход). Если только на корпусе имеются надписи, то это обозначение корпуса. Если строчек свыше одной – характеризующая оболочку покрупнее.

Тип элемента и производитель

Понятно, тип корпуса для конструктора вещь второстепенная. Через поверхность элемента будет рассеиваться некоторое тепло. С этой точки зрения и нужно рассматривать диод. В остальном важны характеристики:

  • Рабочее и обратное напряжение.
  • Максимально допустимый ток через p-n-переход.
  • Мощность рассеяния и пр.

Эти параметры для полупроводниковых диодов указаны справочниками. Маркировка помогает найти нужное среди горы макулатуры. В случае SMD элемента ситуация намного сложнее. Нет единой системы обозначений. И в то же время легче – параметры от одного диода к другому меняются не слишком сильно. Разнятся по большому счету рассеиваемая мощность, рабочее напряжение. Каждый SMD элемент маркируется последовательностью из 8 букв и цифр, причём часть из знакомест может не использоваться вовсе. Так бывает в случае с ветеранами отрасли, гигантами электронной промышленности:

  1. Motorola (2).
  2. Texas Instruments.
  3. Ныне преобразованная и частично проданная Siemens (2).
  4. Maxim Integrated Product.

Упомянутые производители маркируются временами двойками литер MO, TI, SI, MX. Помимо этого пара букв адресует:

  • AD – Analog Devices;
  • HP – Hewlett-Packard;
  • NS – National Semiconductors;
  • PC, PS – Philips Components, Semiconductors, соответственно;
  • SE – Seiko Instruments.

Разумеется, внешний вид корпуса не всегда дает определить производителя, тогда в поисковик нужно немедленно набрать цифро-буквенную последовательность. Замечены другие примеры: диодная сборка NXP в корпусе SOD123W не несет никакой информации, помимо указанной строкой выше. Производитель приведенные сведения считает достаточными. Потому что SOD само по себе расшифровывается, как small outline diode. Прочее найдем на официальном сайте компании (nxp.com/documents/outline_drawing/SOD123W.pdf).

Пространство для печати ограничено, чем и объясняются такие упрощения. Производитель старается минимально затруднить себя выполнением маркировки. Часто применяется лазерная или трафаретная печать. Это позволит уместить 8 знаков на площади всего 4 квадратных миллиметра (Кашкаров А.П. «Маркировка радиоэлементов»). Помимо указанных для диодов используют следующие типы корпусов:

  1. Цилиндрический стеклянный MELF (Mini MELF).
  2. SMA, SMB, SMC.
  3. MB-S.

В довершение один и тот же цифро-буквенный код порой соответствует разным элементам. В этом случае придется анализировать электрическую схему. В зависимости от назначения диода предполагаются рабочий ток, напряжение, некоторые другие параметры. Согласно каталогам рекомендуется попытаться определить производителя, поскольку параметры имеют разброс несущественный, затрудняя правильную идентификацию изделия.

Прочая информация

Помимо указанных временами присутствуют иные сведения. Номер партии, дата выпуска. Такие меры предпринимаются, делая возможным отслеживания новых модификаций товара. Конструкторский отдел выпускает корректирующую документацию, снабженную номером, присутствует дата. И если сборочному цеху особенность нужно учесть, отрабатывая внесенные изменениями, мастерам следует читать маркировки.

Если же собрать аппаратуру по новым чертежам (электрическим схемам), применяя старые детали, то получится не то, что ожидалось. Проще говоря, изделие выйдет в отказ, отрадно, если это будет обратимый процесс. Ничего не сгорит. Но даже в этом случае начальник цеха наверняка получит по шапке, товар придется переделать в части неучтенного фактора.

Кроме диодов

На основе p-n-переходов создан миллиард модификаций диодов. Сюда относятся варикапы, стабилитроны и даже тиристоры. Каждому семейству присущи особенности, с диодами много сходства. Видим три глобальных вида:

  • устаревшая сегодня элементная база сравнительно большого размера, явно различимая маркировка, сформированная стандартными буквами, цифрами;
  • стеклянные корпусы, снабженные цветовой символикой;
  • SMD элементы.

Аналоги подбираются исходя из условий, указанных выше: мощность рассеяния, предельные напряжение, пропускаемый ток.

Цветовая маркировка японских диодов в стеклянном корпусе. Цвет программы и код

Маркировка диодов представляет собой короткий графический элемент символа, на корпусе которого нанесен. Элементная база сейчас настолько разнообразна, что сокращения очень значительны. Диод определить сложно: стабилитрон, туннельный, Ганна. Есть разновидности, напоминающие газоразрядную лампочку. Светодиоды горят, завершая неразбериху.

Полупроводниковые диоды

Пожалуй, раздел называют несколько банальным, нужно было отличать обычные диоды от устаревших электронных ламп, самых современных модификаций SMD.Обычные полупроводниковые диоды — простейшее крепление радиолюбителя. На боковой стенке цилиндрического корпуса с дисковым основанием, на ножках нанесена хорошо различимая надпись, окрашенная краской.

Резисторы полупроводниковые. Отличить невооруженным глазом?

Цвет корпуса значения не имеет, размер косвенно указывает на рассеиваемую мощность. У мощных диодов часто бывает резьба под гайку крепления радиатора. Результат расчета теплового режима показывает отсутствие собственных возможностей корпуса, система охлаждения дополнена навесным элементом.Сегодня снижается энергопотребление, уменьшаются линейные размеры приборных шкафов. Это позволило нам использовать стекло. Новый материал корпуса дешевле, прочнее, безопаснее.

  • Первое место занимает буква или цифра, кратко характеризующая материал элемента:
  1. Г (1) — соединения германия.
  2. K (2) — соединение кремния.
  3. A (3) — арсенид галлия.
  4. А (4) — соединения индия.
  • Вторая буква в нашем случае — D.Диодный выпрямительный, или импульсный.
  • Третье место выбрала цифра, характеризующая применимость диода:
  1. Низкочастотный, ток до 0,3 А.
  2. Низкочастотный, ток 0,3 — 10 А.
  3. Не используется.
  4. Импульс, время восстановления более 500 нс.
  5. Импульс, время восстановления 150 — 500 нс.
  6. То же, время восстановления 30 — 150 нс.
  7. То же, время восстановления 5 — 30 нс.
  8. То же, время восстановления 1 — 5 нс.
  9. Импульсный, время жизни неосновных носителей менее 1 нс.
  • Номер разработки состоит из двух цифр, может вообще отсутствовать. Номинал ниже 10 дополнен нулем слева. Например, 07.
  • Номер группы обозначается буквой, он определяет различия между свойствами и параметрами. Буква часто является ключевой, она может обозначать рабочее напряжение, постоянный ток и многое другое.

В справочниках помимо разметки приведены графики, на которых можно решать задачи выбора рабочей точки радиоэлемента.Может быть указана информация о технологии изготовления, материале корпуса и массе. Информация предоставлена ​​разработчику оборудования, любители практического значения не несут.

Импортные системы обозначений отличаются от отечественных, хорошо стандартизированы. Поэтому с помощью специальных таблиц достаточно найти подходящие аналоги.

Цветовая маркировка

Каждый радиолюбитель знает сложность идентификации диодов в стеклянном корпусе.Одно лицо. Порой производитель удосуживается нанести четкие метки, разноцветные кольца. Согласно системе обозначений вводятся три характеристики:

  1. Метки областей катода, анода.
  2. Цвет корпуса, заменен цветной точкой.

По положению вещей на первый взгляд различаем типы диодов:

  1. Семейство D9 маркируется одним или двумя цветными кольцами анодной области.
  2. Диоды КД102 в области анода обозначены цветной точкой.Корпус прозрачный.
  3. KD103 имеют корпус дополнительного точечного цвета, за исключением 2D103A, обозначенного белой точкой анодной области.
  4. Семейства КД226, 243 отмечены кольцом катодной области. Других лейблов нет.
  5. Два цветных кольца вокруг катода можно увидеть из семейства KD247.
  6. Диоды КД410 обозначены точкой в ​​анодной области.

Есть и другие четко различимые знаки. Более подробную классификацию можно найти, изучив публикацию Кашкарова А.П.О маркировке радиоэлементов. Новичков волнует расположение катода и анода.

  1. Видите: на одной стороне цилиндра есть темная полоса — катод обнаружен. Цвет может быть частью обсуждаемой сегодня маркировки.
  2. Имея возможность управлять мультиметром, найти анод несложно. Электрод, к которому мы присоединяем красный щуп для открытия клапана (слышим звонок).
  3. Новый диод оснащен антенной антенной длиннее катода.
  4. Посмотрим через стеклянный корпус светодиода в увеличительное стекло: металлический анод напоминает острие копья, меньше катода.
  5. На старых диодах была стрелка. Дело в катоде. Позволяет визуально определить направление включения. Современные радиомониторы должны тренировать сообразительность, остроту зрения, точность манипуляций.

Иностранная продукция получила иную систему обозначений. При выборе аналога используйте специальные таблицы соответствия.В остальном импортная база мало отличается от отечественной. Маркировка осуществляется по стандартам JEDEC (США), европейской системы (PRO ELECTRON). Цветные таблицы расшифровки цветового кода широко представлены сетевыми источниками.


Цветовая маркировка

SMD-диоды

В SMD корпус диода иногда настолько мал, что маркировки нет вообще. Характеристики инструментов мало зависят от габаритов. Последние сильно влияют на рассеиваемую мощность.Чем больше ток проходит через цепь, тем больших размеров должен быть диод, который отводит возникающее тепло (закон Джоуля-Ленца). По письменной маркировке диод SMD может быть:

  1. Complete.
  2. Укороченный.
  3. Отсутствие маркировки.

SMD элементы в общей электронике занимают около 80% объема. Монтаж на поверхность. Изобретенный способ электрического подключения наиболее удобен для автоматизированных сборочных линий. Маркировка SMD диода может не совпадать с начинкой корпуса.При большом объеме производства производители начинают лукавить, помещать внутрь не то, что обозначено символом. Из большого количества несогласованных стандартов возникает путаница по поводу использования распиновки (для диодов — микросборки).

Корпус

Маркировка может состоять из 4 цифр, обозначающих тип корпуса. Напрямую никак не соответствует габаритам, подробнее задайте вопрос в ГОСТ Р1-12-0.062, ГОСТ Р1-12-0.125. Любителям, которым не по карману приобретение нормативных актов, проще воспользоваться справочными таблицами.Помним о том, что состав SMD-корпуса от фирмы к компании может отличаться в деталях. Как каждый производитель угадывал элементную базу для своей продукции. У Samsung одно расстояние от материнской платы стиральной машины, у LG другое. Размеры корпусов SMD будут отличаться, условия отвода тепла, другие требования выполняются.

Поэтому закупая, по цифрам элемента справочника, сделайте дополнительные замеры, если это важно. Например, в случае ремонта бытовой техники.В противном случае купленные диоды могут не стоять по назначению. Вентиляторы с SMD не общаются из-за кажущейся сложности монтажа, но для мастеров это обычное дело, ведь без столь успешной технологии микроэлектроника невозможна.

Выбирая диод, стоит помнить о том, что многие корпуса могут быть практически одинаковыми, но маркированы по-разному. Некоторые обозначения полностью лишены цифр. Удобно пользоваться поисковыми системами. Приведенная кросс-таблица соответствия типоразмеров взята с сайта selixgroup.spb.ru.

SMD-диоды часто доступны в корпусе SOD123. Если на одном конце есть полоска любого цвета или тисненая, это катод (место, где нужно приложить отрицательную полярность, чтобы открыть p-n-переход). Если только на корпусе есть надписи, то это обозначение корпуса. Если строк больше одной — характеристика снаряда крупнее.

Тип и производитель предмета

Понятно, что тип корпуса для дизайнера — дело второстепенное. Некоторое количество тепла будет рассеиваться по поверхности элемента.С этой точки зрения нам нужно рассмотреть диод. В остальном важны следующие характеристики:

  • Рабочее и обратное напряжение.
  • Максимально допустимый ток через p-n-переход.
  • Рассеиваемая мощность и т. Д.

Эти параметры для полупроводниковых диодов указаны в справочниках. Маркировка помогает найти нужную среди горы макулатуры. В случае с SMD-элементом ситуация намного сложнее. Единой системы обозначений нет.И в то же время проще — параметры от одного диода к другому не сильно меняются. Рассеиваемая мощность, рабочее напряжение по большому счету различаются. Каждый SMD-элемент помечен последовательностью из 8 букв и цифр, а часть знакоместа вообще не может быть использована. Так обстоят дела с ветеранами индустрии, гигантами электронной индустрии:

  1. Motorola (2).
  2. Техасские инструменты.
  3. Сейчас переоборудован и частично продан Siemens (2).
  4. Максим Интегрированный продукт.

Указанные производители иногда обозначаются двойкой MO, TI, SI, MX. Кроме того, пара букв адреса:

  • AD — Analog Devices;
  • л.с. — Hewlett-Packard;
  • NS — National Semiconductors;
  • PC, PS — Philips Components, Semiconductors соответственно;
  • SE — Инструменты Seiko.

Конечно, не всегда внешний вид корпуса определяет производителя, тогда поисковик должен сразу набирать буквенно-цифровую последовательность.Приведены и другие примеры: диодная сборка NXP в корпусе SOD123W не несет никакой информации, кроме указанной выше строки. Производитель считает эту информацию достаточной. Потому что сам SOD расшифровывается как небольшой контурный диод. Остальную информацию находим на официальном сайте компании (nxp.com/documents/outline_drawing/SOD123W.pdf).

Пространство для печати ограничено, что объясняет такие упрощения. Производитель старается минимизировать сложность выполнения маркировки.Часто используется лазерная или трафаретная печать. Так уместится 8 знаков на площади всего 4 квадратных миллиметра (Кашкаров А.П. «Маркировка радиоэлементов»). Помимо указанных диодов используются корпуса следующих типов:

  1. Цилиндрический стеклянный MELF (Mini MELF).
  2. SMA, SMB, SMC.
  3. МБ-С.

В довершение всего, один и тот же буквенно-цифровой код иногда соответствует разным элементам. В этом случае необходимо провести анализ электрической схемы.В зависимости от назначения диода предполагаются рабочий ток, напряжение и некоторые другие параметры. По каталогам рекомендуется попытаться идентифицировать производителя, так как параметры имеют незначительный разброс, что затрудняет правильную идентификацию товара.

другая информация

Помимо указанного времени, есть и другая информация. Номер лота, дата выпуска. Такие меры принимаются, что дает возможность отслеживать новые модификации товара.Конструкторский отдел выдает корректирующую документацию, с номером, есть дата. И если монтажному отделу приходится учитывать особенность, при отработке внесенных изменений мастерам следует ознакомиться с маркировкой.

Если вы собираете оборудование по новым чертежам (электрические схемы), используя старые детали, вы не получите того, чего ожидали. Проще говоря, продукт выйдет из строя, отрадно, если это обратимый процесс. Ничего не горит. Но даже в этом случае заведующий магазином наверняка получит шляпу, товар придется переделать в рамках неучтенного фактора.

Помимо диодов

На основе p-n-переходов создано миллиард модификаций диодов. Сюда входят варикапы, стабилитроны и даже тиристоры. У каждого семейства есть особенности, с диодами много общего. Мы видим три глобальных вида:

  • элементная база относительно большого размера, которая сегодня устарела, четко различимая маркировка, образованная стандартными буквами и цифрами;
  • корпуса стеклянные, снабженные цветными обозначениями;
  • Элементы SMD.

Аналоги выбираются исходя из условий, указанных выше: рассеиваемая мощность, ограничение напряжения, прохождение тока.

Стабилитрон также называют эталонным диодом. Стабилитроны предназначены для стабилизации выходного напряжения при колебаниях входного напряжения или изменении значения нагрузки ( рис. 1 ).

Рис.1 — Функциональная схема стабилитрона

Например, если вам нужно получить на нагрузку 5 В, а напряжение блока питания колеблется в пределах 9 В.Для того, чтобы снизить и стабилизировать напряжение, подаваемое от блока питания, используются стабилитроны до необходимых 5 В. Конечно, можно применить и стабилизаторы напряжения, в этом случае подойдут или. Однако их использование не всегда оправдано, поэтому в некоторых случаях используют стабилитроны.

Внешне они похожи на диоды и имеют вид, показанный на рис. . 2 .


Рис.2 — Внешний вид стабилитронов

Обозначение стабилитронов на схемах приведено в рис.3 .


Принцип работы стабилитрона

Теперь посмотрим, как стабилитрон выполняет стабилизацию напряжения.

Однако основной характеристикой стабилитрона, как и диода, является вольт-амперная характеристика (ВАХ). Он показывает зависимость тока, протекающего через стабилитрон, от величины приложенного напряжения ( рис. 4 ).

Напряжение переменного тока стабилитрона имеет две ветви.


Рис.4 — Напряжение стабилитрона

Прямая ветвь стабилитрона практически не отличается от прямых ветвей обычных диодов и для последних также будет рабочей.

Нормальный режим работы стабилитрона — это когда он находится под обратным напряжением. Следовательно, обратная ветка у него будет работать. Он расположен практически параллельно оси обратных токов. На этой кривой есть две точки: 1 и 2 ( рис.4 ), между ними находится рабочая область стабилитрона.

При определенном значении обратного напряжения U арт. происходит электрический пробой p стабилитрон и через него течет уже значительный ток. Однако, когда ток сильно отличается от значения Imin до Imax Падение напряжения на стабилитроне U арт. практически не меняется ( рис. 4 ). Благодаря этому свойству напряжение стабилизируется.

Если ток, протекающий через стабилитрон, превышает значение Imax , то полупроводниковая структура перегреется, произойдет тепловой пробой и выйдет из строя стабилитрон.

К источнику питания УИП Стабилитрон подключается через токоограничивающий резистор Roger , который служит для ограничения тока, протекающего через стабилитрон, а также вместе с ним образует делитель напряжения ( рис.5 ).


Рис.5 — Схема подключения стабилитрона

Обратите внимание, в отличие от диода, стабилитрон подключен в обратном направлении, т. Е. «+» Источника питания подается на катод, а «-» — на анод.

Параллельно выводам стабилитрона подключается нагрузка R г. , на выводах которого требуется поддерживать стабильное напряжение.

Процесс стабилизации напряжения следующий. По мере увеличения напряжения источника питания общий ток цепи увеличивается I , а значит и текущий Ist , протекающий через стабилитрон ВД , а также увеличивается падение напряжения на токоограничивающем резисторе R ог . При этом напряжение на стабилитроне и соответственно на нагрузке остается практически неизменным.

При изменении сопротивления нагрузки общий ток перераспределяется I между стабилитроном и нагрузкой, а величина напряжения на них практически не меняется.

Если напряжение на нагрузке больше, чем напряжение стабилизации стабилитрона, несколько стабилитронов подключаются последовательно. Например, если необходимо получить стабильное напряжение 10 В, то при отсутствии необходимого стабилитрона можно последовательно подключить два стабилитрона по 5 В ( рис.6-й ).


Рис.6 — Последовательное подключение стабилитронов

Также стабилитроны успешно используются в системах автоматизации в качестве датчиков, реагирующих на изменение напряжения. Например, если напряжение превышает определенное значение, стабилитрон открывается и через катушку реле протекает ток. В результате реле сработает и даст команду другим устройствам или просто сигнализирует о превышении определенного уровня напряжения.

Помимо стабилизации постоянного напряжения, стабилизаторы также могут стабилизировать переменное напряжение.Для этого используйте последовательный счетчик включение двух стабилитронов ( рис. 7-й ).


Рис.7 — Схема стабилитрона на переменном напряжении

Только на выходе будет не идеальная синусоида, а с обрезанными вершинами, т.е. форма напряжения будет приближена к трапеции ( рис.8, 9 ).


Фиг.8 — Осциллограмма входного напряжения


Рис.9 — Осциллограмма напряжения на стабилитроне

Использовано несколько способов маркировки стабилитронов. Стабилитроны в стеклянном корпусе, имеющие гибкие клеммы, маркированы самым понятным образом. Как правило, на корпусе размещаются цифры, разделенные латинской буквой «V». Например, 4 В 7 означает, что напряжение стабилизации равно 4.7 В; 9 В 1 — 9,1 В и т. Д. ( рис.10 ).


Рис.10 — Маркировка стабилитронов в стеклянных корпусах

Стабилитрон

в пластиковом корпусе имеет маркировку в виде цифр и букв. Сами по себе эти цифры ни о чем не говорят, однако с помощью дашшита их легко расшифровать. Например, обозначение 1N5349B означает, что напряжение стабилизации составляет 12 В ( рис.одиннадцать ). В этой маркировке кроме напряжения учитываются и другие параметры стабилитрона.


Рис.10 — Маркировка стабилитронов в пластиковых корпусах

Черное или серое кольцо, нанесенное на корпус стабилитрона, обозначает его катод ( рис. 12 ).


Фиг.12 —

Маркировка smd стабилитроны

В качестве маркировки smd стабилитронов используются цветные кольца.Аналогичная маркировка нанесена и на советские стабилитроны не smd. В импортных стабилитронах с катодной стороны нанесено цветное кольцо ( рис.13 ). Чтобы расшифровать цветные кольца, используйте датски или онлайн-расшифровку.


Рис.13 — SMD стабилитрон в стеклянном корпусе

Выпускаются также стабилитроны Smd

с тремя выводами ( рис. 14 ). Один из них не задействован.Эти выводы можно определить с помощью мультиметра.


Рис.14 — Стабилитрон SMD с тремя выводами

При отсутствии справочника, таблицы данных или нечеткой маркировки номинальное напряжение стабилитрона можно определить опытным путем. Сначала с помощью мультиметра нужно выяснить соответствующие выводы и подключить стабилитрон через токоограничивающий резистор ( см. Рис.5 ). Затем подайте напряжение от регулируемого источника питания. Плавно меняя входное напряжение, нужно следить за изменением напряжения на стабилитроне. Если напряжение на стабилитроне не меняется при изменении напряжения блока питания, то это будет его напряжение стабилизации.

Выводы стабилитрона определяются точно как и. Мультиметр должен быть установлен в режим проверки целостности цепи, и щупы должны касаться щупами ( рис. 15, 16 ).


Рис.15 — Постоянное напряжение


Рис.16 — Обратное напряжение

Под действием протекающего через стабилитрон тока нагревается. Выделяемое тепло рассеивается в окружающее пространство. Чем больше стабилитрон способен рассеивать тепло без перегрева, тем выше его мощность рассеивания и тем больший ток может проходить через него.Как правило, чем больше габариты стабилитрона, тем больше его рассеивающая способность ( рис.17 ).


Рис.17 — Рассеиваемая мощность стабилитронов

Имея дома радиоэлектронную лабораторию, вы можете самостоятельно изготовить различные приборы для своего электрооборудования или приборы, что существенно сэкономит на покупке оборудования. Важным элементом многих электрических схем устройств является стабилитрон.

Такой элемент (smd, cmd) является необходимой частью многих электрических цепей. Из-за широкой области применения стабилитрон имеет другую маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную информацию об этом элементе. Наша сегодняшняя статья поможет вам понять, какая цветовая маркировка встречается на корпусе (стекле и нет) импортных стабилитронов.

Что это за элемент электрических схем

Прежде чем мы начнем рассматривать вопрос о том, какой цветовой маркировкой у таких элементов существует, необходимо понять, о чем идет речь.

Вольт-амперная характеристика стабилитрона

Стабилитрон — это полупроводниковый диод, который предназначен для стабилизации постоянного напряжения в цепи на нагрузке. Чаще всего такой диод используется для стабилизации напряжения в различных блоках питания. Этот диод (смд) имеет участок с обратной ветвью вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую ​​область, стабилитрон в ситуации изменения параметра тока протекающего через диод от ИТС.МИН на ИТС.МАКС практически никаких изменений показателя напряжения не наблюдается. Этот эффект используется для стабилизации напряжения. В ситуации, когда нагрузка RH подключена параллельно CMD, тогда напряжение на диоде останется постоянным, а в указанных пределах ток, протекающий через стабилитрон.

Примечание! Стабилитрон (смд) способен стабилизировать напряжение выше 3,3 В.

Помимо CMD, есть еще векторы устойчивости, которые включаются при прямом включении.Они используются в ситуациях, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычные диоды можно использовать, когда необходимо стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7-2 В. В этом случае он практически не зависит от тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включить при прямом подключении.Хотя это будет не лучшим решением, так как стабилитрон в такой ситуации все равно будет эффективнее.
Стабисторы, как и smd, часто делают из кремния.
Стабилитроны маркируются в соответствии с их основными характеристиками. Эта маркировка имеет следующий вид:

  • УДК. Эта маркировка означает номинальное напряжение стабилизации;
  • ΔУст. Показывает отклонение индикатора напряжения от номинального напряжения стабилизации;
  • Ist. Указывает на ток, протекающий через диод при номинальном стабилизирующем напряжении;
  • Ist.min — минимальное значение тока, протекающего через стабилитрон. При таком значении такой SMD-диод будет иметь напряжение в диапазоне UST ± ΔUST;
  • Ist.MAX. Обозначает максимально допустимое значение тока, которое может протекать через стабилитрон.

Эта маркировка важна при выборе элемента для конкретной схемы подключения.

Обозначение элемента

Схематическое обозначение стабилитрона

Так как стабилитрон — это особый диод, то его обозначение от них не отличается.Схематично smd обозначается так:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого происходит прямое и обратное включение этого элемента.

Включение стабилитрона

На первый взгляд включение такого диода неверно, потому что его нужно подключать «наоборот». В ситуации подачи обратного напряжения на smd наблюдается явление «пробоя». В результате напряжение между его выводами остается неизменным.Поэтому он должен быть подключен к резистору последовательно, чтобы ограничить протекающий через него ток, что обеспечит падение «избыточного» напряжения с выпрямителя.

Примечание! Каждый диод, предназначенный для стабилизации напряжения, имеет свое напряжение «пробоя» (стабилизацию), а также имеет свой рабочий ток.

В связи с тем, что каждый стабилитрон имеет такие характеристики, можно рассчитать номинал резистора для него, который будет подключаться к нему последовательно.Для импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпус (стеклянный или нет). Обозначение таких smd-диодов всегда начинается с BZY … или BZX …, а их напряжение пробоя (стабилизации) обозначается буквой V. Например, обозначение 3V9 означает 3,9 вольта.

Примечание! Минимальное напряжение для стабилизации таких элементов 2 В.

Принцип стабилизации диодов

Несмотря на то, что CMD похож на диод, на самом деле это другой элемент электрической схемы.Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Этот элемент способен поддерживать в цепи постоянного тока постоянное давление. Такой принцип его работы используется при поставке различного радиооборудования.


Внешне CMD очень похож на стандартный полупроводник. Сходство сохраняется в структурных особенностях. Но в обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип работы smd будет достаточно понятным.

Примечание! При включении такого smd диода соблюдайте обратную полярность. Это означает, что подключение осуществляется анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. С увеличением обратного напряжения ток также увеличивается, только в этом случае его рост будет наблюдаться слабо.Подойдя к отметке, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После того, как «пробой» случился, через smd начинает течь обратный ток большого значения. Именно в этот момент элемент начинает работать до тех пор, пока не будет превышен его допустимый предел.

Как отличить стабилизационный диод от обычного полупроводникового

Очень часто спрашивают, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили ранее, оба этих элемента имеют практически идентичные обозначения на электрической схеме и могут выполнять схожие функции.
Самый простой способ Отличие полупроводниковой стабилизации от общепринятой заключается в применении схемы предусилителя к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, характерное для данного см (если оно, конечно, не превышает 35В).
Схема мультиметра представляет собой преобразователь постоянного тока в постоянный, в котором между входом и выходом гальваническая развязка.Эта схема имеет следующий вид:


Схема приставки мультиметра

Генератор с широтно-импульсной модуляцией выполнен на специальной микросхеме MC34063, и для создания гальванической развязки между измерительной частью схемы и источником питания необходимо снять управляющее напряжение с первичной обмотки трансформатора. Для этого на VD2 есть выпрямитель. В этом случае значение выходного напряжения или стабилизирующего тока устанавливается подбором резистора R3.На конденсаторе С4 вырабатывается напряжение около 40В.
В этом случае тестируемый VDX cm и стабилизатор тока A2 образуют параметрический стабилизатор. Мультиметр, подключенный к клеммам X1 и X2, будет измерять напряжение на стабилитроне.
Когда катод подключен к «-», а анод — к «+» диоду, а также к асимметричному CMD мультиметра, последний будет показывать небольшое напряжение. Если подключить с обратной полярностью (как на схеме), то в ситуации с обычным полупроводниковым прибором будет записывать напряжение около 40В.

Примечание! Для симметричного smd напряжение пробоя появится при любой полярности подключения.

Здесь трансформатор Т1 будет намотан на ферритовом сердечнике в форме тора с внешним диаметром 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка будет иметь 35 витков провода ПЭВ 0,43. Важно при намотке укладывать виток на виток. Следует помнить, что первичная обмотка идет на одну часть кольца, а вторая — на другую.
При настройке устройства подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать так, чтобы на конденсаторе С4
было напряжение 40В. Вот так можно узнать, стабилитрон у вас или обычный диод.

Подробная информация о цветовой маркировке стабилизирующего диода


Любой диод (стабилитрон и т. Д.) На корпусе имеет специальную маркировку, которая отражает, из какого материала был изготовлен каждый конкретный полупроводник.Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • письмо.

Кроме того, маркировка отражает электрические свойства и назначение устройства. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую версию устройства. Кроме того, в маркировке указывается дата изготовления и символ продукта. УИК
интегрального типа часто содержат полную маркировку. В этой ситуации на корпусе товара есть условный код, указывающий на тип микросхемы.Пример расшифровки маркировки кода на корпусе микросхем представлен на рисунке:


Пример маркировки чипа

Кроме того, есть еще и цветовая маркировка. Он существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Цветовая маркировка показана в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоса указывает тип устройства;
  • второй — полупроводник;
  • третий — что это за прибор, а также какая у него проводимость;
  • четвертый — номер разработки;
  • пятая модификация устройства.

Следует отметить, что четвертая и пятая полоски не очень важны для выбора товара.

Заключение

Как видите, у стабилитрона очень много разных маркировок и обозначений, о которых нужно помнить при выборе его для домашней лаборатории и изготовлении собственных электроприборов. Если вы хорошо разбираетесь в этом вопросе, то это залог правильного выбора.

Как выбрать датчик движения для унитаза Как правильно выбрать радио выключатель света с пультом, как подключить

отметок Зенера на полосах.Маркировка стабилитронов: подробное описание

Имея в доме радиоэлектронную лабораторию, вы можете своими руками изготовить различное электрооборудование или сами устройства, что существенно сэкономит на покупке оборудования. Важным элементом многих электрических схем устройств является стабилитрон.

Такой элемент (smd, smd) является необходимой частью многих электрических цепей. В связи с широким спектром применения стабилитрон имеет различную маркировку.Маркировка на корпусе такого диода дает подробную, но зашифрованную информацию об этом элементе. Наша сегодняшняя статья поможет вам понять, какая цветовая маркировка есть на корпусе (стекле, а не) импортных стабилитронов.

Что это за элемент электрических схем

Прежде чем перейти к вопросу о том, какой цветовой маркировкой у таких элементов существует, необходимо разобраться, о чем идет речь.

Вольт-амперная характеристика стабилитрона

Стабилитрон

— полупроводниковый диод, предназначенный для стабилизации электрической цепи.постоянное напряжение под нагрузкой. Чаще всего такой диод используется для стабилизации напряжения в источниках питания различных типов. Этот диод (смд) имеет участок с обратной ветвью вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую ​​площадь у стабилитрона в ситуации изменения параметра тока, протекающего через диод с ICTMIN на ICTMX, практически не наблюдается изменения индикатора напряжения. Этот эффект используется для стабилизации напряжения.В ситуации, когда нагрузка RH подключена параллельно SMD, то напряжение на диоде останется постоянным, а в заданных пределах изменения тока, протекающего через стабилитрон.

Примечание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме smd есть еще стабистроны, которые включаются при прямом включении. Они используются в ситуациях, когда есть необходимость стабилизировать напряжение в определенном диапазоне.Обычные диоды можно использовать, когда необходимо стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 — 2 В. При этом практически не зависит от силы тока. В своей работе стабилизаторы используют прямую ветвь вольт-амперной характеристики.
Их тоже стоит включить при прямом подключении. Хотя это будет не лучшим решением, так как стабилитрон в такой ситуации все равно будет эффективнее.
Стабилизаторы, как и smd, часто делают из кремния. Стабилитроны
имеют маркировку с указанием их основных характеристик. Эта маркировка выглядит следующим образом:

  • UCT. Эта маркировка означает номинальное напряжение стабилизации;
  • ΔUСТ. Означает отклонение индикатора напряжения от номинального напряжения стабилизации;
  • IST. Обозначает ток, протекающий через диод при номинальном напряжении стабилизации;
  • IST.MIN — минимальное значение тока, протекающего через стабилитрон.При этом значении такой smd-диод будет иметь напряжение в диапазоне UCT ± ΔUСТ;
  • IST.MAX. Означает максимально допустимую величину тока, который может протекать через стабилитрон.

Такая маркировка важна при выборе элемента для определенной схемы подключения.

Обозначения элемента электрической схемы

Схематическое обозначение стабилитрона

Так как стабилитрон — это особый диод, то его обозначение от них не отличается.Схематично smd обозначается так:

Стабилитрон, как и диод, включает в себя катодную и анодную части. Из-за этого происходит прямое и обратное включение этого элемента.

Включить стабилитрон

На первый взгляд включение такого диода некорректно, так как его нужно подключать «наоборот». В ситуации подачи на обратное напряжение наблюдается явление «пробоя». В результате напряжение между его выводами остается неизменным.Следовательно, он должен быть подключен последовательно к резистору, чтобы ограничить ток, проходящий через него, что обеспечит падение «лишнего» напряжения с выпрямителя.

Примечание! Каждый диод, предназначенный для стабилизации напряжения, имеет свою «пробивку» (стабилизацию) напряжения, а также имеет свой рабочий ток.

Благодаря тому, что каждый стабилитрон имеет такие характеристики, для него можно рассчитать номинал резистора, который будет подключен к нему последовательно.В импортных стабилитронах их напряжение стабилизации представлено в виде маркировки, нанесенной на корпус (стеклянный или нет). Обозначение таких smd-диодов всегда начинается с BZY … или BZX …, а их напряжение пробоя (стабилизации) обозначается буквой V. Например, обозначение 3V9 означает 3,9 вольта.

Примечание! Минимальное напряжение для стабилизации таких элементов 2 В.

Принцип работы диодов стабилизации

Несмотря на то, что SMD похож на диод, на самом деле это другой элемент электрической схемы.Конечно, он может работать как выпрямитель, но обычно используется для стабилизации напряжения. Этот элемент способен поддерживать в цепи постоянного тока постоянное давление. Этот принцип его работы используется в питании различного радиооборудования.


Внешне cmd очень похож на стандартный полупроводник. Сходство сохраняется в конструктивных особенностях. Но при обозначении такого радиоэлемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, принцип работы smd будет достаточно понятен.

Примечание! При включении такого smd диода необходимо соблюдать обратную полярность. Это означает, что соединение осуществляется анодом с минусом.

Проходя через этот элемент, цепь малого напряжения вызывает сильный ток. С увеличением обратного напряжения ток также увеличивается, только в этом случае его рост будет наблюдаться слабо. Достигнув отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит поломка.После произошедшего «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент начинается работа этого элемента до тех пор, пока он не превысит свой допустимый предел.

Как отличить стабилизационный диод от обычного полупроводникового

Очень часто люди задаются вопросом, как отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили ранее, оба этих элемента имеют практически одинаковое обозначение в электрической цепи и могут выполнять аналогичные функции.
Самый простой способ отличить стабилизирующий полупроводник от обычного — использовать приставку к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить характерное для данного SMD напряжение стабилизации (если оно, конечно, не превышает 35V).
Приставка мультиметра представляет собой преобразователь постоянного тока в постоянный с гальванической развязкой между входом и выходом. Эта схема имеет следующий вид:


Схема приставки мультиметра

В нем генератор с широтно-импульсной модуляцией выполнен на специальной микросхеме MC34063, а для создания гальванической развязки между измерительной частью схемы и источником питания необходимо снять управляющее напряжение с первичной обмотки трансформатора.Для этого есть выпрямитель на VD2. Значение выходного напряжения или стабилизации тока устанавливается подбором резистора R3. На конденсаторе С4 происходит сброс напряжения примерно 40В.
В этом случае тестовый SMD VDX и стабилизатор тока A2 образуют параметрический стабилизатор. Мультиметр, подключенный к клеммам X1 и X2, будет измерять напряжение на этом стабилитроне.
При подключении катода к «-», а анода к «+» диоду, а также к несимметричному cmd мультиметра, последний будет показывать небольшое напряжение.Если подключить с обратной полярностью (как на схеме), то в ситуации с обычным полупроводниковым прибором будет регистрироваться напряжение около 40В.

Примечание! Для симметричного SMD напряжение пробоя будет появляться при любой полярности подключения.

Здесь трансформатор Т1 будет намотан на ферритовом сердечнике тороидальной формы с внешним диаметром 23 мм. Эта обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43.При этом важно при намотке катушку намотать к катушке. Следует помнить, что первичная обмотка идет по одной части кольца, а вторая — по другой.
При настройке прибора подключите резистор вместо smd VDX. Этот резистор должен быть 10 кОм. И сопротивление R3 нужно подбирать так, чтобы на конденсаторе С4
было напряжение 40В. Так вы сможете узнать, стабилитрон у вас или нормальный.

Подробная информация о цветовой маркировке стабилизирующего диода


Любой диод (стабилитрон и др.) на его корпусе есть специальная маркировка, отражающая, из какого материала был изготовлен каждый конкретный полупроводник. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • письмо.

Кроме того, маркировка отражает электрические свойства и назначение устройства. Обычно за это отвечает фигура. Буква, в свою очередь, отражает соответствующий тип устройства. Кроме того, в маркировке указывается дата изготовления и символ продукта.
SMS-сообщения интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия есть условный код, указывающий на тип микросхемы. Пример расшифровки кодированной маркировки для корпуса микросхемы представлен на рисунке:


Пример маркировки чипа

Кроме того, есть еще и цветовая маркировка. Существует несколько вариантов, но чаще всего используется японская маркировка (JIS-C-7012). Цветовая маркировка легенды показана в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоса указывает тип устройства;
  • второй — полупроводник;
  • третье — что это за прибор, а также какова его проводимость;
  • четвертый — номер разработки;
  • пятая — модификация устройства.

Следует отметить, что четвертая и пятая полоски не очень важны для выбора товара.

Заключение

Как видите, для стабилитрона существует множество различных маркировок и обозначений, о которых необходимо помнить, выбирая его для домашней лаборатории и изготавливая различные электроприборы своими руками.Если вы умеете владеть этим вопросом, то это гарантия правильного выбора.

Как выбрать датчик движения для унитаза Как выбрать радио выключатель света для дома с пультом, как подключить

Любая электронная схема, независимо от назначения, содержит большое количество элементов, регулирующих и контролирующих протекание электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, ведь от этого параметра зависит стабильная и длительная работа цепи.

Для стабилизации входного напряжения в схему был разработан специальный модуль, который является буквально самой важной частью многих устройств. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому маркировка диодов на корпусе разная, что помогает определиться и выбрать подходящий вариант.

Еще немного о модуле и принципах его работы

Это полупроводниковый диод, который может создавать определенное значение напряжения независимо от приложенного к нему тока.Это утверждение не совсем верно для абсолютно всех вариантов, потому что разные модели имеют разные характеристики. Если очень сильный ток подается на непроектированный модуль SMD (или любой другой тип), он просто перегорит. Поэтому подключение производится после установки в качестве предохранителя токоограничивающего резистора, величина выходного тока которого равна максимально возможному значению входного тока в стабилизатор.

Он очень похож на обычный полупроводниковый диод, но имеет отличительную особенность — его подключение противоположное.То есть минус от источника питания подается на анод стабилитрона, а плюс — на катод. Таким образом, создается эффект обратного ветвления, который обеспечивает его свойства.

Аналогичный модуль — стабистор — подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входящего электричества точно известны и не колеблются, а точное значение также получается на выходе.

Спецификация паспортов

Это основные показатели отечественных и импортных стабилитронов, на которые необходимо ориентироваться при выборе стабилитрона для конкретной электронной схемы.

  1. UCT — указывает, какое номинальное значение модуль может стабилизировать.
  2. ΔUCT — используется для обозначения диапазона возможного отклонения входящего тока как безопасного износа.
  3. ICT — параметры тока, который может протекать при подаче на модуль номинального напряжения.
  4. ICT.MIN — показывает наименьшее значение, которое может пройти через стабилизатор. В этом случае напряжение, протекающее через диод, будет в диапазоне UCT ± ΔUCT.
  5. ICT.MAX — модуль не может выдерживать более высокое напряжение, чем это значение.

На фото ниже классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. Черная (реже серая) полоса рисуется по кругу, который находится со стороны катода. Противоположная сторона — анод. Этот метод применяется как для отечественных, так и для импортных диодов.


Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои обозначения, о которых будет сказано позже.Они настолько просты (в отличие от вариантов с пластиковыми корпусами), что практически сразу запоминаются наизусть, нет необходимости каждый раз пользоваться справочником.

Цветовая маркировка используется для пластиковых диодов, например, для СОТ-23. Корпус твердого модуля имеет два гибких вывода. На самом корпусе рядом с описанной выше полосой несколько цифр разделены одинаковым цветом, разделены латинскими буквами. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет выбирать любые параметры по обозначению, как в SMD.

Что означает этот кодовый знак? Он показывает напряжение стабилизации, на которое рассчитан этот элемент. Например, 1V3 показывает нам, что это значение составляет 1,3 В, а второй вариант — 9 вольт. Обычно, чем больше сам корпус, тем лучше он обладает стабилизирующими свойствами. На фото ниже стабилитрон в стеклянном корпусе с маркировкой катода 5,1 В.


Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который с него подается в цепь.Обязательно подбирайте параметры предохранителя с помощью соответствующей направляющей, чтобы входное напряжение не портило деталь, желательно, чтобы оно было примерно в середине диапазона UCT ± ΔUCT.

Диодная маркировка — это краткое графическое обозначение элемента, на который нанесен корпус. Элементная база в настоящее время настолько разнообразна, что нарезки различаются довольно существенно. Диод определить сложно: стабилитрон, туннельный, Ганна. Выпущенный вид, напоминающий газоразрядную лампу.Светодиоды горят, добавляя путаницы.

Полупроводниковые диоды

Пожалуй, раздел называют несколько тривиальным, нужно было отличать обычные диоды от устаревших электронных ламп, самых современных SMD модификаций. Обычные полупроводниковые диоды — простейшее горе радиолюбителя. Сторона цилиндрического корпуса с дисковым основанием, на ножках хорошо видна надпись, окрашенная краской.

Резисторы полупроводниковые. Отличить невооруженным глазом?

Цвет корпуса значения не имеет, размер косвенно указывает на рассеиваемую мощность.Мощные диоды часто имеют резьбу для крепления радиатора. Результат расчета теплового режима показывает отсутствие собственных возможностей корпуса, система охлаждения дополнена навесным элементом. Сегодня снижается энергопотребление, уменьшаются линейные размеры приборных корпусов. Указано разрешенное использование стекла. Новый материал корпуса дешевле, прочнее, безопаснее.

  • Первое место занимает буква или цифра, кратко описывающая материал элемента:
  1. G (1) — соединения германия.
  2. К (2) — соединения кремния.
  3. А (3) — арсенид галлия.
  4. А (4) представляет собой соединение индия.
  • Вторая буква в нашем случае — D. Выпрямительный диод, или импульсный.
  • Третье место выбрала цифра, характеризующая применимость диода:
  1. Низкочастотный, ток ниже 0,3 А.
  2. Низкочастотный, ток 0,3 — 10 А.
  3. Не используется.
  4. Импульсный, время восстановления более 500 нс.
  5. Импульсный, время восстановления 150 — 500 нс.
  6. То же, время восстановления 30 — 150 нс.
  7. Одновременное восстановление 5-30 нс.
  8. Однако время восстановления составляет 1–5 нс.
  9. Импульсный, время жизни неосновных носителей менее 1 нс.
  • Номер разработки состоит из двух цифр, может вообще отсутствовать. Номинал ниже 10 дополняется слева нулем. Например, 07.
  • Номер группы обозначается буквой; он определяет различия свойств, параметров.Буква часто является ключом, она может обозначать рабочее напряжение, постоянный ток и многое другое.

Справочники, помимо разметки, предоставляют графики, с помощью которых можно решить задачу выбора рабочей точки радиоэлемента. Может быть указана информация о технологии производства, материале корпуса, массе. Информация помогает конструктору оборудования, любителям практического смысла не несет.

Обозначение импортных систем отличается от отечественных, хорошо стандартизировано.Поэтому, используя специальные таблицы, достаточно просто найти подходящие аналоги.

Цветовая кодировка

Каждый радист знает, как трудно распознать диоды в стеклянном корпусе. На одно лицо. Порой производитель удосуживается нанести четкие метки, цветные кольца. Согласно обозначениям вводятся три знака:

  1. Маркировка площадей катода, анода.
  2. Цвет корпуса, заменен цветной точкой.

По положению дел на первый взгляд мы различаем типы диодов:

  1. Семейство D9 маркируется одним или двумя цветными кольцами анодной области.
  2. Диоды КД102 возле анода обозначены цветной точкой. Корпус прозрачный.
  3. KD103 имеют дополнительный цвет корпуса, за исключением 2D103A, обозначенного белой точкой анодной области.
  4. Семейства КД226, 243 обозначены кольцом катодной области. Других тегов не предусмотрено.
  5. Два цветных кольца в катодной области можно увидеть в семействе KD247.
  6. Диоды КД410 обозначены точкой на аноде.

Есть и другие четко различимые этикетки.Более подробную классификацию найдете, изучив издание Кашкарова А.П. По маркировке радиоэлементов. Новичков волнует вопрос определения месторасположения катода и анода.

  1. Видите: на одной стороне цилиндра темная полоса — катод обнаружен. Цвет может быть частью обсуждаемой сегодня маркировки.
  2. Зная, как пользоваться мультиметром, анод найти несложно. Электрод, к которому мы присоединяем красный зонд, чтобы открыть клапан (услышать звонок).
  3. В новом диоде анодный усик длиннее катода.
  4. Смотрим через увеличительное стекло через стеклянный корпус светодиода: металлический анод напоминает наконечник копья, меньше катода.
  5. На старых диодах нанесена стрелка. Наконечник — катод. Позволяет визуально определить направление включения. Современные радиомонтажники должны тренировать смекалку, остроту зрения, точность манипуляций.

Иностранная продукция получила иную систему обозначений.Выбирая аналог, воспользуйтесь специальными таблицами соответствий. В остальном импортная база мало отличается от отечественной. Маркировка осуществляется по стандартам JEDEC (США), европейской системе (PRO ELECTRON). Таблицы расшифровки цветных кодов широко представлены в сетевых источниках.


Цветовая кодировка

SMD-диоды

В версии SMD корпус диодов иногда настолько мал, что маркировки нет вообще. Характеристики устройств мало зависят от габаритов.Последние сильно влияют на рассеиваемую мощность. Чем больше ток проходит через цепь, тем больше должен быть размер диода, который рассеивает возникающее (закон Джоуля-Ленца) тепло. По написанной маркировке SMD диод может быть:

  1. Комплектный
  2. Укороченный.
  3. Отсутствие маркировки.

SMD элементы в общем объеме электроники занимают около 80% объема. Монтаж на поверхность. Изобретенный способ электрического подключения так же удобен, как автоматизированные сборочные линии.Маркировка SMD диода может не совпадать с начинкой корпуса. При большом объеме производства производители начинают хитрить, помещать внутрь совсем не то, что нанесен символ. Из большого количества несогласованных стандартов возникает путаница по поводу использования выводов микросхем (для диодов, микросборок).

Корпус

Маркировка может включать 4 цифры, обозначающие размер корпуса. Напрямую не соответствуют габаритам, подробности спрашивайте в ГОСТ Р1-12-0.062, ГОСТ Р1-12-0.125. Любителям, которые не могут позволить себе получить нормативы, проще пользоваться справочными таблицами. Помним факт: SMD-кейсы от компании к компании могут отличаться по мелочам. Так как каждый производитель подгадвает элементную базу под собственную продукцию. У Samsung от материнской платы стиральная машина одно расстояние, LG другое. Размеры SMD-шкафов потребуются разные условия отвода тепла, другие требования соблюдены.

Поэтому, приобретая по цифрам элемента справочника, производите дополнительные измерения, если это важно.Например, в случае ремонта бытовой техники. Иначе купленные диоды могут не встать по назначению. К любителям SMD не обращаются из-за кажущейся сложности монтажа, но для мастеров это обычное дело, поскольку без столь удачной технологии микроэлектроника невозможна.

При выборе диода следует учитывать факт: многие корпуса могут быть практически одинаковыми, но маркироваться по-разному. Некоторые обозначения полностью лишены цифр.Удобно использовать поисковые системы. Данная кросс-таблица соответствия типоразмеров взята с сайта selixgroup.spb.ru.

SMD-диоды часто доступны в корпусе SOD123. Если на одном конце есть полоска какого-то цвета или тиснение, то это катод (место, где нужно приложить отрицательную полярность, чтобы открыть pn-переход). Если только на корпусе есть надписи, то это обозначение корпуса. Если строчки больше единицы — характеристика снаряда крупнее.

Тип элемента и производитель

Понятно, что тип корпуса для конструктора дело второстепенное. Некоторое количество тепла будет рассеиваться через поверхность элемента. С этой точки зрения диод нужно рассматривать. Остальные характеристики важны:

  • Рабочее и обратное напряжение.
  • Максимально допустимый ток через p-n-переход.
  • Рассеиваемая мощность и т. Д.

Эти варианты полупроводниковых диодов указаны в справочниках.Маркировка помогает найти нужное место среди горной макулатуры. В случае с SMD-элементом ситуация намного сложнее. Ни единой системы обозначений. И в то же время это проще — параметры от одного диода к другому не сильно меняются. Отличаются по большей части рассеиваемой мощностью, рабочим напряжением. Каждый элемент SMD помечен последовательностью из 8 букв и цифр, и некоторые знакомые элементы могут вообще не использоваться. Так обстоит дело с ветеранами индустрии, гигантами электронной индустрии:

  1. Motorola (2).
  2. Техасские инструменты.
  3. Сейчас переоборудован и частично продан Siemens (2).
  4. Максим Интегрированный продукт.

Указанные производители отмечены двумя буквами MO, TI, SI, MX. Вдобавок пара букв адресов:

  • AD — Analog Devices;
  • л.с. — Hewlett-Packard;
  • NS — National Semiconductors;
  • PC, PS — Philips Components, Semiconductors соответственно;
  • SE — Инструменты Seiko.

Конечно, не всегда внешний вид корпуса определяет производителя, тогда в поисковике нужно сразу набирать буквенно-цифровую последовательность. Приведены и другие примеры: сборка диодов NXP в корпусе SOD123W не несет никакой информации, кроме указанной строки выше. Производитель считает предоставленную информацию достаточной. Потому что сам по себе SOD расшифровывается как небольшой контурный диод. Остальные найдете на официальном сайте компании (nxp.ru / documents / outline_drawing / SOD123W.pdf).

Объем печати ограничен, и это упрощение объясняется. Производитель старается минимально затруднить маркировку себя. Часто используется лазерная или трафаретная печать. Это позволит уместить 8 знаков на площади всего 4 квадратных миллиметра (А. Кашкаров, «Маркировка радиоэлементов»). Кроме них для диодов используют следующие типы кожухов:

  1. Цилиндрический стеклянный MELF (Mini MELF).
  2. SMA, SMB, SMC.
  3. МБ-С.

В довершение всего, один и тот же буквенно-цифровой код иногда соответствует разным элементам. В этом случае необходимо провести анализ электрической схемы. В зависимости от назначения диода предполагаются рабочий ток, напряжение и некоторые другие параметры. По каталогам рекомендуется попытаться идентифицировать производителя, поскольку параметры не имеют значения, что затрудняет правильную идентификацию товара.

другая информация

В дополнение к вышесказанному, временами есть и другая информация.Номер партии, дата выпуска. Такие меры принимаются, что позволяет отслеживать новые модификации продукции. Конструкторский отдел выдает корректирующую документацию с номером, дата присутствует. А если нужно учитывать особенность сборочного цеха, отрабатывая внесенные изменения, мастерам следует ознакомиться с маркировкой.

Если собирать оборудование по новым чертежам (схемам), применяя старые детали, получается не то, что ожидалось. Проще говоря, продукт выйдет из строя, отрадно, если это обратимый процесс.Ничего не горит. Но даже в этом случае начальник цеха непременно получит фуражку, товар придется переделывать с учетом неучтенного фактора.

Помимо диодов

На основе pn переходов создано миллиард модификаций диодов. К ним относятся варикапы, стабилитроны и даже тиристоры. У каждого семейства есть свои особенности, с диодами много общего. Мы видим три глобальных вида:

  • устаревшая на сегодняшний день элементная база имеет относительно большие размеры, четко различимую маркировку, образованную стандартными буквами, цифрами;
  • витрины с цветными обозначениями;
  • Элементы SMD.

Аналоги подбираются исходя из указанных выше условий: рассеиваемая мощность, предельное напряжение, передаваемый ток.

Стабилитрон

также называют эталонным диодом. Стабилитроны предназначены для стабилизации выходного напряжения при колебаниях на входе или изменении значения нагрузки ( рис один ).

Рис.1 — Функциональная схема стабилитрона

Например, если на нагрузке должно быть 5 В, а напряжение источника питания колеблется в пределах 9 В.Стабилитроны используются для уменьшения и стабилизации напряжения, подаваемого от источника питания, до необходимых 5 В. Разумеется, можно использовать и стабилизаторы напряжения, в этом случае, или. Однако их использование не всегда оправдано, поэтому в некоторых случаях используют стабилитроны.

Внешне они похожи на диоды и имеют вид, показанный на рис. 2 .


Рис.2 — Внешний вид стабилитронов

Обозначение стабилитронов на схемах приведено в рис 3 .


Принцип стабилитрона

Теперь посмотрим, как стабилитрон стабилизирует напряжение.

Однако основной характеристикой стабилитрона, как и диода, является вольт-амперная характеристика (ВАХ). На нем показана зависимость тока, протекающего через стабилитрон, от величины приложенного к нему напряжения ( рис. 4, ).

ВАХ стабилитрона имеет две ветви.


Рис.4 — Напряжение стабилитрона

Прямая ветвь стабилитрона практически не отличается от прямых ветвей обычных диодов и для последних тоже будет рабочей.

Нормальная работа стабилитрона — это когда он находится под обратным напряжением. Следовательно, для него рабочая ветка будет обратной веткой. Он расположен практически параллельно оси обратных токов. На этой характеристической кривой есть две точки: 1 и 2 ( рис четыре ), между ними находится рабочая область стабилитрона.

При определенном значении обратного напряжения U ул Произошел электрический пробой p Стабилитрон переходный и через наго протекает уже значительный ток. Однако при переключении в широком диапазоне тока от Imin до Imax Падение напряжения на стабилитроне U ул практически не меняется ( рис четыре ).Благодаря этому свойству осуществляется стабилизация напряжения.

Если ток, протекающий через стабилитрон, превышает значение Imax , то полупроводниковая структура перегреется, произойдет тепловой пробой и стабилитрон выйдет из строя.

К источнику питания Тип Стабилитрон подключается через токоограничивающий резистор Rogr , который служит для ограничения тока, протекающего через стабилитрон, а также вместе с ним образует делитель напряжения ( рис пять ).


Рис.5 — Схема переключения стабилитрона

Обратите внимание, что, в отличие от диода, стабилитрон подключен в противоположном направлении, т.е. «+» источника питания подается на катод, а «-» — на анод.

Параллельно выводам стабилитрона подключает нагрузку R , на выводах которого требуется поддерживать стабильное напряжение.

Процесс стабилизации напряжения выглядит следующим образом.Увеличение напряжения питания увеличивает общий ток цепи. I и, следовательно, текущий Ist протекает через стабилитрон Vd , а также увеличивает падение напряжения на токоограничивающем резисторе R огре . При этом напряжение на стабилитроне и, соответственно, на нагрузке практически не меняется.

При изменении сопротивления нагрузки происходит перераспределение полного тока I между стабилитроном и нагрузкой, причем величина напряжения на них практически не меняется.

Если напряжение нагрузки больше напряжения стабилизации стабилитрона, то применяют несколько последовательно соединенных стабилитронов. Например, если вам нужно получить 10 В стабильного напряжения, то при отсутствии необходимого стабилитрона можно последовательно включить два стабилитрона по 5 В ( рис 6 ).


Рис.6 — Последовательное подключение стабилитронов

Стабилитроны

также успешно используются в системах автоматизации в качестве датчиков, реагирующих на изменение напряжения.Например, если напряжение превысит определенное значение, стабилитрон откроется, и ток потечет через катушку реле. В результате реле будет работать и давать команду другим устройствам или просто сигнализировать о превышении определенного уровня напряжения.

Кроме стабилизации постоянного напряжения, с помощью стабилитронов можно стабилизировать переменное напряжение. Для этого используйте последовательный счетчик включение двух стабилитронов ( рис 7 ).


Рис.7 — Схема включения стабилитрона переменного напряжения

Только на выходе будет не идеальная синусоида, а с обрезанными вершинами, т.е. форма напряжения будет близка к трапеции ( рис 8, 9 ).


Рис.8 — Осциллограмма входного напряжения


Рис.9 — Осциллограмма напряжения на стабилитроне

Применяют несколько способов маркировки стабилитронов.Стабилитроны в стеклянном корпусе, с гибкими выводами, обозначены самым понятным образом. Как правило, на корпусе ставятся цифры, разделенные латинской буквой «V». Например, 4 В 7 указывает, что напряжение стабилизации составляет 4,7 В; 9 В 1 — 9,1 В и т. Д. ( рисовая десятка ).


Фиг.10 — Маркировка стабилитронов в стеклянных корпусах

Стабилитроны

в пластиковом корпусе имеют маркировку в виде цифр и букв. Сами по себе эти цифры ни о чем не говорят, однако с помощью даташита их легко расшифровать. Например, обозначение 1N5349B означает, что напряжение стабилизации равно 12 В ( рис, одиннадцать ). В этой маркировке кроме напряжения учитываются и другие параметры стабилитрона.


Фиг.10 — Маркировка стабилитронов в пластиковых корпусах

Черное или серое кольцо, нанесенное на корпус стабилитрона, обозначает его катод ( рис 12 ).


Фиг.12 —

Маркировка smd стабилитроны

В качестве smd-маркировки стабилитронов применяются цветные кольца. Подобная маркировка используется и для советских стабилитронов не smd.В импортных стабилитронах на катодной стороне нанесено цветное кольцо ( рис 13 ). Для расшифровки цветных колец используйте даташит или онлайн-дешифраторы.


Фиг.13 — SMD стабилитрон в стеклянном корпусе

Еще один smd стабилитрон с тремя выводами ( рис 14 ). Один из них не задействован. Эти выводы можно определить с помощью мультиметра.


Фиг.14 — Стабилитрон SMD с тремя выводами

При отсутствии справочника, даташита или нечеткой маркировки номинальное напряжение стабилитрона можно определить опытным путем. Сначала с помощью мультиметра нужно выяснить соответствующие выводы и подключить стабилитрон через токоограничивающий резистор ( см. Рис. Пятерка ). Затем подайте напряжение от регулируемого источника питания. Плавно меняя подаваемое напряжение нужно следить за изменением напряжения на стабилитроне.Если напряжение на стабилитроне не меняется при изменении напряжения источника питания, то это будет его напряжение стабилизации.

Выходы стабилитрона определяются аналогично. Мультиметр следует установить в режим набора номера и прикоснуться соответствующими контактами к щупам ( рис 15, 16 ).


Рис.15 — Прямое напряжение


Фиг.16 — Обратное напряжение

Под действием протекающего через стабилитрон тока нагревается. Выделяемое тепло рассеивается в окружающее пространство. Чем больше стабилитрон способен рассеивать тепло без перегрева, тем выше его мощность рассеивания и тем больший ток может пропустить через него. Как правило, чем больше габариты стабилитрона, тем больше мощность его рассеяния ( рис 17 ).


Рис.17 — Рассеиваемая мощность стабилитронов

Пластиковые кремниевые стабилитроны мощностью 3 Вт для поверхностного монтажа

% PDF-1.4 % 1 0 объект > эндобдж 6 0 obj / Title (1SMB5913BT3 — Кремниевые стабилитроны с пластиковым поверхностным монтажом мощностью 3 Вт) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > поток BroadVision, Inc.2020-05-16T09: 21: 19 + 08: 002016-04-26T15: 30: 25-07: 002020-05-16T09: 21: 19 + 08: 00application / pdf

  • 1SMB5913BT3 — Пластиковая поверхность мощностью 3 Вт Крепление кремниевых стабилитронов
  • s2190c
  • Эта совершенно новая линейка стабилитронов мощностью 3 Вт предлагает следующие преимущества.
  • Acrobat Distiller 10.1.16 (Windows) uuid: f515cc06-489e-4881-97de-1ca1a9583387uuid: 4c19b1fe-3ae1-49e6-8323-cf6e3eb109ab Распечатать конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > поток HVMo8 {s @ | Eujm $ AhG, 9doMm7f $ p0x’4f9 | epp6cXM = Q | 1 $ 28! P, 25 #) Fu0.νzx’Yp` $ A (b

    Основы: Введение в стабилитроны

    Стабилитроны

    — это особый тип полупроводниковых диодов — устройств, которые позволяют току течь только в одном направлении, которые также позволяют току течь в противоположном направлении, но только при достаточном напряжении. И хотя это звучит немного эзотерически, на самом деле они являются одними из самых удобных компонентов, которые когда-либо встречались на рабочем месте инженера, обеспечивая отличные решения для ряда общих потребностей в схемотехнике.

    Далее мы покажем вам, как (и когда) использовать стабилитрон для приложений, включая простые опорные напряжения, ограничение сигналов до определенных диапазонов напряжения и снижение нагрузки на регулятор напряжения.

    Справочная информация: Полупроводниковые диоды, настоящие и идеальные

    Чтобы понять, чем стабилитроны отличаются от других диодов, давайте сначала рассмотрим свойства обычных диодов. И хотя существует много различных типов диодов — см. Здесь длинный список — мы собираемся сосредоточиться на так называемых «нормальных» полупроводниковых диодах, чаще всего построенных с кремниевым p-n переходом.

    Диоды обычно поставляются в стеклянных или пластиковых цилиндрических корпусах, маркированных полосой с одной стороны для обозначения полярности.В идеальном диоде ток течет только в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона), отмеченному полосой. Схематический символ представляет собой треугольник, указывающий на полосу, где ток течет в том же направлении, к концу с перемычкой (полосой). Версии диодов для поверхностного монтажа, как правило, следуют одному и тому же соглашению о маркировке, где катодный конец маркируется широкой полосой.

    Если мы подключим диод в простую схему с источником переменного напряжения и ограничивающим ток резистором, мы сможем измерить ток I через диод, когда к нему приложено заданное напряжение В .В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток. Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет превышать заданный порог. Величина протекающего тока фактически экспоненциальна с увеличением напряжения.

    Порог, при котором протекает значительный ток, обычно составляет около 0,7 В для простых полупроводниковых диодов, но может быть и ниже 0.15 В для диодов Шоттки или до 4 В для некоторых типов светодиодов.

    Конечно, ни один диод не идеален. В реальных диодах, когда напряжение меняется на противоположное, может протекать очень небольшой ток (утечка). И, что более важно, каждый диод рассчитан на определенную максимальную величину обратного напряжения. Если вы подадите напряжение более отрицательное, чем этот предел, диод подвергнется «обратному пробою» и начнет проводить значительный ток, но назад от нормального направления тока диода.Для обычного диода мы бы сказали, что диод вышел из строя , если он начинает проводить ток в этом направлении.

    Помимо: Фактическая физика того, что происходит при пробое, довольно интересна; этому поведению способствуют два отдельных эффекта: эффект Зенера и лавинный пробой.

    Стабилитроны

    Стабилитроны

    — это полупроводниковые диоды, которые были изготовлены так, чтобы их обратный пробой происходил при определенном, четко определенном напряжении (его «напряжение стабилитрона»), и которые сконструированы таким образом, чтобы они могли работать непрерывно в этом режиме пробоя.Стандартные стабилитроны доступны с пробивным напряжением («стабилитроны») от 1,8 до 200 В.

    Схематический символ стабилитрона показан выше — он очень похож на обычный диод, но с загнутыми краями на полосе. Стабилитрон по-прежнему проводит электричество в прямом направлении, как любой другой диод, но также проводит в обратном направлении, если приложенное напряжение обратное и больше, чем напряжение пробоя стабилитрона.

    Типичное применение может быть таким, как указано выше: стабилитрон 10 В (тип 1N4740) включен последовательно с резистором и фиксированным источником питания 12 В. Номинал резистора выбирается таким образом, чтобы через него и через стабилитрон протекало несколько мА, удерживая его в области пробоя. В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА.

    Опорные напряжения стабилитрона

    Свойство фиксированного напряжения стабилитронов делает их чрезвычайно удобными в качестве источников быстрого опорного напряжения.Базовая схема выглядит так:

    Необходимо учитывать несколько требований. Во-первых, входное напряжение должно быть выше напряжения стабилитрона. Во-вторых, номинал резистора должен быть выбран таким, чтобы через стабилитрон всегда протекал ток.

    Некоторые предостережения: Это не обязательно хороший источник питания для всех целей — резистор ограничивает ток, который можно потреблять. Это также не обязательно должно быть прецизионным опорным напряжением ; напряжение будет зависеть от величины потребляемого тока.(То есть, чтобы напряжение было стабильным, нагрузка, управляемая этим опорным напряжением, должна быть постоянной.) Напряжение также зависит от температуры. Стабилитроны в диапазоне 5-6 В имеют лучшую температурную стабильность, и есть высокоточные стабилитроны (например, LM399), которые включают в себя собственную термостабилизированную печь, чтобы в дальнейшем поддерживать температуру диода как можно более стабильной.

    Развивая эту идею немного дальше, вы можете создать полноценный многорельсовый источник питания, используя только набор стабилитронов для генерации всех необходимых напряжений, при условии, что текущие требования к разным напряжениям питания невысоки. .Схема выше является частью работающего лабораторного прибора.

    Клещи напряжения: ограничение сигналов с помощью стабилитронов

    Изменяющийся аналоговый сигнал может быть ограничен довольно узким диапазоном напряжений с помощью одного стабилитрона. Если у вас есть напряжение, которое колеблется между + 7 В и -7 В, вы можете использовать один стабилитрон 4 В, подключенный к земле, чтобы гарантировать, что сигнал не превышает 4 В или опускается ниже -0,7 В (где диод проводит вперед на землю).

    Если вы хотите ограничить сигнал, чтобы он никогда не становился отрицательным — например, для входа в аналого-цифровой преобразователь, который принимает сигналы в диапазоне 0-5 В, вы можете подключить анод стабилитрона к шине питания на 1 В вместо земли. Тогда диапазон выходного сигнала будет ограничен диапазоном 0,3 В — 5 В.

    Еще один изящный трюк — использовать последовательно два противоположно ориентированных стабилитрона. Это может обеспечить, например, симметричный предел отклонения сигнала от земли.Это также обычная конфигурация для использования стабилитронов в качестве подавителя переходных процессов.

    Преобразование напряжения: снижение нагрузки на регулятор

    Вот что-то не работает. У нас есть TL750L05, который представляет собой тип линейного регулятора с выходом 5 В, который может выдавать выходной ток до 150 мА, а его нагрузка будет переменной. Нам нужно запитать его от источника 36 В. К сожалению, максимальное входное напряжение TL750L05 составляет 26 В.

    Давайте попробуем добавить резистор последовательно, чтобы снизить напряжение:

    Наша выходная нагрузка может составлять от 125 мА до 10 мА.Итак, резистор какого номинала у нас подойдет?

    Предположим, мы предполагаем нагрузку 125 мА. Затем снять (скажем) 20 В на резисторе, 20 В / .125 А = 160 Ом. Если мы используем 160 Ом, то при нагрузке 10 мА оно упадет только на 160 Ом × 0,01 А = 1,6 В, а 36 В — 1,6 В все еще больше, чем 26 В. Чтобы быть безопасным для нагрузки 10 мА, мы должны выбрать резистор, который дает нам падение как минимум 11 В для входного сигнала регулятора 25 В. Таким образом, 11 В / 0,01 А = 1100 Ом будет безопасным для нагрузки 10 мА. Но если нагрузка увеличится до 125 мА, падение на 1100 Ом будет V = 0.125 А × 1100 Ом = 137 В, что означает, что на входе регулятора будет ниже 5 В, и он перестанет работать.

    Очевидно, что вы не можете выбрать номинал резистора, который действительно работал бы как для низкого, так и для сильноточного случая.

    Кроме того: Мы пропустили пару незначительных деталей о регуляторах напряжения, которые часто заслуживают внимания. Во-первых, линейный регулятор всегда требует немного больше напряжения на входе, чем на выходе.Эта разница напряжений называется «падением напряжения» и может достигать 0,6 В для TL750L05, так называемого стабилизатора с «малым падением напряжения». Это означает, что при выводе 5 В при 150 мА входная клемма регулятора должна быть на 5,6 В или выше. Мы можем спокойно игнорировать это здесь, потому что 36 В — 137 В все еще ниже 5,6 В.

    Вторая небольшая деталь заключается в том, что линейный регулятор на самом деле потребляет немного больше тока на своем входе, чем на выходе. Причина этого в том, что часть тока, протекающего на вход регулятора, течет на землю через его третью «заземляющую» клемму, а не на выходную клемму.Этот «ток покоя» может достигать 12 мА для TL750L05. Это означает, что когда 125 мА выходит из выходной клеммы регулятора, на входную клемму может поступать до 137 мА. В приведенном выше примере это означает, что максимальное падение напряжения на резисторе 1100 Ом было бы более точно оценить как V = 0,137 A × 1100 Ом = 151 В. Опять же, это не меняет нашего анализа.

    Давайте попробуем еще раз, на этот раз с нашим другом, стабилитроном.

    Наконец, давайте попробуем использовать один жирный стабилитрон на 20 В (тип 1N5357BRLG), чтобы сбросить часть нагрузки.Тогда выход на аноде стабилитрона составляет всего 16 В, что находится в пределах безопасного входного диапазона регулятора. 1N5357BRLG рассчитан на максимум 5 Вт.

    Когда регулятор работает на выходе 125 мА, его входной ток может достигать 137 мА, включая ток покоя, поэтому мощность, рассеиваемая стабилитроном, может достигать 20 В × 0,137 А = 2,74 Вт. Он будет нагреваться, но мы находимся в безопасных условиях эксплуатации стабилитрона, и теперь схема заработает.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *