Маркировка sot23 tl431: tl431, tl432 — Регулируемые источники опорного напряжения — DataSheet

Содержание

tl431, tl432 — Регулируемые источники опорного напряжения — DataSheet

Свойства

  • Допустимое отклонение опорного напряжения при 25 ° C
    — 0,5% (класс B)
    — 1% (класс A)
    — 2% (стандартный класс)
  • Регулируемое выходное напряжение: от Vref до 36 В
  • Эксплуатация от −40 ° C до 125 ° C
  • Номинальный температурный дрейф (TL43xB)

-6 мВ (C Temp)

-14 мВ (I Temp, Q Temp)

  • Низкий выходной шум
  • Номинальное выходное сопротивление 0,2 Ом
  • Допустимый ток потребления: от 1 мА до 100 мА

Применение

Регулируемые источники опорного напряжения и тока

  • Стабилизация на выходе в обратноходовых импульсных источниках питания
  • Замена стабилитрона
  • Контроль напряжения
  • Компаратор со встроенным источником опорного напряжения
Упрощенная схемаКупить TL431

Описание

TL431LI / TL432LI в корпусах для поверхностного монтажа — это альтернатива TL431 / TL432. TL43xLI дают лучшую стабильность, более низкий температурный дрейф (V

I (dev)) и более низкий опорный ток (Iref) для повышения точности системы.

Источники опорного напряжения (ИОН) TL431 и TL432 представляют собой регулируемые шунтирующие стабилизаторы с тремя выводами с заданной температурной стабильностью в соответствии с условиями применения (автомобили, коммерческое или военное назначение). Для выходного напряжения можно установить любое значение от Vref (приблизительно 2,5 В) до 36 В с помощью двух внешних резисторов. Эти устройства имеют номинальное выходное сопротивление 0,2 Ом. Схема активного выхода обеспечивает очень резкую характеристику включения, что делает эти устройства отличной заменой стабилитронам во многих применениях, таких как встроенные стабилизаторы, регулируемые источники питания и импульсные источники питания. ИОН TL432 имеет точно такие же функциональные возможности и электрические характеристики, что и TL431, но имеет другие распиновки для корпусов DBV, DBZ и PK. Отечественным налогом является микросхема 142ЕН19.

TL431 и TL432 изготовляются трех классов с начальными допусками (при 25 ° C) 0,5%, 1% и 2% для классов B, A и стандартного соответственно. Кроме того, низкий дрейф выходного сигнала в зависимости от температуры обеспечивает хорошую стабильность во всем температурном диапазоне.

TL43xxC рассчитаны на работу от 0 ° C до 70 ° C, TL43xxI — от –40 ° C до 85 ° C, а TL43xxQ — от –40 ° C до 125 ° C. .

Типы корпусов

1 Схематическое представление Расположение выводов для корпуса TO-92 (вид сверху)Рис. 2 Расположение выводов для корпуса SO8 (вид сверху)Рис. 3 Расположение выводов для корпусов SOT23-5 и SOT23-3 (вид сверху)

Рис. 4 Расположение выводов для корпуса SOT323-6 (вид сверху)Рис. 5 Блок-схема TL431 и TL432

2 Абсолютные максимальные значения и условия эксплуатации

Абсолютные максимальные значения
Обозначение Параметр Значение Ед. изм.
VKA Напряжение между катодом и анодом 37 В
Ik Диапазон катодного тока от -100 до +150 мА
Rthja Тепловое сопротивление между кристаллом и окружающей средой
TO-92 200 °C/Вт
SO-8 85 °C/Вт
SOT23-3L 248  °C/Вт
SOT23-5L  157  °C/Вт
SOT323-6L  221 °C/Вт
 Rthjс Тепловое сопротивление между кристаллом и корпусом
SO-8 30 °C/Вт
SOT23-3L 136 °C/Вт
SOT23-5L 67 °C/Вт
SOT323-6L 110 °C/Вт
Tstg Температура хранения от -65 до +150 °C
TJ Температура p-n перехода 150 °C
ESD TL431IY, TL431AIY-T: HBM (модель человеческого тела) 3000 В
TL431-TL432: HBM (модель человеческого тела)  2000
MM: модель машины 200
CDM: Модель заряженного устройства  1500
  1. Короткое замыкание может привести к перегреву. Все значения являются типовыми.
  2. Модель человеческого тела представляет собой конденсатор 100 пФ, заряженный до указанного напряжения, который разряжается между двумя выводами устройства, через резистор 1,5 кОм. Это проделывается для всех комбинаций пар связанных выводов.
  3. Модель машины: конденсатор 200 пФ , заряженный до указанного напряжения, который разряжается между двумя выводами устройства без внешнего резистора (внутреннее сопротивление < 5 Ом). Это проделывается для всех комбинаций пар связанных выводов.
  4. Модель заряженного устройства: все выводы и корпус заряжаются вместе до указанного значения напряжения, а затем разряжаются непосредственно на землю только через один вывод.
Рабочие значения
Обозначение Параметр Значение Ед. изм.
VKA Напряжение между катодом и анодом от Vref  до 36 В
Ik Катодный ток от 1 до 100 мА
Toper Диапазон рабочих температур на открытом воздухе
TL431C/AC от 0 до +70 °C
TL431I/AI — TL432I/AI от -40 до +105
TL431IY/AIY от -40 до +125

3 Электрические характеристики

TL431C (Tamb = 25° C, если не указано иное) 
Обозначение Параметр TL431C TL431AC Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
Vref Входное опорное напряжение
В
VKA = Vref, Ik = 10 мА, Tamb = 25° C 2.44 2.495 2.55 2.47 2.495 2.52
Tmin ≤ Tamb ≤ Tmax 2.423 2.567 2.453 2.537
 ΔVref Отклонение входного опорного напряжения в зависимости от температуры мВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax 3 17
3 15
Vref/Vka Отношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом (1)
Ik = 10 мА , ΔVKA = от 10 В до Vref -2.7 -1.4  -2.7 -1.4 мВ/В
ΔVKA = от 36 В до 10 В  -2 -1 -2 -1
 Iref Входной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞ мкА
Tamb
= 25° C
1.8 4 1.8 4
Tmin ≤ Tamb ≤ Tmax 5.2 5.2
ΔIref Отклонение входного опорного тока в зависимости от температуры мкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax 0.4 1.2 0.4 1.2
Imin Минимальный катодный ток для управления VKA = Vref  0.5 1 0.5 0.6 мА
 Ioff Катодный ток в закрытом состоянии  2.6  1000  2.6  1000  нА
|ZKA| Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц  0.22  0.5  0.22 0.5 Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk
TL431I/TL432I (Tamb = 25° C, если не указано иное) 
Обозначение Параметр TL431I/TL432I TL431AI/TL432AI Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
Vref Входное опорное напряжение В
VKA = Vref, Ik = 10 мА, Tamb = 25° C 2.44 2.495 2.55 2.47 2.495 2.52
Tmin ≤ Tamb ≤ Tmax 2.41 2.58 2.44 2.55
ΔVref Отклонение входного опорного напряжения в зависимости от температуры (1) мВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax 7 30 7 30
Vref/Vka Отношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом
Ik = 10 мА , ΔVKA = от 10 В до Vref -2.7 -1.4  -2.7 -1.4 мВ/В
ΔVKA = от 36 В до 10 В  -2 -1 -2 -1
 Iref Входной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞ мкА
Tamb = 25° C 1.8 4 1.8 4
Tmin ≤ Tamb ≤ Tmax 6.5 6.5
ΔIref Отклонение входного опорного тока в зависимости от температуры мкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax 0.8 2.5 0.8 1.2
Imin Минимальный катодный ток для управления VKA = Vref  0.5 1 0.5 0.7 мА
 Ioff Катодный ток в закрытом состоянии  2.6  1000  2.6  1000  нА
|ZKA| Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц  0.22  0.5  0.22 0.5 Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk
TL431IY (Tamb = 25° C, если не указано иное) 
Обозначение Параметр TL431IY TL431AIY Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
Vref Входное опорное напряжение В
VKA = Vref, Ik = 10 мА, Tamb = 25° C 2.44 2.495 2.55 2.47 2.495 2.52
Tmin ≤ Tamb ≤ Tmax 2.41 2.58 2.44 2.55
ΔVref Отклонение входного опорного напряжения в зависимости от температуры (1) мВ
VKA = Vref, Ik = 10 мА, Tmin ≤ Tamb ≤ Tmax 7 30 7 30
Vref/Vka Отношение изменения входного опорного напряжения к изменению напряжения между анодом и катодом
Ik = 10 мА , ΔVKA = от 10 В до Vref -2.7 -1.4  -2.7 -1.4 мВ/В
ΔVKA = от 36 В до 10 В  -2 -1 -2 -1
 Iref Входной опорный ток  Ik = 10 мА, R1 = 10 кОм, R2 = ∞ мкА
Tamb = 25° C 1.8 4 1.8 4
Tmin ≤ Tamb ≤ Tmax 6.5 6.5
ΔIref Отклонение входного опорного тока в зависимости от температуры мкА
Ik = 10 мА, R1 = 10 кОм, R2 = ∞
Tmin ≤ Tamb ≤ Tmax 0.8 2.5 0.8 1.2
Imin Минимальный катодный ток для управления VKA = Vref  0.5 1 0.5 0.6 мА
 Ioff Катодный ток в закрытом состоянии  2.6  1000  2.6  1000  нА
Tmin ≤ Tamb ≤ Tmax 3000 3000
|ZKA| Полное динамическое сопротивление (2) VKA = Vref, ΔIk = от 1 до 100 мА f ≤ 1 кГц  0.22  0.5  0.22 0.5 Ом
  1. См. пункт 3.1
  2. Полное динамическое сопротивление рассчитывается по формуле: |ZKA| =ΔVKA/ΔIk

3.1 Отклонение входного опорного напряжения в диапазоне температур

ΔVref определяется как разница между максимальным и минимальным значениями, полученными на всем диапазоне температур.

Рис. 6 Отклонение входного опорного напряжения на всем диапазоне температурРис. 7 Тестовая цепь для VKA = VrefРис. 8 Тестовая цепь для режима управленияРис. 9 Тестовая цепь для IoffРис. 10 Цепь для проверки запаса по фазе и усиления по напряжениюРис. 11 Цепь для проверки времени срабатывания

Рис. 12 Зависимость опорного напряжения от температуры

Рис. 13 Зависимость опорного напряжения от катодного тока

Рис. 14 Зависимость опорного напряжения от катодного тока в приближенном масштабе

Рис. 15 Опорный ток от температуры

Рис. 16 Катодный ток в закрытом состоянии от температуры

Рис. 17 Зависимость отношения изменения Vref к VKA от температуры

Рис. 18 Статическое полное сопротивление от температуры

Рис. 19 Минимальный рабочий ток от температуры

Рис. 20 Усиление и фаза от температуры

Рис. 21 Стабильность при разных емкостях нагрузки

Рис. 22 Максимальная рассеиваемая мощность

Рис. 23 Импульсная характеристика для Ik = 1 мА

4 Применение Рис. 24 Схема включения для компаратора с опорным напряжением
Параметры Значения
Диапазон входного напряжения от 0 В до 5 В
Входное сопротивление 10 кОм
Напряжение питания 24 В
Катодный  (Ik) 5 mA
Уровень выходного напряжения ~2 В – VSUP
Логический вход VIH/VIL VL
Рис. 25 Схема включения для параллельного стабилизатора
Параметры Значения
Отклонение опорного напряжения 1.0 %
Напряжение питания 24 В
Катодный ток (Ik) 5 мА
Уровень выходного напряжения 2.5 В — 36 В
Нагрузочная емкость 100 нФ
Резисторы обратной связи (R1 & R2) 10 kΩ
Рис. 26 Схема мощного стабилизатора напряжения
  1. Сопротивление R должно обеспечивать ток  ≥1 mA для TL431 при минимуме V(BATT).
Рис. 27 Схема управления трехвыводного стабилизатора с фиксированным выходомРис. 28 Схема мощного параллельного стабилизатораРис. 29 Схема с зашитой от перенапряженийРис. 30 Высокоточный стабилизатор 5 В, 1.5 А на LM317Рис. 31 Эффективный, высокоточный стабилизатор на 5 В
  1. Резистор Rb должен обеспечивать катодный ток для TL431 ≥1 мА.
Рис 32 ШИМ конвертер с опорным напряжением на TL431Рис. 33 Схема устройства контроля напряжения
  1. R3 и R4 следует подобрать такими, чтобы обеспечить желаемую яркость свечения светодиодов и катодный ток  ≥1 мА при напряжении VI(BATT)
Рис. 34 Реле времениРис. 35 Высокоточный ограничитель токаРис. 36 Прецизионный источник постоянного тока

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Реверс-инжиниринг TL431, крайне распространенной микросхемы, о которой вы и не слышали

Кен, как и планировал, провёл реверс-инжиниринг микросхемы по фотографиям, сделанным BarsMonster. Барс в статье упомянул своё общение с Кеном, но этой переводимой статьи тогда еще не было.

Фото кристалла интересной, но малоизвестной, микросхемы TL431, используемой в блоках питания, даёт возможность разобраться в том, как аналоговые схемы реализуются в кремнии. Несмотря на то, что схема на фото выглядит как какой-то лабиринт, сама микросхема относительно проста, и может быть исследована без большого труда. В своей статье я попытаюсь объяснить каким образом транзисторы, резисторы и другие радиодетали запакованы в кремний для выполнения своих функций.


Фото кристалла TL431. Оригинал Zeptobars.

TL431 является «программируемым прецизионным источником опорного напряжения» [1] и обычно используется в импульсных источниках питания для реализации обратной связи в случае, когда выходное напряжение слишком велико или, наоборот, мало. Используя участок цепи, называемый бандгапом (источник опорного напряжения, величина которого определяется шириной запрещённой зоны), TL431 предоставляет стабильный источник опорного напряжения в широком температурном диапазоне. На блок-схеме TL431 видны 2.5-вольтовый источник опорного сигнала и компаратор, но, глядя на фото кристалла, можно заметить, что внутреннее устройство микросхемы отличается от чертежа.


Блок-схема TL431, взятая из даташита.

У TL431 длинная история: он был выпущен еще в 1978 [2] году и с тех пор побывал во множестве устройств. Он помогал стабилизировать напряжение в блоке питания для Apple II, а сейчас используется в большинстве ATX блоков питания [3] и даже в зарядных устройствах для iPhone и прочих девайсов. И MagSafe-коннекторы, и адаптеры для ноутбуков, и микрокомпьютеры, LED драйверы, блоки питания для аудиотехники, видеоприставки, телевизоры [4]. Во всей этой электронике присутствует TL431.

Фотографии ниже показывают TL431 внутри шести различных БП. TL431 выпускается самых разных форм и размеров. Два наиболее популярных форм-фактора показаны ниже. [5] Возможно, причина того, что TL431 не привлекает особого внимания, заключается в том, что он больше похож на обычный транзистор чем на микросхему.


Шесть примеров схем БП, использующих TL431. Верхний ряд: дешёвый 5-вольтовый БП, дешёвое ЗУ для телефона, ЗУ для Apple iPhone (на фото можно еще заметить GB9-вариацию). Нижний ряд: MagSafe адаптер, ЗУ KMS USB, Dell ATX БП (на переднем плане — оптопары)

Как же радиоэлектронные компоненты выглядят в кремнии?

TL431 очень простая микросхема, и вполне возможно понять её логику на кремниевом уровне пристальным изучением фото. Я покажу, каким же образом транзисторы, резисторы, перемычки и конденсаторы реализованы. А затем уже проведу полный реверс-инжиниринг данной микросхемы.

Реализация транзисторов различных типов

Микросхема использует как n-p-n, так и p-n-p биполярные транзисторы (в отличие от микросхем навроде

6502

, в которых использовались MOSFET). Если вы изучали электронику в школе или в университете, вы возможно видели схему n-p-n транзистора (вроде той, что ниже), на которой показаны коллектор (обозначен как C), база (B) и эмиттер (E). Транзистор изображен в виде своеобразного бутерброда с P-слоем между двумя N-слоями, такое расположение слоёв характеризует транзистор как n-p-n. Однако, выясняется, что в микросхеме нет совершенно ничего схожего с этой схемой. Даже база находится не в центре!



Символьное обозначение и структура n-p-n транзистора.

На фотографии ниже можно рассмотреть один из транзисторов TL431. Цветовые различия в розовых и фиолетовых регионах вызваны разным легированием кремния, для формирования N и P областей. Светло-желтые области — металлический слой микросхемы, располагающийся поверх кремниевого. Такие области нужны для обеспечения возможности подключения проводников к коллектору, эмиттеру и базе.

В нижней части фотографии нарисовано поперечное сечение, примерно изображающее как конструируется транзистор. [6] Можно заметить, что на нём куда больше деталей, чем в n-p-n бутерброде из книг, Однако, если внимательно присмотреться, то в поперечном сечении под эмиттером (E) можно найти то самое n-p-n, которое формирует транзистор. Проводник эмиттера соединяется с N+ кремнием. Под ним располагается P-слой, подключенный к контакту базы. Еще ниже — слой N+, соединенный с коллектором (не напрямую). [7] Транзистор заключен в P+ кольцо для изоляции от соседних компонентов. Так как большинство транзисторов в TL431 принадлежат к n-p-n типу, то, после того как разобрались в первый раз, их очень просто находить на фотографии и определять нужные контакты.


n-p-n транзистор из фотографии кристалла TL431, и его структура в кремнии.

Выходной n-p-n транзистор намного больше остальных, так как ему необходимо выдерживать полную нагрузку по току. Большинство транзисторов работает с микроамперами, а этот выходной транзистор поддерживает ток до 100 миллиампер. Для работы с такими токами он и сделан более крупным (занимает 6% всего кристалла), и имеет широкие металлические коннекторы на эмиттере и коллекторе.

Топология выходного транзистора сильно отличается от других n-p-n транзисторов. Он создаётся, так сказать, боком, планарная структура вместо глубинной, и база располагается между эмиттером и коллектором. Металл слева подсоединён к десяти эмиттерам (синеватый кремний N-типа), каждый из которых окружен розовым P-слоем, который является базой (средний проводник). Коллектор (правая часть) имеет только один большой контакт. Проводники эмиттера и базы образуют вложенную «гребёнку». Обратите внимание, что металл коллектора становится шире сверху вниз для того, чтобы поддерживать большие токи на нижней части транзистора.



Транзисторы p-n-p типа имеют совершенно другое строение. Они состоят из округлого эмиттера (P), окруженного кольцом базы (N), которую, в свою очередь, обступает коллектор (P). Таким образом, получается горизонтальный бутерброд, вместо обычной вертикальной структуры n-p-n транзисторов. [8]

Схема снизу показывает один из таких p-n-p транзисторов, а поперечное сечение изображает кремниевую структуру. Стоит отметить то, что хотя металлический контакт для базы находится в углу транзистора, он электрически соединен через N и N+ области с активным кольцом, пролегающим между коллектором и эмиттером.


Структура p-n-p транзистора.

Реализация резисторов в микросхеме

Резисторы являются ключевым компонентом почти в любой аналоговой схеме. Они реализованы как длинная полоса легированного кремния. (Похоже, что в этой микросхеме использовался кремний P-типа). Различные сопротивления достигаются использованием различной площади материала — сопротивление пропорционально площади.

Снизу заметно три резистора — их формируют три длинных горизонтальных полоски кремния. Желтоватые металлические проводники проходят через них. Места соединения металлического слоя и резистора выглядят как квадраты. Расположение этих контактов и задаёт длину резистора и, соответственно, его сопротивление. К примеру, сопротивление нижнего резистора немного больше остальных потому, что контакты расположены на большем расстоянии. Верхние два резистора объединены в пару металлическим слоем сверху слева.


Резисторы.

Резисторы в микросхемах имеют очень плохой допуск — сопротивление может различаться на 20% между микросхемами из-за вариаций в производственном процессе. Очевидно, что это серьезная проблема для таких точных микросхем, как TL431. Поэтому TL431 спроектирован таким образом, что важной характеристикой является не конкретное сопротивление, а отношение сопротивлений. Конкретные значения сопротивлений не сильно важны, если сопротивления меняются в одной пропорции. Вторым методом уменьшения зависимости от эффекта изменчивости является сама топология микросхемы. Резисторы располагаются на параллельных дорожках одинаковой ширины для снижения эффекта от любой асимметрии в сопротивлении кремния. Кроме того, они размещены рядом друг с другом для минимизации отклонений в свойствах кремния между разными частями микросхемы. Помимо всего этого, в следующей главе я расскажу о том, как перед корпусированием кристалла можно настроить сопротивления для регулирования производительности микросхемы.

Кремниевые перемычки для настройки сопротивлений

Вот чего я не ожидал в TL431, так это перемычек для подстройки сопротивлений. Во время производства микросхем эти перемычки могут быть удалены для того, чтобы отрегулировать сопротивления и повысить точность микросхемы. На некоторых

более дорогих микросхемах

есть сопротивления, которые могут быть удалены лазером, просто выжигающим часть резистора перед корпусированием. Точность настройки таким методом куда выше чем у перемычек.

Цепь с перемычкой показана на фото снизу. Она содержит параллельных два резистора (на фото они выглядят как один элемент) и перемычку. В обычном состоянии, эта перемычка шунтирует резисторы. При изготовлении микросхемы, её характеристики могут быть замерены, и если требуется большее сопротивление, то два щупа подсоединяются к площадкам и подаётся высокий ток. Этот процесс сжигает перемычку, добавляя немного сопротивления цепи. Таким образом, сопротивление всей схемы может быть немного подкорректировано для улучшения характеристик микросхемы.


Перемычка для настройки сопротивления

Конденсаторы

TL431 содержит всего два внутренних конденсатора, но они выполнены в двух совершенно разных манерах.

Первый конденсатор (под текстом «TLR431A») сформирован обратносмещенным диодом (красноватые и фиолетовые полосы). У инверсного слоя в диоде есть ёмкостное сопротивление, которое может быть использовано для формирования конденсатора (подробнее). Главное ограничение такого типа конденсаторов в том, что ёмкостное сопротивление разнится в зависимости от напряжения, потому что меняется ширина инверсного слоя.


Конденсатор, образованный p-n переходом. Вендорная строка написана с помощью металла, нанесенного поверх кремния.

Второй конденсатор сконструирован совершенно другим методом, и больше похож на обычный конденсатор с двумя пластинами. Даже не на что поглядеть — он состоит из большой металлической пластины с подложкой из N+ кремния в качестве второй пластины. Для того чтобы уместиться рядом с другими частями цепи, он имеет неправильную форму. Данный конденсатор занимает около 14% площади кристалла, иллюстрируя то, что конденсаторы в микросхемах очень неэффективно используют пространство. В даташите упоминается, что оба конденсатора по 20 пикоФарад, но я не знаю насколько этому можно верить.


Конденсатор.

Реверс-инжиниринг TL431



Промаркированный кристалл TL431.

На схеме сверху выделены и поименованы элементы на кристалле, и затем перенесены на чертеж снизу. После всех разъяснений ранее, я думаю, структура любого элемента должна быть ясна. Три пина микросхемы подсоединены к площадкам «ref», «anode» и «cathode». Микросхема имеет один уровень металлизации (светло-желтый) для соединения компонентов. На чертеже сопротивление задаётся относительно неизвестного R. Наверное, 100 Ом вполне подходит, но я не знаю точного значения. Самым большим сюрпризом было то, что характеристики элементов сильно отличились от тех, что были опубликованы ранее в других схемах. Данные характеристики фундаментально сказываются на том, как в целом работает стабилитрон с напряжением запрещённой зоны.

[9]


Чертеж TL431

Как работает микросхема?

Работа TL431 извне выглядит довольно незатейливо — если на контакт «ref» подаётся напряжение выше 2.5 вольт, то выходной транзистор проводит ток между катодом и анодом. В блоке питания это увеличивает ток, идущий к управляющей микросхеме (косвенно), и влечёт за собой уменьшение мощности БП, после чего происходит спад напряжения до нормального уровня. Таким образом, БП используют TL431 для того, чтобы стабильно держать необходимое выходное напряжение.

Наиболее интересная часть микросхемы это источник опорного напряжения, равного ширине запрещённой зоны. [10]. Ключевые элементы видны на фото кристалла: область эмиттера транзистора Q5 в 8 раз больше чем у Q4, поэтому два транзистора по-разному реагируют на температуру. Выходные сигналы с транзисторов объединяются через резисторы R2, R3, R4 в нужной пропорции для компенсации температурных эффектов, и формируют стабильный опорный сигнал. [11] [12]

Напряжения из стабилизированного по температуре бандгапа посылаются в компаратор, входом которого являются Q6 и Q1, а Q8 и Q9 управляют им. Наконец, выход компаратара проходит через Q10 для управления выходным транзистором Q11.

«Открываем» микросхему низко-технологичным методом

Получение фотографии кристалла микросхемы обычно требует её растворения в опасных кислотах, и фотографирование самого кристалла с помощью дорогого металлографического микроскопа. (Zeptobars описывал этот процесс

здесь

). Мне было интересно что получится, если я просто разломаю TL431 зажимными щипцами и взгляну на него в дешёвый микроскоп. В процессе я переломил кристалл пополам, но всё равно получил интересные результаты. На изображении виден большой медный анод внутри корпуса, который еще работает и как радиатор. Рядом с ним кристалл (по крайней мере, большая его часть), который был установлен на аноде внутри белого круга. Заметили, насколько сам кристалл меньше своего корпуса?


Корпус TL431, внутренний анод и большая часть от кристалла.

Используя простой микроскоп, я получил фото снизу. Несмотря на то, что, очевидно, я не получил такого же качественного снимка как у Zeptobars, структура микросхемы видна значительно лучше чем я ожидал. Данный эксперимент показывает, что вы можете проводить снятие корпуса микросхем и фотографирование кристалла даже не касаясь разных опасных кислот. Сравнивая свой снимок дешевого TL431, заказанного на eBay, с TL431, сфотографированного Zeptobars, вижу их идентичность. Так как его микросхема не совпадает с опубликованными чертежами, то я гадаю, не прекратили ли они в определенный момент производство того странного варианта микросхемы. Но думаю, что это предположение неверно.


Кусок кристалла, сфотографированный через микроскоп.

Заключение

На самом ли деле TL431 наиболее распространенная микросхема о которой не слышали люди? Нет надежного способа проверить, но я думаю что это хороший кандидат. Похоже, никто не публиковал данные, в которых другая микросхема была бы произведена в больших количествах. Некоторые источники утверждают что таймер 555 является наиболее распространенной микросхемой с миллиардными тиражами каждый год (не очень мне верится в такое большое число). Но TL431 точно располагается достаточно высоко в списке по распространенности. Вы, скорее всего, имеете TL431 в каком-то устройстве на расстоянии вытянутой руки прямо сейчас (ЗУ для телефона, адаптер питания для ноутбука, блок питания PC или монитора). Разница между 555 или 741 и TL431 в том, что эти микросхемы настолько широко известны, что уже стали чуть ли не частью поп-культуры —

книги

,

майки

и даже

кружки

. Но если вы не работаете с блоками питания, достаточно высоки шансы, что вы никогда и не слышали о TL431. Таким образом, я отдаю свой голос TL431 в такой странной номинации. Если у вас есть какие-то другие варианты микросхем, которые незаслуженно обошли вниманием, оставляйте комментарии.

Признательности

Снимки кристалла сделаны

Zeptobars

(за исключением моего). Чертёж и анализ основываются на работе

Cristophe Basso[12]

Кроме того, я значительно улучшил свой анализ с помощью дискуссий с Михаилом из Zeptobars и

Visual 6502 group

, в частности B. Engl.

Заметки и ссылки

1. Из-за того, что у TL431 не самая обычная функция, стандартного названия для элемента такого рода не существует. Разные даташиты дают такие имена:

«регулируемый шунтирующий стабилизатор»

,

«программируемый прецизионный источник опорного напряжения»

,

«программируемый шунтирующий источник опорного напряжения»

,

«программируемый стабилитрон»

.


2. Я раскопал истоки возникновения TL431 в

Voltage Regulator Handbook

, опубликованным Texas Instruments в 1977 году. Предшественником этой микросхемы был TL430, выпущенный как регулируемый шунтирующий стабилизатор в 1976. TL431 был создан в том же 1976 как обновление для TL430 с улучшенной точностью и стабильностью, и поэтому был назван как регулируемый прецизионный шунтирующий стабилизатор. В 1977 его анонсировали как один из будущих продуктов TI, а выпустили в продажу уже в 1978. Другим анонсом являлся TL432, который должен был бы называться «Компоновочный блок из таймера/стабилизатора/компаратора» и состоять из источника опорного напряжения, компаратора и транзисторного усилителя, согласно

предварительному даташиту

. Но на момент выпуска TL432, план по предоставлению «компоновочных блоков» был забыт. TL432 превратился в аналог TL431 с другими расположением контактов для более удобной разводки плат (

даташит

).


3. Современные ATX блоки питания (

пример раз

,

пример два

) зачастую содержат по три TL431. Один для обратной связи при резервном питании, второй для обратной связи в основной схеме питания, а третий берётся в качестве линейного регулятора для 3.3В выходного напряжения.


4. Интересно взглянуть на импульсные БП, которые не используют TL431. Более ранние модели использовали опорный стабилитрон в качестве источника опорного напряжения. Например, такое практиковалось в первых экземплярах блоков питания для Apple II (Astec AA11040), но вскорости в них сделали замену стабилитрона на TL431 —

Astec AA11040, ревизия B

. В Commodore CBM-II, модель B, применялось необычное решение — TL430 вместо TL431. Оригинальный блок питания для IBM PC использовал опорный стабилитрон (вместе с кучей операционных усилителей). Позднее БП для PC часто использовали ШИМ-контроллер

TL494

, который уже содержал источник опорного напряжения для вторичной цепи. Другие БП могли содержать

SG6105

, уже включающий в себя два TL431.

В зарядных устройствах для телефонов обычно применяют TL431. Редко можно встретить дешёвую подделку этого элемента: проще взять опорный стабилитрон вместо него и сэкономить пару центов. Другим исключением могут являться такие зарядные устройства,

как для iPad’a

. В них реализована стабилизация в первичной цепи и не требуется совсем никакой обратной связи от выходного напряжения.

В своей статье про блоки питания

я описал это подробнее.


5. TL431 доступен в большем числе вариантов корпуса чем я думал. На двух фотографиях TL431 выполнен в «транзисторном» корпусе с тремя ножками (TO-92). На остальных фотографиях показан SMD-вариант в SOT23-3. TL431 также может быть в 4-контактном, 5-контактном, 6-контактном и 8-контактном SMD-корпусе (SOT-89, SOT23-5, SOT323-6, SO-8 или MSOP-8). Кроме того, его можно встретить в более крупном варианте TO-252 или даже в виде 8-контактного микросхемы (DIP-8). (

картинки

).


6. Более детальную информацию о том, как устроен в кремнии биполярный транзистор, можно найти много где.

Semiconductor Technology

даёт неплохой обзор об устройстве n-p-n транзистора. Презентация

Basic Integrated Circuit Processing

очень детально описывает производство микросхем. Даже схемы с

википедии

очень интересны.


7. Возможно, вы гадаете, почему это идёт терминологическое разделение на коллектор и эмиттер, если в нашей простой схеме транзистора они абсолютно симметричны? Ведь оба подключаются к N-слою, чему там различаться? Но как можете видеть на фото кристалла, коллектор и эмиттер не только сильно отличаются по размеру, но и легирование проходит по-разному. Если поменять коллектор и эмиттер местами, по у транзистора будет очень

слабый коэффициент передачи

.


8. p-n-p транзисторы в TL431 имеют круговую структуру, которая их очень сильно отличает от n-p-n. Эта круговая структура проиллюстрирована в книге

Designing Analog Chips

от Hans Camenzind, автора таймера 555. Если вы хотите узнать больше о том, как работают аналоговые микросхемы, то я рекомендую эту книгу, в которой детально разъясняется этот вопрос с минимумом математики.

Бесплатный PDF

или

бумажная версия

.

Кроме того, о структуре p-n-p транзисторов можно почитать в

«Principles of Semiconductor»

. А книга

«Analysis and Design of Analog Integrated Circuits»

рассказывает о детальных моделях биполярных транзисторов и о том, как они имплементируются в микросхемах.


9. Транзисторы и резисторы на кристалле, который я исследовал, имеют совершенно другие характеристики по сравнению с теми, что публиковались ранее. Эти характеристики фундаментально задают работу стабилитрона с напряжением запрещённой зоны. Конкретно говоря, на предыдущих схемах R2 и R3 были в отношении 1 к 3, а у Q5 зона эмиттера была в два раза больше чем у Q4. Глядя на фото кристалла, я вижу что R2 и R3 имеют одинаковое сопротивление, а Q5 имеет зону эмиттера в 8 раз большую по сравнению с Q4. Исходя из таких отношений между характеристиками, мы получим другое ΔVbe. Для того чтобы компенсировать разницу между фактическими характеристиками и вычисленными, в прошлых схемах R1 и R4 так же были сделаны иными чем на кристалле. Я разъясню этот момент более подробно дальше в статье, но просто отмечу: Vref = 2*Vbe + (2*R1+R2)/R4 * ΔVbe должно быть около 2.5 вольт. Обратите внимание, важно не конкретное сопротивление резисторов, а именно их отношения. Как я писал ранее, это помогает нейтрализовать плохой допуск резисторов в микросхеме. На кристалле Q8 сформирован из двух параллельных транзисторов. Но я не могу понять, что стоит за этим странным решением. Я ожидал, что Q8 и Q9 будут идентичны, чтобы построить сбалансированный компаратор. Моя основная теория заключается в том, что это сделано для настройки опорного напряжения, чтобы оно достигало 2.5В. B. Engl предположил, что это могло помогать устройству лучше работать при низком напряжении.


10. Я не буду здесь углубляться в детали реализации стабилитрона с напряжением запрещённой зоны, разве упомяну что пусть его название и звучит как имя какого-то безумного квантового устройства, но, на самом деле, это просто пара транзисторов. Чтобы разобраться в том, как работает данный стабилитрон, можете поглядеть статью

«How to make a bandgap voltage reference in one easy lesson»

за авторством Paul Brokaw, изобретателя

одноименного стабилитрона опорного напряжения

. Кроме того есть еще такая

презентация

.


11. В известном смысле, цепь бандгапа в TL431 работает в противоположном направлении, по сравнению с обычным бандгапом, который подводит к эмиттеру правильные напряжения, чтобы получить на выходе необходимое значение. TL431 же берёт опорное напряжение в качестве входного, а эмиттеры использует как входные сигналы для компаратора. Другими словами, в противоположность блок-схеме, внутри TL431 входной «ref» сигнал не сравнивается ни с каким стабильным опорным напряжением. Вместо этого, вход «ref» генерирует два сигнала для компаратара, которые совпадают если входное напряжение 2.5 вольта.


12. Существует много статей о TL431, но они все с уклоном в матан и ожидают от читателя каких-либо начальных знаний по теории автоматического управления, графикам Боде, и так далее.

«The TL431 in Switch-Mode Power Supplies loops»

— классическая статья от Christophe Basso и Petr Kadanka. Она объясняет работу TL431 в цепи компенсации обратной связи в действующих блоках питания. Книжка содержит детальные чертежи и описания внутреннего устройства элемента. Еще есть интересные статьи на

powerelectronics.com

. В статье

«Designing with the TL431»

от Ray Ridley, для Switching Power Magazine, содержится подробное объяснение того, как использовать TL431 в цепях обратной связи для БП и так же объясняется работа компенсатора. Можно обратить внимание на презентацию

«The TL431 in the Control of Switching Power Supplies»

от ON Semiconductor. Конечно же,

даташит

тоже содержит чертежи внутреннего устройства микросхемы. Странно, но сопротивления на этих чертежах отличаются от тех, что я получил, исследуя фото кристалла.

схема, характеристики, datasheet и аналоги

TL431 это регулируемый стабилизатор напряжения параллельного типа. Иначе его можно назвать “управляемым программируемым стабилитроном”. Предназначена она для применения в роли блока опорного напряжения в различных вариациях схем устройств питания, и, также может служить заменителем диодов Зенера в разнообразных схемах. Вопреки солидному возрасту микросхемы – почти 50 лет – она остается популярной и сейчас. Все благодаря ее размерам, стабильности и простоте подключения. Она обладает хорошими характеристиками, которые позволяют использовать ее как в хоббийных, так и в промышленных масштабах. Помимо прочего, еще одним преимуществом данной микросхемы является низкий уровень шума на ее выходе.

Впервые TL431 было представлено всему миру компанией Texas Instruments еще в 1977 году. За все это время был значительно улучшен технический процесс производства, а значит и точность характеристик в сравнении с указанными в datasheet. С тех пор эта микросхема стала неотъемлемой частью большого множества выпускаемых импульсных блоков питания.

Схема TL431

Рассмотрим схему, которая находится в официальном datasheet производителя Texas Instruments.

Схема довольно простая. На ней изображен самый обыкновенный операционный усилитель (выглядит, как треугольник на картинке), который подключен к транзистору на выходе.

Как работает TL431?

Здесь все элементарно. Операционному усилителю на вход стоит источник опорного напряжения на 2.5В, который подсоединен ко входу. Контакт под кодовым названием REF и коллектор и эмиттер транзистора связаны с контактами питания усилителя. А безопасность обеспечивает защитный диод, который сохранит и убережет микросхему от переполюсовки.

Чтобы открылся выходной транзистор, нужно на вход REF подать сигнал, вольтаж которого будет чуть больше, чем опорное. Так как достаточно превышения в пару милливольт, то смело можем считать, что подаем вольтаж, который равен опорному. В таком случае, на выходе с ОУ идет напряжение на базу транзистора, и он открывается.

Получается, что эта микросхема – вроде полевого транзистора. Она безостановочно сравнивает входной вольтаж с опорным, и, когда напряжение на входе больше, она открывается.

Специально для особо любознательных в даташите TL431 также имеется изображение детализированной схемы:

Как вы видите, даже на показанной развернутой схеме, устройство TL431 не вызывает чувство страха.

Характеристики TL431

  • Максимальное входное напряжение TL431 – 36В
  • Диапазон напряжений выхода TL431 – 2.5-36В
  • Максимальный выходной ток TL431 – 100мА
  • Минимальный ток нагрузки – 1мА
  • Опорное напряжение микросхемы – 2.5В
  • Погрешность напряжения на выходе – 0.5%, 1%, 2%
  • Сопротивление на выходе – 0.2 Ом
  • Рабочий температурный диапазон – -40-125°C

Виды TL431

TL431 производится в различных вариациях корпусов. В соответствии с типом монтажа, вы можете подобрать подходящий к вашему проекту. В целях монтажа в отверстия на плате и навесного монтажа: TO-92, а для поверхностного монтажа: SOT-23, SOT-25, SOT-89 и SOP-8.

Для прототипирования и простых самоделок без использования печатных плат наиболее удобным вариантом является TO92, так как ее можно использовать как совместно с breadboard, так и с навесным монтажем.

Подключение TL431

Вне зависимости от типа корпуса, микросхема имеет 3 контакта. А в корпусах с большим количеством ножек, остаток не используется или дублирует основные 3. Здесь вы можете увидеть цоколевку (распиновку) всех вариантов TL431.

Минимальная схема подключения состоит всего лишь из одного резистора. На выходе данной схемы напряжение будет равно опорному – 2.5В.

Схемы с использованием TL431

Микросхема может использоваться во многих разных схемах блоков питания. Это могут быть как регулируемые блоки питания, так и зарядные устройства к аккумуляторам. Давайте разберем несколько базовых, типовых схем, которые можно модернизировать, и на базе которых можно создавать свои замыслы и творения.

Стабилизатор напряжения на TL431 (2.5-36В, 100mA)

Данная схема позволяет заменить обыкновенный стабилитрон. Вы можете менять выходное напряжение путем изменения сопротивления резисторов R1 и R2. Чтобы провести расчет сопротивления, рекомендуем прибегнуть к использованию формулы, указанной ниже:

Стабилизатор напряжения с увеличенным максимальным током (2.5-36В)

Максимальный выходной ток TL431 равен 100мА. Однако, если вашему проекту нужен больший показатель выходного тока, то советуем вам использовать транзистор: тогда максимальный ток будет зависеть от его характеристик. Формула для расчета сопротивлений резисторов остается такой же.

Подобные схемы часто используются с другими микросхемами.К сожалению, большинство из них просто не могут пропускать высокий ток, поэтому, чтобы решить такую проблему, в дело вступает управляющий транзистор. В таком случае максимальный ток ограничивается его свойствами. Главная задача здесь – правильный подбор транзистора под управляющее напряжение на его базе.

Лабораторный блок питания на TL431 с защитой

Данная схема представляет собой регулируемый блок питания, который способен выдавать до 30Вт. И помимо этого имеет встроенную защиту от перегрузки. В случае, если ток начнет превышать допустимое значение на транзисторе Т2, то на ЛБП произойдет прекращение подачи напряжения, о чем будет сигнализировать загоревшийся светодиод.

Не стоит забывать использовать охлаждение в виде радиатора, ведь компоненты во время пиковых нагрузок будут быстро нагреваться, и со временем при частых перегревах, выходить из строя.

Стабилизатор тока на TL431 (Светодиодный драйвер)

Чаще всего стабилизаторы тока используются для запитывания светодиодов и светодиодных лент. Схема тут элементарная – вам понадобятся всего лишь пара резисторов и один транзистор.

Индикатор напряжения

Схема может понадобиться, когда вам необходимо следить за тем, чтобы напряжение не выходило за верхние и нижние пределы. Эти пределы задаются сопротивлением резисторов, по формуле, указанной ниже.

Данную схему можно модернизировать путем добавления пищалок или других звуковых устройств. Таким образом точно не получится пропустить сигнал о неправильном напряжении.

Таймер задержки на TL431

Универсальная микросхема, на которой есть возможность реализовать даже схему таймера задержки. Все, что вам понадобится – это пара резисторов и конденсатор. Их номиналы необходимо рассчитать по формуле, чтобы получить требуемое время задержки (формула указана ниже).

Такая схема возможна благодаря очень низкому показателю входного тока (4мкА). Во время замыкания главного контакта, транзистор начинает производить зарядку. После достижения показателя в 2.5В он открывается, и ток при содействии оптопаровому светодиоду (оптрону) начинает течь, от чего на внешней цепи происходит замыкание.

Зарядное устройство для литиевых аккумуляторах на TL431 и LM317

Эта простейшая схема позволяет правильно заряжать литиевые аккумуляторы. В этой зарядке TL431 используется в качестве источника опорного напряжения, а LM317 в качестве источника тока. Устройство заряжает аккумуляторы методом CC CV, означает, как все знают, постоянный ток (Constant Current), постоянное напряжение (Constant Voltage).

Входное напряжение для этой схемы – 9-20В. Сначала аккумулятор заряжается постоянным током, который поддается изменению, меняя сопротивление резистора R5. После того, как аккумулятор достигнет напряжения около 4.2В, он начинает заряжаться постоянным напряжением.

Учтите, что очень важно перед использованием настроить устройство: без нагрузки необходимо подстроить переменный резистор RV1 так, чтобы на выходе напряжение было равно 4.2 Вольта.

Как проверить TL431

Так как это не одиночный радиокомпонент, а целая схема, заключенная в маленький корпус, мы не можем проверить ее одним лишь мультиметром, ведь в ней содержится только 10 штук транзисторов, не говоря об остальных компонентах. Проверка сопротивлений между выводами не принесет никакой полезной информации, так как от партии к партии и от производителя к производителю референсные значения разнятся.

Поэтому, как и для проверки большинства микросхем, необходимо собрать простейшую схему с ее использованием. Такой схемой может послужить приведенная ниже

При подаче на вход 12В на выходе должно быть 5В, а при замыкании S1 на выход должно идти опорной напряжение микросхемы TL431 – 2.5В. Вы можете подобрать свои значения. Важно, чтобы они соответствовали формуле:

Если все значения подходят – значит микросхема рабочая и ее можно использовать в проекте. Если собрать небольшой стенд с такой схемой на breadboard, то получится конвейерно проверять большое количество TL431 и ей подобных микросхем.

Применение TL431

Эта микросхема может использоваться в различных устройствах питания различной мощности. TL431 используется в производстве блоков питания, ЛБП, стабилизаторов напряжения и тока, и прочего.

Эта микросхема может служить обычным компаратором, но благодаря внутреннему опорному источника питания схемы с таким использованием TL431 значительно упрощаются. В таком случае на ней можно создать схему терморегулятора и прочих устройств для считывания сигналов с аналоговых датчиков. А так же может служить индикатором напряжения. В том числе и звуковым.

Но чаще всего оно применяется в качестве источника опорного питания в связке с другими микросхемами, так как выдает его очень стабильно. Существует множеством схем, где TL431 используется в связке с LM317 – другим популярным регулируемым стабилизатором.

Аналоги TL431

Так, как микросхема обрела большую популярность, сейчас не составляет труда найти ее аналоги. Если вы ищете аналоги от отечественных производителей, то вот список для вас:

  • КР142ЕН19
  • КР142ЕН19А
  • К1156ЕР5Т

Самыми полноценными аналогами являются:

Также на замену Tl431 можно использовать:

  • KA431AZ
  • KIA431
  • HA17431VP
  • IR9431N
  • AME431BxxxxBZ
  • AS431A1D
  • LM431BCM
  • HA17431A, KIA431
  • APL1431

Для большинства из этих вариантов, схему менять не придется. Но стоит проверять datasheet каждой из них, чтобы быть уверенным, что цоколевка не отличается от TL431.

Безопасная эксплуатация TL431

При эксплуатации необходимо соблюдать параметры внешней среды, описанные производителем. Это необходимо не только для большего срока службы компонента, но также для его предсказуемого поведения. На таблице ниже отображены характеристики TL431 при температуре 25°C.

Нельзя перегружать элемент, его максимальное входное напряжение – 36В.

Лучше всего, чтобы ток нагрузки был не меньше 5мА, иначе микросхема может работать нестабильно и непредсказуемо.

Datasheet TL431

Datasheet находится на официальном сайте производителя. https://www.ti.com/lit/ds/symlink/tl431.pdf

Или на нашем сайте по ссылке.

В нем вы можете найти наиболее полный характеристики, все спецификации, возможности, примеры использования – всю информацию которая есть о данной микросхеме. Помимо этого, там находится информация для производств: виды, маркировки, упаковки, поддержка и прочее.

Производители TL431

Из-за своей невероятной популярности, TL431 производится почти всеми наиболее крупными предприятиями, которые специализируются на производстве микросхем. Однако, не все из них продаются в СНГ, множество продаются только за рубежом. Среди тех компаний, чья продукция поступает к нам:

  1. Texas Instruments
  2. ONS
  3. STM
  4. Nexperia
  5. HTC
  6. NXP Semiconductors

Остальные изготовители этой продукции, чья продукция недоступна у нас: Hotchip Technology, Calogic, Motorola, HIKE Electronics, Fairchild Semiconductor.

Где купить?

Сейчас TL431 доступна практически во всех магазинах радиокомпонентов. Ее можно без труда найти как на улицах своего города, так и в интернет-каталогах. Но в случае с покупкой в магазине вы можете заплатить в несколько раз больше, чем могли бы, закупаясь на AliExpress. По этой ссылке вы можете найти TL431 по лучшей цене и с хорошими отзывами, чтобы не переплачивать за воздух.

Можете посмотреть небольшой видеоурок про TL431:

21 значения * 10 шт. = 210 шт. SOT 23 2N2222 TL431 S8050 S8550 2N3906 MMBTA42 MMBTA92 MMBT5401 SOT23 комплект транзисторов посылка|s8050 s8550|transistor kitsot23 transistor

Отличный ассортимент компонентов. Быстрая доставка. В практике некоторые наборы поставляются с 9 элементами, вместо 10, из-за разреза в SMD ленте, это понятно, так как лента очень маленькая, а компоненты очень близко друг к другу, больше учитывая громкость заказов, которые продавец мог иметь. Единственное, что я сожалею об этой покупке, это то, что в целом я не получаю TL431 T.T, но у меня есть здесь, в моем доме, я надеюсь, что продавец уделяет больше внимания этим деталям. Тем не менее, спасибо, компоненты служат мне одинаково, и по цене это было бы скидкой, я буду жаловаться больше, кроме того, что я уже купил раньше в этом магазине, и компоненты качественные. Большое спасибо 🙂 otali.ru-06-24 10:25:04

TL431, что это за «зверь» такой? — Начинающим — Теория

Николай Петрушов

 


Рис. 1 TL431.

TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.

Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, «даташиту» (кстати, аналогами этой микросхемы являются — КА431, и наши микросхемы КР142ЕН19А, К1156ЕР5х).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?


Рис. 2 Устройство TL431.

Оказывается всё очень просто. Внутри находится обычный операционный усилитель ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения.
Только здесь эта схема играет немного другую роль, а именно — роль стабилитрона. Ещё его называют «Управляемый стабилитрон».
Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, ОУ имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе ОУ, коллектор (К) и эмиттер (А), которого объединены с выводами питания усилителя и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.


Рис. 3 Цоколёвка TL431.

Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы имеется встроенный источник опорного напряжения — 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 — напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит для того, чтобы открылся выходной транзистор, необходимо на вход (R) операционного усилителя, подать напряжение — чуть превышающее опорное 2,5 вольт, (приставку «чуть» можно опустить, так как разница составляет несколько милливольт и в дальнейшем будем считать, что на вход нужно подать напряжение равное опорному), тогда на выходе операционного усилителя появится напряжение и выходной транзистор откроется.
Если сказать по простому, TL431 — это что то типа полевого транзистора (или просто транзистора), который открывается при напряжении 2,5 вольта (и более), подаваемого на его вход. Порог открытия-закрытия выходного транзистора здесь очень стабильный из-за наличия встроенного стабильного источника опорного напряжения.


Рис. 4 Схема на TL431.

Из схемы (рис. 4) видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
Так как резисторы делителя одинаковые (напряжение источника питания делится пополам ), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении источника питания 5 вольт и более ( 5/2=2,5). На вход R в этом случае с делителя R2-R3 будет подаваться 2,5 вольт.
То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания — 5 вольт и более. Потухнет соответственно при напряжении источника менее 5-ти вольт.
Если увеличить сопротивление резистора R3 в плече делителя, то необходимо будет увеличить и напряжение источника питания больше 5 вольт, для того, что-бы напряжение на входе R микросхемы, подаваемое с делителя R2-R3 опять достигло 2,5 вольт и открылся выходной транзистор ТЛ-ки.

Получается, что если данный делитель напряжения (R2-R3) подключить на выход БП, а катод ТЛ-ки к базе или затвору регулирующего транзистора БП, то изменением плеч делителя, например изменяя величину R3 — можно будет изменять выходное напряжение данного БП, потому что при этом будет изменяться и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) — то есть мы получим управляемый стабилитрон.
Или если подобрать делитель не изменяя его в дальнейшем — можно сделать выходное напряжение БП строго фиксированным при определённом значении.

Вывод; — если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя R2-R3 сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 — 36 вольт (максимальное ограничение по «даташиту»).
Напряжение стабилизации в 2,5 вольта — получается без делителя, если вход ТЛ-ки подключить к её катоду, то есть замкнуть выводы 1 и 3.

Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным операционником?
— Можно, только если есть желание конструировать, но необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на операционник отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство. В этом случае можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП — напряжение подаваемое на вход микросхемы было равно опорному.

Ещё один вопрос — а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?

— Можно, но так как она отличается от обычного компаратора уже наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;


Рис. 5 Терморегулятор на TL431.

Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается — называются позисторы.
В этом терморегуляторе при превышении температуры выше установленного уровня (регулируется переменным резистором), сработает реле или какое либо исполнительное устройство, и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ООС между выводами 1-3, например подстроечный резистор 1,0 — 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором — в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема TL431 в схеме мощного блока питания для  трансивера, которая приведена на рисунке 6, и какую роль здесь играют резисторы R8 и R9, и как они подбираются.

Рис. 6 Мощный блок питания на 13 вольт, 22 ампера.

 

EA SMD маркировка | Все для ремонта электроники

EA SOT-23
BCW65A NPN транзистор Скачать
EA SOD-123
BZT52H-B47 Стабилитрон Скачать
EA SOD-523
BZX585-B16 Стабилитрон Скачать
EA DO-214BA
EGF1A Выпрямительный диод
EA SOT-23
MMBZ4711-V Стабилитрон Скачать
EA SOT-343R
RP130Q501A Стабилизатор напряжения Скачать
Ea SOT-23
BD49K41G Детектор напряжения Скачать
EA SOT-25
BD4840G Детектор напряжения Скачать
Ea SOT-25
BD49E41G Детектор напряжения Скачать
EA * DFN-8 2×2
NCP367OPMUEATBG Контроллер заряда Скачать
EA* WDFN-8 2×2
RT8010BGQW Понижающий преобразователь Скачать
EA* SOT-553
BD4840FVE Детектор напряжения Скачать
EA** SOT-143
MAX6314US42D3-T Цепь сброса микропроцессора Скачать
EA** SOT-363
Si1563EDH N-канальный + P-канальный MOSFETы
EA-*** SOT-25
RT9167-25PB Стабилизатор напряжения Скачать
EA1 SOT-23
LM431 Adjustable Precision Zener Shunt Regulator Скачать
EA4 SOT-23
AZ431AN-BTRE1 Параллельный стабилизатор Скачать
EA5 SOT-23
AZ431BN-BTRE1 Параллельный стабилизатор Скачать
EA=*** SOT-25
RT9167-25GB Стабилизатор напряжения Скачать
EADJ SOT-25
SP6200EM5 Стабилизатор напряжения Скачать

Каталог продукции — Полупроводниковые приборы, микросхемы, радиолампы — Стабилизаторы напряжения — Источники опорного напряжения

Каталог продукции

Обновлен: 19.09.2021 в 02:32

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Блоки питания, батарейки, аккумуляторы
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы, резаки
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники света, индикаторы
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты
Информация обновлена 19.09.2021 в 02:32

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице: 244860120

% PDF-1.3 % 1 0 объект > поток конечный поток эндобдж 2 0 obj > эндобдж 4 0 obj > поток hZKoGWyiMb

tl431% 20smd% 20маркировка и примечания к применению

1999 — TL431

Аннотация: ltl431 TL431B
Текст: нет текста в файле


Оригинал
PDF TL431 TL431B) 100 мА TL431B 30 частей на миллион / TL1431 TL431 / TL431A / TL431B TL431 / A ltl431
TL431

Аннотация: TL431D TL431IDM TL431CDM TL431CP TL431ACP TL431ACD TL431IP TL431ILP TL431AILP
Текст: нет текста в файле


OCR сканирование
PDF TL431 / D TL431, TL431 TL431D TL431IDM TL431CDM TL431CP TL431ACP TL431ACD TL431IP TL431ILP TL431AILP
tl431

Аннотация: Примечания по применению TL431 tl431g TL431CSF TL431 SOT-23 TL431C схемы приложений tl431 TL431ATA 431 регулятор tl431 htc
Текст: нет текста в файле


Оригинал
PDF TL431 / A / C 50PPM / ОТ-89 ОТ-23 TL431.TL431 Примечание по применению TL431 tl431g TL431CSF TL431 СОТ-23 TL431C Цепи применения tl431 TL431ATA 431 регулятор tl431 htc
TL431

Аннотация: tl431 sot23 TL431 application note tl431 принципиальная схема 2N222 TL431 sot89 431 sot-23 2n222 SOT23 lm7805 htc TL431 An
Текст: нет текста в файле


Оригинал
PDF TL431 / A TL431 TL431 tl431 sot23 Примечание по применению TL431 принципиальная схема tl431 2N222 TL431 sot89 431 сот-23 2n222 SOT23 lm7805 htc TL431 An
TL431

Аннотация: МАРКИРОВКА 431 РЕГУЛЯТОР sot23 TL431csf TL431 SOT-23 TL431 инструкция по применению tl431g sot23 tl431 маркировка TL431 5v прецизионный шунтирующий регулятор 431431 регулятор
Текст: нет текста в файле


Оригинал
PDF TL431 / A / C 50PPM / ОТ-89 ОТ-23 TL431.TL431 МАРКИРОВКА 431 РЕГУЛЯТОР sot23 TL431csf TL431 СОТ-23 Примечание по применению TL431 tl431g sot23 tl431 маркировка TL431 5 В прецизионный шунтирующий регулятор 431 431 регулятор
tl431

Аннотация: Транзисторный эквивалент tl431 2n 2483 S / BIP / SCB345100 / B / 30/10 / SMD КОНДЕНСАТОРЫ 106 c
Текст: нет текста в файле


OCR сканирование
PDF TL431 / D TL431, tl431 TL431 ТРАНЗИСТОРНЫЙ эквивалент 2н 2483 КОНДЕНСАТОРЫ S / BIP / SCB345100 / B / 30/10 / SMD 106 c
2003 — 431 лир

Аннотация: TL431AA Примечания по применению TL431 LM7805 100 мА TL431A Эквивалент TL431 Ограничение тока TL431 Эквивалент MC7805 Регулятор напряжения LM7805 для схем приложения 92 TL431
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A TL431 / TL431Aare 100 мА TL431 TL431AA Примечание по применению TL431 LM7805 100 мА TL431A Эквивалент TL431 Ограничение тока TL431 Эквивалент MC7805 Регулятор напряжения LM7805 to92 Цепи применения tl431
TL431

Аннотация: Примечание по применению TL431 tl4311 tl431 принципиальная схема TL431 Пульсации TL431 TL431 motorola TL431C распиновка Motorola TO92 triac tl431 на полупроводнике
Текст: нет текста в файле


OCR сканирование
PDF TL431 / D TL431, TL431 / D TL431 Примечание по применению TL431 tl4311 принципиальная схема tl431 TL431 An TL431 рябь TL431 моторола Распиновка TL431C motorola TO92 симистор tl431 на полупроводнике
2003 — UTC7805

Резюме: TL431 TL431 примечание по применению TL431 UTC TL431-NS TL431 5v 431 схема выводов регулятора tl431 431N TL431 источника тока
Текст: нет текста в файле


Оригинал
PDF TL431 TL431 ОТ-89 ОТ-23 100 мА.50 частей на миллион / QW-R103-003 UTC7805 UTC7805 Примечание по применению TL431 TL431 UTC TL431-NS TL431 5 В 431 регулятор схема контактов tl431 431N Источник тока TL431
2001 — TL431

Аннотация: Примечание по применению TL431 Ограничение тока TL431 TL431AA Эквивалент TL431 TL431A Источник тока TL431 Приложение TL431 tl431a DIP TL431 стабилитрон
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A TL431 / TL431Aare 100 мА TL431 Примечание по применению TL431 Ограничение тока TL431 TL431AA Эквивалент TL431 TL431A Источник тока TL431 Приложение TL431 tl431a DIP TL431 стабилитрон
2002 — tl431

Резюме: Указание по применению TL431 Программируемый шунт TL431 1.0,2 tl431aa регулятор напряжения LM7805 to92 tl431a DIP LM7805 100 мА прикладные схемы tl431 tl431a ограничение тока TL431
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A 100 мА 50 частей на миллион / TL431 / TL431Aare tl431 Примечание по применению TL431 Программируемый шунт TL431 1.0.2 tl431aa Регулятор напряжения LM7805 to92 tl431a DIP LM7805 100 мА Цепи применения tl431 tl431a Ограничение тока TL431
2002-TL431

Резюме: Указание по применению TL431 Программируемый шунт TL431 1.0.2 Программируемые схемы Fairchild TL431 1.0.2 Цепи приложений TL431 Приложение TL431 TL431A tl431a to92 Источник тока TL431 Эквивалентный пакет TL431
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A TL431 / TL431Aare 100 мА TL431 Примечание по применению TL431 Программируемый шунт TL431 1.0.2 Fairchild TL431 программируемый 1.0.2 Цепи применения tl431 Приложение TL431 TL431A tl431a to92 Источник тока TL431 Эквивалентный пакет TL431
2000 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A TL431 / TL431Aare 100 мА
1999 — TL431B

Аннотация: TL431 TL431 эквивалент TL431C вывод TL431 прикладные схемы транзистора 431A ТЕХНИЧЕСКОЕ ОПИСАНИЕ TL431AIDM TL431BCDM TL431CDM TL431IDM
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A / TL431B TL431 / TL431A / TL431B TL431.TL431 / A TL431B TL431 Эквивалент TL431 Распиновка TL431C Цепи применения tl431 транзистор 431А ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ TL431AIDM TL431BCDM TL431CDM TL431IDM
TL431

Аннотация: Motorola TO92 Triac loop control TL431 TL431C pin out MC7805 CK TL431CDT TL431AID l431AC av dm he no TL431 motorola
Текст: нет текста в файле


OCR сканирование
PDF TL431 / D TL431 / D TL431 motorola TO92 симистор контур управления TL431 Распиновка TL431C MC7805 CK TL431CDT TL431AID l431AC av dm he no TL431 моторола
2005 — TL431K

Аннотация: Приложение TL431K TO92 TL431 utc tl431k TL431 UTC TL431T TL431 5.0в ТО-92 tl431k СОТ-89 TL431KA TL431AF
Текст: нет текста в файле


Оригинал
PDF TL431 TL431 ОТ-89 100 мА. 50 частей на миллион / QW-R103-003 TL431K TL431K TO92 Приложение TL431 utc tl431k TL431 UTC TL431T TL431 5,0 В TO-92 tl431k СОТ-89 TL431KA TL431AF
2002 — tl431

Аннотация: схемы применения tl431 FAIRCHILD MC7805 tl431a DIP tl431a to92 TL431ACD TL431ACLP tl431aa LM7805 регулятор напряжения to92 TL431A
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A 100 мА 50 частей на миллион / TL431 / TL431Aare TL431ACZX TL431ACZ TL431ACD TL431ACLP TL431ACLPX Ан-9018-3: tl431 Цепи применения tl431 FAIRCHILD MC7805 tl431a DIP tl431a to92 tl431aa Регулятор напряжения LM7805 to92 TL431A
TL431

Реферат: СОТ-23 КОД МАРКИРОВКИ 431431 сот-23 tl431 сот-23 сот 23 код маркировки 431 TL431 инструкция по применению TL431 сот упаковка сот-23 TL431C 431 сот 23 регулятор TL 431
Текст: нет текста в файле


Оригинал
PDF TL431 / A / C 50PPM / ОТ-89 ОТ-23 TL431.TL431 sot-23 КОД МАРКИРОВКИ 431 431 сот-23 tl431 сот-23 сот 23 код маркировки 431 Примечание по применению TL431 TL431 сот пакет сот-23 TL431C 431 сот 23 Регулятор TL 431
2011-TL431

Аннотация: Примечание по применению TL431 TL431A lm7805 100 мА TL431 источник тока TL431 приложение замена TL431 эквивалентный пакет TL431 LM7805 Fairchild Программируемый TL431 1.0.2
Текст: нет текста в файле


Оригинал
PDF TL431 / TL431A TL431 / TL431A 100 мА DS400301 TL431 Примечание по применению TL431 TL431A lm7805 100 мА Источник тока TL431 Приложение TL431 tl431 замена Эквивалентный пакет TL431 LM7805 Программируемый Fairchild TL431 1.0,2
2010 — Код маркировки компонентов SOT23 KA

Аннотация: Диоды-стабилизаторы тока TL431 sot23 TL431 TL431ASA TL431BSA прецизионный шунтирующий регулятор 431 sot23 tl432asa tl432 KA SOT23
Текст: нет текста в файле


Оригинал
PDF TL431 / TL432 TL431 TL432 100 мА. TL431 DS35044 Код маркировки компонента SOT23 KA Диоды регулятора тока sot23 TL431 TL431ASA TL431BSA прецизионный шунтирующий регулятор 431 sot23 tl432asa KA SOT23
1999 — т.р. TL431

Аннотация: Указание по применению TL431 IC TL431c 12v TL431 TL431 эквивалентный лом TL431BCPK TL431 5v TL431B LTL431
Текст: нет текста в файле


Оригинал
PDF TL431 TL431A TL431B TL431 / TL431A / TL431B TL431.TL431B) 100 мА TL431B TL431 / A TR TL431 Примечание по применению TL431 Микросхема TL431c 12v Эквивалент TL431 лом TL431BCPK TL431 5 В LTL431
2008 — TL431 эквивалент транзистора

Аннотация: Транзистор TL431 транзистор TL431 to92 транзистор TL431 TL431 TL431 5.0v TO-92 TL431ACT TRIAC 226b транзистор TL431 to-92 tl431aidr2g
Текст: нет текста в файле


Оригинал
PDF TL431, NCV431A, TL431 ТРАНЗИСТОРНЫЙ эквивалент Транзистор TL431 транзистор TL431 to92 транзистор TL431 TL431 TL431 5.0в ТО-92 TL431ACT TRIAC 226 b транзистор TL431 к-92 tl431aidr2g
TL4311

Аннотация: TL431M1 TL431 8pin TL431 sot89 TL431N tl4316 TL431 IT TL431 tl431 прикладные схемы TL431 приложение
Текст: нет текста в файле


OCR сканирование
PDF TL431 150 мА ОТ-89 TL431 tl4311 TL431M1 TL431 8pin TL431 sot89 TL431N tl4316 IT TL431 Цепи применения tl431 Приложение TL431
1978 — TL431IPKR

Аннотация: Примечание по применению TL431 TL431A TL431CPKR SLVS005 TL431 TL431 SOT-23 tl431 sot-89
Текст: нет текста в файле


Оригинал
PDF TL431, TL431A SLVS005M TL431 TL431A TL431IPKR Примечание по применению TL431 TL431CPKR SLVS005 TL431 СОТ-23 tl431 сот-89
1978 — ТИ 431AC

Аннотация: T431 Texas tl431 Tl431 Texas TL431ILPM TL431ACLPR TL431ACDR TL431CLPM SLVS005 tl431 sot23 texas
Текст: нет текста в файле


Оригинал
PDF TL431, TL431A SLVS005P TL431A TL431 TI 431AC T431 Техас tl431 Tl431 Техас TL431ILPM TL431ACLPR TL431ACDR TL431CLPM SLVS005 tl431 sot23 техас

ETC TL431

DtSheet
    Загрузить

ETC TL431

Открыть как PDF
Похожие страницы
TI TL431CKTPR
TI TL431QDBVRQ1
TI TL1431CKTPR
ETC TL431-CZ
TI TL1431QDRG4Q1
FAIRCHILD LM431SAI
TS432I_C14
Регулируемый прецизионный шунтирующий регулятор
FAIRCHILD KA431
ДЕТСКИЙ ВЕНТИЛЯТОР 431
FAIRCHILD KA431SMF
NSC LMV431
NSC LM431BCZ
FAIRCHILD KA431SAMF
TSC TS432IXRF
FCI TL431ACLT1
TSC TS432XCTB0G
ГАММА GM432AST23T
ONSEMI SC431AVSNT1G
FAIRCHILD LM431B
ETC GM431
ОПИСАНИЕ ОСОБЕННОСТИ БЛОК-ДИАГРАММА

dtsheet © 2021 г.

О нас DMCA / GDPR Злоупотребление здесь

% PDF-1.4 % 92 0 obj> эндобдж xref 92 120 0000000016 00000 н. 0000003258 00000 н. 0000003338 00000 н. 0000003531 00000 н. 0000004629 00000 н. 0000004759 00000 н. 0000005222 00000 п. 0000005765 00000 н. 0000005929 00000 н. 0000006150 00000 н. 0000006280 00000 н. 0000006316 00000 н. 0000006363 00000 п. 0000006409 00000 п. 0000006455 00000 н. 0000006501 00000 н. 0000006547 00000 н. 0000006593 00000 н. 0000006639 00000 н. 0000006686 00000 н. 0000007011 00000 н. 0000007239 00000 п. 0000007486 00000 н. 0000007735 00000 н. 0000007958 00000 н. 0000008035 00000 н. 0000008898 00000 н. 0000009022 00000 н. 0000009913 00000 н. 0000010893 00000 п. 0000011025 00000 п. 0000011360 00000 п. 0000012494 00000 п. 0000013489 00000 п. 0000014389 00000 п. 0000015194 00000 п. 0000016118 00000 п. 0000018788 00000 п. 0000052565 00000 п. 0000052800 00000 п. 0000053007 00000 п. 0000085888 00000 п. 0000099833 00000 п. 0000100079 00000 п. 0000100308 00000 н. 0000100671 00000 н. 0000101022 00000 н. 0000101365 00000 н. 0000101586 00000 н. 0000101928 00000 н. 0000102277 00000 н. 0000102618 00000 п. 0000102965 00000 н. 0000103327 00000 н. 0000103684 00000 п. 0000104037 00000 н. 0000104399 00000 н. 0000104761 00000 н. 0000105114 00000 п. 0000105467 00000 н. 0000105818 00000 п. 0000106166 00000 п. 0000106512 00000 н. 0000106853 00000 н. 0000107202 00000 н. 0000107428 00000 н. 0000107719 00000 п. 0000108060 00000 п. 0000108398 00000 н. 0000108729 00000 н. 0000109068 00000 н. 0000109792 00000 н. 0000114310 00000 н. 0000114648 00000 н. 0000114838 00000 н. 0000116167 00000 н. 0000116495 00000 н. 0000116754 00000 н. 0000116989 00000 н. 0000117306 00000 н. 0000119671 00000 н. 0000119970 00000 н. 0000120256 00000 н. 0000120558 00000 н. 0000120882 00000 н. 0000121217 00000 н. 0000121556 00000 н. 0000121890 00000 н. 0000122345 00000 н. 0000122696 00000 н. 0000123057 00000 н. 0000123198 00000 н. 0000124507 00000 н. 0000124754 00000 н. 0000125061 00000 н. 0000125339 00000 н. 0000125610 00000 н. 0000125820 00000 н. 0000126126 00000 н. 0000126398 00000 н. 0000126681 00000 н. 0000126981 00000 п. 0000127325 00000 н. 0000127681 00000 н. 0000128044 00000 н. 0000128396 00000 н. 0000128755 00000 н. 0000129108 00000 н. 0000129454 00000 н. 0000129668 00000 н. 0000129954 00000 н. 0000130304 00000 н. 0000130659 00000 н. 0000155902 00000 н. 0000156135 00000 н. 0000156329 00000 н. 0000156632 00000 н. 0000163248 00000 н. 0000163489 00000 н. 0000002696 00000 н. трейлер ] >> startxref 0 %% EOF 211 0 obj> поток х ڄ RKTa = gL ټ g308qHI22 ] E.d0xҜ3f% 7-ElĒX) a3; H0

Маркировка электронных компонентов, коды SMD 43, 43-, 43000, 431A, 431AM, 4321, 4322, 43A, 43B, 43C, 43D, 43E, 43F, 43G, 43H, 43L, 43M, 43P, 43S, 43T, 43W, 43Y, 43P, 43S, 43T. Листки 1.5SMC43AT3, AP431AG, AP431AM, AP431AT, BAS40, BAS40, BAS40-00, BAS40T, BAT54CW, BZV49-C43, DTC143TUA, DTC143XEB, DTC143XUB, KA431SAMF, KA431SAMF2, KA431SLMF, KA431SLMF2, KA431SMF, KA431SMF2, SPX432AM, SPX432AM5, SPX432M, SPX432M5, TK71543AS, TPS43000PW, Ж531F01, Ж531F02, Ж531Z01, Ж531Z02, ZHT431F01-7, ZHT431F01TA, ZHT431F02TA, ZHT431FMTA, ZR431TAF01TA, ZR431LF0.

Главная
Автозвук
DVD
Материнские платы
Мобильные телефоны
Мониторы
Ноутбуки
Принтеры
Планшеты
Телевизоры
Даташиты
Маркировка SMD
Forum
  1. Основной
  2. Маркировка SMD
  3. 43
PNP
Код SMD Упаковка Название устройства Производитель Данные Лист данных
43 СОТ-23 BAS40 Diotec Диод Шоттки
43 СОТ-23 BAS40 MCC Диод Шоттки
43 СОТ-23 BAS40-00 Vishay Диод Шоттки
43 СОТ-523 BAS40T Secos Диод Шоттки
43 СОТ-323 BAT54CW Philips (теперь NXP) Диоды Шоттки
43 СОТ-323 DTC143TUA BL Galaxy Electrical Цифровой транзистор
43 СОТ-490 DTC143XEB ROHM NPN цифровой транзистор
43 UMT3F DTC143XUB ROHM NPN цифровой транзистор
43- СОТ-23 BAS40 NXP Диод Шоттки
43- СОТ-323 BAT54CW NXP Диоды Шоттки
43000 ЦСОП-16 TPS43000PW Texas Instruments ШИМ-контроллер
431A СОТ-89 AP431AG Apec Шунтирующий регулятор
431A ТО-92 AP431AT Apec Шунтирующий регулятор
431AM СО-8 AP431AM Apec Шунтирующий регулятор
4321 СОТ-23 SPX432AM Sipex Шунтирующий регулятор
4321 СОТ-25 SPX432AM5 Sipex Шунтирующий регулятор
4322 СОТ-23 SPX432M Sipex Шунтирующий регулятор
4322 СОТ-25 SPX432M5 Sipex Шунтирующий регулятор
43А SMB 1.5SMC43AT3 ON TVS диод
43А СОТ-23Ф KA431SMF Fairchild Шунтирующий регулятор
43B СОТ-23Ф KA431SAMF Fairchild Шунтирующий регулятор
43C СОТ-23Ф KA431SLMF Fairchild Шунтирующий регулятор
43C СОТ-23 ZHT431F01-7 Диоды Шунтирующий регулятор
43C СОТ-23 ZHT431F01TA Диоды Шунтирующий регулятор
43D СОТ-23 ZHT431F02TA Диоды Шунтирующий регулятор
43E СОТ-23Ф KA431SAMF2 Fairchild Шунтирующий регулятор
43F СОТ-23Ф KA431SLMF2 Fairchild Шунтирующий регулятор
43 г СОТ-23 Ж531Ф02 Zetex (Now Diodes) Шунтирующий регулятор
43 г СОТ-89 Zh531Z02 Zetex (Now Diodes) Шунтирующий регулятор
43H СОТ-23 Ж531Ф01 Zetex (Now Diodes) Шунтирующий регулятор
43H СОТ-89 Zh531Z01 Zetex (Now Diodes) Шунтирующий регулятор
43л СОТ-23 ZR431LF02TA Zetex (Now Diodes) Шунтирующий регулятор
43M СОТ-23 ZR431LF01TA Zetex (Now Diodes) Шунтирующий регулятор
43П СОТ-23 ZHT431FMTA Диоды Шунтирующий регулятор
43S СОТ-23Ф KA431SMF2 Fairchild Шунтирующий регулятор
43 т СОТ-23 TK71543AS Toko Регулятор LDO
43 Вт СОТ-23 BAS40 NXP Диод Шоттки
43 Вт СОТ-323 BAT54CW NXP Диоды Шоттки
43лет СОТ-89 BZV49-C43 NXP Стабилитрон
43п СОТ-23 BAS40 NXP Диод Шоттки
43п СОТ-323 BAT54CW NXP Диоды Шоттки
43с СОТ-23 BAS40 Infineon Диод Шоттки
43т СОТ-23 BAS40 NXP Диод Шоттки
43т СОТ-323 BAT54CW NXP Диоды Шоттки

Качество 431 сот 23 Для электронных проектов Бесплатный образец сейчас

О продуктах и ​​поставщиках:
 Alibaba.com предлагает большой выбор.  431 sot 23  на выбор в соответствии с вашими конкретными потребностями.  431 sot 23  являются жизненно важными частями практически любого типа электронных компонентов. Их можно использовать для создания материнских плат, калькуляторов, радиоприемников, телевизоров и многого другого. Выбрав правильный.  431 сот 23 , вы можете быть уверены, что продукт, который вы создаете, будет высокого качества и очень хорошо работать. Ключевые факторы выбора продуктов включают предполагаемое применение, материал и тип, среди других факторов.

431 sot 23 изготовлены из полупроводниковых материалов и обычно имеют не менее трех клемм, которые можно использовать для подключения к внешней цепи. Эти устройства работают как усилители или переключатели в большинстве электрических цепей. 431 sot 23 охватывают два типа областей, которые возникают из-за включения примесей в процессе легирования. В качестве усилителей. 431 sot 23 скрывают низкий входной ток в большой выходной энергии, и они направляют небольшой ток для управления огромными приложениями, работающими как переключатели.

Изучите прилагаемые таблицы данных вашего. 431 сот 23 для определения опор основания, эмиттера и коллектора для безопасного и надежного соединения. Файл. 431 sot 23 на Alibaba.com используют кремний в качестве первичной полупроводниковой подложки благодаря их превосходным свойствам и желаемому напряжению перехода 0,6 В. Основные параметры для. 431 сот 23 для любого проекта включают рабочие токи, рассеиваемую мощность и напряжение источника.

Откройте для себя удивительно доступный. 431 сот 23 на Alibaba.com для всех ваших потребностей и предпочтений. Доступны различные материалы и стили для безопасной и удобной установки и эксплуатации. Некоторые аккредитованные продавцы также предлагают послепродажное обслуживание и техническую поддержку.

SOT23 Маркировочный код | Электронный обратный инжиниринг

SOT23 широко известен как 3-контактный SMD-корпус и также известен как SOT23-3. Также имеется 5-контактный корпус (SOT23-5) и 6-контактный корпус (SOT23-6). Пакет SOT небольшой, и обычно полный номер детали нельзя напечатать на самом чипе.Обычно номер детали представлен кодом маркировки, напечатанным на верхней части упаковки SOT23.

Ниже представлены некоторые коды маркировки компонентов SOT23, которые можно использовать для обратного проектирования.

Предупреждение Примечание. Убедитесь, что контекст компонента, используемого в электронной конструкции, правильный. Возможно неверное истолкование детали с таким же кодом маркировки. Это справочное руководство по кодам маркировки предназначено для вашего удобства. Всегда проверяйте техническое описание, чтобы убедиться, что ваш код маркировки соответствует номеру детали.

SOT23-3 Код маркировки

Код маркировки Упаковка Номер детали Описание
6B, 6B, 6C, 6D СОТ23-3 BC817 нпн
J3Y СОТ23-3 M8050 нпн
1D *, 1A *, 1B *, (1BW) СОТ23-3 BC846, BC846A, BC846B нпн
1H *, 1E *, 1F *, 1G * СОТ23-3 BC847, BC847A, BC847B, BC847C нпн
1 К * СОТ23-3 BC848B нпн
1GM, 1H СОТ23-3 MMBTA06L, MMBTA05L нпн
J3 СОТ23-3 S9013 нпн
2TY СОТ23-3 S8550 пнп
3BW СОТ23-3 BC856B пнп
3D СОТ23-3 млн TH81 pnp, ВЧ транзистор
3G СОТ23-3 BC857C пнп
704 СОТ23-3 2N7002K-D н-кан
S07 СОТ23-3 СТС2307 п-ч
N76 СОТ23-3 DDTD142JU диод
K7D СОТ23-3 БАС70-04 диод (сдвоенный)
A1 СОТ23-3 BAW56 диод (сдвоенный)
A4 СОТ23-3 BAV70
или MIC803 — 31D3V
диод (сдвоенный)
или схема супервизора микроконтроллера
A7 СОТ23-3 BAV99 диод (сдвоенный)
B6 СОТ23-3 BAT54A
BAR40AN3-0-T1-G
двойной диод
L05 СОТ23-3 78L05
или ZLLS500
Регулятор напряжения 5 В
или барьерный диод Шоттки
65Z5 СОТ23-3 LM6206N3 регулятор напряжения
6003 СОТ23-3 MAX6003 (не уверен) опорное напряжение
65Z5 СОТ23-3 LM6206N3 Регулятор 3v3
WV4 57 СОТ23-3 BAT54S диоды с барьером Шоттки
ANW 51 СОТ23-3 ??? ???
W29 55, W29 41 СОТ23-3 ??? ???
431 СОТ23-3 TL431 Регулируемые прецизионные шунтирующие регуляторы
M2A СОТ23-3 ММБТ2222А нпн
M7A СОТ23-3 MMBT2907A пнп

SOT23-5 Код маркировки

Код маркировки Упаковка Номер детали Описание
C20 СОТ23-5 LMV7239 компараторы
A63A СОТ23-5 LM321 операционный усилитель
A64A СОТ23-5 LMH6642MF операционный усилитель
313B СОТ23-5 MCP6H01 операционный усилитель
СРПБ СОТ23-5 LM27313 постоянного тока-постоянного тока
M5 (например.М5Ю) СОТ23-5 24AA16, 24LC16B-IOT EEPROM 16K
= VG = СОТ23-5 74LVC1G32GW, 74LVC1G32GW-Q100 2 входа ИЛИ вентиль
LPFG (возможно тот же LPFL) СОТ23-5 ??? ???
VP9V СОТ23-5 ??? ???

SOT23-6 Код маркировки

Код маркировки Упаковка Номер детали Описание
ASRAE СОТ23-6 ZXMN2B03E6 н-кан
АНТАЛ СОТ23-6 ZXM62P03E6 п-ч
JA8K, JA8R СОТ23-6 TS5A3159 Аналоговый переключатель SPDT
AJxx, AJ6G, AJ03, AJ1M СОТ23-6 MCP4725A0T-E / CH цифро-аналоговый преобразователь
D771 СОТ23-6 DAC7571 12-битный цифро-аналоговый
5ABK СОТ23-6 (возможно) UM1665 Повышающий преобразователь постоянного тока в постоянный
58 СОТ23-6 SI3458DV н-кан

Служба электронного обратного инжиниринга

PIC-CONTROL предоставляет услуги электронного реверс-инжиниринга для наших бизнес-клиентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *