Магнитные датчики холла: Датчик Холла | Электроника для всех – Датчики Холла. Виды и применения. Работа и подключения

Датчики магнитных полей | 2 Схемы

В продолжение обзоров по готовым модулям различных датчиков к Ардуино платформе, перейдём к датчикам магнитных полей.

Модуль датчика Холла KY-003

Данный модуль предназначен для обнаружения магнитного поля при помощи эффекта Холла. Этот эффект состоит в том, что в проводнике с постоянным током, помещенном в магнитное поле возникает поперечная разность потенциалов [1-3].

Габариты 28 х 15 мм, масса модуля 1,2 г. На плате имеется два крепежных отверстия диаметром 2 мм на расстоянии 10 мм друг от друга. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный. Когда индукция магнитного поля превышает заданное значение на информационном выходе модуля высокий логический уровень сменяется на низкий. На модуле имеется светодиод, который загорается при срабатывании датчика. В качестве иллюстрации можно загрузить на плату Arduino UNO программу

LED_with_button [4], и подключить вместо кнопки данный модуль.

Модуль срабатывает только на северный полюс магнита, порог срабатывания достаточно высокий, магнит нужно подносить вплотную. Потребляемый ток 6,3 мА в ждущем режиме и составляет 11 мА при срабатывании.

Из недостатков следует отметить, что довольно сложно найти взаимную конфигурацию магнита и датчика для надежного срабатывания.

Поскольку модуль реагирует на определенное пороговое значение магнитного поля, то самым очевидным применением такого датчика может быть использование этого датчика вместо геркона. Хотя геркон это весьма надежный прибор, все же в его конструкции имеются подвижные механические контакты, в отличие от него датчик Холла никаких подвижных деталей не имеет. К примеру, можно установить данный модуль на дверном косяке, на полотне двери напротив него установить магнит, получится датчик открывания двери для сигнализации или умного дома, аналогично можно организовать подсчет оборотов колеса, закрепив на нем магнит и поместив в непосредственной близости от него этот датчик.

Модуль на основе геркона KY-021

Датчик представляет собой нормально разомкнутый геркон с добавочным сопротивлением 10 кОм [5-6].

Габариты модуля 24 х 17 мм, масса 1,2 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

Потребляемый ток равен нулю в ждущем режиме и составляет 0,5 мА при срабатывании.

Модуль подключается и испытывается абсолютно аналогично тактовой кнопке [4,7]. Геркон можно использовать в системах сигнализации, для подсчета числа оборотов и т.п. Способов использования герконов великое множество [8-9].

Модуль датчика Холла (линейный) KY-024

Модуль предназначен для измерения напряженности постоянного магнитного поля [10-11].

Габариты модуля 44 х 15 х 13 мм, масса 2,8 г., в плате модуля имеется крепежное отверстие диаметром 3 мм. Чувствительным элементом служит датчик Холла SS49E. Индикация подачи питания осуществляется светодиодом L1.

Датчик имеет четыре контакта. «A0» — аналоговый выход, напряжение на котором меняется в зависимости от индукции магнитного поля. Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, если напряженность магнитного поля не превышает заданного порога, при срабатывании датчика низкий уровень меняется на высокий. Порог срабатывания цифрового канала датчика можно менять многооборотным подстроечным резистором. При срабатывании датчика загорается светодиод L2.

Потребляемый ток 9 мА в ждущем режиме и 11 мА при срабатывании.

Модуль срабатывает только на северный полюс магнита. Максимальное расстояние срабатывания 6 мм.

Аналоговый канал позволяет организовать измерение количественных характеристик магнитного поля. Показания на аналоговом порте Arduino UNO меняются от 550 до 200 единиц в зависимости от расстояния до магнита (в память Arduino UNO была загружена программа AnalogInput2).

Модуль с герконом KY-025

Чувствительным элементом модуля является обычный геркон, работающий вместе с компаратором на микросхеме LM393YD, по заверениям продавцов [12-13] это позволяет уменьшить, ток, протекающий через контакты геркона, и тем самым увеличить его ресурс.

Габариты модуля 45 х 18 х 13 мм, масса 2,8 г., аналогично предыдущему случаю в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1.

При срабатывании геркона загорается светодиод L2. Потребляемый ток 3,7 мА в ждущем режиме и 5,8 мА при срабатывании.

Какой порог чувствительности должен регулироваться переменным резистором неясно, видимо данные модули с компаратором LM393YD являются стандартными и к ним припаивают различные датчики в зависимости от назначения конкретного модуля. Разумеется, модуль срабатывает дискретно как кнопка, в чем можно убедиться с помощью программы LED_with_button [4]. На выводе «A0» постоянно присутствует напряжение питания +5В. Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, при срабатывании геркона низкий уровень меняется на высокий. Целесообразность данного модуля, по мнению автора, спорна, учитывая, что и в простейшем случае включения геркона типа модуля KY-021 сила тока, протекающая через контакты геркона, существенно меньше одного миллиампера.

Модуль датчика Холла KY-035

Данный модуль представляет собой микросхему SS49E, без каких либо дополнительных устройств [14]. Установка микросхемы на плате в данном случае может быть объяснена, только требованиями унификации при создании данного набора датчиков.

Габариты модуля 29 х 15 мм, масса 1,2 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

Потребляемый модулем ток составляет около 6 мА и не зависит от состояния датчика.

При отсутствии внешнего магнитного поля на информационном выходе присутствует напряжение равное половине напряжения питания. Внешнее постоянное магнитное поле приводит к тому, что напряжение на информационном выходе начнет увеличиваться или уменьшатся в зависимости от полярности магнита. В этом легко убедиться, используя программу AnalogInput2

С помощью данного модуля можно организовать контроль расстояния до источника магнитного поля, подсчет числа оборотов и т.п. Микросхема чувствительна к магнитному полю с индукцией в диапазоне 600-1000 Гс [15].

Полезные ссылки

  1. https://ru.wikipedia.org/wiki/Эффект_Холла
  2. http://arduino-kit.ru/catalog/id/modul-datchika-holla
  3. http://www.14core.com/wiring-hall-effect-sensor-switch-magnet-detector-module/
  4. http://robocraft.ru/blog/arduino/57.html
  5. http://arduino-kit.ru/catalog/id/modul-na-osnove-gerkona
  6. http://www.zi-zi.ru/module/module-ky021
  7. http://2shemi.ru/mehanicheskie-datchiki-dlya-arduino/
  8. https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/gerkony/
  9. http://electrik.info/main/school/419-gerkony-sposoby-upravleniya.html
  10. http://arduino-kit.ru/catalog/id/modul-datchika-holla-_lineynyiy_
  11. http://www.zi-zi.ru/module/module-ky024
  12. http://arduino-kit.ru/catalog/id/modul-magnitnyiy-datchik-s-gerkonom
  13. http://www.zi-zi.ru/module/module-ky025
  14. http://arduino-kit.ru/catalog/id/modul-datchika-holla_
  15. https://ru.wikipedia.org/wiki/Гаусс_(единица_измерения)

Все файлы документации и программ находятся в общем архиве. Обзор подготовил Denev.

Датчики Холла

1. Эффект Холла.

В основе датчиков э. д. с. Холла лежит явление искривления пути носителей заряда в полупроводниках, находящихся в магнитном поле. Это явление впервые было открыто американским физиком Эдвином Холлом в 1876 г.

Рассмотрим прямоугольную пластину полупроводника с электропроводностью n-типа, расположенную, как показано на рис. 1, а.

В направлении оси х протекает ток Ix от внешнего источника. Пластина помещена в магнитное поле Нy, перпендикулярное направлению тока.

В отсутствие магнитного поля электроны двигаются в пластине в направлении электрического поля Еx. В магнитном поле электроны отклоняются под действием силы Лоренца:

, (1)

где е — заряд электрона; Вy -индукция магнитного поля, направленного вдоль оси у; vx= -nEx — скорость электрона в направлении тока; n — подвижность электронов. Эта сила направлена перпендикулярно как направлению магнитного поля, так и направлению тока (вдоль оси Z, рис. 1). Поэтому электроны смещаются перпендикулярно направлению их первоначального движения. При условиях, показанных на рис. 1, на зажиме А должен быть отрицательный потенциал относительно зажима Б, так как верхняя поверхность полупроводника, к которой отклоняются электроны, будет заряжаться отрицательно, а противоположная поверхность — положительно. Заряды создают в пластине поперечное электрическое поле, названное по имени ученого полем Холла. Процесс образования объемных зарядов у поверхностей прекратится лишь тогда, когда напряженность поля Холла будет полностью компенсировать действие на электроны силы Лоренца. Условие равенства сил, действующих на электрон со сторо­ны электрических и магнитных полей, может быть записано в виде

, (2)

откуда может быть определено поле Холла

(3)

или э. д. с. Холла

, (4)

где d — толщина пластины (рис. 1, б). Возникновение э. д. с. Холла называется эффектом Холла.

Протекающий через образец с шириной b и сечением S ток плот­ностью jx, обусловленный действием электрического поля, связан с концентрацией и скоростью электронов соотношением:

. (5)

Решая совместно уравнения (4) и (5), получим

, (6)

где Rx=-1/en — коэффициент Холла, связывающий поперечную раз­ность потенциалов с индукцией магнитного поля. Величина его зави­сит от материала пластины, содержания примесей и температуры.

Из выражения (6) следует, что величина э. д. с. Холла зависит от физических свойств материала пластины, от ее размеров, а также, от величины протекающего через нее тока и от воздействующего на этот ток магнитного поля.

Если пластина имеет электропроводность p-типа, то основная часть тока создается дырками, движущимися слева направо, тогда в левой части уравнения (2) следует поставить знак плюс. Траектории ды­рок в этом случае будут смещаться вверх, верхняя поверхность будет накапливать положительный заряд и э. д. с. Холла будет положитель­ной.

Вывод выражения для э. д с. Холла сделан без учета хаотического теплового движения электронов и их распределения по скоростям. Более строгий расчет дает формулу для коэффициента Холла в полу­проводнике с электропроводностью n-типа:

и в полупроводнике с электропроводностью р-типа

.

Для полупроводников, имеющих собственную электропроводность или содержащих носители заряда обоих типов в сравнимых концентра­циях, коэффициент Холла описывается выражением

(9)

Если концентрации электронов и дырок в образце равны и равны их подвижности, то э. д. с. Холла будет равна нулю, так как направле­ние движения дырок противоположно направлению движения электро­нов и электроны и дырки будут смещаться магнитным полем в одну и ту же сторону. В действительности в полупроводниках подвижность электронов больше подвижности дырок, поэтому в собственном полу­проводнике э.д. с. Холла соответствует по знаку электронному образ­цу .При переходе от собственной электропроводности к дырочной э. д. с. Холла проходит через нуль и изменяет знак.

2. Параметры и характеристики датчиков Холла.

Датчик Холла представляет собой магнитоэлектрический полупро­водниковый прибор, основанный на использовании эффекта Холла, На рис. 2 показаны схемы включения датчика Холла.

Напряжение, подаваемое на управляющие электроды U1, называ­ется входным напряжением датчика Холла, а сопротивление R1 между этими электродами называется входным сопротивлением.

Величина этого сопротивления при отсутствии магнитного поля определяется по формуле

, (10)

где р — удельное сопротивление полупроводника.

С ростом напряженности магнитного поля входное сопротивление

увеличивается.

Напряжение между двумя другими (холловскими) контактами на­зывается выходным и обозначается U2 (рис. 2). Сопротивление меж­ду холловскими контактами называется выходным и обозначается R2 . Величина его при отсутствии магнитного поля определяется выра­жением

. (11)

Здесь не учтена неравномерность распределения тока по сечению датчика. Выходное сопротивление, так же как и входное, с увеличением магнитного поля растет.

На рис. 3 приведено семейство вольт-амперных характеристик датчика для одного и того же значения входного тока и для несколь­ких значений индукции магнитного поля. С возрастанием поля кру­тизна возрастает вследствие того, что возрастает внутреннее сопро­тивление датчика R2.

Одной из важных характеристик датчика, позволяющей оценить его эффективность, является коэффициент передачи К. Он определя­ется как отношение выходного напряжения к входному при заданном значении управляющего магнитного поля:

. (12)

Учитывая выражения (8), (6) и что I1 = U1/R1, можно найти коэффициент передачи:

. (13)

Коэффициент передачи с увеличением индукции магнитного поля возрастает.

Обычно датчик э. д. с. Холла работает на внешнюю нагрузку. Схе­ма включения показана на рис. 2 (нижний рисунок). Подводимая к датчику мощность от внешнего источника тока равна

(14)

Ток, протекающий в выходной цепи датчика Холла,

; (15)

где RНсопротивление нагрузки. Мощность, отдаваемая в нагрузку,

. (16)

При согласовании выходного сопротивления и нагрузки достигается максимальная мощность, отдаваемая в нагрузку,

. (17)

Учитывая (6), получим

(18)

Максимальная отдаваемая мощность ограничивается предельно до­пустимой мощностью рассеяния на датчике. Коэффициент полезного действия датчика Холла определяется как отношение мощности, от­даваемой в нагрузку РН к мощности на его входе:

.

При согласованной нагрузке, учитывая (12) и (16), к. п. д. датчика

(19)

К. п. д. датчика Холла обычно не превышает 20%. Величина его не зависит от входного тока.

Для увеличения э. д: с. Холла и выходной мощности необходима увеличивать входную мощность.

Важной характеристикой датчика Холла является чувствитель­ность . Определяется она как э. д. с., возникающая на холловских контактах при единичном управляющем токе и единичном значении магнитной индукции:

(20)

Выражение (6) с учетом (18) примет вид

(21)

Важным параметром датчика Холла является отношение, харак­теризующее э. д. с. Холла, приходящееся на единицу магнитной индукции. Этот параметр называется магнитной чувствительностью:

(22)

3. Изготовление и применение датчиков Холла.

Для изготовления датчиков Холла необходимо добиваться следую­щих основных показателей:

а) высокого значения Rx, когда необходимо получить высокое зна­чение э. д. с. Холла в режиме холостого хода;

б) высокой проводимости при заданном значении коэффициента Хол­ла, когда датчик работает на внешнюю нагрузку, потребляющую ток, и часть э. д. с. Холла падает на внутреннем сопротивлении датчика между электродами Холла, обусловливая вредные потери;

в) низкого температурного коэффициента, коэффициента Холла и проводимости.

Материал, из которого изготовляют датчик Холла, должен иметь максимальную подвижность носителей заряда с минимальными темпе­ратурными зависимостями подвижности и концентраций носителей заряда.

Из формулы (6) видно, что для получения наибольшего зна­чения э. д. с. Холла необходимо выбирать материал с небольшой элек­тропроводностью.

Для этой цепи используют пленки селенида и теллурида ртути, антимонида индия и твердые растворы этих соединений. Они обладают высокой подвижностью носителей заряда даже в тонких монокрис­таллических пленках. Тонкопленочные датчики, полученные методом испарения из этих материалов, обладают слабой зависимостью коэффициента Холла и сопротивления от температуры и от напряженности магнитного поля, что определило их широкое применение, несмотря на сравнительно низкую э. д. с. Холла.

Для изготовления датчиков Холла применяют также монокристал­лический германий и кремний, легированные мышьяком, фосфором и сурьмой. Датчики, изготовленные из этих материалов, имеют вы­сокий коэффициент Холла и низкий температурный коэффициент (осо­бенно кремниевые). Максимальная величина э. д. с. Холла достигает 1В.

Применяется для изготовления датчиков Холла антимонид индия, арсенид индия, а также сплав антимонида индия и ангимонида галлия. Датчики, изготовленные из этих материалов, имеют сильную зависи­мость сопротивления и коэффициента Холла от температуры и магнит­ного поля. Это ограничивает их применение.

Из формулы (6) видно, что э. д. с. Холла будет тем выше, чем тоньше образец полупроводника. Поэтому датчики э. д. с. Холла из­готовляют в виде пластинок или тонких пленок, тем более, что с их помощью производится измерение магнитных полей в малых зазорах.

Для получения высокого коэффициента передачи геометрические размеры необходимо выбирать в соотношении l/b = 23.

Полупроводниковый слиток разрезается на пластины, которые посредством шлифовки доводятся до требуемой толщины. Далее пластины разрезают на прямоугольники нужных размеров, которые снабжают четырьмя омическими контактами. Два из них предназна­чены для подведения к датчику напряжения от внешнего источника. Они выполняются по всей ширине пластины, чтобы получить равно­мерное распределение входного тока по сечению пластины на всей ее длине. Два других электрода предназначены для регистрации э. д. с. Холла.

Эти контакты должны быть расположены строго в одном сечении, в противном случае между ними будет возникать разность потенци­алов и при отсутствии магнитного поля за счет протекания тока.

Учитывая, что выходной ток очень мал, иногда выходные электроды выполняют точечными. Из теллурида и селенида ртути датчики Холла могут быть изготовлены также прессованием порошков при температу­ре около 500 К.

Пленочные датчики изготавливают посредством нанесения тонких пленок на подложку методом вакуумного испарения исходного мате­риала.

Материалом подложки могут служить слюда, керамика или другие изоляционные материалы. Материал подложки должен обеспечить хо­рошую адгезию напыляемого материала и иметь с ним близкий темпе­ратурный коэффициент линейного расширения.

Контакты пленочных датчиков наносят испарением в вакууме.

Для стабилизации параметров готовую пленку в течение несколь­ких часов подвергают термостарению при температуре 100° С. Пленочные датчики тоньше пластиночных. Их толщина определяется в основном подложкой. Преимуществом их является высокое сопротивление, что удобно при согласовании с нагрузкой.

Получили развитие два новых прогрессивных метода изготовления датчиков Холла. Это метод диффузии, примеси я метод эпитаксиального выращивания. Оба эти метода широко применяют при изготовле­нии диодов и транзисторов.

Посредством диффузии примеси на материале p-типа образуется pn-переход. На диффузионном n-слое размещаются электроды, а p- n-переход служит изолирующим слоем (рис. 4).

При эпитаксиальном выращи­вании подложкой может быть как монокристаллическая пластина то­го же материала, так и изоляцион­ные материалы.

Датчики Холла, полученные этими методами, имеют преиму­щества монокристаллических дат­чиков (высокий коэффициент Хол­ла и хорошую стабильность) и преимущества пленочных (высо­кую чувствительность). Толщина рабочего слоя у них не более, чем у пленочных.

Для защиты от механических и климатических воздействий изготовленный датчик покрывают синтетической смолой и приклеивают к изоляционной подложке или помещают в бронзовый корпус. Послед­ний способствует отводу от датчика тепла.

На рис. 5 приведено несколько конструктивных исполнений дат­чика Холла. На рис. 5, а показан датчик, выпускаемый без кор­пуса и подлежащий заливке компаундом после установки в воздушный зазор магнитопровода. На рис. 5, в приведен датчик с оболочкой из эпоксидной смолы. На рис. 5, б показан датчик, заключенный в ферритовую оболочку с симметричной магнитной системой.

Ферритовое основание 1 и крышка 4 имеют одинаковые размеры. Полупроводниковая пластина 6 наклеена прямо на ферритовое осно­вание. Ферритовый стержень 3 концентрирует магнитный поток на по­верхность датчика. Стенки 5 и 2 выполнены из немагнитного материала и обеспечивают необходимый зазор между ферритовым стержнем и по­лупроводниковой пластиной (обычно 2—3 мкм).

На основе эффекта Холла можно создать ряд устройств и прибо­ров, обладающих ценными и даже уникальными свойствами и занимаю­щих важное место в измерительной технике, автоматике, радиотехни­ке и т. д.

Так как э. д. с. Холла пропорциональна току I и индукции магнит­ного поля, то при постоянной величине тока величина э. д. с. будет про­порциональна только индукции магнитного поля. Это позволяет ис­пользовать датчики Холла для измерения индукции магнитных полей.

Одним из приборов, в которых используется это свойство, являет­ся магнитометр, измеряющий как малые, так и большие поля (10 — 10б А/м).

Кроме того, датчики э. д. с. Холла применяют для измерения токов и мощностей. Если поддерживать постоянной напряженность магнит­ного поля, то э. д. с. Холла будет изменяться пропорционально величине тока, протекающего через датчик. Если датчик Холла поместить в магнитное поле, пропорциональное протекающему через нагрузку то­ку, и на вход его подать напряжение, пропорциональное напряжению на нагрузке, то э. д. с. Холла будет пропорциональна мощности, выде­ляемой в нагрузке.

Датчики Холла могут применяться для измерения силы, давлений, углов, перемещений и других неэлектрических величин.

Если, например, датчик Холла перемещать в неоднородном магнит­ном поле, поддерживая входной ток постоянным, то э. д. с. Холла бу­дет изменяться пропорционально напряженности магнитного поля, а следовательно, и местоположению датчика.

В полупроводниковом производстве эффект Холла используется для измерения подвижности и концентрации носителей полупроводнико­вого материала. Для этой цели на специальном подготовленном об­разце измеряют э. д. с. Холла и по его величине судят о подвижности и концентрации носителей заряда материала, используемого для из­готовления полупроводниковых приборов.

4. Точностные характеристики датчиков Холла.

Характеристики серийно выпускаемых преобразователей Холла приведены в табл. 1. Лучшими метрологическими характеристиками обладают преобра­ зователи Холла типа ПХЭ на основе гетероэпитаксиальных структур антимонида индия, которые в зависимости от метрологических характеристик разделяются на классы А, Б и В. Некоторые разновидности этих преобразователей характеризуются очень малым температурным коэффициентом чувствительности (5÷10)·10-5 К-1, малым остаточным напряжением (10—70 мкВ), малой погрешностью линейности при магнитных индукциях до 15 Тл и широким диапазоном рабочих температур (от —271,5 до +100°С). Для работы при повышенных температурах (до 127-327 °С) наиболее пригодны преобразователи Холла из арсенида галлия, которые имеют от­носительно малые температурные коэффициенты постоянной Холла и удельные сопротивления.

Остаточным напряжением преобразователя Холла называется напряжение, которое возникает между Холловыми электродами при прохождении через преобра­зователь тока в отсутствии магнитного поля. Причиной остаточного напряжения в первую очередь является расположение Холловых электродов в неэквипотенциальных точках пластины.

При наличии температурного градиента между Холловыми контактами, каждый из которых является соединением медного вывода с полупроводниковым материалом, в цепи возникает термо-ЭДС. При разности температур между контактами 0,1 °С возникает термо-ЭДС ет = 10÷100 мкВ. Для уменьшения градиента температур преобразователь следует укреплять на подложке из материала с хорошей теп­лопроводностью. Суммарное остаточное напряжение может составлять от единиц микровольт до десятков милливольт. У серийно выпускаемых преобразователей значения Uост/I лежат в пределах 10-6—0,4 Ом.

Тип преобразо-вателя

Номи-нальный ток, мА

Чувствитель-ность при номинальном токе, В/Тл

Входное сопротивле-ние, Ом

Темпера-турный коэффи-циент сопро-тивления, К-1

Температурный коэффициент чувствительно-сти, К-1

Диапазон рабочих температур, °С

Размеры преобра-зователя, мм

Материал

Х111

Х210

10

100

0,45-0,2

0,06-0,12

30-180

0,5-5

0.005

0.002

0.003-0.005

0.0015

-40…+80

-60…+80

1.5×0.8×0.2

0.85×0.55×0.2

Германий

Х211

Х213

Х221

Х222

Х224

100

160

120

180

210

0,06-0,15

0,09-0,32

0,07-0,18

0,1-0,32

0,12-0,48

0,5-5

0.5-5

0.5-5

0.5-5

0.5-9

0.002

0.002

0.002

0.002

0.002

0.0015

0.0015

0.0015

0.0015

0.0015

-60…+90

-60…+100

+40…+80

-60…+100

-60…+120

1.5×0.8×0.2

5×3×0.2

1.5×1×0.2

4×2×0.2

8×4×0.2

Арсенид

индия

(InAs)

Х510

Х511

90

100

0,036-0,2

0,04-0,32

1-6

1-6

0.0004

0.0004

0.0009

0.0009

-100…+60

-100…+80

0.85×0.56×0.2

1.5×1×0.15

Арсенид-фосфид

индия

(InAsP)

ДХГ-2

ДХГ-2С

ДХГ-2М

ДХГ-0,5

ДХГ-0,5М

13-15

20-23

6-8

25-30

10-12

0,45

0,8

0,2

0,25

0,12

220-320

220-360

200-350

40-90

40-120

0.004

0.004

0.004

0.006

0.006

0.002

0.002

0.002

0.0002

0.0002

-60…+70

-60…+70

-60…+70

-60…+90

0…-70

6×3×0.15

12×6×0.16

2.6×1.6×0.15

1.8×0.6×0.16

6×3×0.15

Германий

ДХК-7

ДХК-14

13-15

6-9

0,5

0,6

500-1000

500-1000

0.013

0.013

0.0008

0.0008

-156…+200

-156…+200

6×3×0.15

6×3×0.2

Кремний

Таблица 1

5. Динамические характеристики преобразователей Холла.

Время установления ЭДС Холла характеризуется временем релаксации τ=ε/γ, где ε — диэлектрическая проницаемость, а γ — удельная проводимость материала преобразователя. Для обычно используемых материалов τ=10-11÷10-13 с, поэтому постоянная Холла частотно-независима при частотах до 1011 Гц. Межэлектродные емкости у преобра­зователей Холла составляют единицы пикофарад, поэтому их влияние сказывается при частотах порядка десятков и сотен мегагерц.

Динамические свойства непосредственно преобразователя Холла, казалось бы, позволяют использовать его при измерениях индукции в переменных магнитных но­лях очень высокой частоты. Однако при работе в переменных магнитных нолях возникают ограничения несколько иного рода. В переменном магнитном ноле в выходной цепи преобразователя появляется дополнительная ЭДС, индуктируемая переменным магнитным полем, eинд=ωBmScosωt, где ω — частота; Bm — ампли­туда индукции и Sплощадь контура, пронизываемого магнитным потоком. Ин­дуктируемая ЭДС сдвинута по отношению к ЭДС Холла на 90°. Уменьшение индук­тируемых ЭДС осуществляется рациональным расположением выводов преобразо­вателя и включением дополнительных компенсационных обмоток. Возможно также питание преобразователя переменным током, частота которого значительно больше частоты переменного магнитного поля, и использование узкополосных усилителей для усиления выходного напряжения. Кроме того, в переменном магнитном поле в пластине преобразователя возникают вихревые токи, магнитное поле которых изменяет основное поле и тем самым ЭДС Холла. Вектор наведенной магнитной индукции сдвинут относительно вектора индукции внешнего ноля при­мерно на 90°, и поэтому изменение ЭДС Холла происходит не только по значению, но и по фазе. Вихревые токи приводят также к дополнительному разогреву преобра­зователя. При питании преобразователя Холла постоянным током и нахождении его в переменном магнитном поле с частотой до 1,5 МГц и индукцией до 0,5 Тл зависимость ЭДС Холла от частоты имеет вид

,

где γ — электрическая проводимость материала преобразователя; μ — маспитиая проницаемость среды, окружающей преобразователь; φ = arctg ωμγb2/8 — фазовый сдвиг.

Как видно, характеристика ЭДС Холла сильно зависит от ширины преобразо­вателя b. Так, например, при расположении преобразователя Холла толщиной 100 мкм и шириной 6 мм между двумя ферритовыми наконечниками (μ≈2000 μ0) ЭДС Холла увеличивается в 1,5 раза при изменении частоты магнитного поля от 0 до 1,5 МГц, а сдвиг фазы между ЭДС Холла и магнитной индукцией достигает 57°. При уменьшении ширины преобразователя в два раза (b=3 мм) и неизменных про­чих условиях увеличение ЭДС Холла составляет всего 3%.

При питании преобразователей током высокой частоты имеет место поверхностный эффект, который приводит к уменьшению эффективной толщины преобразователя и к увеличению его чувствительности. Для серийно выпускаемых преобразователей поверхностный эффект мало сказывается при частотах до 107 Гц. Для работы при более высоких частотах питающего тока необходимо использовать пленочные преобразователи толщиной 5—10 мкм.

Анализ основных метрологических характеристик преобразователей Холла показывает, что основная погрешность большинства приборов, в которых исполь­зуются преобразователи Холла, составляет 0,5—1,0 % и более. Только при приме­нении сложных методов коррекции можно снизить погрешность измерения до 0,1— 0,2 % при работе в узком диапазоне температур.

Контрольные вопросы.

  1. Сущность эффекта Холла.

  2. Принцип действия датчиков Холла.

  3. Какие параметры датчиков Холла Вы знаете.

  4. Каким образом изготавливаются датчики Холла.

  5. Где они применяются.

  6. Какие типы датчиков Холла вы знаете.

Список литературы.

  1. Новицкий П.В. Методы измерения физических величин. — М, 1989.

13

Что такое датчик Холла в смартфоне?

Современные мобильные устройства оснащаются большим количеством функциональных блоков, среди которых – не только основные элементы, но и вспомогательные датчики. Если о том, что такое акселерометр, сенсор освещенности и гироскоп знают многие пользователи, то по поводу датчика Холла нередко возникают вопросы.

Что такое датчик Холла

Датчики Холла, используемые в современных смартфонах, это измерительные элементы, которые позволяют определять наличие и интенсивность магнитного поля, а также его изменения. Свое название они получили в честь американского ученого Эдвина Холла, который еще в 1879 году открыл эффект изменения напряжения тока на проводнике при его помещении в магнитное поле.

 магнитный поток, взаимодействующий с датчиком Холла

Магнитный поток, взаимодействующий с датчиком Холла

Зачем нужен датчик Холла в смартфоне

В зависимости от уровня реализации, этот сенсор обладает довольно широкими возможностями. Среди них – измерение величины электромагнитной индукции различных приборов, возможность реализации бесконтактного управления и другие функции. Магнитометр, основанный на датчике Холла, в современных смартфонах встречается достаточно часто. Особенно в флагманских устройствах.

Но в большинстве мобильных устройств не все возможности датчика Холла реализованы в полной мере. Ограниченное пространство под крышкой, желание снизить потребление заряда аккумулятора, отсутствие широкого интереса и острой потребности в реализации новых функций сводят использование сенсора к двум задачам:

  • Первая из них – это цифровой компас. Он используется навигационными программами для ускорения позиционирования и более точного определения направления движения.
  • Второй областью применения датчика Холла, наиболее востребованной владельцами смартфонов, является улучшение взаимодействия устройства с магнитными чехлами и другими аксессуарами.
  • Использование датчика Холла в телефонах «раскладушках», чтобы включать или выключать экран при закрытии или открытии крышки.

Как смартфон взаимодействует с магнитными чехлами

Самым простым примером реализации взаимодействия чехла с магнитом и смартфона является автоматическая блокировка/разблокировка экрана при закрытии/открытии чехла. Датчик Холла реагирует на приближение магнита, расположенного в флипе, регистрируя усиление поля, и блокирует дисплей. При открытии интенсивность излучения снижается и экран активизируется.Чехол с датчиком Холла

Чехлы с окошком в верхней части, которые оставляют часть дисплея открытой для возможности использования отдельных функций (звонки, проигрыватель, часы) без раскрытия флипа, тоже взаимодействуют с датчиком Холла. Регистрируя наличие/отсутствие повышенного магнитного поля, смартфон определяет, оставлять активным весь экран или только его часть.

Еще одним примером аксессуара, требующего наличия датчика Холла, являются Google CardBoard – доступные очки виртуальной реальности, использующие смартфон. Так как при использовании устройства телефон находится внутри, единственным способом управления остается удаленное взаимодействие магнита, встроенного в единственную «кнопку» аксессуара, с датчиком Холла.

 

Датчик Холла в смартфоне — что такое, для чего он нужен, принцип действия

Современный смартфон может быть настолько многофункциональным, что его владелец не всегда в курсе всех характеристик и возможностей своего аппарата. Например, вы знаете, что такое датчик Холла в смартфоне? Как он работает и для чего нужен? Предлагаем вам узнать об этой характеристике больше!

Что значит датчик Холла в смартфоне?

Мы уже в курсе, зачем гаджету модуль приближения или гироскоп. Но что такое датчик Холла в смартфоне? Это определитель положения, чье действие основано на эффекте Холла. Данный приборчик фиксирует как наличие магнитного поля, так и измеряет его напряженность.

Датчик и сам эффект назван по имени известного физика Э. Холла. Именно этот ученый установил, что при помещении в центр магнитного поля проводника-пластины, по которой идет переменный ток, в нем (поле) проявится холловское напряжение — поперечная разность потенциалов.

В описанном случае электроны в проводнике отклоняются строго перпендикулярно направлению самого магнитного поля. Отсюда их плотность на разных частях пластины будет отличной. Вот эту разность потенциалов и фиксирует измеритель.

А что такое датчик Холла в смартфоне? Это еще более простой прибор — он призван определять лишь наличие магнитного поля, не измеряя его напряженность. Кроме того, гаджет наверняка снабжён еще и магнитным датчиком, который позволяет использовать ваш смартфон в качестве компаса.

Где он применяется?

Мы с вами установили, что такое датчик Холла в смартфоне. Однако гаджеты — это не единственная сфера применения изобретения, которое также отличается возможностью бесконтактного управления каким-либо устройством.

Надо сказать, что эффект Холла был открыт сравнительно давно — в 1879 году. А впервые применили его на практике только спустя 75 лет после этого события. Полезен он оказался для автомобилей — датчик использовали для измерения угла расположения коленвала, распредвала. В более старых моделях машин датчик Холла определял момент образования искры.

Далее по пути прогресса прибор стали применять и в сложных системах:

  • бесконтактные выключатели;
  • системы, предназначенные для чтения магнитных кодов;
  • устройства, используемые для бесконтактного определения в проводниках силы тока;
  • измерители уровня жидкости;
  • ионные ракетные двигатели.

Кроме того, было выяснено, что датчик Холла способен заменять магнитоуправляемые герметичные контакты — герконы. Они имеют широкую сферу применения: микроэлектроника, охранные сигнализации, клавиатуры, лифты, наушники.

Зачем датчик Холла в смартфоне?

Мы с вами выяснили, что данный прибор определяет наличие магнитного поля. Но тогда для чего нужен датчик Холла в смартфоне сегодня? Все просто — он определяет, открыт или закрыт «умный» чехол с магнитной застежкой. Если магнит далеко (датчик «не видит» его на определенном расстоянии), то дается команда на включение дисплея. Если же застежка близко (а значит, пользователь закрыл чехол), то датчик сигнализирует системе, что экран нужно перевести в спящий режим.

Полезен этот измеритель и для бамперов для смартфонов с «окошком» на дисплее. Так, например, если вы захлопнули чехол, то датчик Холла это фиксирует. Он дает сигнал системе, что нужно транслировать на экране заставку, специально предназначенную для «оконца». Чаще всего это время, дата, важные уведомления. Убрали дверку чехла — команда от датчика на отображение на дисплее полной информации.

Другие функции в смартфонах

Взаимодействие с магнитными крышками — это самое распространенное применение датчика в современных гаджетах. Однако надо отметить, что он с успехом использовался в более ранних моделях смартфонов:

  • Функция «цифровой компас» действовала благодаря датчику Холла. И сегодня он используется навигационными приложениями для общего улучшения позиционирования и более высокой точности определения вектора движения.
  • Активация/дезактивация подсветки при открытии/закрытии устройства-«раскладушки». Здесь действие схоже с современной ситуацией с магнитными крышками чехлов.

Есть ли в моем телефоне датчик Холла?

Чтобы ответить на вопрос в подзаголовке, проще всего обратиться к характеристике вашего гаджета на официальном сайте производителя или в инструкции к девайсу. Однако не все изготовители указывают, снабжено ли конкретное устройство датчиком Холла.

Но существует простой способ проверки. Если к модели вашего смартфона выпускаются «умные» обложки или чехлы (в т. ч. и с «окошками»), имеющие магнитную застежку, то, скорее всего, в аппарате датчик Холла есть.

Среди популярных сегодня на рынке моделей этот модуль имеют следующие:

  • Lenovo Vibe S1.
  • Meizu Pro5.
  • Meizu M2 Mini.
  • LG Nexus 5X.
  • Meizu M2 Note и проч.

К сожалению, в современных смартфонах возможности датчика Холла сильно усечены. Это объясняется минимизацией толщины корпуса, желанием производителя снизить расход заряда батареи, отсутствием потребности в расширенных за счет него функциях. Сегодня задач у датчика две — взаимодействие с «умным» чехлом или обложкой и карманный компас.

Что такое датчик Холла в телефоне?

В смартфонах и планшетах могут применяться сразу несколько датчиков, которые помогают устройству считывать дополнительную информацию. Некоторое время назад мы рассказывали об акселерометре. Сегодня поговорим о другом датчике, а именно — о датчике Холла.

Что это такое?

Датчик Холла, использующийся в современных мобильных устройствах, представляет из себя измерительный элемент, который способен определять наличие, интенсивность и изменение интенсивности магнитного поля. Датчик назван по имени американского физика Эдвина Холла, в честь которого был назван открытый в 1879 году «эффект Холла» — явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

Суть в следующем: если в магнитное поле поместить пластину под напряжением, электроны в пластине начнут отклоняться перпендикулярно направлению магнитного потока. Плотность электронов на разных сторонах пластины будет различаться, что в свою очередь приводит к разности потенциалов, которую улавливает датчик Холла.

Вот как выглядит датчик:

Для чего нужен датчик Холла в планшете или смартфоне?

Сам по себе датчик обладает достаточно широкими возможностями, хотя обычно его применяют по своему прямому назначению, измеряя напряженность магнитного поля. В частности, датчик используется в ракетных двигателях, в системе зажигания ДВС, для измерения уровня жидкости и т.п.

Встречается датчик и в современных мобильных устройствах, однако его возможности реализованы не в полной мере. Датчик фактически используется только в двух задачах.

  • Первая — это ставший уже привычным для обладателей смартфонов цифровой компас, который в том числе применяется для улучшения позиционирования.
  • Вторая задача, куда более актуальная, — это взаимодействие с популярными чехлами для смартфонов и планшетов.

Магнитные чехлы

Вы наверняка видели так называемые магнитные чехлы как для смартфонов, так и для планшетов. Они позволяют блокировать и разблокировать устройство при открытии/закрытии чехла. При этом в некоторых случаях на чехле есть окошко, где выводится определенная информация, например, время или уведомления.

Как это возможно? Установленный в устройстве датчик Холла реагирует на магнит, который расположен в самом чехле. Когда магнит расположен близко к устройству, датчик регистрирует усиление излучения, в результате чего блокирует дисплей.

Когда пользователь открывает флип-чехол (чехол-книжка), датчик фиксирует уменьшение интенсивности излучения и разблокирует экран.

Просто и удобно.

7.10. Гальваномагнитные датчики

Гальваномагнитные датчики предназначены для преобразования индукции магнитного поля в напряжение или сопротивление.

Гальваномагнитные датчики основаны на физическом воздействии магнитного поля и носителей зарядов, которые движутся в полупроводниках, находящихся в этом магнитном поле. Практическое применение получили датчики, изготовленные из материалов, в которых используются два эффекта: Холла и Гаусса. Датчики, использующие эффект Холла, преобразуют магнитную индукцию в напряжение и называются датчиками Холла. Эффект Гаусса заключается в изменении электрического сопротивления материала под действием магнитного поля, и поэтому датчики, использующие этот эффект, называются магниторезисторами.

7.10.1. Гальваномагнитные датчики Холла

Эффект Холла возникает в тонкой полупроводниковой пластинке или пленке, по которой идет ток. Если эта пластина или пленка находится в магнитном поле, направленном перпендикулярно ее поверхности, то носители зарядов отклоняются из-за действия силы Лоренца, равной F = e×v×B, где e — заряд носителя, движущегося со скоростью v перпендикулярно магнитному потоку, индукция которого равна B. Сила Лоренца действует перпендикулярно направлению движения носителей заряда и перпендикулярно направлению магнитного поля. В результате на одной боковой стороне пластины количество носителей зарядов увеличивается, а на другой — уменьшается, и между ними возникает разность потенциалов (ЭДС Холла).

Для того, чтобы плотность тока была равномерной по ширине пластины, электроды, подводящие ток, припаиваются или привариваются по всей ширине пластины. Электроды, с помощью которых с боковых сторон снимается ЭДС Холла (Холловы электроды), привариваются к серединам сторон так, чтобы при отсутствии магнитного поля они оказались на эквипотенциальной линии. Диаметр контактной площадки этих электродов с пластиной обозначим через a. Остальные размеры: l — длина пластины, b — ширина пластины, d — толщина пластины (см. рис. 79, на котором магнитное поле направлено от читателя). Если l/b = 2 и a/l < 0.1, то ЭДС Холла равна

,

где — постоянная Холла, зависящая от свойств материала пластины (пленки),d — толщина материала, I — сила тока, B — магнитная индукция, a — угол между вектором магнитного поля и магнитной осью пластины, близко совпадающей с нормалью к ее плоскости.

Из этого выражения видно, что при постоянном токе через полупроводниковую пластину или пленку и при a = 0 ЭДС Холла определяется значением магнитной индукции B, для измерения которой и применяется этот датчик. Кроме того из этого же выражения следует, что датчик Холла может применяться и для перемножения двух величин: тока и магнитной индукции (или величины, которая может быть преобразована в нее).

Основные полупроводниковые материалы, из которых изготавливаются серийные датчики Холла, это арсенид индия InAs, антимонид индия InSb или арсенид галлия GaAs. Делаются также датчики Холла из германия и кремния. Датчики выполняются в виде тонких пластин или пленок на подложках из слюды, ультрафарфора или стекла. Толщина d этих пленок составляет от 10 мкм до 200 мкм. Размеры l и b поверхностей датчиков составляют единицы миллиметров.

С помощью датчиков Холла обычно измеряется индукция магнитного поля в труднодоступных местах, подход к которым возможен с одной стороны. Поэтому все четыре проводника подходят к датчику также с одной стороны, как это показано на рис. 79.

Входное сопротивление датчика Холла — это сопротивление между токовыми электродами, оно может составлять от 0.5 Ом до нескольких килоом. Выходное сопротивление датчиков Холла — это сопротивление между Холловыми электродами. У серийно выпускаемых датчиков значения этих сопротивлений близки. Вследствие того, что в условиях применения датчиков Холла в полупроводнике возникает и эффект Гаусса, входное и выходное сопротивление с ростом магнитной индукции увеличиваются.

Основные характеристики датчиков Холла.

Основными характеристиками датчиков Холла, как любого средства измерений, являются метрологические характеристики, и первыми среди них — характеристики погрешности. Из-за большого количества причин, порождающих погрешности, они будут рассмотрены подробно в следующем пункте. Здесь будут представлены характеристики чувствительности и динамические характеристики датчиков Холла, а также варианты использования этих датчиков для измерения мощности и силы электрического тока.

Гальваномагнитная чувствительность при a = 0 определяется выражением

,

и для различных типов датчиков составляет (0.3 — 10) В/(А×Тл).

Чувствительность датчиков Холла к магнитной индукции определяется при номинальном значении тока , как. Для серийно выпускаемых датчиков Холла значение этой чувствительности лежит в пределах (0.03 — 1) В/Тл. Значение силы номинального тока у различных датчиков различно. Ограничение силы тока определяется температурой перегрева датчика. Для высокоомных датчиков допустимая сила тока не превышает 50 мА, для низкоомных — 200 мА. В сильных полях появляется нелинейность, которая для лучших датчиков составляет (0.1 — 1.0)%.

Чувствительность к току определяется при постоянном значении магнитной индукции, как . При индукции 1 Тл чувствительность датчиков Холла к току лежит в пределах (0.3 — 50)В/А.

Остаточное напряжение датчика Холла действует между Холловыми электродами при прохождении по датчику электрического тока, но при отсутствии магнитного поля. Причиной возникновения остаточного напряжения является неточное расположение Холловских электродов на эквипотенциальной линии. Причиной возникновения остаточного напряжения является также термоЭДС, которая при градиенте температуры между Холловскими электродами в 0.1 °С может достигать от 10 мкВ до 100 мкВ. Для уменьшения температурного градиента датчик Холла располагают либо на теплопроводной подложке, либо на подложке с помощью теплопроводной, но электроизолирующей пасты.

Динамические характеристики датчиков Холла определяются временем установления ЭДС Холла при ступенчатом изменении индукции магнитного поля или силы тока. Для обычно используемых материалов это время лежит в пределах с, поэтому датчик Холла может быть использован и для измерения индукции переменного магнитного поля, а также для перемножения переменных тока и индукции. В частности, если частота переменного тока и магнитной индукции совпадают и равнаw, то ЭДС Холла

.

Постоянная составляющая этого выражения может быть отделена от переменной составляющей путем фильтрации, и тогда с помощью датчика Холла может быть построен ваттметр для измерения активной и реактивной мощности электрического тока. Ток в нагрузке должен быть преобразован в индукцию магнитного поля, как это показано на рис. 80, а напряжение на нагрузке — в ток через датчик Холла. Сила тока нагрузки, как правило, велика и составляет от десятков до десятков и сотен тысяч ампер. Удобным способом преобразования сильных токов в индукцию является концентрация магнитного потока, окружающего проводник с током, с помощью магнитопровода, охватывающего этот проводник, как это схематически показано на рис 80 и как это делается в токовых клещах. В зазор магнитопровода, индукция в котором пропорциональна силе тока, вводится датчик Холла, и через него пропускается ток, пропорциональный напряжению.

Подобное преобразование тока в индукцию магнитного поля с последующим применением датчика Холла применяется, например, фирмой ABB для измерения и регистрации больших постоянных токов (см. рис. 80). Кроме того этот прием позволяет обеспечить гальваническую развязку средства измерений от мощной электрической цепи, что способствует эффективной борьбе с помехами (см. п. 6.4) и обеспечивает безопасность персонала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *