Магнитный поток в физике – Магнитный поток ℹ️ определение, обозначение и единица измерения, формула, скорость изменения потока, направление вектора магнитной индукции, расчеты

Содержание

Магнитный поток ℹ️ определение, обозначение и единица измерения, формула, скорость изменения потока, направление вектора магнитной индукции, расчеты

Особенности магнитного потока

Наблюдение за спектрами

В соответствии с плотностью линий магнитного поля (МП) можно увидеть величину вектора индукции, а согласно направленности силовых рядов — его течение. Наблюдение за спектрами постоянного тока и катушки на самом деле показывает, что при удалении проводника индукция МП уменьшается и довольно быстро.

Магнитный фон называется:

  1. С различным выведением в разных точках — гетерогенным. Неоднородный фон — это часть прямолинейного и радиального тока, вне соленоида, неизменённого магнита и т. д.
  2. С индукцией во всех точках — однородным полем. Графически такой МФ представлен силовыми линиями, которые считаются равноотстоящими параллельными частями. Этот случай является фоном изнутри длинного соленоида, а также полем между близкими соседними плоскими наконечниками электромагнита.

Произведение индукции поля, проникающего в контур от его области, называется потоком МИ или элементарным МП. Определение было дано и изучено британским физиком Фарадеем. Он отметил, что эта концепция на самом деле позволяет глубже рассмотреть совместный характер магнитных и электрических явлений.

Магнитная индукция

Обозначая поток буквой f, площадью контура S и углом между направлением вектора индукции B и нормальной частью n к области α, можно написать магнитный поток формулой:

F = S cos α.

МП является скалярным размером. Например, поскольку плотность силовых рядов случайного магнитного поля равна его индукции, он уравнивается всему количеству линий, которые проникают в цепь. С изменением поля поток, который пронизывает контур, также меняется.

Единица измерения магнитного потока — вебер. Определение СИ струи считается линия, площадь которой 1 м², оказавшаяся на равномерном фоне с индукцией 1 Вт / м2 и перпендикулярная вектору. Это устройство будет обозначаться:

1 Вт = 1 Вт / м2 — 1 м².

Особенности течения

Скорость изменения магнитного потока генерирует электронный фон, имеющий замкнутые блоки питания (вихревое поле). Этот фон рассматривается в проводнике как циркуляция внешних сил. Это явление называется электрической индукцией, а мощность, которую можно определить, генерируемая в этом случае, является индуцированной ЭДС поверхности.

Вихревое электрическое поле

Поток подчёркивает вероятность характеристики всего магнита или видов других источников МП. Если индукция выдвигает на первый план вероятность, характерную её эффекту в любой отдельной точке, поток будет целым. Это вторая по значимости особенность поля. Если МИ функционирует как силовая часть МП, поток считается её энергетической линией.

Возвращаясь к экспериментам, можно сказать, что фактически любая электромагнитная катушка может рассматриваться как 1 закрытая. Это схема, по которой будет течь магнитный поток вектора индукции, тогда ток МИ электронов будет замечен при потокосцеплении.

Таким образом, непосредственно под действием струи в замкнутом проводнике образуется электронный фон. И в течение этого времени он будет генерировать ток.

Магнитная индукция

Согласно прогрессивным научным представлениям об электрических явлениях, МП неразрывно связан с током и не может присутствовать без него. Невозможно предположить электроток без МП. В том числе в случае неизменного магнита связывают этот фон с молекулярными линиями.

Магнитная индукция

Если в место, где находится МП, поставить иглу, она стремится заимствовать определённое состояние, которое фактически показывает ориентационные качества МП. Скоординированное направление в этой точке места должно учитывать пункт назначения, где установлена ось, — это свободноподвешенная бесконечно небольшая магнитная стрелка, середина которой выровнена с точкой начального места. При этом из 2 возможных направлений вдоль оси стрелки МП символически присваивается назначение от южного конца на север.

Можно получить более яркое представление о направленности поля, если имеется ряд линий, где оси всех стрелок будут относительно касательными. Эти части называются магнитными магистралями.

Набор рядов упоминается как МП. Если бесконечно уменьшать площадь контура, притягивая его к точке, можно прийти к выражению для бесконечно малой стадии d, T активно в контуре маленькой области s, где угол P имеет конкретное значение между нормальностью к плоскости и небольшого контура. В этом случае направлением поля будет точка места, где расположено малое очертание.

Удар на плоскую цепь с током

В таких условиях коэффициент B принимается как характеристика интенсивности МП в этой точке места и называется индукцией МП. Она считается величиной, объединяющей назначение вектора МИ с направлением магнитного поля в этой точке места.

МП, характеризующийся на некоторых участках одинаковым значением вектора МИ, называется равномерным МП. Индукция в международной системе (СИ) измеряется в единицах Тесла (TL). МИ однородного МП составляет 1 т, если она воздействует на плоскую электронную последовательность площадью 5 ‘= 1 м и током 7 = 1 А, расположенную так, что магнитные доли лежат в плоскости цепи p = 0,5 n sin p = 1 с коэффициентом t = 1 Нм.

Индукция МП

Область места любой части, что связана с конкретным вектором, называется полем. Понятие строк широко используется для визуального представления ВП. В случае с линейным полем можно увидеть линию, так как сам вектор ориентирован тангенциально в любой точке. Трубчатая линия представляет собой область узла, ограниченную обилием соседних рядов, проделанных сквозь закрытое очертание. Представление векторного поля часто используется при описании различных взаимодействий тела. В частности, в отображении МП упоминается фон вектора магнитной индукции, определяющий в нём части и трубки МИ.

Электрическая зависимость

Британский физик Майкл Фарадей

Британский физик Майкл Фарадей не сомневался в единственной природе явлений магнетизма в своей теореме. Изменяющийся во времени фон

создаёт электронный и магнитный вид. В 1831 году Фарадей обнаружил появление индукции, которая легла в основу устройства для генераторов, преобразующих механическую энергию в электронную. А в 1835 г. немецкий математик Карл Гаусс определил аксиому, описывающую обозначение и зависимость напряжённости поля от величины заряда.

Появление электрической индукции замечено в появлении тока в проводящей цепи, которая либо лежит на изменяющемся во времени фоне, либо движется на непременном участке таким образом, что фактически число магнитных витков проникает в контуры трансформаций.

Для своих многочисленных экспериментов Фарадей воспользовался двумя катушками, магнитом, переключателем постоянного тока и гальванометром. Электронный поток мог зависеть и намагничивать кусок железа.

В результате экспериментов Фарадея были заложены основные особенности возникновения электрической индукции, и ток появляется:

  • в одной из катушек во время замыкания или размыкания электронной цепи внутри другой части;
  • когда энергия протекает в одном из элементов с поддержкой реостата;
  • при перемещении катушек относительно друг друга;
  • когда неизменный магнит движется относительно.

В замкнутом проводящем контуре ток появляется, когда число линий магнитной индукции изменяется, создавая плоскость, ограниченную цепью. И чем раньше перевести количество рядов МИ, тем больше генерируется индукционный ток в рамке. Это является основной причиной конфигурации численности последовательностей индукции.

Явление позволяет содержать и изменять число линий МИ, делая плоскость площадки, ограниченной неподвижной проводящей цепью, из-за конфигурации тока в катушке, расположенной рядом. Происходит максимальное изменение количества последовательностей МИ из-за смещения схемы на неоднородном фоне, плотность линий которого может изменяться на месте.


магнитный поток, определение, свойства, общая характеристика :: SYL.ru

Магнитными материалами являются те, которые подвержены влиянию особых силовых полей, в свою очередь, немагнитные материалы не подвержены или слабо подвержены силам магнитного поля, которое принято представлять при помощи силовых линий (магнитный поток), обладающих определенными свойствами. Кроме того что они всегда образуют замкнутые петли, они ведут себя так, будто являются эластичными, то есть во время искажения пытаются вернуться в прежнее расстояние и в свою естественную форму.

магнитный поток

Невидимая сила

Магниты имеют свойство притягивать к себе некоторые металлы, особенно железо и сталь, а также никель, сплавы никеля, хрома и кобальта. Материалы, создающие силы притяжения, являются магнитами. Существуют различные их типы. Материалы, которые могут легко намагничиваться, называются ферромагнитными. Они могут быть жесткими или мягкими. Мягкие ферромагнитные материалы, такие как железо, быстро теряют свои свойства. Магниты, изготовленные из этих материалов, называются временными. Жесткие материалы, такие как сталь, держат свои свойства гораздо дольше и используются в качестве постоянных.

магнитный поток определение

Магнитный поток: определение и характеристика

Вокруг магнита существует определенное силовое поле, и это создает возможность возникновения энергии. Магнитный поток равен произведению средних силовых полей перпендикулярной поверхности, в которую он проникает. Его изображают при помощи символа «Φ», измеряется он в единицах, называемых Webers (ВБ). Величина потока, проходящего через заданную площадь, будет меняться от одной точки к другой вокруг предмета. Таким образом, магнитный поток – это так называемая мера силы магнитного поля или электрического тока, основанная на общем количестве заряженных силовых линий, проходящих через определенную область.

магнитный поток это

Раскрывая тайну магнитных потоков

У всех магнитов, независимо от их формы, имеются две области, которые называются полюсами, способными производить определенную цепочку организованной и сбалансированной системы невидимых силовых линий. Эти линии из потока образуют особое поле, форма которого проявляется более интенсивно в некоторых частях по сравнению с другими. Области с наибольшим притяжением называют полюсами. Линии векторного поля не могут быть обнаружены невооруженным глазом. Визуально они всегда отображаются в виде силовых линий с однозначными полюсами на каждом конце материала, где линии более плотные и концентрированные. Магнитный поток – это линии, которые создают вибрации притяжения или отталкивания, показывая их направление и интенсивность.

магнитный поток

Линии магнитного потока

Магнитные силовые линии определяются как кривые, перемещающиеся по определенной траектории в магнитном поле. Касательная к этим кривым в любой точке показывает направление магнитного поля в ней же. Характеристики:

  • Каждая линия потока образует замкнутый контур.

  • Эти индукционные линии никогда не пересекаются, но имеют тенденцию сокращаться или растягиваться, изменяя в ту или иную сторону свои размеры.

  • Как правило, силовые линии имеют начало и конец на поверхности.

  • Имеется также определенное направление с севера на юг.

  • Силовые линии, которые расположены близко друг к другу, образуя сильное магнитное поле.

  • Силовые линии, которые находятся дальше друг от друга, указывают на слабое магнитное поле.

  • Когда соседние полюса одинаковы (север-север или юг-юг), они отталкиваются друг от друга. Когда соседние полюса не совпадают (север-юг или юг-север), они притягиваются друг к другу. Этот эффект напоминает знаменитое выражение о том, что противоположности притягиваются.

магнитные потоки

Магнитные молекулы и теория Вебера

Теория Вебера опирается на тот факт, что все атомы имеют магнитные свойства благодаря связи между электронами в атомах. Группы атомов соединяются вместе таким образом, что окружающие их поля вращаются в том же направлении. Такого рода материалы состоят из групп крошечных магнитиков (если рассматривать их на молекулярном уровне) вокруг атомов, это означает, что ферромагнитный материал состоит из молекул, которым свойственны силы притяжения. Они известны как диполи и группируются в домены. Когда материал намагничен, все домены становятся единым целым. Материал теряет свою способность притягивать и отталкивать в том случае, если его домены разъединяются. Диполи в совокупности образуют магнит, но по отдельности каждый из них пытается оттолкнуться от однополярного, таким образом притягиваются противоположные полюса.

магнитный поток

Поля и полюса

Силу и направление магнитного поля определяют линии магнитного потока. Область притяжения сильнее там, где линии близко расположены друг к другу. Линии находятся ближе всего у полюса стержневого основания, там притяжение наиболее сильное. Сама планета Земля находится в этом мощном силовом поле. Оно действует так, как будто гигантская полосовая намагниченная пластина проходит через середину планеты. Северным полюсом стрелка компаса направлена в сторону точки, называемой Северный магнитный полюс, южным полюсом она указывает на магнитный юг. Однако эти направления отличаются от географических Северного и Южного полюсов.

магнитный поток

Природа магнетизма

Магнетизм играет важную роль в электротехнике и электронике, потому что без его компонентов, таких как реле, соленоиды, катушки индуктивности, дроссели, катушки, не будут работать громкоговорители, электродвигатели, генераторы, трансформаторы, счетчики электроэнергии и т. д. Магниты можно найти в естественном природном состоянии в виде магнитных руд. Существуют два основных типа, это магнетит (его также называют оксид железа) и магнитный железняк. Молекулярная структура этого материала в немагнитном состоянии представлена в виде свободной магнитной цепи или отдельных крошечных частиц, которые свободно располагаются в случайном порядке. Когда материал намагничен, это случайное расположение молекул меняется, а крошечные случайные молекулярные частицы выстраиваются таким образом, что они производят целую серию договоренностей. Эта идея молекулярного выравнивания ферромагнитных материалов называется теорией Вебера.

определение магнитный поток

Измерение и практическое применение

Наиболее распространенные генераторы используют магнитный поток для производства электроэнергии. Его сила широко используется в электрических генераторах. Прибор, который служит для измерения этого интересного явления, называется флюксметром, он состоит из катушки и электронного оборудования, которое оценивает изменение напряжения в катушке. В физике потоком называется показатель числа силовых линий, проходящих через определенную область. Магнитный поток — это мера количества магнитных силовых линий.

Иногда даже немагнитный материал может также иметь диамагнитные и парамагнитные свойства. Интересным фактом является то, что силы притяжения могут быть разрушены при нагревании или ударе молоточком из такого же материала, но они не могут быть уничтожены или изолированы, если просто разбить большой экземпляр на две части. Каждой сломанный кусок будет иметь свой собственный северный и южный полюс, и неважно, насколько маленькими по размеру будут эти кусочки.

Магнитный поток (Зарицкий А.Н.). Видеоурок. Физика 9 Класс

Вспомним, что при изменении параметров магнитного поля вблизи замкнутого проводника в нем возникает ток. Данный ток получил название тока индукции, а явление – явление электромагнитной индукции.

Однако остается вопрос, какие конкретно параметры магнитного поля нам необходимо меня для получения данного эффекта. Для начала проведем эксперимент:

Для его проведения нам необходимо: катушка с большим количеством витков и подключенный к ней амперметр. В ходе проведения опыта обратите внимание на поведение стрелки амперметра (рис. 1).

Рис. 1. Опыты Фарадея

Как мы видим, при опускании и вынимании полосового магнита из катушки в ней образуется индукционный ток.

Проанализируем, изменение какого именно параметра привело к наблюдаемому эффекту. При приближении и отдалении магнита от катушки в ней меняется сила магнитного поля.

Таким образом, величиной, которая влияет на образование тока индукции в катушке, является сила магнитного поля.

Вспомним, что она описывается такой величиной, как магнитная индукция. Она является вектором и обозначается  и измеряется в Тл.

Помещенное перпендикулярно магнитному полю замкнутое проволочное кольцо сжимаем с нескольких сторон, чтобы оно изменило свою форму (рис. 2).


Рис. 2. Иллюстрация к опыту

При этом на протяжении процесса деформации в кольце возникает ток индукции. Что же мы изменяли в этот раз?

Теперь изменению подверглась площадь кольца. Конечно же, вместо кольца можно экспериментировать с любым замкнутым проводником.

Контур – замкнутый проводник (рис. 3).

Рис. 3. Контур

Рис. 4. Генератор

Его основными элементами являются (рис. 4):

  • катушка, которая может вращаться вокруг своей оси;
  • установленный вокруг катушки постоянный магнит.

При вращении катушки в магнитном поле можно увидеть, что лампочка загорается (т. е. в цепи возникает ток индукции).

Из этого опыта можно сделать вывод о том, что явление электромагнитной индукции проявляет себя и при повороте катушки или проводящей рамки в магнитном поле (рис. 5), т. е. при изменении угла между магнитными линиями и плоскостью проводника.

Рис. 5. Иллюстрация к опыту

Все три параметра, изменения которых влияют на величину тока индукции, объединяет физическая величина под названием магнитный поток.

В – модуль магнитной индукции поля

S – площадь контура

 – характеризует расположение плоскости контура относительно магнитной линии.

Магнитный поток измеряют в Веберах (Вб) и обозначают буквой Ф.

Таким образом, магнитный поток пропорционален модулю магнитной индукции поля, площади контура и зависит от расположения плоскости контура относительно магнитной линии.

Задача на анализ параметров магнитного потока

Для того чтобы научиться делать выводы об изменении магнитного потока в элементах различных электрических цепей, что может привести к наличию нежелательных индукционных токов, рассмотрим задачу.

Проволочная катушка со стальным сердечником включена в цепь постоянного тока последовательно с реостатом и ключом (рис. 6).

Рис. 6. Иллюстрация к задаче

Электрический ток, протекающий по веткам катушки,  создает в пространстве вокруг нее магнитное поле (рис. 7). В поле катушки и находится такая же катушка .

Рис. 7. Иллюстрация к задаче

Каким образом можно поменять магнитный поток пронизывающий катушку ? Рассмотрите все возможные варианты.

Вспомним, изменение каких параметров приводит к изменению магнитного потока.

Начнем с изменения индукции магнитного поля катушки .Этого возможно добиться, если изменять силу тока, которая порождает ее магнитное поле. Изменять ток в изображенной цепи можно 2-мя способами:

1. Передвижение ползунка реостата

2. Включение/выключение ключа

Стоит отметить, что изменение значения тока будет наибольшим от максимального до нуля, что приведет к наибольшему изменению магнитного потока в катушке .

Следующим параметром, изменение которого повлияет на значение магнитного потока, является площадь контура. В нашем случае катушки  Но изменить площадь сечения катушки мы не можем. Следовательно, вариант отпадает.

Последним вариантом изменения магнитного потока является поворот катушки  относительно магнитных линий катушки . Для достижения максимального результата изменения повернуть катушку необходимо на 90(рис. 8).

Рис. 8. Иллюстрация к задаче

Что же описывается магнитным потоком?

Как мы уже отметили, он зависит:

  • От силы магнитного поля
  • От площади контура, через который эти магнитные линии проходят
  • От угла расположения между контуром и магнитными линиями

Таким образом, магнитный поток характеризует количество магнитных линий, пронизывающих ограниченный контур.

Это легко проверить.

1. Сравним количество линий, которые пронизывают одинаковый контур, но в различных по силе магнитных полях (рис. 9).

В более сильном поле контур пронизывает больше линий.

Рис. 9. Иллюстрация к задаче

2. Если сравнить количество линий, которые в одном и том же однородном магнитном поле пронизывают различные по площади контуры, то их очевидно больше через больший контур (рис. 10).

Рис. 10. Иллюстрация к задаче

3. Если сравнивать поворот контура в магнитном поле на угол  к магнитным линиям и его расположение вдоль линий, то в первом случае их количество через плоскость контура будет максимально. А во втором магнитные линии будут скользить вдоль контура и не пронизывать его вовсе (рис. 11).

Рис. 12. Иллюстрация к задаче

В указанных примерах большему числу линий через контур соответствовал больший магнитный поток.

В результате отметим, что поскольку величина тока индукции зависит от изменения магнитной индукции, площади контура и от ее ориентации в пространстве, то принято говорить, что она зависит от изменения магнитного потока.

Кроме того, опыты Фарадея показали, что важна скорость изменения магнитного потока. Чем быстрее изменять указанные величины, тем величина индукционного тока будет больше.

Таким образом, можно утверждать, что явление электромагнитной индукции характеризуется скоростью изменения магнитного потока.

Задача на определение условий возникновения индукционного тока

Для того чтобы разобраться со взаимосвязью магнитного потока через контур и явлением электромагнитной индукции в нем, рассмотрим задачу:

Небольшую катушку поступательно перемещают в однородном магнитном поле. Возникает ли в катушке индукционный ток? Ответ обоснуйте.

Рис. 12. Иллюстрация к задаче

Может показаться, что из-за движения катушки могут быть изменения, следствием которых будет являться возникновение тока индукции в ее витках (рис. 12).

Вспомним, что обязательным условием возникновения тока индукции является изменение магнитного потока через витки катушки. Для этого необходимо изменение магнитной индукции через контур катушки. Чего не наблюдается, т. к. по условию поле однородно.

Кроме этого возможно изменение площади сечения катушки, чего также не наблюдается.

Последний возможный вариант – это изменение угла поворота плоскости катушки к магнитным линиям поля, чего, очевидно, также не происходит, поскольку движение поступательное, а значит, никаких поворотов катушки не наблюдается.

Следовательно, делаем вывод – магнитный поток изменяться не будет, соответственно, никакого тока индукции образовываться в витках катушки тоже не будет.

Сравнение магнитного потока с потоком воды

Название изученной нами новой физической величины магнитного потока не случайно. Дело в том, что магнитный поток через контур можно сравнить с потоком воды через кольцо, которое помещено в трубу (рис. 13). (1)

Чем скорость воды больше, тем больше ее проходит через кольцо в единицу времени. (2)

Чем больше площадь кольца, тем, опять-таки, через него протечет больше воды за наблюдаемое время. (3)

Если поворачивать кольцо при его поперечном расположении к потоку воды, через плоскость кольца протечет максимальное количество воды. (4)

Если начать его поворачивать под острым углом к потоку, то воды будет протекать все меньше. (5)

Рис. 13. Сравнение магнитного потока с потоком воды

А при повороте вдоль оттока вода вообще не будет проходить сквозь кольцо, а будет скользить вдоль него. (6)

Аналогичные свойства мы с вами рассмотрели для магнитного потока.

На уроке мы объяснили, какие параметры магнитного поля и контура необходимо менять для наблюдения явления электромагнитной индукции. Мы объединили это в понятие «магнитный поток».

 

Список литературы

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования.
  2. Яворский Б.М., Пинский А.А., Основы физики, т.2., – М. Физматлит., 2003.
  3. Элементарный учебник физики. Под ред. Г.С. Ландсберга, Т. 3. – М., 1974.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Festival.1september.ru (Источник).
  2. Nvtc.ee (Источник).
  3. Сlass-fizika.narod.ru (Источник).

 

Домашнее задание

  1. От чего зависит магнитный поток, пронизывающий площадь плоского контура, помещенного в однородное магнитное поле?
  2. Как меняется магнитный поток при увеличении в n раз магнитной индукции, если ни площадь, ни ориентация контура не меняются?
  3. Меняется ли магнитный поток при таком вращении контура, когда линии магнитной индукции то пронизывают его. то скользят по его плоскости?

Индукция магнитного поля. Магнитный поток

Науку часто смешивают с знанием.

Это глубокое недоразумение.

Наука есть не только знание,

но и сознание, т.е. умение пользоваться знанием.

Василий Осипович Ключевский.

В прошлой теме речь шла о магнитных линиях, о действиях магнитного поля, о его свойствах.

Вспомним основные понятия, связанные с магнитным полем.

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.

Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

Так же напомним, что направление линий магнитного поля будет зависеть от направления тока в проводнике.

Это направление можно определить с помощью правила буравчика: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

В данной теме речь пойдёт о количественных характеристиках магнитного поля.

Известно, что одни магниты создают в пространстве более сильные поля, чем другие.

Рассмотрим простой пример. Возьмем два полосовых магнита и поместим их над кучкой железных опилок и гвоздей. Как видно из опыта, сила притяжения к первому магниту оказалась достаточной для преодоления силы тяжести гвоздей, а сила притяжения ко второму — нет.

Какой же величиной можно охарактеризовать магнитное поле? Магнитное поле характеризуется векторной физической величиной, которая обозначается B и называется индукцией магнитного поля (или магнитной индукцией).

Индукция магнитного поля — одна из важнейших количественных характеристик магнитного поля.

Что это за величина?

Рассмотрим следующий опыт. По проводнику протекает ток в направлении «от нас». Линии магнитного поля выходят из северного полюса магнита и входят в его южный полюс. Тогда, согласно правилу левой руки, о котором говорилось в прошлой теме, на проводник будет действовать сила со стороны магнитного поля, и эта сила будет направлена вниз. Таким образом, равновесие будет нарушаться, а величину вклада такой силы можно измерять при помощи разновесов, которые можно добавить на чашу на противоположном конце весов.

В результате многочисленно повторенных опытов было установлено, что сила, действующая на проводник, зависит от:

– самого магнитного поля магнита — более мощный магнит действует на данный проводник с большей силой;

– силы тока, протекающего по проводнику,

длины самого проводника.

В результате таких опытов, проведенных Ампером и Араго в начале XIX в., было определено, что отношение максимальной действующей силы на проводник с током к силе тока в проводнике и длине проводника остаётся постоянной для этого магнитного поля, и именно она характеризует данное магнитное поле. Поэтому было введено понятие вектора магнитной индукции, как силовой характеристики магнитного поля.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная отношению модуля силы, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике и его длине.

Единицей измерения магнитной индукции в системе СИ является Тл (Тесла) в честь югославского электротехника Николы Тесла.

1 Тесла — это магнитная индукция такого однородного магнитного поля, в котором на контур с единичным магнитным моментом действует единичный вращающий момент.

Магнитная индукция полностью характеризует магнитное поле. В каждой точке может быть найден ее модуль и направление.

До сих пор для графического изображения магнитных полей использовались линии, которые условно называли магнитными линиями или линиями магнитного поля. Теперь можно уточнить их название и дать определение этих линий.

Более точное название магнитных линий — это линии магнитной индукции (или линии индукции магнитного поля).

Линиями магнитной индукции называются линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции.

Данное определение линий магнитной индукции можно пояснить с помощью рисунка. На нем кружочком с точкой изображен проводник с током, расположенный перпендикулярно к плоскости чертежа. Окружность вокруг проводника представляет собой одну из линий индукции магнитного поля, созданного протекающим по проводнику током.

Видно, что проведенные к этой окружности касательные в любой точке совпадают с вектором магнитной индукции.

Так как в каждой точке магнитное поле характеризуется определенным значением индукции, то через каждую точку поля можно провести линию магнитной индукции и, причем, только одну. При этом линии магнитной индукции замкнуты и не пересекаются.

Теперь, пользуясь термином «магнитная индукция», дадим более строгое определение однородного и неоднородного магнитных полей. Для этого обратимся к рисункам.

В изображенном на рисунке однородном магнитном поле (линии магнитной индукции которого расположены параллельно друг другу и с одинаковой густотой) вектор магнитной индукции во всех произвольно выбранных точках поля одинаков как по модулю, так и по направлению.

Сравним это поле с двумя неоднородными полями: полем постоянного полосового магнита и полем тока, протекающего по прямолинейному участку проводника.

Легко заметить, что в неоднородных полях, в отличие от однородного, вектор магнитной индукции меняется от точки к точке.

Т.о. магнитное поле называется однородным, если во всех его точках магнитная индукция одинакова. В противном случае поле называется неоднородным.

Для объяснения опытов, которые будут проводиться в дальнейшем, нам необходимо ввести еще одну физическую величину — магнитный поток.

Под словом «поток» понимают в обыденной жизни — это, например, поток воды или поток воздуха.

Возьмем кусок плотной бумаги с отверстием. Подуем в отверстие, подставив руку с обратной стороны листа. Сильнее дуем — больше поток воздуха. Будем дуть с такой же силой, но часть отверстия прикроем — поток уменьшится. И наконец, если плоскость листа бумаги поставим параллельно направлению потока выдуваемого воздуха, рука практически не почувствует влияние воздушного потока.

Аналогично и с магнитным потоком. При усилении магнитного поля количество силовых линий возрастает, следовательно, возрастает и магнитный поток.

Уменьшение площади контура при неизменной индукции магнитного поля приводит к уменьшению числа линий, пронизывающих контур и, следовательно, к уменьшению магнитного потока.

Поворот контура также приводит к изменению числа линий, пронизывающих замкнутый контур.

Если же плоскость контура параллельна линиям магнитной индукции, то поток сквозь него равен 0.

Согласно определению (которое дается в курсе физики старших классов) магнитный поток через плоскую поверхность — это скалярная физическая величина, численно равная произведению модуля магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией.

В системе СИ единицей магнитного потока является Вб (вебер).

1 вебер — это магнитный поток однородного магнитного поля с индукцией 1 Тл через перпендикулярную ему поверхность площадью 1 м2.

Основные выводы:

– Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная отношению модуля силы, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике и его длине.

– Единицей измерения магнитной индукции в системе СИ является Тл (Тесла).

– Магнитная индукция полностью характеризует магнитное поле. В каждой точке может быть найден ее модуль и направление.

– Магнитный поток через плоскую поверхность — это скалярная физическая величина, численно равная произведению модуля магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией.

Магнитный поток

В этой статье приведены хорошие стартовые задачи по теме “магнитный поток”. Задачи несложные, вполне можно начинать изучать эту тему с их использованием.

Задача 1. За \Delta t=2 с магнитный поток, пронизывающий проволочную рамку, равномерно уменьшается от некоторого значения \Phi_0 до нуля. При этом в рамке генерируется ЭДС, равная 4 В. Чему равен начальный магнитный поток \Phi_0  через рамку?
ЭДС равна

    \[E=-\frac{\Delta \Phi}{\Delta t }\]

Так как поток уменьшился до нуля, то его изменение \Delta \Phi=0-\Phi_0=-\Phi_0. Следовательно,

    \[E =\frac{ \Phi_0}{\Delta t }\]

    \[\Phi_0=E\Delta t =4\cdot2=8\]

Ответ: 8 Вб

Задача 2. Рамка площадью S = 200 см^2 с числом витков N= 200 и сопротивлением R=16 Ом находится в однородном магнитном поле, вектор индукции \vec{B} которого перпендикулярен плоскости рамки. Какой заряд пройдет по рамке при ее повороте на 90°? B=10 мТл.
Поток через один виток равен \Phi_1=BS, а через N витков –

    \[\Phi=NBS\]

При повороте рамки поток изменится до нуля, следовательно, \Delta \Phi=0-\Phi=-\Phi. Тогда ЭДС

    \[E=\frac{\Phi }{\Delta t}\]

Но ток равен

    \[I=\frac{\Delta q}{\Delta t}\]

Тогда

    \[I=\frac{E}{R}\]

    \[\frac{\Delta q}{\Delta t}=\frac{\Phi }{R\Delta t}\]

    \[\Delta q=\frac{\Phi }{R}=\frac{BSN}{R}=\frac{10^{-2}\cdot200\cdot10^{-4}\cdot200}{16}=2,5\cdot10^{-3}\]

Ответ: 2,5 мКл
Задача 3. За какое время магнитный поток сквозь один виток катушки, содержащей 50 витков, изменился с 5 до 1 мВб, если в результате этого изменения по катушке сопротивлением 100 Ом прошел индукционный ток силой  0,1 А?

По закону Ома

    \[I=\frac{E}{R}=\frac{N\Phi }{R\Delta t}\]

Откуда

    \[\Delta t=\frac{N\Phi }{IR}=\frac{50\cdot4\cdot10^{-3}}{0,1\cdot100}=0,02\]

Ответ: 0,02 с


Задача 4.  Рамка, имеющая 100 витков площадью S=50 см^2 каждый, вращается вокруг вертикальной оси, принадлежащей плоскости рамки, в горизонтальном постоянном однородном магнитном поле с индукцией В = 2 мТл. Средняя ЭДС индукции, возникающая на зажимах рамки за четверть периода,  равна 8 мВ. Сколько оборотов делает рамка за 10 с?

За четверть периода поток изменяется от максимального до нулевого, так как рамка повернется на 90 градусов за это время. Поэтому

    \[\Phi=NBS\]

    \[\Delta \Phi=0-\Phi=- NBS\]

    \[E =\frac{ \Phi}{\Delta t }\]

    \[\Delta t=\frac{\Phi}{E}=\frac{NBS}{E}=\frac{100\cdot2\cdot10^{-3}\cdot50\cdot10^{-4}}{8\cdot10^{-3}}=0,125\]

Итак, рамка повернется на 90 градусов за \frac{1}{8} с, следовательно, на 360 градусов она повернется за 0,5 с, ну а за 10 с – успеет повернуться 20 раз.

Ответ: 20 оборотов.
Задача 5. Проволочную рамку поместили в однородное периодически изменяющееся магнитное поле перпендикулярно линиям магнитной индукции. Выберите два верных утверждения.

1) Сила тока будет изменяться обратно пропорционально величине индукции.

2) Сила тока будет периодически изменяться по величине.

3) Сила тока будет равна нулю.

4) Сила тока будет изменяться по направлению.

Так как поле изменяется, то будет меняться поток чрез рамку. Следовательно, в рамке будет наводиться ЭДС, которая тоже будет переменной. И ток вследствие этого будет переменным. Так как поле меняется периодически, то будут периоды, когда индукция нарастает, и будут периоды убывания. Значит, ЭДС будет менять знак, а следовательно,  ток тоже будет менять направление.
Ответ: 24
Задача 6. В проволочное кольцо вставили магнит, при этом по кольцу прошел заряд q=2\cdot10^{-5} Кл. Определите магнитный поток, пересекающий кольцо, если сопротивление кольца 30 Ом.

    \[E=\frac{\Phi }{\Delta t}\]

Ток равен

    \[I=\frac{\Delta q}{\Delta t}\]

Тогда

    \[I=\frac{E}{R}\]

    \[\frac{\Delta q}{\Delta t}=\frac{\Phi }{R\Delta t}\]

    \[\Delta q=\frac{\Phi }{R}\]

    \[\Phi=\Delta q R=2\cdot10^{-5}\cdot30=6\cdot10^{-4}\]

Ответ: 600 мкВб

Задача 7. Длинную изолированную проволоку А) наматывают на катушку, а концы проволоки присоединяют к гальванометру, Б) складывают вдвое  и наматывают на катушку, концы проволоки присоединяют к гальванометру (см. рис.).

Поток

К задаче 7

Появится ли индукционный ток в катушке при введении в нее полосового магнита?

1) да, появится ток
2) нет, тока в катушке не будет
3) да, но ток будет появляться только в случае, если сложенный провод намотан по часовой стрелке, а магнит вдвигают северным полюсом
4) да, но ток будет появляться только в случае, если сложенный провод намотан против часовой стрелки, а магнит вдвигают северным полюсом .
В случае А появится, в случае B – нет.  В случае A поток изменяется, следовательно, наводится ЭДС, и возникает ток. Катушка, намотанная так, как показано на рисунке, называется бифиллярной.  Магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к взаимонейтрализации магнитных полей. Так что во втором случае в половине провода наводится ЭДС одного знака,  а во второй половине провода – ЭДС другого знака, которые компенсируют друг друга.

Ответ:  12
Задача 8. Виток, замкнутый на гальванометр, поместили в пространство между полюсами электромагнита, магнитное поле в котором изменяется по некоторому закону. При этом изменение тока в контуре от времени описывает зависимость на рисунке.

Поток

К задаче 8 – рисунок 1

Какой график может соответствовать изменению значения индукции магнитном поле от времени?

Поток

К задаче 8 – рисунок 2

Чтобы решить эту задачу, нужно смотреть не на числа, а на фазы изменения тока и индукции в контуре. Ток в первый момент максимален, следовательно, ЭДС максимальна, ведь по фазе они совпадают друг с другом. Поток же всегда опережает ЭДС на 90 градусов, то есть на четверть периода. Остается найти график, сдвинутый на четверть периода от заданного: первый и третий отпадают, из оставшихся подойдет №2. Индукция на этом графике опережает ток как раз на 90 градусов.

Ответ: 2
Задача 9. Координата перемычки, движущейся вдоль оси Х по параллельным металлическим стержням (см. рис.), изменяется по законам:

Поток

К задаче 9

А) x=5-3t+2t^2;

Б) x=5+2t^2.

Какой из графиков соответствует зависимости индукционного тока от времени в каждом случае в первые 0,5 с? Вся система находится в поcтоянном однородном магнитном поле, перпендикулярном плоскости, в которой лежат перемычка и стержни.

Поток

Графики зависимостей тока от времени

Определим, как меняется скорость. Для этого возьмем производную координаты по времени:

A)x
Б)x
В момент времени 0,5 с скорость в случае А) будет равна (-1), а в случае Б)  – (+2). То есть в первом случае площадь рамки увеличивается, и индукционный ток будет таким, чтобы уменьшить поток, то есть будет направлен против часовой стрелки, а в случае Б) наоборот, по часовой, так как будет стремиться восстановить уменьшающийся поток.  Скорость в обоих случаях непостоянна, но меняетсн по линейному закону,  значит, ток будет меняться линейно. Графики 1 и 3 – отбрасываем. В первом случае начальная скорость есть, значит, какой-то ток на начало отсчета уже присутствовал, а во втором – нет, поэтому для второго случая выберем график 2, а для первого – 4.

Ответ: 42


Задача 10. В однородном магнитном поле с индукцией В = 5 мТл движется металлический стержень длиной L = 50 см перпендикулярно вектору магнитной индукции со скоростью 2 м/с (см. рис.). Какова разность потенциалов, возникающая между концами стержня?

Поток

К задаче 10

Так как стержень движется перпендикулярно, то угол между линиями индукции и скоростью равен 90^{\circ}, а синус этого угла – 1, поэтому

    \[E=BL\upsilon \sin{\alpha}=5\cdot10^{-3}\cdot0,5\cdot2=5\cdot10^{-3}\]

Ответ: 5 мВ

Магнитный поток. Магнитная индукция. Примеры решения задач по физике. 10-11 класс

Магнитный поток. Магнитная индукция. Примеры решения задач по физике. 10-11 класс

Задачи по физике — это просто!

Не забываем, что решать задачи надо всегда в системе СИ!


А теперь к задачам!

Элементарные задачи из курса школьной физики на расчет величины магнитной индукции и магнитного потока.

Задача 1

Определить магнитный поток, проходящий через площадь 20 м2, ограниченную замкнутым контуром в однородном магнитном поле с индукцией 20 мТл, если угол между вектором магнитной индукции и плоскостью контура составляет 30o.

Задача 2

Определите магнитный поток, пронизывающий плоскую прямоугольную поверхность со сторонами 25 см и 60 см, если магнитная индукция во всех точках поверхности равна 1,5 Тл, а вектор магнитной индукции образует с нормалью к этой поверхности угол, равный: а) 0, б) 45o, в) 90o.

Задача 3

Магнитный поток внутри контура, площадь поперечного сечения которого 60 см2, равен 0,3 мВб.
Найдите индукцию поля внутри контура. Поле считать однородным.


Задача 4

Определить магнитную индукцию магнитного поля, если магнитный поток через площадь  500 см2, ограниченную контуром, составил 9×10-4 Вб. Угол между вектором  магнитной индукции и плоскостью контура составляет 60o.


Задача 5

Протон, влетев в магнитное поле со скоростью 100 км/с, описал окружность радиусом 50 см.
Определить индукцию магнитного поля, если заряд протона составляет 1,6х10-19 Кл, а масса равна 1,67х10-27 кг.



Поток магнитной индукции, теория и примеры

Определение и общие понятия потока магнитной индукции

Исходя из формулы (1), магнитный поток через произвольную поверхность S вычисляется (в общем случае), как:

   

Магнитный поток однородного магнитного поля сквозь плоскую поверхность можно найти как:

   

Для однородного поля, плоской поверхности, расположенной перпендикулярно вектору магнитной индукции магнитный поток равен:

   

Поток вектора магнитной индукции может быть отрицательным и положительным. Это связано с выбором положительного направления . Очень часто поток вектора магнитной индукции связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру связано с направлением течения тока правилом правого буравчика. Тогда, магнитный поток, который создается контуром с током, сквозь поверхность, ограниченную этим контуром является всегда большим нуля.

Единица измерения потока магнитной индукции в международной системе единиц (СИ) – это вебер (Вб). Формулу (4) можно использовать для определения единицы измерения магнитного потока. Одним вебером называют магнитный поток, который проходит сквозь плоскую поверхность площадь, которой 1 квадратный метр, размещенную перпендикулярно к силовым линиям однородного магнитного поля:

   

Теорема Гаусса для магнитного поля

Теорема гаусса для потока магнитного поля отображает факт отсутствия магнитных зарядов, из-за чего линии магнитной индукции всегда замкнуты или уходят в бесконечность, у них нет начала и конца.

Формулируется теорема Гаусса для магнитного потока следующим образом: Магнитный поток сквозь любую замкнутую поверхность (S) равен нулю. В математическом виде данная теорема записывается так:

   

Получается, что теоремы Гаусса для потоков вектора магнитной индукции () и напряженности электростатического поля (), сквозь замкнутую поверхность, отличаются принципиальным образом.

Примеры решения задач

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *