Магнитный поток единица измерения: Единицы измерения магнитного потока

Содержание

Магнитный поток. Напряженность магнитного поля. Магнитная проницаемость

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля, называется магнитным потоком через данную площадку.

Магнитный поток через площадку можно рассматривать как совокупность магнитных линий, пронизывающих всю площадку, расположенную перпендикулярно направлению магнитного поля.

Магнитный поток обозначается буквой Ф и вычисляется по формуле: Ф = B * S, где В — магнитная индукция; S — площадь площадки.

В качестве единицы магнитного потока принят вебер (обозначение вб).

Магнитную индукцию можно представить произведением двух сомножителей, один из которых μ — магнитная проницаемость, зависит от физических свойств тела, а второй H — напряженность магнитного поля от величины и расположения электрических токов, создающих это поле, B = μ * H.

Количественная связь между электрическим током и напряженностью окружающего его магнитного поля определяется законом полного тока.

Рассмотрим магнитное поле, образованное кольцевой катушкой, имеющей w витков, равномерно распределенных по всей длине сердечника (рис. 1).

Проведем замкнутый контур, совпадающий с магнитной линией в сердечнике. Поверхность, ограниченная этим контуром, пронизывается w витками. В каждом витке течет ток, равный I.

Полный ток, пронизывающий контур, равен произведению силы тока на число витков.
Вследствие осевой симметрии катушки напряженность поля во всех точках контура имеет одинаковое значение.

В этом случае закон полного тока выражается следующими соотношениями:

где l — длина всего замкнутого контура.

Произведение напряженности магнитного поля на всю длину замкнутого контура, совпадающего с магнитной линией, равно полному току, пронизывающему контур.

Напряженность магнитного поля измеряется в амперах на метр (обозначение а/м).

Закон полного тока лежит в основе расчетов магнитных цепей электрических машин.

Магнитная проницаемость определяется формулой:

Тела, у которых μ меньше единицы (например, медь), называются диамагнитными.

Тела, у которых μ больше единицы (например, воздух), называются парамагнитными.

Магнитная проницаемость диамагнитных и парамагнитных веществ очень близка к единице.

Особую группу составляют так называемые ферромагнитные вещества. Основными ее представителями являются железо, никель, кобальт и их сплавы.

Магнитная проницаемость ферромагнитных тел очень велика, поэтому все электромагниты снабжаются сердечниками из ферромагнитных материалов. При незначительном токе в обмотках в таких сердечниках возникают весьма большие магнитные потоки.

Рис. 1

Рис. 2


Характерным признаком ферромагнитных тел является зависимость их магнитной проницаемости от магнитной индукции и от предыдущих магнитных состояний тела.

Таким образом, магнитная проницаемость ферромагнитных тел является величиной непостоянной и изменяется в зависимости от магнитной индукции.

Следовательно, в формуле B = μ * H одновременно с Н изменяется В и μ. Поэтому для того, чтобы характеризовать магнитные свойства ферромагнитных тел, выражают зависимость между В и H графически в виде кривой. На представленном графике (рис. 2) по горизонтальной оси, называемой осью абсцисс, отложены значения напряженности поля в стали, а по вертикальной, называемой осью ординат, — соответствующие величины магнитной индукции в той же стали. Такую кривую называют кривой намагничивания.
Кривые намагничивания стали (железа) впервые были определены в 1871 г. знаменитым русским физиком А. Г. Столетовым.

При рассмотрении кривых намагничивания стали можно установить, что с увеличением напряженности магнитного поля H магнитная индукция В в железе вначале сильно возрастает, а затем приближается к максимальному значению и при дальнейшем увеличении H увеличивается незначительно, или, как говорят, достигает насыщения.

Большое значение для практических целей имеет построение графической зависимости В от H при так называемом циклическом намагничивании железа, т. е. при изменении величины H от нуля до некоторого максимального значения и уменьшении H до нуля, затем изменении направления H и увеличении H до максимального значения, уменьшении H до нуля и увеличении H до максимального значения в первом направлении и т.

д. (см. рис. 2).

Полученная замкнутая кривая АСА1С1А называется гистерезисной петлей. Гистерезисом называют отставание В от H в процессе намагничивания и размагничивания.

Теоретически доказано, что площадь, охватываемая гистерезисной петлей, пропорциональна электрической энергии, расходуемой на нагревание железа при его перемагничивании за один цикл. Потери энергии в электрических машинах и аппаратах, связанные с перемагничиванием, называются потерями на гистерезис.

Каждый сорт стали имеет свои кривые намагничивания, определяющие его магнитные свойства.

Определим величину магнитного потока Ф в кольцевой катушке (длина магнитопровода которой равна l, сечение магнитопровода S, магнитная проницаемость его материала μ), имеющей w витков, при прохождении по ней тока l.


⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓

⇒ВНИМАНИЕ⇐

  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.

⇓ОБСУДИТЬ СТАТЬЮ⇓

46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.

Способы измерения магнитной индукции

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным момен­том, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера и из выражения для силы Лоренца .

Потоком вектора магнитной индукции (магнитным потоком)

через площадку dS называ­ется скалярная физическая величина, равная

где Bn=В cos проекция вектора В на направление нормали к площадке dS ( угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке.

Поток вектора магнитной индукции ФB через произвольную поверхность S равен

Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const

и

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — маг­нитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположен­ную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тлм2).

47. Самоиндукция. Индуктивность. Индуктивность соленоида -Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа (см. (110.2)), пропорциональ­на току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току

I в контуре:

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения определяется единица индуктивности генри (Гн): 1 Гн — ин­дуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

Рассчитаем индуктивность бесконечно длинного соленоида

. Полный магнитный поток сквозь соленоид (потокосцепление) равен Подставив это выражение в формулу получим

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.

Если контур не деформируется и магнитная проницаемость среды не изменяется ,то L = const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

-Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21 и L12 равны друг другу, т. е.

Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн).

-необх. И и дост. Усл вект потенц поля

Поток вектора магнитной индукции (магнитный поток)

Задание: Найдите силу, которая действует на рамку в предыдущем примере.

Решение:

Для того чтобы найти силу, которая действует на квадратную рамку с током в поле длинного провода положим, что под действием магнитной силы рамка сместилась на малое расстояние dx. В таком случае сила совершает работу равную:

\[\delta A=Fdx\ (2.1)\]

Элементарную работу $\delta A$ с другой стороны выразим как:

\[\delta A=I’dФ\ \left(2.2\right).\]

Выразим силу, используя (2.1) и (2.2), получим:

\[Fdx=I’dФ\ \to F=I’\frac{dФ}{dx}\left(2. 3\right).\]

Используя формулу, полученную в примере 1:

\[dФ=-\frac{{\mu }_0}{2\pi }Il\frac{dх}{х}\ \to \frac{dФ}{dx}=-\frac{{\mu }_0}{2\pi }\frac{Il}{х}\ \left(2.4\right).\]

Подставим $\frac{dФ}{dx}$ в выражении для модуля силы (2.3), получим:

\[F=I’\frac{{\mu }_0}{2\pi }\frac{Il}{х}\left(2.5\right).\]

На каждый элемент контура квадратной рамки действует сила (сила Ампера), всего на рамку действует четыре составляющих силы, однако, очевидно, что силы, которые действуют на стороны AB и DC равны по модулю и противоположны по направлению:

\[\overrightarrow{F_{AB}}+\overrightarrow{F_{DC}}=0\ (2.6)\]

их сумма равна нулю, в таком случае, результирующая сила, приложенная к контуру будет:

\[\overrightarrow{F}=\overrightarrow{F_{AD}}+\overrightarrow{F_{BC}}\left(2.6\right).\]

Эти силы, в соответствии с правилом левой руки, направлены вдоль одной прямой в противоположные стороны, то есть:

\[F=F_{AD}-F_{BC}\ \left(2.7\right).\]

Найдем силу $F_{AD,}$ используя формулу (2. 5), где $x=b$, получим:

\[F_{AD}=I’\frac{м_0}{2\pi}\frac{Il}{b}\left(2.8\right).\]

Тогда $F_{BC}$ равна:

\[F_{BC}=I’\frac{{\mu }_0}{2\pi }\frac{Il}{b+a}\left(2.9\right).\]

Искомая сила получается равной:

\[F=I’\frac{{\mu }_0}{2\pi }\frac{Il}{b}-I’\frac{{\mu }_0}{2\pi }\frac{Il}{b+a}={II}’\frac{{\mu }_0l}{2\pi }\left(\frac{1}{b}-\frac{1}{b+a}\right).\]

Ответ: $F={II}’\frac{{\mu }_0l}{2\pi }\left(\frac{1}{b}-\frac{1}{b+a}\right).\ $Магнитные силы выталкивают рамку стоком, пока она сохраняет первоначальную ориентацию относительно поля провода.

Единица измерения магнитного потока ф. Базовые формулы

Вебер (единица магнитного потока) Вебер, единица магнитного потока, входит в Международную систему единиц . Названа по имени немецкого физика В. Вебера , русское обозначение вб , международное Wb. В. ‒ магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 ом проходит количество электричества 1 кулон . Иначе можно определить В. как магнитный поток, равномерное изменение которого до нуля за промежуток времени 1 сек вызывает в пронизываемом им замкнутом контуре эдс, равную 1 вольту . Следовательно, 1 вб = (1 ом ). (1 к ) или 1 вб = (1 в ). (1 сек ). 1 мкс (максвелл ‒ единица магнитного потока в системе СГС)= 10-8 вб. В Международной системе единиц (СИ) вебер определяется как магнитный поток, создаваемый однородным магнитным полем с индукцией 1 тесла через площадку в 1м2 , нормальную к направлению поля: 1 вб = (1тл )» (1м2 ).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое «Вебер (единица магнитного потока)» в других словарях:

    Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в этом контуре ЭДС, равную одному вольту (см. Закон… … Википедия

    ВЕБЕР, единица магнитного потока (см. МАГНИТНЫЙ ПОТОК) Ф и потокосцепления (см. ПОТОКОСЦЕПЛЕНИЕ) в системе СИ, названа в честь В. Вебера Обозначается Вб: 1 Вб=1 Тл.м2 1 Вб (вебер) магнитный поток, проходящий через плоскую поверхность площадью 1… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Вебер. Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в… … Википедия

    Максвелл, единица магнитного потока в СГС системе единиц. Названа в честь английского физика Дж. К. Максвелла. Сокращённое обозначение: русское мкс, международное Мх. М. ≈ магнитный поток, проходящий при однородном магнитном поле с индукцией 1… … Большая советская энциклопедия

    ВЕБЕР — единица магнитного потока в СИ, обозначается Вб … Большая политехническая энциклопедия

    ВЕБЕР (Weber) Вильгельм Эдуард (1804 91), немецкий физик, который в 1846 г. стандартизировал единицы измерения ЭЛЕКТРИЧЕСТВА, связав их с основными размерностями массы, длины, заряда и времени. Был первым физиком, который рассматривал… … Научно-технический энциклопедический словарь — единица магнитного потока в системе СИ. 1 Вб равен магнитному потоку, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 Ом через поперечное сечение проводника за 1 секунду проходит количество электричества, равное 1 Кл.… … Медицинские термины

Используя силовые линии, можно не только показывать направление магнитного поля, но также характеризовать величину его индукции.

Условились проводить силовые линии таким образом, чтобы через 1 см² площадки, перпендикулярно вектору индукции в определенной точке, проходило число линий, равное индукции поля в этой точке.

В том месте, где индукция поля будет больше, силовые линии будут гуще. И, наоборот, там, где индукция поля меньше, реже и силовые линии.

Магнитное поле с одинаковой индукцией во всех точках называется однородным полем. Графически магнитное однородное поле изображается силовыми линиями, представляющими собой равно отстоящие друг от друга

Примером однородного поля является поле, находящееся внутри длинного соленоида, а также поле между близко расположенными друг к другу параллельными плоскими полюсными наконечниками электромагнита.

Произведение индукции магнитного поля, пронизывающего данный контур, на площадь контура называется магнитным потоком магнитной индукции либо же просто магнитный поток.

Определение ему дал и изучил его свойства английский ученый-физик — Фарадей. Он открыл, что это понятие позволяет глубже рассмотреть единую природу магнитных и электрических явлений.

Обозначая магнитный поток буквой Ф, площадь контура S и угол между направленностью вектора индукции В и нормалью n к площади контура α, можно написать следующее равенство:

Ф = В S cos α.

Магнитный поток — это скалярная величина.

Так как густота силовых линий произвольного магнитного поля равняется его индукции, то магнитный поток равен всему числу силовых линий, которые пронизывают данный контур.

С изменением поля меняется и магнитный поток, который пронизывает контур: при усилении поля он возрастает, при ослаблении — уменьшается.

За единицу магнитного потока в принимается поток, который пронизывает площадку в 1 м², находящуюся в магнитном однородном поле, с индукцией 1 Вб/м², и расположенную перпендикулярно вектору индукции. Такая единица называется вебером:

1 Вб = 1 Вб/м² ˖ 1 м².

Переменяющийся магнитный поток порождает электрическое поле, имеющее замкнутые силовые линии (вихревое электрическое поле). Такое поле проявляется в проводнике как действие посторонних сил. Данное явление называют электромагнитной индукцией, а электродвижущую силу, возникающую при этом — ЭДС индукции.

Кроме того, следует отметить, что магнитный поток дает возможность характеризовать в целом весь магнит (или же любые другие источники магнитного поля). Следовательно, если дает возможность характеризовать его действие в любой отдельно взятой точке, то магнитный поток — целиком. Т.е., можно сказать о том, что это вторая важнейшая А значит, если магнитная индукция выступает в роли силовой характеристики магнитного поля, то магнитный поток — является его энергетической характеристикой.

Вернувшись к опытам, можно сказать также о том, что всякий виток катушки можно вообразить как отдельно взятый замкнутый виток. Тот же контур, сквозь который и будет проходить магнитный поток вектора магнитной индукции. В таком случае будет отмечаться индукционный электрический ток. Таким образом, именно под воздействием магнитного потока формируется электрополе в замкнутом проводнике. А затем уже это электрическое поле формирует электрический ток.

«Физика — 11 класс»

Электромагнитная индукция

Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле — магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.

Явление электромагнитной индукции

Явление электромагнитной индукции — это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.

Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?

В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:

1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.

2) индукционный ток возникает при изменении силы тока в одной из катушек с помощью реостата 3). индукционный ток возникает при движении катушек относительно друг друга 4). индукционный ток возникает при движении постоянного магнита относительно катушки

Вывод:

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.

При этом не важно. что является причиной изменения числа линий магнитной индукции.
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,

и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.

Магнитный поток

Магнитный поток — это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.

Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции

Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :

Ф = BScos α

где
Вcos α = В n — проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому

Ф = B n S

Магнитный поток тем больше, чем больше В n и S .

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S .

Единицей магнитного потока является вебер .
Магнитный поток в 1 вебер (1 Вб ) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Магнитными материалами являются те, которые подвержены влиянию особых силовых полей, в свою очередь, немагнитные материалы не подвержены или слабо подвержены силам магнитного поля, которое принято представлять при помощи силовых линий (магнитный поток), обладающих определенными свойствами. Кроме того что они всегда образуют замкнутые петли, они ведут себя так, будто являются эластичными, то есть во время искажения пытаются вернуться в прежнее расстояние и в свою естественную форму.

Невидимая сила

Магниты имеют свойство притягивать к себе некоторые металлы, особенно железо и сталь, а также никель, сплавы никеля, хрома и кобальта. Материалы, создающие силы притяжения, являются магнитами. Существуют различные их типы. Материалы, которые могут легко намагничиваться, называются ферромагнитными. Они могут быть жесткими или мягкими. Мягкие ферромагнитные материалы, такие как железо, быстро теряют свои свойства. Магниты, изготовленные из этих материалов, называются временными. Жесткие материалы, такие как сталь, держат свои свойства гораздо дольше и используются в качестве постоянных.

Магнитный поток: определение и характеристика

Вокруг магнита существует определенное силовое поле, и это создает возможность возникновения энергии. Магнитный поток равен произведению средних силовых полей перпендикулярной поверхности, в которую он проникает. Его изображают при помощи символа «Φ», измеряется он в единицах, называемых Webers (ВБ). Величина потока, проходящего через заданную площадь, будет меняться от одной точки к другой вокруг предмета. Таким образом, магнитный поток — это так называемая мера силы магнитного поля или электрического тока, основанная на общем количестве заряженных силовых линий, проходящих через определенную область.

Раскрывая тайну магнитных потоков

У всех магнитов, независимо от их формы, имеются две области, которые называются полюсами, способными производить определенную цепочку организованной и сбалансированной системы невидимых силовых линий. Эти линии из потока образуют особое поле, форма которого проявляется более интенсивно в некоторых частях по сравнению с другими. Области с наибольшим притяжением называют полюсами. Линии векторного поля не могут быть обнаружены невооруженным глазом. Визуально они всегда отображаются в виде силовых линий с однозначными полюсами на каждом конце материала, где линии более плотные и концентрированные. Магнитный поток — это линии, которые создают вибрации притяжения или отталкивания, показывая их направление и интенсивность.

Линии магнитного потока

Магнитные силовые линии определяются как кривые, перемещающиеся по определенной траектории в магнитном поле. Касательная к этим кривым в любой точке показывает направление магнитного поля в ней же. Характеристики:

    Каждая линия потока образует замкнутый контур.

    Эти индукционные линии никогда не пересекаются, но имеют тенденцию сокращаться или растягиваться, изменяя в ту или иную сторону свои размеры.

    Как правило, силовые линии имеют начало и конец на поверхности.

    Имеется также определенное направление с севера на юг.

    Силовые линии, которые расположены близко друг к другу, образуя сильное магнитное поле.

  • Когда соседние полюса одинаковы (север-север или юг-юг), они отталкиваются друг от друга. Когда соседние полюса не совпадают (север-юг или юг-север), они притягиваются друг к другу. Этот эффект напоминает знаменитое выражение о том, что противоположности притягиваются.

Магнитные молекулы и теория Вебера

Теория Вебера опирается на тот факт, что все атомы имеют магнитные свойства благодаря связи между электронами в атомах. Группы атомов соединяются вместе таким образом, что окружающие их поля вращаются в том же направлении. Такого рода материалы состоят из групп крошечных магнитиков (если рассматривать их на молекулярном уровне) вокруг атомов, это означает, что ферромагнитный материал состоит из молекул, которым свойственны силы притяжения. Они известны как диполи и группируются в домены. Когда материал намагничен, все домены становятся единым целым. Материал теряет свою способность притягивать и отталкивать в том случае, если его домены разъединяются. Диполи в совокупности образуют магнит, но по отдельности каждый из них пытается оттолкнуться от однополярного, таким образом притягиваются противоположные полюса.

Поля и полюса

Силу и направление магнитного поля определяют линии магнитного потока. Область притяжения сильнее там, где линии близко расположены друг к другу. Линии находятся ближе всего у полюса стержневого основания, там притяжение наиболее сильное. Сама планета Земля находится в этом мощном силовом поле. Оно действует так, как будто гигантская полосовая намагниченная пластина проходит через середину планеты. Северным полюсом стрелка компаса направлена в сторону точки, называемой Северный магнитный полюс, южным полюсом она указывает на магнитный юг. Однако эти направления отличаются от географических Северного и Южного полюсов.

Природа магнетизма

Магнетизм играет важную роль в электротехнике и электронике, потому что без его компонентов, таких как реле, соленоиды, катушки индуктивности, дроссели, катушки, не будут работать громкоговорители, электродвигатели, генераторы, трансформаторы, счетчики электроэнергии и т. д. Магниты можно найти в естественном природном состоянии в виде магнитных руд. Существуют два основных типа, это магнетит (его также называют оксид железа) и магнитный железняк. Молекулярная структура этого материала в немагнитном состоянии представлена в виде свободной магнитной цепи или отдельных крошечных частиц, которые свободно располагаются в случайном порядке. Когда материал намагничен, это случайное расположение молекул меняется, а крошечные случайные молекулярные частицы выстраиваются таким образом, что они производят целую серию договоренностей. Эта идея молекулярного выравнивания ферромагнитных материалов называется теорией Вебера.

Измерение и практическое применение

Наиболее распространенные генераторы используют магнитный поток для производства электроэнергии. Его сила широко используется в электрических генераторах. Прибор, который служит для измерения этого интересного явления, называется флюксметром, он состоит из катушки и электронного оборудования, которое оценивает изменение напряжения в катушке. В физике потоком называется показатель числа силовых линий, проходящих через определенную область. Магнитный поток — это мера количества магнитных силовых линий.

Иногда даже немагнитный материал может также иметь диамагнитные и парамагнитные свойства. Интересным фактом является то, что силы притяжения могут быть разрушены при нагревании или ударе молоточком из такого же материала, но они не могут быть уничтожены или изолированы, если просто разбить большой экземпляр на две части. Каждой сломанный кусок будет иметь свой собственный северный и южный полюс, и неважно, насколько маленькими по размеру будут эти кусочки.

Магнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Если же металл попадает под действие переменного магнитного поля (из-за перемещения постоянного магнита внутри катушки — именно перемещения ), то заряды начинают двигаться под действием этого магнитного поля.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий .

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.



Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Магнитный поток формула единица измерения. Базовые формулы

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК — (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток — Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК — (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК — поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см. ) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК — величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток — скалярная величина, равная потоку магнитной индукции… Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток — поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток — , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток — 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

МАГНИТНЫЙ ПОТОК

МАГНИТНЫЙ ПОТОК (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m — магнитная ПРОНИЦАЕМОСТЬ среды, а Н — интенсивность магнитного поля. Плотность магнитного потока — это поток на единицу площади (символ В), который равен Н. Изменение магнитного потока через электрический проводник наводит ЭЛЕКТРОДВИЖУЩУЮ СИЛУ.

Научно-технический энциклопедический словарь .

Смотреть что такое «МАГНИТНЫЙ ПОТОК» в других словарях:

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

    — (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

    магнитный поток — Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

    МАГНИТНЫЙ ПОТОК — поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

    Величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

    Магнитный поток — скалярная величина, равная потоку магнитной индукции… Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

    Классическая электродинамика … Википедия

    магнитный поток — , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

    Магнитный поток — 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

магнитная индукция — является плотностью магнитного потока в данной точке поля. Единицей магнитной индукции является тесла (1 Тл = 1 Вб/м 2).

Возвращаясь к полученному ранее выражению (1), можно количественно определить магнитный поток через некоторую поверхность как произведение величины заряда, протекающего через проводник совмещенный с границей этой поверхности при полном исчезновении магнитного поля, на сопротивление электрической цепи, по которой протекают эти заряды

.

В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям

Ф + Δ Ф = r (q — Δ q ) => Δ Ф = —rΔ q => Δ q = -Δ Ф/r

где Δ Ф и Δ q — приращения потока и количества зарядов. Разные знаки приращений объясняются тем, что положительный заряд в опытах с удалением витка соответствовал исчезновению поля, т.е. отрицательному приращению магнитного потока.

С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)

Эти линии называются линиями вектора магнитной индукции или магнитными линиями .

Пространство магнитного поля можно мысленно разделить трубчатыми поверхностями, образованными магнитными линиями, причем, поверхности можно выбрать таким образом, чтобы магнитный поток внутри каждой такой поверхности (трубки) численно был равен единице и изобразить графически осевые линии этих трубок. Такие трубки называют единичными, а линии их осей — единичными магнитными линиями . Картина магнитного поля изображенная с помощью единичных линий дает не только о качественное, но и количественное представление о нем, т. к. при этом величина вектора магнитной индукции оказывается равной количеству линий, проходящих через единицу поверхности, нормальной вектору B , а количество линий, проходящих через любую поверхность равно значению магнитного потока .

Магнитные линии непрерывны и этот принцип можно математически представить в виде

т.е. магнитный поток, проходящий через любую замкнутую поверхность равен нулю .

Выражение (4) справедливо для поверхности s любой формы. Если рассматривать магнитный поток проходящий через поверхность, образованную витками цилиндрической катушки (рис. 4), то ее можно разделить на поверхности, образованные отдельными витками, т.е. s =s 1 +s 2 +…+s 8 . Причем через поверхности разных витков в общем случае будут проходить разные магнитные потоки. Так на рис. 4, через поверхности центральных витков катушки проходят восемь единичных магнитных линий, а через поверхности крайних витков только четыре.

Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.

Потокосцепление — виртуальный (воображаемый общий) магнитный поток Ψ, сцепляющийся со всеми витками катушки, численно равен сумме потоков, сцепляющихся с отдельными витками: Ψ = w э Ф m , где Ф m — магнитный поток, создаваемый током, проходящим по катушке, а w э — эквивалентное или эффективное число витков катушки. Физический смысл потокосцепления — сцепление магнитных полей витков катушки, которое можно выразить коэффициентом (кратностью) потокосцепления k = Ψ/Ф = w э.

То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:

Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4) = 48

Виртуальность, то есть воображаемость потокосцепления проявляется в том, что оно не представляет собой реального магнитного потока, который никакая индуктивность не может кратно увеличивать, но поведение импеданса катушки таково, что кажется, что магнитный поток увеличивается кратно эффективному количеству витков, хотя реально — это просто взаимодействие витков в том же самом поле. Если бы катушка увеличивала магнитный поток своим потокосцеплением, то можно было бы создавать умножители магнитного поля на катушке даже без тока, ибо потокосцепление не подразумевает замкнутости цепи катушки, но лишь совместную геометрию близости витков.

Часто реальное распределение потокосцепления по виткам катушки неизвестно, но его можно принять равномерным и одинаковым для всех витков, если реальную катушку заменить эквивалентной с другим числом витков w э, сохраняя при этом величину потокосцепления Ψ = w э Ф m , где Ф m — поток, сцепляющийся с внутренними витками катушки, а w э — эквивалентное или эффективное число витков катушки. Для рассмотренного на рис. 4 случая w э = Ψ/Ф 4 =48/8=6.

Что такое магнитный поток?

Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея, нужно ввести новую величину — поток вектора магнитной индукции .

Вектор магнитной индукции характеризует магнитное поле в каждой точке пространства. Можно ввести еще одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле (рис. 2.4). Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол с направлением вектора магнитной индукции . Магнитным потоком Ф (потоком Вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла между векторами и :

Произведение представляет собой проекцию вектора магнитной индукции на нормаль к плоскости контура. Поэтому

Магнитный поток тем больше, чем больше В n и S. Величина Ф названа «магнитным потоком» по аналогии с потоком воды, который тем больше, чем больше скорость течения воды и площадь сечения трубы.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единицей магнитного потока является вебер. в 1 вебер (1 Вб) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Обобщенные сведения о магнитном потоке

Сегодняшний урок по физике у нас с вами посвящен теме о магнитном потоке. Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея нам нужно будет ввести новую величину, которая собственно называется магнитный поток или поток вектора магнитной индукции.

Из предыдущих классов вы уже знаете, что магнитное поле описывается вектором магнитной индукции B. Исходя из понятия вектор индукции B, мы и можем найти магнитный поток. Для этого мы с вами рассмотрим замкнутый проводник или контур с площадью S. Допустим, через него проходит однородное магнитное поле с индукцией B. Тогда магнитным потоком F вектор магнитной индукции через поверхность площадью S называют величину произведения модуля вектора магнитной индукции B на площадь контура S и на cos угла между вектором B и нормалью cos альфа:



В общем, мы с вами пришли к такому выводу, что если поместить в магнитное поле контур с током, то все линии индукции этого магнитного поля будут проходить через контур. То есть, можно смело говорить, что линия магнитной индукции и есть этой самой магнитной индукцией, которая находится в каждой точке этой линии. Или же можно сказать, что линии магнитной индукции являются потоком вектора индукции по ограниченному и описываемому этими линиями пространству, т.е магнитным потоком.

А теперь давайте вспомним, чему равняется единица магнитного потока:



Направление и количество магнитного потока

Но необходимо так же знать, что каждый магнитный поток имеет свое направление и количественное значение. В этом случае можно сказать, что контур проникает в определенный магнитный поток. И также, следует отметить, что от величины контура зависит и величина магнитного потока, то есть, чем больше размер контура, тем больший магнитный поток будет проходить через него.

Здесь можно подвести итог и сказать, что магнитный поток зависит от площади пространства, через которую он проходит. Если мы, например, возьмем неподвижную рамку определенного размера, которая пронизана постоянным магнитным полем, то в этом случае магнитный поток, который проходит через эту рамку, будет постоянным.

При увеличении силы магнитного поля, естественно и увеличится магнитная индукция. Кроме того и пропорционально возрастет величина магнитного потока в зависимости от возросшей величине индукции.

Практическое задание

1. Посмотрите внимательно на данный рисунок и дайте ответ на вопрос: Как может измениться магнитный поток, если контур будет вращаться вокруг оси ОО»?


2. Как вы думаете, как может измениться магнитный поток, если взять замкнутый контур, который расположен под некоторым углом к линиям магнитной индукции и его площадь уменьшить в два раза, а модуль вектора увеличить в четыре раза?
3. Посмотрите на варианты ответов и скажите, как нужно сориентировать рамку в однородном магнитном поле, чтобы поток через эту рамку равнялся нулю? Какой из ответов будет правильным?



4. Внимательно посмотрите на рисунок изображенных контуров I и II и дайте ответ, как при их вращении может измениться магнитный поток?



5. Как вы думаете, от чего зависит направление индукционного тока?
6. В чем отличие магнитной индукции от магнитного потока? Назовите эти отличия.
7. Назовите формулу магнитного потока и величины, которые входят в эту формулу.
8. Какие вы знаете способы измерения магнитного потока?

Это интересно знать

А известно ли вам, что повышенная солнечная активность влияет на магнитное поле Земли и приблизительно каждые одиннадцать с половиной лет она возрастает так, что может нарушить радиосвязь, вызвать сбой работы компаса и отрицательно сказываться на самочувствии человека. Такие процессы называют магнитными бурями.

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с: ил.

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3. Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Электронные термометры получили широкое распространение в качестве измерителей температуры. Ознакомиться с контактными и бесконтактными цифровыми термометрами можно на сайте http://mera-tek. ru/termometry/termometry-elektronnye . Этими приборами в основном и обеспечивается измерение температуры на технологических установках благодаря высокой точности измерения и большой скорости регистрации.

В электронных потенциометрах, как показывающих, так и регистрирующих, применяются автоматическая стабилизация тока в цепи потенциометра и непрерывная компенсация термопары.

Соединение токопроводящих жил — часть технологического процесса соединения кабеля. Многопроволочные токопроводящие жилы с площадью сечения от 0,35 до 1,5 мм 2 соединяют пайкой после скрутки отдельных проволок (рис. 1). Если восстанавливают изоляционными трубками 3, то перед скруткой проволок их необходимо надеть на жилу и сдвинуть к срезу оболочки 4.

Рис. 1. Соединение жил скруткой: 1 — жила токопроводящая; 2 — изоляция жилы; 3 — трубка изоляционная; 4 — оболочка кабеля; 5 — луженые проволоки; 6 — паяная поверхность

Однопроволочные жилы соединяют внахлест, скрепляя перед пайкой двумя бандажами из двух-трех витков медной луженой проволоки диаметром 0,3 мм (рис. 2). Также можно использовать специальные клеммы wago 222 415 , которые сегодня стали очень популярны за счет простоты использования и надежности эксплуатации.

При монтаже электрических исполнительных механизмов корпус их необходимо заземлять проводом сечением не менее 4 мм 2 через винт заземления. Место присоединения заземляющего проводника тщательно зачищают, а после присоединения наносят на него слой консистентной смазки ЦИАТИМ-201 для предохранения от коррозии. По окончании монтажа с помощью проверяют значение , которое должно быть не менее 20 МОм, и заземляющего устройства, которое не должно превышать 10 Ом.

Рис. 1. Схема электрических соединений блока датчиков однооборотного электрического механизма. А — блок усилителя БУ-2, Б — блок магнитного датчика, В — электрический исполнительный механизм


Монтаж блока датчиков однооборотных электрических исполнительных механизмов производится по схеме электрических соединений, показанной на рис. 1, проводом сечением не менее 0,75 мм 2 . Перед установкой датчика необходимо проверить его работоспособность по схеме, изображенной на рис. 2.

21.03.2019

Типы газоанализаторов

Используя газ в печах, различных устройствах и установках, необходимо контролировать процесс его сжигания, чтобы обеспечить безопасную эксплуатацию и эффективную работу оборудования. При этом качественный и количественный состав газовой среды определяется с помощью приборов, называемых

Характеристики и свойства магнитного пола. Проявления магнитного поля в жизни

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

 

Магнит

 

Магнит — тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.

 

Картина магнитного поля

 

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.

Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф –  физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).

 

Магнитный поток

 

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли.  Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.

 

Магнитное поле земли

 

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

 

Магнитное поле Земли

 

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля.

 

 

7 «Б»

Урок

1/1

  Что изучает физика. Физические термины. Наблюдения и опыты. § 1 — 3, Л № 5, 12
2/2   Физические величины. Измерение физических величин. Погрешность и точность измерений § 4, 5, упр.1
3/3   Определение цены деления измерительного прибора § 4, 5
4/4   Физика и техника § 6,
    Первоначальные сведения о строении вещества  
5/1   Строение вещества. Молекулы § 7, 8
6/2   Определение размеров малых тел § 7, 8
7/3   Движение молекул. Диффузия в газах, жидкостях и твердых телах § 9,
8/4   Взаимодействие молекул

9/5

  Три состояния вещества § 11, 12
10/6   Повторение. Контрольная работа №1 «Первоначальные сведения о строении вещества» § 12
     

Магнитный поток — формула, единицы СИ и единицы СГС

Магнитный поток

Подраздел физики в области электромагнетизма — это магнитный поток через поверхность, который относится к поверхностному интегралу нормали магнитного поля (B) компонент, проходящий через эту поверхность. Чтобы быть конкретным, магнитный поток определяется как количество силовых линий магнитного поля, проходящих через данную замкнутую поверхность. В этом конкретном сценарии рассматриваемая область может иметь любую ориентацию, соответствующую направлению магнитного поля, и любого размера.

(изображение будет загружено в ближайшее время)

Символ и формула магнитного потока

Магнитный поток обозначается греческой буквой Phi и обозначается символом Φ или ΦB.

Для расчета магнитного потока мы можем использовать приведенную ниже формулу:

ΦB = BA = BA cosΦ

Где,

ΦB = Магнитный поток

B = Магнитное поле

A = Площадь

Φ = Угол при которой силовые линии магнитного поля проходят через заданную площадь поверхности

Флюксметр используется для измерения магнитного потока.

(изображения будут загружены в ближайшее время)

Единица магнитного потока в СИ

Вебер (Вб) — единица измерения магнитного потока в системе СИ, названная в честь немецкого физика Вильгельма Эдуарда Вебера. Плотность потока, равная одному Веберу на квадратный метр или Вб / м2, равна одной тесла, обозначается буквой T (поясняется в следующем разделе). Довольно часто Вебер выражается во множестве других единиц, как показано ниже:

Wb = кг м2 / с2 A = Vs = HA = T.m2 = J / A = 108Mx

Где, Wb = Weber, T = Тесла, V = вольт, m = метр, J = джоуль, s = секунда, H = Генри, A = ампер и Mx = Максвелл.

Единица магнитного потока СГС

Единица измерения магнитного потока СГС — Максвелл (Mx) или Абвебер (abWb).

Основная единица магнитного потока

Основная единица магнитного потока — вольт-секунды.

Понятие «плотность магнитного потока»

Сила, действующая на единицу длины на провод, расположенный перпендикулярно (под прямым углом) к магнитному полю на единицу тока, представляет собой плотность магнитного потока (B).

  • Тесла (Тл) или кг / с A-1 — единица измерения плотности магнитного потока (В) в системе СИ.

  • Плотность магнитного потока, обозначенная символом B, является векторной величиной

  • Единицей измерения плотности магнитного потока в системе CGS является гаусс, который сокращенно обозначается G или Gs

Формула для расчета магнитного поля. плотность потока имеет следующий вид:

B = F / IL

Где

F = общая сила, действующая на провод

I = ток, протекающий через провод

L = длина провода

Части Weber (Wb)

900weber

000 dec

Wb

Значение

Символ SI

Название

10-1 Wb

dWb

10-2 Wb

cWb

сантивейбер

9 0002 10-3 Wb

mWb

milliweber

10-6 Wb

µWb

microweber

b

10992 10992

nanoweber

10-12 Wb

pWb

picoweber

10-15 Wb

900weber

0

900weber

0

03

10-18 Wb

aWb

attoweber

10-21 Wb

zWb

zeptoweber

yoctoweber

Кратные Weber

0003 0003

hWb

900weber

Значение

Символ SI

Название

101 Wb

daWb

decaweber

hactoweber

103 Wb

kWb

киловебер

106 Wb

109000

MWB

109000

MWB Wb

GWb

gigaweber

1012 Wb

TWb

teraweber

1015

1018 Wb

EWb

exaweber

1021 Wb

ZWb

zettaweber

Wbb

Wb

Таблица преобразования единиц плотности магнитного потока ・ Напряженности магнитного поля | KOHDEN Co.

, ООО

ГЛАВНАЯ> Датчик AMR> Таблица преобразования единиц плотности магнитного потока ・ Напряженность магнитного поля

Инструмент преобразования единиц магнитного поля
Преобразование единиц плотности магнитного потока и плотности магнитного поля может быть выполнено с помощью следующего инструмента.
Введите числа, выбрав единицы в раскрывающемся меню.
Ссылка: Устройство магнитного поля
Напряженность магнитного поля определяется векторным полем, которое имеет направление и величину (или силу).
Число линий магнитного потока, которые проходят через единицу площади перпендикулярно магнитному полю. называется плотностью потока B.
Связь между магнитной силой H и плотностью потока B может быть определена как B = μH.
мкм в данном случае — проницаемость, единица магетизируемости.
В воздухе μ обычно около 1, за исключением особых случаев, и 1 Гаусс ≒ 1 Эрстед.
Обычно напряженность магнитного поля определяется в единицах Э А / м (Эрстед ・ Ампер / метр).
И когда это определяется плотностью потока, используются единицы G (Гаусс) или Т (Тесла).
Это означает, что плотность потока B — это значение, которое включает в себя намагничиваемость, а магнитный поток H не учитывает. включить намагничиваемость.
Во многих случаях используются остаточная плотность магнитного потока (Br) и магнитная коэрцитивная сила (Hc). определить свойства постоянных магнитов.
Oe (Эрстед) используется для определения магнитной коэрцитивной силы, поскольку это сила магнитного поля. для изменения направления магнитного полюса.

〈таблица преобразования единиц напряженности магнитного поля〉

Наименование единицы условное обозначение Коэффициент преобразования единиц СИ
магнитное поле
(H)
Эрстед Oe
Ампер / метр А / м 1кА / м = 12.54Oe
Наименование единицы условное обозначение Коэффициент преобразования единиц СИ
плотность потока
(B)
Гаусс
GS, G
тесла т 0,1 мТл = 1 г

〈таблица преобразования〉

Чтение г
мТ
Oe
кА / м
1 г
Гаусс
0.1
1
0,07977
1 мТ милли тесла 10

10
0,7977
1 Oe Эрстед 1
0,1

0,07977
1 кА / м килоампер на метр 12.54 1,254 12,54

Магнитный поток | Инжиниринг | Фэндом

Магнитный поток — это мера величины магнетизма с учетом силы и степени магнитного поля. Поток через элемент площади, перпендикулярной направлению магнитного поля, определяется произведением плотности магнитного поля и элемента площади. В более общем смысле, магнитный поток определяется скалярным произведением [1] плотности магнитного поля и вектора элемента площади.Закон Гаусса для магнетизма, который является одним из четырех уравнений Максвелла, гласит, что полный магнитный поток через замкнутую поверхность равен нулю. Этот закон является следствием эмпирического наблюдения, что магнитные монополи не существуют или не поддаются измерению. Единицей измерения магнитного потока в системе СИ является Вебер, а единицей плотности магнитного потока — Вебер на квадратный метр или тесла.

В символах это означает:

где — магнитный поток, а B — плотность магнитного потока.

Из закона Гаусса для магнетизма мы знаем, что

Это уравнение в сочетании с теоремой о расходимости [2] дает следующий результат:

Другими словами, магнитный поток через любую замкнутую поверхность должен быть равен нулю; нет бесплатных «магнитных зарядов».

В противоположность этому закон Гаусса для электрических полей, еще одно из уравнений Максвелла, имеет вид

где E — напряженность электрического поля, — плотность свободного электрического заряда (без учета дипольных зарядов, связанных в материале) и — диэлектрическая проницаемость свободного пространства.

Обратите внимание, что это указывает на наличие электрических монополей, то есть свободных положительных или отрицательных зарядов.

Направление вектора плотности магнитного потока по определению от южного к северному полюсу магнита (внутри магнита). Вне магнита силовые линии будут идти с севера на юг.

Изменение магнитного потока через петлю из проводящего провода вызовет в петле ЭДС и, следовательно, электрический ток. Отношения задаются законом Фарадея:

и является принципом электрического генератора.

См. Также []

  • Плотность магнитного потока
  • Закон Гаусса

Магнитный поток — обзор

ВВЕДЕНИЕ

Жгуты магнитного потока служат типичной структурой в солнечной короне, и они тесно связаны с протуберанцами обратной магнитной конфигурации (Low and Hundhausen, 1995). Был проведен как аналитический, так и численный анализ для изучения катастрофического поведения жгутов коронального магнитного потока с целью объяснения различных солнечных взрывных явлений (Ван Тенд и Куперус, 1978; Форбс, 1990, 1991; Форбс и Изенберг, 1991; Изенберг и др., 1993; Forbes and Priest, 1995; Lin et al. , 1998; Лин и Форбс, 2000). С точки зрения модели нити накала проволочного тока, Ван Тенд и Куперус (1978) пришли к выводу, что потеря равновесия происходит, если ток в нити накала превышает критическое значение. Форбс и Изенберг (1991) предложили модель тонкого каната, в которой радиус каната круглого поперечного сечения мал по сравнению с высотой оси каната, а окружающее магнитное поле полностью закрыто. Такая веревка, прикрепленная к фотосфере, теряет свое первоначальное равновесие и входит в новое с вертикальным токовым слоем внизу, если либо магнитная энергия веревки превышает критическое значение (Forbes, Isenberg, 1991; Isenberg et al., 1993), либо расстояние между двумя фотосферными магнитными источниками противоположной полярности уменьшается в критической точке. Однако радиус каната должен быть меньше определенного критического значения, чтобы произошла катастрофа. Недавно 2,5-D, зависящая от времени идеальная МГД-модель в декартовых координатах была использована для нахождения равновесных решений, связанных с корональным магнитным жгутом большого поперечного сечения, встроенным в полностью замкнутый корпус (Hu and Liu, 2000; Hu et al., 2001 ) или частично открытые магнитные поля (Hu, 2001).В этих решениях магнитный жгут, левитирующий в короне и параллельный фотосфере, характеризуется своими кольцевыми и осевыми магнитными потоками и тремя геометрическими параметрами: высотой оси троса, полушириной троса и длиной вертикального токового слоя под веревкой. Было обнаружено, что для замкнутого окружающего поля геометрические параметры непрерывно меняются в зависимости от магнитных свойств, катастрофы для магнитного жгута не происходит (Hu and Liu, 2000). Более того, для данного замкнутого окружающего поля геометрические параметры веревки оказываются однозначной функцией магнитной спиральности веревки (Hu et al., 2001). Однако магнитный жгут под частично открытым полем действительно демонстрирует катастрофическое поведение во время медленного изменения магнитных свойств веревки, а именно, существует определенная критическая точка, в которой бесконечно малое усиление магнитных потоков вызывает скачок магнитного потока. геометрические параметры веревки (Hu, 2001, далее в документе I). Кроме того, амплитуда скачка зависит от степени открытия окружающего поля и приближается к нулю, когда окружающее поле становится полностью закрытым.

В статье I жгут магнитного потока выходит из-под фотосферы, так что его магнитные свойства контролируются одним параметром вылета и не могут быть отрегулированы независимо. Кроме того, во время и после выхода каната фиксируются фотосферные граничные условия. Следовательно, в этой статье не удалось ответить на вопрос, существует ли подобная катастрофа в ответ на независимое изменение каждого магнитного потока веревки или граничных условий в фотосфере.В данной статье рассматривается этот вопрос, начиная с равновесного решения, полученного в статье I, когда флюсовый жгут прикреплен к фотосфере и помещен в частично открытое окружающее поле. Затем мы увеличиваем кольцевой или осевой магнитный поток независимо с фиксированными граничными условиями на фотосфере или вводим фотосферные движения с фиксированными магнитными потоками веревки. Нарушенная система достигает нового равновесия, которое достигается с помощью моделирования, зависящего от времени. На этой основе проводится количественный анализ зависимости геометрических параметров каната от кольцевого и осевого потоков каната, а также от фотосферных движений.Акцент делается на том, происходит ли катастрофа в ответ на изменение двух потоков и изменение окружающего поля, создаваемого фотосферными движениями.

тесла (единица) | Магнит-Лексикон / Глоссарий

Единица Тесла в магнетизме

Физическое лицо Tesla было названо в честь инженера и изобретателя Николы Тесла. Часто это указывает на силу магнитного поля. Формально это не совсем правильно, поскольку определение плотности магнитного потока не соответствует определению магнитного поля.Однако в конечном итоге его можно указать в двух величинах (единицах) Гаусс и Тесла. Следующее соотношение применяется для преобразования единицы Тесла

1 тесла = 10000 Гаусс
1 Тл = 1000 мТл (ESLA)
1 кг (снаружи) = 0,1 т (esla)

В физике плотность магнитного потока обозначается буквой B. Магнит — это ферромагнитный намагниченный материал. Сила магнита описывается остаточной намагниченностью. Таким образом, единицами остаточной намагниченности постоянного магнита являются также единицы Гаусса и Тесла.

Физические основы устройства Тесла и расчет

Единица Тесла имеет, например, соответствующую действительность и в системе СИ: здесь она обозначается единицами измерения килограмм и метр. Для измерения времени также используется секунда. Таким образом, единицы СИ, Тесла и Гаусс, не являются основными единицами измерения: плотность магнитного потока, наконец, может быть рассчитана по силе движущихся зарядов. Применяются следующие отношения:

Тесла равен Ньютону на метр и ампер.Примерный пример иллюстрирует это: он точно соответствует плотности потока Тесла, который воздействует на электрический проводник длиной 1 метр, который, в свою очередь, проводит ток силой 1 ампер, то есть притяжение ровно 1 ньютон. Необходимое магнитное поле создается током в проводнике или движущимися электронами.

По плотности магнитного потока B можно определить напряженность магнитного поля H. Плотность магнитного потока нужно разделить на проницаемость вакуума μ0 и проницаемость материала μ — например, материала сердечника катушки (обычно железа в трансформатор):

В литературе напряженность магнитного поля часто включает единицы Тесла.Как уже упоминалось, это не совсем правильно: Гаусс и Тесла — единицы измерения плотности магнитного потока. В системе СИ напряженность магнитного поля указывается в эрстедах или амперах на метр:

.

Основы магнитных измерений

По мере того, как магниты и узлы прибывают на ваш объект от производителей магнитов, инженеры по контролю качества проводят измерения для подтверждения характеристик магнитных характеристик устройства. Тестирование может включать несколько процедур, использующих результаты измерения магнитного поля, в том числе:

  • Сортировочные узлы
  • Подтверждение зависимости характеристик магнитного поля от приложенного тока
  • Отображение формы магнитного поля для компонента или сборки
  • Измерение пограничных или остаточных полей
  • Диагностика вредного воздействия внешнего поля
  • Измерение рассеяния магнитного поля вокруг транспортного контейнера
  • Измеряет воздействие магнитных полей на оператора, если применяются местные или федеральные правила

Правильное использование магнитных испытаний на протяжении всего процесса изготовления поможет гарантировать, что готовый собранный продукт или система будет работать так, как задумано.

Магнитные единицы измерения

Для измерения магнитов требуется базовое понимание общих единиц измерения и методов определения характеристик магнитных полей. Если вы не привыкли работать с магнитами, такие термины, как тесла , гаусс и эрстед , могут показаться довольно чуждыми. Еще больше сбивает с толку использование в отрасли более одного стандарта измерения — cgs и SI. В то время как многие инженеры в США обычно используют cgs, SI — это система, которую предпочитают ученые и инженеры в мировом сообществе.Пока не будет четкого консенсуса в отношении использования той или иной системы, техническим специалистам и инженерам будет полезно знать, как использовать обе.

Некоторые магнитные блоки используются в промышленных приложениях из-за их удобства или соответствия конкретному применению. Несколько распространенных единиц cgs и SI и преобразований, с которыми столкнутся инженеры по контролю качества, показаны на рисунке 1.

Кол-во cgs SI
Флюс Ø Максвелл (Mx) Вебер (Вт)
Плотность потока B гаусс (Г) тесла (Т)
Напряженность магнитного поля H эрстед (Oe) А / м
Магнитный дипольный момент м эму Wm & Am 2
Проницаемость µ
Г / м

1 Вебер = 10 8 Максвелл
1 тесла = 10000 гаусс
1 эрстед = 79.6 А / м
(Вт · см) × (4π × 10 -5 ) = Am 2
1 миллигаусс = 0,1 микротесла = 100 нанотесла
1 миллитесла = 0,001 тесла = 10 гаусс
1 гамма = 0,01 миллигаусс = 1 нанотесла

Рис. 1. Единицы измерения магнетизма


Для тех, кто плохо знаком с магнитными измерениями, полезно сначала рассмотреть магнитный поток, обычно обозначаемый как Ø.Основная составляющая потока, выраженная в единицах Макселла (Mx) или Вебера (W). Величина этого потока на единицу площади или плотности потока обозначается буквой B и выражается в значениях Гаусс (Г) или тесла (Т). Это составляющая поля, измеряемая естественным образом датчиком Холла на основе тесламетра / гауссметра. Плотность потока (B) связана с напряженностью магнитного поля (H), которая естественным образом измеряется с помощью флюксметра.

Хотя эти два типа инструментов измеряют несколько разные параметры магнитного поля, между ними возможно преобразование с помощью следующего соотношения:

B = мкГн

Это уравнение служит основой для дополнительного измерения напряженности магнитного поля (H) в воздухе (µ — известная постоянная) с помощью тесламетра на эффекте Холла.Проницаемость (µ) — это мера легкости, с которой магнитное поле течет в среде.

Для измерения магнитных полей требуются специальные датчики и знания физики и электроники. Для измерения магнетизма можно использовать различные инструменты, включая тесламетры, флюксметры и магнитометры.

Независимо от того, какой инструмент вы используете, правильная техника важна для получения точных результатов. Узнайте, как предотвратить ошибки, загрузив технический документ «5 самых распространенных источников ошибок в магнитных измерениях».2] гаусс квадратный сантиметр Квант магнитного потока Результат:

Как использовать преобразователь магнитного потока
Выберите единицу измерения для преобразования из в списке входных единиц. Выберите единицу измерения для преобразования в в списке единиц вывода. Введите значение преобразования из в поле ввода слева. Результат преобразования сразу появится в поле вывода.

Закладка Преобразователь магнитного потока — он вам, вероятно, понадобится в будущем. Загрузить преобразователь единиц магнитного потока
наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий. Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения — скачать бесплатную демо-версию прямо сейчас! Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения. Мгновенно добавьте бесплатный виджет преобразователя магнитного потока на свой веб-сайт
Это займет меньше минуты, это так же просто, как вырезать и наклеить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *