Магнитное поле источник: Что такое магнитное поле, его свойства и источники

Содержание

Что такое магнитное поле, его свойства и источники

Магнитное поле: Freepick

Что такое магнитное поле? Физика легко объясняет все явления природы, в том числе и невидимые, а потому дает ответ и на этот вопрос. Оказывается, в некоторых веществах есть свободные электроны, движение которых и создает особенные поля. Обсудим их секреты подробнее.

Что такое магнитное поле, его свойства

Многие видели и держали в руках магниты. Легко заметить ту силу, которая возникает между ними.

Каждый магнит обладает двумя полюсами: противоположные притягиваются, а одинаковые отталкиваются. Кроме того, магниты всегда окружены областью, где эта сила возникает. Магнитные поля как раз и описывают такую силу.

Таким образом, магнитное поле — это концепция, которую используют, чтобы описать то, как сила распределяется в пространстве вокруг магнита и в нем самом. Впервые на это явление обратил внимание французский ученый Перегрин, а затем исследовали Ампер и Фарадей.

Явление магнетизма и магнитных полей — одна из составляющих электромагнитных сил, которые для природы базовые. Появляется магнитное поле там, где происходит движение зарядов. Когда большие заряды двигаются с высокими скоростями, то сила магнитного поля возрастает.

Магнитное поле вокруг магнита: Freepick

Какова природа магнитного поля? Существуют способы, которые организовывают движение зарядов так, чтобы они такое поле порождали. Например:

  • Можно пустить ток по проводнику, присоединенному к батарее. Если силу тока увеличивать (то есть наращивать количество движущихся зарядов), то пропорционально усилится и магнитное поле. Его сила будет уменьшаться пропорционально расстоянию от проводника. Данное явление называют закон Ампера.
  • Можно использовать свойства электронов. Они имеют отрицательный заряд и совершают движение вокруг ядра атомов, что и есть основой принципа работы постоянного магнита. Не все материалы получится намагнитить. Для этого необходимы один или несколько так называемых непарных электронов (обычно электроны всегда образуют пары). Например, у атома железа есть четыре непарных электрона, поэтому из такого материала получится хороший магнит.

Каждый кусочек любого материала состоит из миллиардов атомов. Когда они ориентируются в пространстве произвольно, то их поле угасает, даже при наличии непарных электронов. Только в стабильных веществах можно получить постоянную ориентацию электронов, то есть постоянный магнит или ферромагнетик.

Некоторым материалам для этой цели необходим внешний источник магнитного поля. Оно способно сориентировать вращение электронов и задать им нужное направление, но стоит исчезнуть внешнему полю, и общая ориентация тоже пропадет. Такие материалы получили название парамагнетиков.

Хороший пример парамагнетика — металлическая дверца холодильников. Сама по себе она не магнит, но может притягивать приложенные к ней магниты. Это свойство многие используют, когда с помощью магнита крепят к дверце холодильника список покупок или записку.

Экспериментально подтвержденные свойства магнитного поля таковы:

  • оно материальное, то есть существует в объективной реальности, даже если о нем не знаем;
  • его порождают лишь движущиеся электрические заряды, то есть любое движущееся заряженное тело окружено таким полем. Магнитные поля создаются и магнитами, но и в этом случае причина появления кроется в движении электронов. Переменные электрические поля также создают их;
  • обнаруживают данные поля, действуя некоторой силой на движущиеся электрические заряды или проводники с током;
  • в пространстве его распространение происходит со скоростью, которая равна скорости света в условиях вакуума.

Таким образом, магнитное поле, определение которому дали выше, — это явление загадочное и невидимое, но в то же время вполне объяснимое.

Магнитное поле: источники, измерение

Источниками магнитных полей считаются:

  • Электрические поля, меняющиеся во времени.
  • Подвижный заряд.
  • Постоянный магнит.
Магниты разного размера: Freepick

С детства сталкиваемся с постоянными магнитами:

  1. Они применяются как игрушки, которые притягивают детали из металла.
  2. Их часто прикрепляют к холодильнику.
  3. Используют как встроенные части в игрушках.

Движущиеся электрические заряды, если сравнивать их с постоянными магнитами, обладают большей магнитной энергией.

Если магнитное поле нельзя увидеть, то как его изобразить? Физики предложили следующие способы:

  1. Магнитные поля описывают с помощью математики как векторные. Их изображают как упорядоченную сетку множества векторов. Каждый из них направлен в свою сторону, а длина определяется величиной магнитной силы. Если бы много маленьких компасов выложили в определенном порядке, картинка получила бы такая же, вот только силу поля узнать бы не удалось.
  2. Также используют силовые линии магнитного поля. В этом случае вместо сетки векторы соединяют плавные линии. При этом рисуют столько линий, сколько захочется.

Во втором виде изображения есть такие преимущества:

  • Силовые линии магнитных полей не пересекаются.
  • Они расположены тем плотнее, чем выше индукция (сила) магнитного поля.
  • Данные линии изображают в виде замкнутых циклов, то есть у них есть начало и конец с продолжением внутри магнита.

Чтобы указать направление поля, применяют стрелочки, расставленные вдоль силовых линий. Иногда применяют и другие обозначения. Традиционно полюса магнита обозначают как «север» и «юг», а силовые линии изображают по направлению от одного полюса ко второму.

По этой причине их обычным направлением считается направление с севера на юг. Концы источника магнитного поля часто подписывают английскими буквами N (север) и S (юг).

Полюбоваться силовыми линиями может каждый. Для этого:

  • Магнитные опилки надо высыпать на ровную поверхность рядом с источником магнитного поля.
  • Металлические частицы начнут вести себя подобно крошечному магниту с южным и северным полюсами.
  • Опилки постепенно образуют отдельные области благодаря отталкиванию одинаковых полюсов.
  • В результате получится рисунок силовых линий.

Так обычно выглядит основная картина, а свойства материала опилок определяют положение и плотность линий.

Магнит, притягивающий скрепки: Freepick

Наконец, магнитное поле как векторную величину можно описать и измерить.

Для этого понадобится сила и направление:

  1. С направлением все просто. С его определения берут магнитный компас и ждут, пока стрелка остановится на силовой линии. Такие компасы были известны мореплавателям еще в XI веке. Кроме того, пользуются правилом сжатой правой руки (когда правая рука обхватывает проводник, а большой палец показывает направление тока, то другие пальцы указывают направление поля).
  2. С силой немного сложнее. Приборы под названием магнитометры были изобретены лишь в XIX веке. Большинство из них способно рассчитать силу, которая действует на электрон, движущийся в поле.

Точные измерения слабых магнитных полей начались после открытия в 1988 году эффекта гигантского магнетосопротивления. Им обладают материалы, которые составлены из особенных тонких пленок.

Интересно, что это открытие фундаментальной физики стало применяться для хранения информации на жестких дисках компьютеров. В итоге плотность записи на магнитном носителе выросла в тысячи раз буквально в течение нескольких лет. В 2007 году ученые Ферт и Грюнберг за это открытие были награждены Нобелевской премией по физике.

Согласно международной системе единиц, силу (индукцию) магнитных полей измеряют в тесла (обозначают Тл, назвали в честь Николы Теслы). Тесла — это такая величина силы, которая действует на движущийся заряд от магнитного поля. Так, маленький магнит, который повесили на холодильник, создаст индукцию примерно 0,001 Тл, в то время как индукция магнитного поля нашей планеты составляет 5×10⁻⁵ Тл.

Иногда ученые пользуются альтернативной единицей измерения под названием гаусс (обозначают Гс). Преобразовываются эти единицы измерений достаточно легко: 1 Тл = 10⁴ Гс. Причиной применения единицы Гс стало то, что 1 тесла — это слишком высокая величина для индукции.

В формулах величину магнитной индукции обозначают символом BBB. Иногда встречается термин «напряженность магнитного поля» с обозначением символом HHH. Обе эти величины измеряют в одних и тех же единицах, но в напряженности учитывается магнитное поле, которое есть внутри магнита.

В решении простых задач, где действие происходит в воздухе, этой разницей можно пренебречь.

О том, что такое магнитное поле, больше знаем из практики, но не всегда разбираемся в теории. Оказывается, что невидимые магнитные поля вполне реальны и создаются движением электронов. Их направление указывают стрелки компасов, а силу измеряют специальные приборы.

Оригинал статьи: https://www.nur.kz/family/school/1909092-chto-takoe-magnitnoe-pole-ego-svoystva-i-istochniki/

Представление о магнитном поле / Хабр

Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.

Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.

За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.

В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.

Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.

Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.

Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.

Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.

Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.

Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.

Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.

Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:

Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).

Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.

А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.

Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.

Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.

Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:

При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.


Модель магнитного поля движущегося заряда

Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.

Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.

Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.

Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.

А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.

Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.

Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».

Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.

И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.


Спин

У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).

Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:

Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.

Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.

Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia

UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.

Магнитное поле древней Луны измерили по образцам с «Аполлона-17» — Наука

ТАСС, 27 сентября. Анализ фотографий поверхности Луны и образцов пород, собранных участниками экспедиции «Аполлон-17», помог астрономам определить, что 3,7 млрд. лет назад магнитное поле Луны было столь же сильным, как у современной Земли. Кроме того, ученые выяснили точное положение лунной магнитной оси. Статью с описанием их исследования опубликовал научный журнал Nature Astronomy.

«Наши расчеты показывают, что индукция магнитного поля древней Луны составляла 50-57 нанотесла, то есть примерно столько же, сколько сейчас у Земли. Это в очередной раз свидетельствует о том, что примерно 3,5-3,7 млрд. лет назад у Луны было активное ядро, которое вырабатывало магнитное поле», – пишут исследователи.

Измерения намагниченности образцов древних лунных пород, которые привезли астронавты программы «Аполлон», показывают, что в глубокой древности у Луны было достаточно сильное магнитное поле. Однако как оно возникло, когда и почему исчезло, ученые пока сказать не могут.

В частности, большие споры вызывает то, могло ли магнитное поле Луны возникать так же, как у Земли, – то есть за счет вращения жидкого ядра. Многие планетологи сомневаются в этом, так как масса и размеры Луны слишком малы для возникновения в ее недрах потоков расплавленного металла. Поэтому астрономы предполагают, что магнитное поле Луны возникло каким-то другим образом или не существовало вовсе. Таким образом образцы с «Аполлонов» не что иное, как простая аномалия.

В новом исследовании астрономы под руководством Клэр Николс из Оксфордского университета внесли немного ясности в этот вопрос. Дело в том, что определить мощность и направление магнитного поля Земли или любой другой планеты можно достаточно легко. Для этого нужны образцы пород, сформировавшиеся в интересующую геологов эпоху, и данные о том, где залегали эти фрагменты. Ранее считалось, что для всех известных фрагментов лунных пород, которые попали на Землю в виде метеоритов или были доставлены на Землю членами экипажей «Аполлонов», подобных данных не было.

Николс и ее коллеги выяснили, что это не так. Два образца – 75035 и 75055, – которые на Землю доставили участники экспедиции «Аполлон-17» из горной долины Тавр-Литтров. Эти образцы представляют собой фрагменты древних базальтов, которые сформировались примерно 3,7 млн. лет назад и обнажились после формирования кратера Камелот.

Благодаяр снимкам этого кратера и его стенок, которые сделали астронавты «Аполлон-17», ученые локализовали положение тех участков поверхности Луны, где возникли 75035 и 75055, а также выяснили их примерное положение относительно других объектов. Следовательно, планетологи вычислили и типичную мощность магнитного поля древней Луны и определили, как оно было устроено.

Согласно выводам ученых, 3,7 млрд. лет назад магнитное поле Луны было достаточно сильным, сопоставимым по мощности с магнитным полем Земли. В дополнение к этому, ученые обнаружили множество свидетельств в пользу того, что у него было два полюса и магнитная ось, направленная в сторону географических полюсов планеты.

Результаты этих исследований, по словам ученых, говорят, что ядро Луны по своей структуре не похоже на ядро Земли. Кроме того, магнитное поле генерировалось в толще Луны пока неизвестным образом. Ученые надеются, что дальнейшее изучение снимков с «Аполлонов» позволит им точно локализовать положение других образцов пород, что ускорит выяснение природы магнитного поля древней Луны.

Измерено самое слабое магнитное поле в рентгеновских пульсарах

Аккреция, или падение вещества, на нейтронные звезды — один из наиболее эффективных механизмов генерации излучения в рентгеновском диапазоне. Если магнитное поле нейтронной звезды достаточно сильное, то оно способно направлять потоки вещества к магнитным полюсам. В этом случае в районе магнитных «шапок» достигаются сверхэкстремальные значения плотности и температуры — и именно там формируется основное рентгеновское излучение.  Если магнитная ось нейтронной звезды не совпадает с осью вращения, это излучение приходит к нам не постоянно, а как бы «вспышками» или импульсами, подобно маяку, поэтому такие объекты и получили название рентгеновских пульсаров.

Свойства наблюдаемого излучения во многом определяются величиной и конфигурацией магнитного поля.

Измерить магнитное поле нейтронной звезды непросто. Единственный прямой метод — обнаружить так называемые циклотронные линии поглощения в спектре ее электромагнитного излучения. Это относительно узкие спектральные особенности, возникающие при взаимодействии излучения с электронами, движущимися вдоль силовых линий магнитного поля. Наблюдаемые энергии этих трудноуловимых особенностей пропорциональны величине магнитного поля и распределены гармонически. Это значит, что, кроме основной линии, могут наблюдаться ее гармоники на энергиях, кратных энергии основной линии.

Циклотронные линии обнаружены всего лишь у нескольких десятков пульсаров. При этом обычно наблюдается только одна линия (фундаментальная), поскольку для типичных магнитных полей энергии гармоник оказываются слишком большими, чтобы их могли обнаружить современные телескопы.

До сегодняшнего дня был известен только один пульсар, в спектре которого было обнаружено более четырех циклотронных линий. Его основная гармоника приходится на энергию ~11 килоэлектрон-вольт (кэВ) и, соответственно, его магнитное поле считалось самым слабым среди известных аккрецирующих пульсаров, магнитные поля которых были определены достоверно.

Этот рекорд был побит благодаря совместной работе ученых Института космических исследований РАН, Московского физико-технического института и их коллег из научных организаций Германии и Финляндии.


Спектр пульсара Swift J1626.6-5156 по данным обсерваторий NuSTAR и NICER. Источник: Astrophysical Journal Letters

В марте 2021 г. в данных японского монитора MAXI на борту Международной космической станции было обнаружено, что в направлении малоизученного рентгеновского пульсара Swift J1626.6-5156 увеличивается поток излучения.

Через несколько дней наблюдения российского телескопа ART-XC им. М. Н. Павлинского на борту обсерватории «Спектр-РГ», проводящей обзор всего неба, подтвердили начало рентгеновской вспышки и то, что она происходит именно в системе Swift J1626.6-5156. Этот рентгеновский пульсар с периодом примерно 15 секунд был открыт в 2005 году во время вспышки, по окончании которой находился в состоянии «покоя» более 15 лет.

Результаты телескопа ART-XC послужили триггером для проведения по заявке российских ученых немедленных наблюдений этого источника американскими орбитальными обсерваториями NuSTAR и NICER, которые работают в широком диапазоне энергий с высокой чувствительностью и хорошим энергетическим разрешением.

При анализе энергетического спектра Swift J1626. 6-5156 были обнаружены четыре гармонически распределенные особенности в поглощении на энергиях, кратных 4.9 кэВ. Эти особенности были интерпретированы как фундаментальная циклотронная линия и три ее высшие гармоники, что соответствует величине магнитного поля на поверхности нейтронной звезды ~4×1011 Гаусс.

«Это в разы меньше типичных значений и сегодня является наименьшим среди всех известных рентгеновских пульсаров, — говорит Сергей Мольков, первый автор статьи, старший научный сотрудник ИКИ РАН и сотрудник МФТИ. — Наше открытие позволит существенно расширить знания о магнитных полях в нейтронных звездах. Кроме того, оно оказалось очень «своевременным» в свете того обстоятельства, что на осень 2021 года запланирован запуск обсерватории IXPE (NASA, ESA), а еще через четыре года в космос отправится обсерватория eXTP (Китай, ESA)».

Оба упомянутых проекта предназначены для измерения поляризации излучения в мягком рентгеновском диапазоне энергий 2–10 кэВ. Образно говоря, эти миссии должны открыть «новое окно» для изучения и понимания физических процессов, происходящих в окрестностях нейтронных звезд и черных дыр. Учитывая рабочий энергетический диапазон поляриметров, именно рентгеновские пульсары с малыми магнитными полями (т.е. с циклотронными линиями на энергиях ниже 10 кэВ) представляют особый интерес.

Благодаря обнаруженной циклотронной линии на энергии 4.9 кэВ пульсар Swift J1626.6-5156 станет практически уникальным объектом для миссии IXPE, наблюдая  который можно будет проверить модели формирования излучения рентгеновских пульсаров и глубже понять физику высокоэнергичных процессов в магнитных полях.

Работа была поддержана Российским научным фондом, грант 19-12-00423.

Магнитный щит для Марса: сработает ли идея NASA по терраформированию красной планеты?

Марс как возможное место существования жизни вне Земли, пожалуй, привлекает наибольшее внимание среди всех небесных тел. Этому способствовало и открытие каналов на Марсе в конце ХIХ века, и последующая «реклама» многих писателей-фантастов, а позднее, со второй половины ХХ века, и научные данные об условиях на поверхности этой планеты. Конечно, никаких, описывавшихся в фантастических романах, построек или растений, найдено не было, но даже научные данные показывают: по сравнению с Луной или Венерой Марс — «очень даже ничего».

Что мы имеем на поверхности Венеры? Температура около 500°C, давление около 100 атм, спускаемые аппараты со специальный защитой в такой среде живут не более нескольких десятков минут. На Луне: атмосфера отсутствует, из-за этого температура на дневной поверхности — плюс 100-150°C, во время двухнедельной ночи — столько же со знаком минус. Чтобы пережить такую ночь, нужны атомные источник энергии для подогрева (так называемый РИТЭГ — радиоизотопный термоэлектрический генератор).

Но вернемся к Марсу. На Марсе — пусть слабенькая, но атмосфера, хоть как-то защищающая от радиации и стабилизирующая температуру. Летом и на солнце может быть более +20°C, зимой — до -140°C, но можно найти места с минимальной температурой и повыше. В результате одна из сложнейших проблем космической техники — терморегулирование — снимается почти полностью, ведь в Антарктиде без каких-либо скафандров люди выдерживают до -80°C.

Реклама на Forbes

Главное же, что внушает оптимизм в смысле возможности длительного существования на Марсе, — наличие воды (льда) в очень больших количествах. Вода — это главный расходуемый ресурс при полетах человека в космос. С помощью электричества из воды можно получить кислород, нужный для дыхания, и водород, используемый как топливо.

Главная опасность для человека — космическая радиация. Рельеф и грунт на Марсе вполне позволяют зарыться на несколько метров и таким образом защититься от нее, хотя на поверхности надолго появляться не рекомендуется. В сумме – при желании на Марсе можно относительно неплохо устроиться по сравнению с другими внеземными вариантами.

А чем может быть интересен Марс? По одной из гипотез, в первые несколько сотен миллионов лет своего существования Марс обладал более развитой атмосферой, а значит был, скорее всего, более теплым и на нем тоже могла появиться жизнь. Правда, вряд ли она бы успела развиться до чего-то более или менее заметного: на Земле, например, первые несколько миллиардов лет существовали только самые примитивные одноклеточные. В современных условиях можно ожидать найти либо окаменелости, либо, если очень повезет, чудом выжившие отдельные колонии опять же одноклеточных организмов. Открытие внеземной жизни и ее сравнение с земным вариантом даст науке информацию о механизмах эволюции, значение которой переоценить невозможно, — это будет настоящий прорыв в понимании места и роли нашей цивилизации в космосе. Например, сразу можно будет проверить гипотезы о заселении Земли с Марса или наоборот. А вдруг марсианская жизнь будет вовсе не на белковой или аминокислотной основе?..

По совокупности всех причин Марс и притягивает наше особое внимание, даже сейчас, когда мы точно знаем, что писатели-фантасты были не правы. Например, число космических проектов по исследованию Марса сейчас больше, чем спутников, запускаемых к Луне. На горизонте и полет человека на Марс, ставший одним из основных маяков, к которым стремится человечество в космосе.

К сожалению, это сделать гораздо сложнее, чем слетать на Луну. От повторения американской высадки на Луну человечество удерживает только финансовый вопрос, технически это вполне в пределах досягаемости. Для полета же на Марс надо вывести на орбиту на порядок большую массу, чем для полета на Луну, — несколько сотен тонн. Это связано с тем, что для разгона и торможения у Марса, и для возврата нужно гораздо больше топлива. Есть и проблемы с надежностью. При полете на Луну космический корабль не выходит из пределов зоны притяжения Земли, и, случись что не так, вернуться обратно почти всегда возможно. При полете по межпланетной траектории все строго наоборот, один неверный маневр и «давай, до свидания». В сумме, при нынешнем развитии цивилизации возможен только разовый полет «на недельку» и то лет через двадцать, а многие специалисты считают, что и это недостижимо — надо ждать «фотонных двигателей» или «подпространственных туннелей».

Ввиду вышеизложенного, все, о чем пойдет речь ниже — чистой воды научная фантастика, но всё-таки научная. Итак, предлагается посмотреть на Марс как на вторую планету для нашей цивилизации. Можно отселить туда добровольцев или обустроить ее «про запас», на случай какой-нибудь космической катастрофы с Землей (главное только, чтобы при этом Марс не «зацепило»!). Хотя Илон Маск и обещает отправлять людей на Марс тысячами, представляется все-таки, что это больше рекламный ход, так что рассмотрим более реалистичные варианты. Тут и возникает идея терраформирования.

Терраформирование нужно, чтобы земные колонисты встретили на планете более подходящие условия жизни. Этот термин впервые появился в научной фантастике и означает создание на каком-либо небесном теле среды, похожей на земную. Вариантов много: от каких-то куполов на поверхности до изменения всего климата и ландшафта планеты. Предлагается воздействовать на Марс так, чтобы атмосфера стала плотнее, радиация уменьшилась, а температурные перепады вошли в земную норму. Простейший способ — растопить углекислоту в полярных шапках, тогда атмосфера «раздуется» и потеплеет из-за парникового эффекта. Дальнейшее развитие событий зависит только от нашего воображения: растает и водяной лед, наполнятся океаны и потекут реки, а расплодившаяся флора начнет перерабатывать углекислоту в кислород.

Вопрос в другом — хватит ли «сил» на раскрутку такого сценария? Вообще говоря, региональное воздействие на климат земная цивилизация освоила довольно давно и обычно — с негативными последствиями. В античные времена вырубка лесов в Сахаре привела к опустыниванию, а сегодня огромные водохранилища и мегаполисы вызывают вполне заметное локальное потепление.

Но в планетарном масштабе, конечно, это невозможно, у человечества просто не хватит энергии на управление процессом (причем «не хватит» с оглушительным разрывом). Итак, в лучшем случае, можно рассчитывать только на толчок, после которого события будут развиваться сами по себе, будем надеяться, в предсказанном и нужном нам направлении.

Предлагали, например, «покрасить» марсианские полярные шапки в черный цвет, чтобы они больше впитывали солнечного тепла и лучше нагревались. Другой способ — запустить в атмосферу искусственные парниковые газы (простейший из них — метан), получаемые либо с помощью химических фабрик, либо от специально разведенных колоний бактерий. Более радикальный способ — взорвать термоядерную бомбу.

Основная концептуальная проблема, однако, даже не в том, как «толкнуть», а в том, что у нас нет никаких гарантий, что процесс пойдет дальше правильным путем. На Земле объединенная система «атмосфера-гидросфера-биосфера», от которой зависит климат, настолько сложна, что ее реалистичное моделирование не представляется возможным. Имеется огромное количество малых взаимодействующих факторов, каждый из которых слишком мал сам по себе, но изменение любого может привести к радикальным последствиям (есть даже такой термин — «эффект бабочки», возникший по аналогии с известным рассказом Рея Бредбери). Венера — тому пример. Представляется, что на ее поверхности не должно быть сильно жарче, чем на Земле, однако неконтролируемый парниковый эффект разогрел ее до 500°C и возврат назад стал практически не возможен.

Подумаем, как организовать процесс наиболее естественным путем, без атомной бомбы. Вот здесь и появляются на сцене коллеги из НАСА. Кстати, замечу, что автор идеи Джим Грин — один из научных чиновников НАСА, и это его личная идея, а вовсе не официальное мнение администрации. Если у планеты нет магнитного поля (Марс — именно такой случай), то солнечный ветер — поток плазмы, летящий от Солнца, — «сдувает» верхние слои атмосферы, делая ее слабее. Считается, что именно так потерял свою атмосферу Марс (есть некоторые возражения против такой теории, но сейчас мы не будем её оспаривать). Предлагается защитить Марс магнитным полем наподобие земного, тогда солнечный ветер будет обтекать Марс на расстоянии и атмосфера не будет эродировать. А поскольку поверхность планеты (горные породы, льды) «немного газит», она начнет постепенно расти, что нам и нужно.

Создание магнитного поля на самой планете, очевидно, выглядит достаточно затруднительной затеей: надо опутать всю планету проводами. Поэтому предложено разместить источник магнитного поля перед планетой в потоке солнечного ветра. Есть такая условная точка (точка либрации) на прямой, соединяющей планету и Солнце, где воздействие всех гравитационных сил сравнивается и космический аппарат как бы зависает (при минимальных затратах топлива), не уходя ни на межпланетную траекторию, ни на орбиту вокруг планеты. В околоземных точках либрации сейчас находятся несколько спутников, наблюдающих за солнечным ветром и несколько астрономических телескопов, так что эта часть проблемы вполне освоена. Магнитное поле, «надутое» немного «выше по течению» перед Марсом, как бы накроет планету.

К сожалению, проблем в этой идее видно сразу же больше, чем преимуществ. Во-первых, важна не величина магнитного поля сама по себе, но и размер зоны, занимаемый полем, у планет эта зона называется магнитосферой. Чтобы создать магнитное поле, равное земному, в одной точке достаточно и школьного магнита, но чтобы создать магнитосферу Земли, нужно что-то гораздо большее. Физическая характеристика, определяющая размер магнитосферы, называется магнитным моментом. Он равен силе тока в витке провода, умноженной на площадь витка. У Земли она равна почти десять в 23-й степени Ампер на кв.м. Предлагаю каждому, владеющему элементарной геометрией и законом Ома, посчитать какой провод и какой ток будут нужны, чтобы воспроизвести магнитосферу. Остальным сообщим, что это совершенно недостижимо — от слова «совсем».

Во-вторых, и потери атмосферы под воздействием солнечного ветра, и ее восстановление естественным путем — это процессы, протекающие на «геологических» временах в миллионы и миллиарды лет. Нам это точно не подойдет, а никаких оснований ожидать «экспресс-обслуживания» нет.

Реклама на Forbes

В целом, это сообщение НАСА — скорее тщательно просчитанная пиар-акция, в деталях средний гражданин разбираться не будет, а невольное уважению к величию НАСА останется. Что же до существа вопроса, то для того, чтобы начать терраформирование Марса, уж точно придется подождать до появления «фотонных двигателей» или «подпространственных туннелей». Мое мнение — в то время Марс нам будет уже не слишком интересен, разве что в смысле ностальгического тура на родину Аэлиты.

Магнитное поле Земли онлайн – Наука – Коммерсантъ

Развитие наземных и космических систем глобального мониторинга, а также внедрение современной аппаратуры, обеспечивающей высокочастотную регистрацию геофизических параметров, привели к беспрецедентному росту объемов регистрируемых данных в науках о Земле. Эффективная передача, хранение и обработка геофизической информации требуют адекватных методов и алгоритмов. В Геофизическом центре РАН разработан аппаратно-программный комплекс, автоматизирующий сбор и обработку магнитограмм от российских обсерваторий.

Последние достижения в области и работы с «большими данными» позволяют решить проблему эффективной обработки значительных массивов геофизических измерений. Современные методы системного анализа и искусственного интеллекта позволяют реализовать автоматизированное многокритериальное распознавание экстремальных явлений различной природы. Комплексный анализ наземных и спутниковых данных позволяет оперативно и с высокой точностью моделировать элементы магнитного поля Земли, что крайне важно для решения многих фундаментальных и практических задач.

Геомагнитное поле, регистрируемое на поверхности Земли и в околоземном пространстве, можно разделить на внутреннее и внешнее. Источником внутреннего магнитного поля Земли являются процессы, протекающие в ее недрах (рис. 1а). Внутреннее поле меняется медленно — в течение десятков и сотен лет (вековые вариации). Внешнее же поле формируется сложной и крайне изменчивой пространственной структурой электрических токов в магнитосфере и ионосфере Земли, образующихся под воздействием Солнца (рис. 1б).

Геомагнитную активность формируют относительно короткопериодные вариации внешнего магнитного поля, обусловленные солнечной активностью. Эффект от магнитосферных и ионосферных токов наблюдается на

Земле в виде отклонений параметров магнитного поля — на временных масштабах от секунд до десятков часов. Повышенный уровень геомагнитной активности и геомагнитные вариации экстремальной амплитуды могут представлять опасность для технологических систем (ЛЭП, трубопроводов, спутников и т. п.). Поэтому геомагнитный мониторинг в режиме реального времени весьма важен для обеспечения технологической безопасности. Продолжительные наблюдения за изменением внутреннего поля также важны для понимания причин его эволюции.

INTERMAGNET

Непрерывные измерения параметров геомагнитного поля выполняются на обсерваториях по всему миру. Современные магнитные обсерватории — это высокотехнологичные объекты, функционирующие продолжительное время и обеспечивающие высокоточную оперативную регистрацию магнитного поля, что позволяет определять как вековые, так и короткопериодические вариации. Наиболее развитой сетью магнитных наблюдений, предоставляющей данные высшего стандарта качества, является международная сеть ИНТЕРМАГНЕТ (INTERMAGNET — International Real-Time Magnetic Observatory Network). Она включает около 140 обсерваторий.

За последние годы значительные успехи были достигнуты в развитии наземных магнитных наблюдений в России. При поддержке ФГБУН «Геофизический центр РАН» (ГЦ РАН) — одной из ведущих научных организаций, выполняющих исследования в данной области, были проведены работы по модернизации обсерваторий для соответствия международным стандартам. Результатом явилось, в частности, официальное включение обсерватории «Санкт-Петербург» в сеть ИНТЕРМАГНЕТ в июне 2016 года. Также при участии ГЦ РАН в Архангельской области развернута новая обсерватория «Климовская». На рис. 2 представлена карта российской сети магнитных наблюдений. Данные от 13 обсерваторий, 9 из которых включены в ИНТЕРМАГНЕТ, передаются в аналитический Центр геомагнитных данных в ГЦ РАН.

Данные предварительные, окончательные и квазиокончательные

Оперативные магнитограммы, передаваемые обсерваториями сети ИНТЕРМАГНЕТ, имеют статус предварительных данных. Они могут содержать техногенные помехи и пропуски, однако доступны пользователям с минимальной задержкой. Магнитограммам, которые прошли сложную и трудоемкую процедуру коррекции и очистки от помех, присваивается статус окончательных данных. Подготовка окончательных данных для конкретной обсерватории за один год выполняется в основном вручную и может занимать до двух лет. Для ускорения подготовки очищенных данных несколько лет назад был представлен новый тип магнитограмм — квазиокончательные данные. По характеристикам они близки к окончательным, но на их подготовку требуется значительно меньше времени. Квазиокончательные данные формируются непосредственно на магнитных обсерваториях. Их подготовка выполняется специалистами также преимущественно вручную.

Российский АПК объединяет и автоматизирует

Разработанный в ГЦ РАН аппаратно-программный комплекс (АПК) автоматизирует и ускоряет процедуру оперативного сбора магнитограмм от российских обсерваторий и подготовки квазиокончательных и окончательных данных. Это становится возможным благодаря использованию современных алгоритмов, включающих элементы искусственного интеллекта. Большинство операций выполняется в квазиреальном времени, что дает возможность оперативной оценки магнитной активности, необходимой для формирования точных прогнозов. Разработанный АПК представляет собой первую систему, выполняющую подготовку квазиокончательных магнитограмм, а также распознавание и многокритериальную классификацию экстремальных геомагнитных явлений в автоматизированном режиме. Внедрение подобных интеллектуальных систем качественно выделяет российскую сеть обсерваторий по сравнению с мировым уровнем. Ведь на многих обсерваториях ИНТЕРМАГНЕТ и сейчас магнитограммы анализируются вручную, что приводит к существенной задержке (до двух лет) в подготовке окончательных данных.

Другим важным достоинством разработанного АПК является возможность объединения геомагнитных данных из разных источников. Наряду с наземными обсерваториями, глобальное покрытие магнитными измерениями обеспечивается низкоорбитальными спутниками. Текущая спутниковая группировка Swarm, выполняющая исследования магнитного поля Земли, была запущена в ноябре 2013 года с космодрома Плесецк при помощи российской ракеты-носителя «Рокот». Миссия Swarm состоит из трех идентичных аппаратов (рис. 3), разработанных Европейским космическим агентством. Основные цели миссии — измерение характеристик магнитного поля для исследования процессов в земном ядре, мантии, литосфере, океанах, ионосфере и магнитосфере.

Включение в разработанный АПК данных Swarm делает его инновационным инструментом для координированной обработки и совместного анализа наземных и спутниковых данных, тем самым существенно расширяя области его применения.

АПК является ядром аналитического Центра геомагнитных данных российского сегмента сети ИНТЕРМАГНЕТ. Комплекс базируется на последних достижениях в области мониторинга геофизических процессов и интеллектуального анализа данных. АПК построен по модульному принципу, обладает гибкостью и имеет большой потенциал для расширения функциональных возможностей. Технологические подходы, использованные при создании АПК, позволяют его легко тиражировать, превращая в стандартизированное решение.

Основные функции АПК:

· автоматическая загрузка и систематизация исходных наземных и спутниковых магнитных измерений;

· автоматизированная фильтрация обсерваторских данных от искусственных помех и их верификация;

· распознавание, классификация и кодирование данных об экстремальных геомагнитных явлениях;

· модельные расчеты в режиме онлайн.

Схема функционирования АПК представлена на рис. 4.

Исходные и обработанные обсерваторские магнитограммы, данные от спутников, результаты анализа и модельных расчетов хранятся в единой реляционной базе данных под управлением СУБД. Это предоставляет большую гибкость при формировании запросов и обеспечивает удобный и гибкий интерактивный доступ ко всему массиву данных, хранящихся в базе. Такой подход реализован впервые и не имеет аналогов в зарубежных центрах.

Разработанная система обладает широкими возможностями визуализации геомагнитных данных, включая использование современного проекционного оборудования со сферическим экраном.

Концепция, заложенная в основу системы, соответствует современной парадигме развития информационных технологий в части обращения с «большими данными». АПК повышает скорость получения достоверных данных о магнитном поле Земли. Объединение информации, полученной из разных источников — наземных и спутниковых,- обеспечивает многообразие собираемых данных, а также увеличивает объем наших знаний о процессах, происходящих на планете. Функциональность АПК делает его исключительно востребованным инструментом для экспертов и представителей власти при оценке и снижении рисков, вызванных экстремальными геомагнитными явлениями.

АПК в 2014-2016 годах в рамках проекта «Разработка инновационной технологии и создание экспериментального образца аппаратно-программного комплекса для мониторинга экстремальных геомагнитных явлений с использованием наземных и спутниковых данных» (соглашение N14.607.21.0058) ФЦП Минобрнауки «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы».

Алексей Гвишиани, профессор, академик РАН, директор ФГБУН «Геофизический центр РАН»

Анатолий Александрович Соловьев, член-корреспондент РАН, заместитель директора ФГБУН «Геофизический центр РАН»

Астрофизики нашли самое сильное магнитное поле на Солнце за всю историю измерений

Японские астрофизики обнаружили светлую область на поверхности Солнца — маленькую, около тысячи километров в диаметре. Магнитное поле в ней оказалось одним из самых сильных, зарегистрированных на Солнце за все 110 лет измерений, и самым сильным из достоверно определенных.

Но самым неожиданным для ученых оказалось место — область находится вне солнечного пятна — там, где такое сильное поле ожидали найти меньше всего. Об исследовании сотрудников японской Национальной астрономической обсерватории Такенори Окамото и Такаси Сакураи, которое было опубликовано в The Astrophysical Journal Letters, пишет научно-популярный проект «Элементы».

Как и любая обычная звезда, Солнце — это гигантский самогравитирующий шар горячей плазмы — то есть газа с преимущественным содержанием заряженных частиц (электронов, ионов и т. п.). Эти частицы движутся в горячей плазме с очень большими скоростями. Там, где есть движущиеся заряженные частицы (электрический ток), есть и магнитное поле. Чем быстрее движется заряд, тем сильнее магнитное поле. Магнитные поля таким образом — постоянные спутники жизни звезд, и Солнца в том числе. Они же управляют многими проявлениями активности звезд: вспышками, выбросами вещества, образованием пятен.

Солнце имеет крупномасштабное магнитное поле, которое медленно закручивается вокруг него из-за его вращения. «Сила» этого поля на поверхности Солнца в среднем составляет около 1 гаусс (единица измерения магнитной индукции — векторной величины, которая обозначает силовую характеристику магнитного поля в данной точке пространства). Это можно сопоставить с магнитным полем на поверхности Земли. Иногда в отдельных областях поверхности Солнца магнитные поля могут возрастать — это приводит к вспышкам и вызывает корональные выбросы массы — веществ из солнечной коры (внешних слоев атмосферы Солнца). Когда эти быстрые потоки плазмы достигают магнитосферы Земли, они вызывают полярные сияния, магнитные бури и другие явления, которые влияют на жизнь людей. Именно поэтому изучение магнитных полей Солнца считают не только чисто научной, но еще и прикладной задачей.

Михаил Надь / Дождь

Темные пятна на поверхности Солнца — это тоже проявление локального усиления магнитного поля звезды. Эти пятна — области фотосферы Солнца (слоя звездной атмосферы, который дает основную часть излучения) с пониженной температурой. Наблюдение за солнечными пятнами и изучение их магнитных полей — одна из повседневных задач современной гелиофизики (раздела астрофизики, который изучает проблемы физики Солнца). Этим занимается японская космическая обсерватория Hinode, выведенная на орбиту в 2006 году. С ее помощью в 2014 году сотрудники японской Национальной астрономической обсерватории наблюдали одну из пар пятен, видимых тогда на Солнце (NOAA 11967).

Ученые провели наблюдения пары пятен, что позволило измерить величину магнитного поля в разных частях. Они обнаружили, что в центре большего пятна поле оказалось примерно в четыре тысячи раз больше, чем в среднем по Солнце. Однако если это и было ожидаемо, то индукция (силовая характеристика магнитного поля) оказалась еще больше и составила рекордные 6250 Гаусс.

В чем парадокс открытия, как его объяснили ученые и в чем заключается особая важность исследования — читайте в материале «Самое сильное магнитное поле на Солнце нашлось там, где не ждали» научно-популярного проекта «Элементы».

8. Статические магнитные поля, подобные тем, которые используются в медицинской визуализации

8. Статические магнитные поля, подобные тем, которые используются в медицинской визуализации
  • 8.1 Каковы источники статических магнитных полей?
  • 8.2 Какие возможные воздействия статических магнитных полей на здоровье были изучены?
8.1 Каковы источники статических магнитных полей?
МРТ-сканеры
используют статические магнитные поля.
Кредит: Касуга Хуанг

Магнитное поле — это силовое поле, созданное магнитом или как следствие движение обвинений (поток электричества). Величина (интенсивность) магнитного поле обычно измеряется в Тесла (Т или мТл).

Статические магнитные поля делают не меняются со временем и поэтому не имеют частоты (0 Гц). Примерами являются поля, создаваемые постоянным магнитом или Магнитное поле Земли.

Искусственная статика магнитные поля генерируется везде, где используется электричество в виде постоянный ток (DC), например как в некоторых системах железной дороги и метро, ​​в промышленных процессах, таких как как производство алюминия, хлорно-щелочной процесс и газ сварка.

Количество искусственных источников таких полей ограничено, но есть быстрое развитие новых технологий, производящих статические поля. Количество людей с имплантированным металлом. устройства, такие как кардиостимуляторы, на которые может воздействовать статический магнитные поля также растет.

Одно известное применение сильной статики магнитные поля Магнитно-резонансная томография (МРТ), обеспечивающий трехмерные изображения мягкого тела ткани, такие как мозг и спинной мозг. Этот метод медицинской визуализации использует очень мощные постоянные магниты, которые могут привести к сильной засветке уровни как для пациентов, так и для операторов.

Предыдущие оценки здоровья в основном смотрели на воздействие только статические поля, но многие приложения, особенно МРТ, может привести к облучению к сильным статическим полям в сочетании с радиочастотой и другие поля.Таким образом, недавние исследования начали рассматривать различные комбинации полей и их потенциальные эффекты. Подробнее …

8.
2 Какие возможные воздействия статических магнитных полей на здоровье были изучены?

Имеется мало исследований о воздействии на человеческие популяции. статических полей и имеющихся свидетельств недостаточно, чтобы сделать какие-либо выводы о потенциальных последствиях воздействия на здоровье к статике магнитные поля.

Большое количество экспериментальных исследований по клеточные культуры были проводится с целью обнаружения биологических эффектов статического магнитные поля. Экспериментальными данными установлено, что статические магнитные поля может привести к изменению ориентации приложенных сил на биологические молекулы и сотовые компоненты с магнитными свойствами, такие как гемоглобин, родопсин (визуальный пигмент), свободные радикалы и оксид азота. Такие изменения могут влияют на эти биологические молекулы.

Исследования на людях-добровольцах указывают на возможные мгновенные влияние на функционирование нейронов при движении через статический магнитное поле или поле градиент, используемый в клинической практике.Эти исследования нуждаются в подтверждение.

Недавние исследования на животных подтверждают более ранние выводы о том, что статический магнитные поля нескольких milliteslas (mT) может оказывать прямое воздействие на нейроны. Исследования по клеточные культуры также показывают что воздействие статических магнитных полей в диапазоне миллитесла может изменить свойства мембраны. Эти изменения могут привести к изменения в функционировании нейронов, хотя эффекты кажутся обратимый.

Исследования по снижению боли у животных при воздействии статического электричества. магнитные поля в Миллитесла интересны. Вопрос в том, грызуны являются адекватной моделью для человека в этом отношении, поскольку не наблюдалось уменьшения боли у людей после воздействия статические магнитные поля в 10 раз сильнее.

Недавние эксперименты на животных показывают влияние статических полей на кровоток, рост сосудов, а также на рост и развитие, но некоторые результаты противоречивы и не проясняют смешанные результаты предыдущих исследований.

Статические поля, похоже, влияют на выражение специфические гены в клетки человека и другие млекопитающих, и эти эффекты могут зависеть от продолжительности воздействия и градиенты поля.Повреждение генетический материал был сообщили, хотя кажется, что эти эффекты можно исправить и не являются постоянными.

Хотя в 2007 г. было опубликовано изрядное количество исследований, 2008 г., по-прежнему отсутствуют адекватные данные для надлежащего оценка риска статического магнитные поля. Более необходимы исследования, особенно для того, чтобы прояснить многие смешанные и иногда противоречивые результаты.

Кратковременные эффекты наблюдались в первую очередь на сенсорном восприятии. функции при остром облучении. Однако нет последовательного доказательства устойчивых неблагоприятное воздействие на здоровье от кратковременное воздействие до нескольких тесла.Подробнее …

Электромагнитное излучение и поля

Электромагнитное излучение

Электромагнитное поле (ЭМП) создается при ускорении заряженных частиц, таких как электроны. Заряженные частицы в движении создают магнитные поля. Электрические и магнитные поля присутствуют вокруг любой электрической цепи, будь то электричество переменного (AC) или постоянного (DC) тока.Поскольку постоянный ток статичен, а переменный ток меняется по направлению, поля от источников постоянного и переменного тока существенно различаются. Статические поля, например, не вызывают токов в неподвижных объектах, в отличие от полей переменного тока. Статические магнитные поля не меняются во времени и, следовательно, не имеют частоты (0 герц [Гц]).

Наиболее известные магнитные эффекты возникают в ферромагнитных материалах, которые сильно притягиваются магнитными полями и могут быть намагничены, чтобы стать постоянными магнитами, которые сами создают магнитные поля.Лишь немногие вещества являются ферромагнитными; наиболее распространены железо, никель, кобальт и их сплавы.

Напряженность магнитного поля обычно измеряется в теслах (Тл или мТл) или гауссах (Гс). Бытовые магниты имеют силу порядка нескольких десятков миллитесла (1 мТл = 10 –3 Тл), а напряженность поля оборудования магнитно-резонансной томографии (МРТ) колеблется от 1,5 Тл до 10 Тл.

Статические электрические поля

Электрическое поле — это силовое поле, создаваемое притяжением и отталкиванием электрических зарядов, и оно измеряется в вольтах на метр (В / м).Статическое электрическое поле (также называемое электростатическим полем) создается зарядами, которые фиксируются в пространстве. Сила естественного статического электрического поля в атмосфере варьируется от примерно 100 В / м в хорошую погоду до нескольких тысяч В / м под грозовыми облаками. Другим источником статических электрических полей является разделение зарядов в результате трения или статических электрических токов от различных технологий. В домашних условиях зарядовые потенциалы в несколько киловольт могут накапливаться при ходьбе по непроводящему ковру, создавая локальные поля.Высоковольтные линии постоянного тока могут создавать статические электрические поля до 20 кВ / м и более.

Источники с напряженностью поля более 5–7 кВ / м могут создавать широкий спектр опасностей, таких как реакции вздрагивания, связанные с искровыми разрядами, и контактные токи от незаземленных проводников внутри поля.

Статические магнитные поля

Магнитное поле — это силовое поле, создаваемое магнитом или зарядами, которые движутся в устойчивом потоке, как при постоянном токе (DC). Статические магнитные поля оказывают притягивающую силу на металлические предметы, содержащие, например, железо, никель или кобальт.Количество феррита (форма железа) или мартенситной стали (особый тип сплава нержавеющей стали) в объекте влияет на его магнитную способность: чем больше количество этих компонентов, тем выше ферромагнетизм. Все типы нержавеющей стали серии 400 являются магнитными. Аустенитная сталь немагнитна. Большая часть, но не вся нержавеющая сталь серии 300 является аустенитной, а не магнитной.

Источники статических магнитных полей, обнаруженные в лаборатории Беркли, включают оборудование ядерного магнитного резонанса (ЯМР), системы МРТ, системы спектроскопии, ионные насосы, квадруполи и секступоли, изгибные магниты, сверхпроводящие магниты и криостаты.

Статические магнитные поля также могут стирать данные, хранящиеся на магнитных носителях или на полосах кредитных или дебетовых карт и бейджей.

Изменяющиеся во времени магнитные поля

Изменяющиеся во времени магнитные поля — это магнитные поля, которые меняют свое направление с постоянной частотой. Они могут индуцировать электрический ток в проводнике, присутствующем в этом поле, а также в теле человека. Изменяющиеся во времени магнитные поля создаются устройствами, использующими переменный ток, такими как антенны сотовых телефонов, микроволновые печи и т. Д.Общее эмпирическое правило состоит в том, что 1 Тл / сек может вызвать около 1 микроампер на квадратный сантиметр (мкА / см 2 ) в теле.

Наведенные в теле токи могут вызвать локальное нагревание и возможные ожоги, что является основным эффектом воздействия изменяющихся во времени полей. Причина — изменяющееся во времени поле высокой радиочастоты. Низкочастотные поля обычно не вносят большого вклада в этот эффект.

Источники электромагнитного излучения

Статические магнитные поля создаются магнитами или потоком постоянного тока. Они также могут быть произведены из многих природных источников. Естественные источники статических электрических полей включают атмосферу Земли во время шторма, заряд, возникающий при перемещении по ковру, и «статическое прилипание» одежды. Земля имеет электрическое поле около 130 В / м у поверхности из-за разделения зарядов между Землей и ионосферой. Он направлен вертикально. Земля и ионосфера вместе образуют сферический конденсатор, причем двумя проводящими поверхностями являются земля и верхняя атмосфера.Эта разница потенциалов поддерживается за счет молнии, которая несет на землю отрицательные заряды.

Земля имеет естественное статическое магнитное поле, которое используется для навигации по компасу. Токи, протекающие глубоко в ядре Земли, создают естественные статические магнитные поля на поверхности Земли. Земля имеет статическую плотность магнитного потока в среднем 0,5 Гс с наименьшей напряженностью поля на экваторе и наибольшей на магнитных полюсах.

Общие источники статических магнитных полей включают постоянные магниты (которые используются в бытовой технике, игрушках и медицинских устройствах), приборы с батарейным питанием, сканеры МРТ, некоторые электрифицированные железнодорожные системы и определенные производственные процессы.

Сверхпроводящие магниты

Схематическое изображение магнитного поля, создаваемого индуцированным током.

Сверхпроводящий магнит — это электромагнит, сделанный из катушек сверхпроводящего провода. Во время работы их необходимо охлаждать до криогенных температур. В сверхпроводящем состоянии провод может проводить гораздо большие электрические токи, чем обычный провод, создавая сильные магнитные поля. Сверхпроводящие магниты используются в сканерах МРТ в больницах и в научном оборудовании, таком как спектрометры ядерного магнитного резонанса (ЯМР), масс-спектрометры и ускорители частиц.

Сверхпроводящие магниты, такие как оборудование для ЯМР и МРТ, представляют особую угрозу безопасности. Эти проблемы включают криогенную безопасность, сильные магнитные поля и возможность создания атмосферы с дефицитом кислорода. Самый высокий потенциал для наиболее серьезных из этих опасностей существует во время запуска магнита, наполнения криогенным веществом и работ по техническому обслуживанию. После того, как магниты работают и магнитные поля установлены, риски минимальны, если операторы, обслуживающий персонал, пациенты и / или посетители понимают пределы близости и процедуры, которым необходимо следовать при работе рядом с магнитом.

Ядерный магнитный резонанс

Пример системы ЯМР

В системе ЯМР используется статическое магнитное поле и радиочастотный импульс для выравнивания ядерных спинов в магнитном поле, чтобы максимизировать силу сигнала ЯМР. ЯМР-спектроскопия — это метод исследования, который использует магнитные свойства определенных атомных ядер и может предоставить подробную информацию о структуре, динамике, состоянии реакции и химическом окружении молекул.

ЯМР

— это сверхпроводящие магниты, которые обычно создают поля сердечника от 0.От 15 Тл до 20 Тл. Эти поля уменьшаются по интенсивности по мере удаления от ядра. Исследовательские ЯМР более мощные, чем медицинские устройства, но их области меньше по объему, сфокусированы и быстро исчезают, что упрощает обеспечение защиты персонала.

Советы по безопасности при использовании ЯМР

Магнитно-резонансная томография

Типичный медицинский сканер МРТ

Метод МРТ используется в радиологии для создания изображений органов тела для диагностической визуализации. МРТ-сканирование основано на науке ЯМР с использованием сильных магнитных полей, радиоволн и градиентов поля для создания изображений органов в теле.Сканер МРТ состоит из большого мощного магнита, в котором лежит пациент. Радиоволновая антенна используется для передачи сигналов телу, а затем приема сигналов обратно. Эти возвращаемые сигналы преобразуются в изображения компьютером, подключенным к сканеру. Изображение практически любой части тела можно получить в любой плоскости.

Большинство клинических магнитов — это сверхпроводящие магниты, для которых требуется жидкий гелий. Напряженность магнитного поля МРТ колеблется от 0,15 Тл до 4 Тл. Сверхпроводящие магниты на 1.5 Тл и выше позволяют получать функциональные изображения головного мозга и МР-спектроскопию с улучшенным временным и пространственным разрешением. Такие магниты создают дополнительные проблемы из-за радиочастотного (RF) нагрева объекта.

Советы по безопасности при использовании МРТ

Ионные насосы

Пример распылительного ионного насоса

Ионный насос (также называемый распылительным ионным насосом) представляет собой тип вакуумного насоса, способный достигать давления до 10 −11 миллибар (мбар) в идеальных условиях. Ионный насос ионизирует газ внутри сосуда, к которому он прикреплен, и использует сильный электрический потенциал, обычно 3–7 кВ, что позволяет ионам ускоряться и захватываться твердым электродом и его остатками.

Три основных типа ионных насосов — это обычный или стандартный диодный насос, благородный диодный насос и триодный насос.

Базовая конструкция состоит из двух электродов (анода и катода) и магнита. Ионные насосы обычно используются в системах сверхвысокого вакуума (UHV), поскольку они могут достигать предельного давления менее 10 −11 мбар. В отличие от других распространенных сверхвысококачественных насосов, таких как турбомолекулярные и диффузионные насосы, ионные насосы не имеют движущихся частей и не используют масло. Поэтому они чистые, не требуют особого ухода и не производят вибрации. Эти преимущества делают ионные насосы хорошо подходящими для использования в сканирующей зондовой микроскопии и других высокоточных приборах. Кроме того, они не нуждаются в запекании и предназначены для минимизации паразитного магнитного поля.

Большинство ионных насосов, установленных на лучевых линиях ALS, имеют линию 5 G в пределах 20–30 см от поверхности.

Воздействие на здоровье

Физические и биологические эффекты в статических электрических и магнитных полях

Безусловно, наиболее важным эффектом является притяжение магнитных объектов в теле или на теле магнитным полем.Такие предметы, как кардиостимуляторы, хирургические зажимы и имплантаты, планшеты, инструменты, украшения, часы, швабры, ведра, ножницы и винты, были задокументированы как потенциальные опасности. Даже маломощные предметы могут стать опасными при движении на высокой скорости. Большая часть этого опыта пришла из медицинских систем МРТ. Магнитные объекты будут пытаться выровняться с линиями магнитного поля. Если имплантированный объект попытается сделать это, крутящий момент может привести к серьезной травме.

Современные кардиостимуляторы предназначены для тестирования или перепрограммирования с использованием небольшого магнитного поля, внешнего по отношению к телу.Статические поля могут замкнуть герконы и вызвать переход кардиостимулятора в режим тестирования, перепрограммирования, обхода и другие режимы работы с возможной травмой.

На основании данных, полученных при использовании МРТ, статические поля могут оказывать небольшое обратимое влияние на данные электрокардиограммы. Причина — взаимодействие движущейся крови (проводящей среды) и поля в сердце. Эффект минимален (менее 2 Тл) и не считается проблемой.

Имеющаяся в настоящее время информация не указывает на какие-либо серьезные последствия для здоровья в результате острого воздействия статических магнитных полей до 8 Тл, но это может привести к потенциально неприятным эффектам, таким как головокружение во время движений головы или тела. Степень этих ощущений во многом зависит от индивидуальных факторов, таких как личная предрасположенность к укачиванию и скорость передвижения в поле.

Физические и биологические эффекты в изменяющихся во времени и индуцированных электрических полях

Эффекты изменяющихся во времени полей аналогичны эффектам статических полей. В таком поле могут возникать небольшие токи, обычно отсутствующие в теле. Обычно это не вызывает беспокойства, но они могут вызывать головокружение и сенсорные ощущения, такие как тошнота, металлический привкус во рту и слабые мерцающие зрительные ощущения (магнитофосфены).Пользователи кардиостимуляторов также могут подвергаться риску. Индуцированные токи могут вызвать неправильный запуск кардиостимулятора или даже предотвратить стимуляцию, когда это действительно необходимо. Наведенные токи могут вызвать локальный нагрев, который является основным эффектом изменяющихся во времени полей.

Основным взаимодействием низкочастотных изменяющихся во времени электрических и магнитных полей с телом человека является индукция электрического поля и токов в соответствии с законом Фарадея: E = πfrB, где E — электрическое поле, f — частота, r — радиус петли, перпендикулярной магнитному полю, а B — плотность магнитного потока. Чем больше радиус r , тем больше электрическое поле и ток. У человека наибольший радиус по периметру тела.

Сообщалось о стимуляции нервной и мышечной ткани при 50–500 мТл (500–5000 G). Выше 500 мТл (5000 G) индуцированные токи могут нарушить сердечный ритм или вызвать фибрилляцию желудочков. Все эти эффекты вызваны наведенными токами (IRPA, 1990).

Пределы электромагнитного воздействия и оценка

ПДК ACGIH относятся к плотностям потока статического магнитного поля, которым, как считается, почти все рабочие могут подвергаться многократно изо дня в день без неблагоприятных последствий для здоровья.

ПДК для стандартного (8-часового) профессионального воздействия статических магнитных полей перечислены в таблице 1. Работники с имплантированными ферромагнитными или электронными медицинскими устройствами не должны подвергаться воздействию статических магнитных полей, превышающих 0,5 мТл (5 G).

Таблица 1. TLV для статических магнитных полей

ПДК Описание
5 г Максимально допустимое поле для имплантированных кардиостимуляторов.
10 г Могут быть повреждены часы, кредитные карты, магнитная лента, компьютерные диски.
30 г Мелкие предметы из черных металлов представляют опасность с кинетической энергией.
20000 г (2 т) Предел потолка для всего тела (воздействие выше этого предела не допускается).
80 000 г (8 т) Целостность (специальная подготовка рабочих и контролируемая рабочая среда).
200,000 G (20 т) Предел потолка конечности (воздействие выше этого предела не допускается).

Примечание. Время экспозиции, взвешенное по времени (TWA), обычно вызывает беспокойство только при очень сильном воздействии поля на все тело.

1 гаусс (Г) = 0,1 миллитесла (мТл)

Полный список TLV можно загрузить по указанной ниже ссылке: Полный список пороговых значений.

Пороговые значения (ПДК)

Оценка воздействия

Для оценки опасности и оценки воздействия устройств, генерирующих ЭМП, необходимо выполнить измерение излучения ЭМП и сравнить его с соответствующими ПДК. Оценка должна выполняться во время установки устройства, генерирующего ЭДС, после изменения рабочих параметров, которое увеличивает опасность, или после ремонта, который может изменить рабочие параметры. Уже установленные, но не прошедшие оценку устройства следует оценивать при первой возможности. Если результаты первоначальных оценок значительно ниже ПДК, дальнейший мониторинг не требуется, если только деятельность не изменена так, чтобы ожидать увеличения воздействия. Если установлено, что результаты превышают уровни TLV или очень близки к TLV, периодический мониторинг следует проводить с частотой, достаточной для обеспечения адекватности мер контроля (обычно ежегодно).

Общие правила техники безопасности

Снаряды

Самая непосредственная опасность, связанная с магнитной средой, — это притяжение между магнитом и ферромагнитными объектами. Ферромагнитные металлические предметы могут стать летательными снарядами в сильном магнитном поле. Инструменты и баллоны со сжатым газом могут стать неконтролируемыми и лететь, как ракеты, к магнитам в областях, где существуют сильные статические поля и сильные градиенты поля (изменения напряженности поля на расстоянии). Механические опасности зависят от напряженности поля и градиента поля, а также от того, насколько быстро сила магнитного поля изменяется с расстоянием. Очевидная мера безопасности — не допустить попадания магнитных материалов в рабочую зону.

Никогда не помещайте какие-либо части тела между магнитом и незакрепленными металлическими предметами. Если большой объект притягивается к магниту и ударяется о магнит, выйдите из комнаты, так как это может вызвать гашение магнита. Сообщите своему руководителю. Если произошла травма, немедленно позвоните в службу 911.

Электронные и металлические имплантаты

Лица, носящие металлические имплантаты, такие как костные или суставные протезы, хирургические зажимы, гвозди или винты в сломанных костях, пирсинг или даже зубные пломбы, могут испытывать болезненные ощущения при воздействии сильных магнитных полей. Лица, оснащенные кардиостимуляторами, подвергаются особому риску, поскольку статические или импульсные магнитные поля могут влиять на рабочий режим их имплантированных устройств.

Проблемы с криогенным газом

Квенч

Квенч — это (обычно неожиданная) потеря сверхпроводимости в ЯМР-магните, приводящая к быстрому нагреву из-за повышенного сопротивления сильному току.Сверхпроводящий магнит содержит жидкий гелий и жидкий азот. Если магнит погаснет, значительный объем жидкого гелия превратится в газ. При гашении магнита сверхпроводящий магнит теряет способность к сверхпроводимости, и накопленная энергия выделяется в виде тепла, которое выкипает из жидкого гелия. Газообразный гелий выходит из магнитного дьюара и заполняет комнату сверху вниз (гелий легче воздуха) и образует облако под потолком. Тушение очевидно: над магнитом образуется большое облако паров гелия, сопровождаемое громким свистящим звуком, который может создать атмосферу с дефицитом кислорода.Если происходит тушение, немедленно покиньте комнату, включите пожарную сигнализацию, чтобы эвакуироваться из здания, и позвоните по номеру 911.

Закалка может сильно повредить магнит, и предметы из железа будут втянуты в отверстие магнита.

Биоэффекты

Сверхпроводящие магниты, использующие жидкий гелий и / или азот, представляют дополнительную проблему безопасности при работе с криогенными жидкостями. Прямой контакт с кожей или тканями глаза может вызвать серьезные повреждения в результате обморожения (повреждение тканей от замерзания).При сильном обморожении поврежденные ткани могут нуждаться в ампутации. Вдыхание концентрированных криогенных газов может вызвать потерю сознания и (в конечном итоге) смерть из-за кислородного голодания (удушье).

Вентиляция помещения

В целом, пять полных замен воздуха в помещении в час считается достаточным для борьбы с небольшими разливами или выбросами криогенов. В случае серьезного выброса персонал должен немедленно покинуть помещение и держать двери открытыми. Если существует риск катастрофического выброса, следует рассмотреть возможность использования вспомогательной вентиляции для предотвращения образования атмосферы с дефицитом кислорода.

Дьюарс

Емкости для перевозки криогенов должны быть металлическими. Стекло Дьюара может легко взорваться, что приведет к серьезным травмам. Все устройства Дьюара должны иметь соответствующие вентиляционные отверстия. Невентилируемые емкости могут разорваться, когда жидкость нагреется и расширится. Необходимо постоянно следить за всеми перемещениями криогенов, чтобы предотвратить проливание или замерзание клапанов.

Средства индивидуальной защиты

При обращении с криогенами используйте изолирующие перчатки, маску для лица или другие средства защиты глаз / лица от брызг, обувь с закрытым носком и лабораторные халаты.

Проблемы электробезопасности

Источники питания

Хотя источники питания, используемые для магнитов ЯМР, работают при относительно низких напряжениях (около 10 В), используемый ток очень высок (около 100 А). При контакте с тканями человека высокая сила тока чрезвычайно опасна.

Кабели, провода и соединители

Все кабели, провода и разъемы должны быть должным образом изолированы, чтобы предотвратить контакт с рабочим током. Их следует регулярно проверять, чтобы гарантировать целостность изоляции.Во избежание возникновения дуги никогда не разрывайте соединения, не отключив предварительно питание обрабатываемой цепи.

Блокировка, бирка

При работе с оборудованием, которое приводится в действие опасным источником энергии, необходимо соблюдение процедур блокировки и маркировки.

Прочие вопросы безопасности

Противопожарная защита

Держите поблизости огнетушитель класса C на случай возгорания электрического тока. Перед попыткой тушения электрического пожара необходимо отключить питание.Весь персонал должен быть обучен процедурам противопожарной защиты и эвакуации.

Обеспокоенность землетрясением

Магниты в сборе могут весить несколько тонн и должны быть закреплены, чтобы они не сдвинулись или опрокинулись во время землетрясения; при их размещении следует учитывать конструкционные стальные опоры. Источники питания также должны быть защищены от движения во время землетрясения.

Акустический шум

Переключение градиентов поля вызывает изменение силы Лоренца, испытываемой градиентными катушками, вызывая незначительные расширения и сжатия катушки.Поскольку переключение обычно происходит в слышимом диапазоне частот, возникающая в результате вибрация вызывает громкие шумы (щелчки, стук или звуковой сигнал). Это наиболее заметно в машинах с сильным полем и методах быстрой визуализации, в которых уровни звукового давления могут достигать 120 дБ (A) (децибелы, взвешенные по шкале А), что эквивалентно реактивному двигателю при взлете; Следовательно, во время обследования всем, кто находится в помещении со сканером МРТ, необходима соответствующая защита органов слуха.

Радиочастота

RF сам по себе не вызывает слышимых шумов (по крайней мере, для людей), поскольку современные системы используют частоты 8.5 МГц (система 0,2 Тл) или выше. ВЧ-мощность, которая может быть произведена, соответствует мощности многих небольших радиостанций (15–20 кВт). В результате присутствуют тепловые эффекты со стороны РФ. В большинстве импульсных последовательностей нагрев незначителен и не превышает рекомендаций Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США.

РЧ катушки могут поражать электрическим током, поэтому необходимо надлежащее заземление и изоляция катушек. Любое повреждение катушек или их кабелей требует незамедлительного внимания. Прикрепление кабеля к катушке может привести к ожогам любого, кто к ним прикоснется.Лучше избегать любого контакта с кабелями РЧ катушки.

Средства контроля воздействия

Два подхода к контролю воздействия: использование технических средств контроля (например, экранирование) и административных средств контроля (например, средств индивидуальной защиты).

Средства инженерного контроля

Экранирование

Магнитные поля контролируются с помощью проницаемого сплава, который ограничивает линии магнитного потока и отклоняет их. Магнитное экранирование может быть выполнено с использованием сплавов с высоким содержанием никеля, называемых мю-металлом или мягким железом.Превращение мю-металла в сложный экран стоит дорого, и мю-металл легко повреждается. Такое экранирование лучше всего применять рядом с источником поля, когда это возможно. Другой подход заключается в использовании непроницаемых металлов, таких как медь или алюминий, для создания вихревых токов, которые нейтрализуют исходное магнитное поле.

Защита от тушения

Чтобы избежать ситуации гашения, используйте систему датчиков уровня криогенного вещества, чтобы обнаружить гашение и инициировать снижение тока и накопленной магнитной энергии, чтобы предотвратить выгорание проводника.Всегда заправляйте или обесточивайте магнит, если на датчиках указывается низкий уровень криогенного вещества.

Примеры технических средств контроля сверхпроводящих магнитов:

  • Установка вентиляционного отверстия для продувки жидким гелием для выхода избыточного газообразного гелия через выхлопное отверстие, выходящее через крышу
  • Внутренние датчики для индикации низкого уровня жидкого гелия
  • Визуальная и звуковая сигнализация
  • Надежный контроль доступа, такой как запертые двери и ограниченный доступ только для уполномоченного персонала
Заземление

Металлические конструкции, вызывающие удары при контакте, должны быть электрически заземлены или изолированы.

Блокировки

Области, где воздействие полей 60 Гц на все тело превышает 25 кВ / м или 1 мТл (10 G), должны быть ограничены положительными средствами, такими как запертые корпуса, блокировки или предохранительные цепи.

Административный контроль

Обозначение участка
Пример линии 5 гаусс, отмеченной цепочкой

В рамках процесса проектирования статическое магнитное поле в помещении должно быть определено путем измерения или расчетов, если существует опасность для кардиостимулятора (> 5 G) и опасность кинетической энергии (> 30 G).Также необходимо определить места, где может произойти чрезмерное облучение всего тела (> 600 G).

Инструменты и намагничиваемые предметы нельзя хранить в местах, где присутствуют повышенные статические магнитные поля.

Если установлено, что требуется экранирование, следует нанять опытную консалтинговую фирму для разработки экранирования магнитного поля.

Необходимо принять меры для обеспечения безопасности и ограничения доступа пользователей кардиостимуляторов в места, где магнитные поля всего тела превышают 5 G. Линия 5 G представляет собой разграничение между неконтролируемыми и контролируемыми зонами и должна быть четко обозначена. Для полей с экспозицией менее 5 G никаких настроек или проводки не требуется.

В дополнение к предупреждающим знакам, размещенным на дверных проемах, необходим другой метод обозначения линии 5 G вокруг магнита. Например, можно использовать нарисованную линию или ленту, размещенную на полу вокруг магнита, где поле составляет 5 G. Другой пример — цепь, веревка или забор, обозначающий линию 5G вокруг магнита.

Какой бы метод ни использовался, выход из зоны в случае возникновения чрезвычайной ситуации не должен блокироваться или предотвращаться.

Предупреждающие знаки

Предупреждающий знак должен быть вывешен у входа в лаборатории или помещения, где магнитные поля превышают любые из указанных выше пределов. Зоны, где существуют потенциальные механические опасности, должны быть четко обозначены. Инструменты, баллоны со сжатым газом и другие изделия из магнитопроницаемого материала не должны находиться в таких местах.

Предупреждающие знаки должны быть вывешены в местах, где напряженность магнитного поля может превышать 0,5 мТл (5 Гс), и / или в местах, где электрические поля 60 Гц превышают 1 кВ / м, что подтверждается измерениями или расчетами, предупреждая людей с кардиостимуляторами или другими медицинскими приборами. электронные имплантаты, чтобы держаться подальше.

Предупреждающие знаки должны быть вывешены там, где электрические поля превышают 5 кВ / м, предупреждая людей о возможности возникновения раздражающих искр.

Люди с кардиостимуляторами не должны находиться в местах, где магнитные поля 60 Гц превышают 0.1 мТл (1 Гс), что подтверждается измерением или расчетом.

Области, где воздействие полей 60 Гц на все тело превышает 25 кВ / м или 1 мТл (10 G), должны быть ограничены положительными средствами, такими как запертые корпуса, блокировки или предохранительные цепи.

Зоны, где магнитные поля превышают 3 мТл, должны быть обследованы, чтобы определить, где существуют потенциальные механические опасности. Люди с металлическими медицинскими имплантатами не должны находиться в местах, где напряженность поля превышает 3 мТл (30 G).

Руководство по использованию предупреждающих знаков

Примеры знаков, предупреждающих об опасности, показаны ниже.


Оборудование, которое может создавать электрические поля с частотой 60 Гц выше 2,5 кВ / м или магнитные поля выше 0,1 мТл (1 G), должно иметь маркировку или предупреждающий знак.

Примеры этикеток показаны ниже.

Световой сигнализатор с подсветкой

Некоторые электромагниты обозначаются мигающей красной сигнальной лампой, которая загорается, когда на магнит подано напряжение. Магниты, создающие сильное статическое магнитное поле, обычно обесточиваются, когда может произойти облучение персонала (т.например, во время длительных простоев, связанных с работой акселератора).

Индивидуальная защитная одежда

При работе с криогенами надевайте изолирующие перчатки и маску для лица или другие средства защиты глаз / лица от брызг, обувь с закрытыми носками и лабораторные халаты.

Изоляционная одежда и оборудование должны использоваться в областях, где электрические поля 60 Гц превышают 5 кВ / м, как показывают измерения или вычисления. Изолирующие перчатки или, предпочтительно, специальные средства управления (например, кожух или экранирование источника поля) должны использоваться, чтобы избежать контакта с объектами, которые могут подвергнуть персонал воздействию искр, связанных с напряженностью поля более или равной 5 кВ / м.

Список литературы
  1. 10 CFR 851 Безопасность и здоровье работников — Министерство энергетики, § 851.23 Стандарты безопасности и здоровья.
  2. TLV и BEI Американской конференции государственных специалистов по промышленной гигиене (ACGIH) — 2016 , включенные ссылкой 10 CFR 851 Безопасность и здоровье рабочих — Министерство энергетики, §851.27.
  3. TLV и BEI ACGIH — 2012.
  4. Руководство ICNIRP по пределам воздействия статических магнитных полей . Физика здоровья, Vol. 96 (4): 504-514. 2009.
  5. Руководство ICNIRP по ограничению воздействия электрических полей, вызванных движением человеческого тела в статическом магнитном поле и изменяющимися во времени магнитными полями ниже 1 Гц. Health Physics, Vol. 106 (3): 418-425. 2014.
  6. Plogg, H., and Miller, G. Основы промышленной гигиены . Четвертое издание, глава 11: Неионизирующее излучение. 2001.
  7. Временные рекомендации IPRA по предельным значениям воздействия электрических и магнитных полей 50/60 Гц .Физика здоровья, Vol. 58 (1): 113-122. 1990.

3.7.2 Источники паразитных магнитных полей

Поля переменного тока обычно создаются двигателями с питанием от переменного тока и трансформаторами. Линии электропередачи переменного тока не создают значительных внешних полей, пока проводники расположены близко друг к другу (что обычно имеет место). Поля постоянного тока излучаются постоянными магнитами. Вопреки некоторым опасениям, магнитное поле Земли слишком слабое, чтобы влиять на магнитные записи.

3.7.2.1 Типичные угрозы в аудиовизуальных архивах. Наиболее опасными источниками паразитных магнитных полей, обычно используемых в аудиовизуальных архивах, являются динамические микрофоны, динамические наушники, громкоговорители и инструменты с подвижной катушкой (измерители уровня). Поскольку напряженность поля экспоненциально падает с расстоянием, даже самые сильные поля, создаваемые этими устройствами, находятся на расстоянии 15 см от записанных лент, что значительно ниже вышеупомянутого порогового значения постоянного тока. Наконец, объемные стиральные машины, используемые для стирания аналоговых аудио- и видеолент, обладают чрезвычайно сильными магнитными полями и не должны использоваться в местах, где хранятся или хранятся записанные ленты.При отделении таких устройств от зон обработки и хранения следует иметь в виду, что обычные стены не экранируют магнитные поля. О рисках, связанных с транспортировкой, см. 4.8.

3.7.2.1.1 Размагничивание оборудования воспроизведения («размагничивание»). Чтобы предотвратить негативное влияние на записанные ленты, все металлические направляющие и головки ленты необходимо размагничивать через регулярные промежутки времени (ежедневно или каждые 10 часов использования). Магнитные поля постоянного тока уменьшают отношение сигнал / шум и могут увеличивать нелинейные искажения.Во избежание случайного намагничивания нельзя использовать магнитные отвертки и другие инструменты для обслуживания оборудования для воспроизведения магнитной ленты. Кроме того, головные блоки можно менять только после выключения машины.

3.7.2.2 Общие угрозы. Следует избегать использования магнитных дверных створок шкафов и наклеек на магнитных досках, поскольку их непосредственный случайный контакт с магнитной лентой может быть опасен. Электромагнитные дверные держатели, используемые для пожарных подразделений, следует проверять на предмет напряженности поля.Следует проверять электрические двигатели, приводящие в движение передвижные стеллажи и конвейерные ленты, а также двигатели пылесосов, используемых в складских помещениях. Электросварку нельзя проводить в присутствии магнитных носителей: соблюдайте расстояние не менее одного метра. Также желательно проверить непосредственную близость складских помещений, так как стены не защищают от паразитных магнитных полей. Домашние трансформаторы или двигатели лифтов могут быть непосредственно у внешних стен и оставаться незамеченными, особенно если они находятся в соседних зданиях.Для транспортировки на магнитной ленте см. 4.8.3.

3.7.2.3 Металлические штабеля. В отличие от многих опасений 1950-х годов, металлические стопки обычно не опасны для хранения магнитных записей. Необходимо соблюдать осторожность, чтобы не допустить случайного включения штабелей в систему молниеотводов в случае удара (3.7.2.4.1). Следовательно, заземление металлических штабелей, как это широко требуется в соответствии с общими правилами техники безопасности, следует критически обсудить со специалистами. Очень маловероятно, что магнитные полки будут иметь постоянное магнитное поле.Если есть полка, вероятно, это связано с использованием магнитов-приемников во время производства. 19

3.7.2.4 Электромагнитные импульсы (ЭМИ) — это одиночные, чрезвычайно короткие, высокоэнергетические широкополосные всплески электромагнитного излучения. Хотя электромагнитное поле ЭМИ существует только в течение очень короткого времени, оно может быть очень сильным, создавая опасность для носителей данных двумя способами: магнитные носители могут быть переориентированы и, таким образом, их информация будет стерта, в то время как твердотельные носители могут быть уничтожены высоким напряжения, которые могут возникать из-за сильных магнитных полей.Помимо носителей данных, сильные искусственные ЭМИ вызывают особую озабоченность из-за их разрушительного потенциала для электронного оборудования, электрических установок и, в случае пожара, для целых зданий. Поскольку электромагнитные поля распространяются со скоростью света, никаких предупреждений невозможно.

Существует несколько форм естественных и искусственных ЭМИ, созданных человеком. В аудиовизуальной сохранности особый интерес представляют только три формы: молния, другие электростатические разряды и ЭМИ в результате ядерного взрыва.

3.7.2.4.1 Молния. Хотя о повреждениях молниеотводов в ходе удара никогда не сообщалось, не исключено, что в некоторых случаях это происходило незамеченным. Магнитное поле, излучаемое молниеотводом в случае удара, зависит от тока, генерируемого ударом, и расстояния от проводника. Забастовки в умеренных климатических зонах имеют средний ток около 25–30 кА. 20 В тропических районах, однако, были измерены удары до 400 кА.В то время как для 60 кА расстояния около 5 м достаточно, чтобы уменьшить поле до порогового значения 25 э, расстояние, необходимое для тропического удара 400 кА, будет около 33 м. Однако в правильно спроектированной системе молниеотводов удар направляется на несколько отдельных вертикальных проводников, каждый из которых принимает на себя часть общего тока. На практике это уменьшает необходимое безопасное расстояние между молниеотводом и магнитными носителями. Необходимо сделать все, чтобы металлические трубы или водопровод, центральное отопление и т. Д. Не стали частью молниеприемной системы в случае удара (3.7.2.3). Конструкция молниезащиты должна соответствовать IEC 1024-1.

Эта потенциальная угроза, как правило, недооценивается при сохранении аудиовизуальных материалов, но должна быть тщательно рассмотрена при анализе безопасности архива или при проектировании новых конструкций.

3.7.2.4.2 Другие электростатические разряды (ESD). Изоляционный материал может электростатически заряжаться от трения. Например, человеческие тела могут быть заряжены до 30 кВ после ходьбы по хорошо изолированному ковру, в частности, при очень низкой относительной влажности.При прикосновении к каким-либо проводящим предметам происходит разряд через небольшую искру, которая создает очень короткое и сильное ЭМИ, которое может привести к повреждению или даже разрушению чувствительных электронных компонентов — еще одна причина, помимо защиты от пыли, запретить использование ковров в аудиовизуальных архивах.

Другой эффект возникает от электростатически заряженных дисков и магнитных лент, преимущественно из ПВХ. При их воспроизведении электростатические разряды становятся слышны как щелчки как на выходе из машины, так и акустически в комнате.Такие разряды не повреждают носители, но следует избегать их раздражающего влияния на воспроизведение, выгружая носители до или во время воспроизведения.

3.7.2.4.3 Искусственный ЭМИ. Для сохранения аудиовизуальных материалов наиболее подходящим искусственным ЭМИ может быть ЭМИ, произведенный ядерным оружием (NEMP). Сила его магнитного поля будет зависеть от различных факторов (сила детонации, конструкция оружия, высота взрыва), возможно, достаточно сильная, чтобы стереть неэкранированные магнитные записи, но также косвенно опасна, поскольку разрушает электронное оборудование, электрические установки и конструкции из-за пожаров. вызвано высоким напряжением, индуцированным в металлических проводниках.

3.7.2.4.4 Защита от ЭМИ. Хотя, теоретически, аудиовизуальные архивы могут подвергаться значительной угрозе со стороны NEMP, их вероятность, тем не менее, чрезвычайно мала. Защита от ЭМИ для оборудования и магнитных носителей может быть обеспечена заключением их в клетку Фарадея и использованием соответствующих схем защиты (гальваническая развязка, переключатели перенапряжения) на всех линиях электропередач. Здания и отдельные комнаты можно защитить, полностью накрыв заземленной металлической проволочной сеткой.

Как правило, чем выше частота электромагнитного излучения, тем меньше должны быть ячейки проволочной сетки. Поскольку спектр импульсов — теоретически — неограничен, для эффективного экранирования потребуется полностью герметичный металлический лист с высокой проводимостью, например медь, которая хорошо заземлена.

3.7.2.5 Сквозная печать — это непреднамеренное копирование сигналов на соседние слои в упаковке с магнитной лентой. Проблема возникает из-за неравномерного распределения коэрцитивной силы по частицам данной ленты: в то время как частицы с высокой коэрцитивной силой сопротивляются переориентации, вызванной магнитными полями соседнего слоя, небольшой процент частиц с низкой коэрцитивной силой подвержен переориентации.Сквозная печать происходит сразу после записи при первом контакте двух слоев на намотанной катушке и логарифмически увеличивается со временем. 21 Помимо общей восприимчивости данного магнитного слоя, уровень сквозной печати также зависит от толщины ленты. 22 Крутизна повышения уровня увеличивается с температурой, а также этому способствует наличие слабых внешних магнитных полей.

Благодаря международному стандарту намотки «оксид внутри» печать на внешнем слое питательного сигнала сильнее, чем на внутреннем.Когда ленты хранятся на катушке подачи, «неестественное» пре-эхо сильнее, чем менее тревожное пост-эхо. Таким образом, хранилище «хвост-наружу» приобрело широкую популярность. С немецким стандартом хранения «оксид-вне» («B-wind») действует обратное.

Поскольку сквозная печать вызвана нестабильными частицами с низкой коэрцитивной силой, ее можно в значительной степени удалить, намотав ленту в режиме быстрой намотки несколько раз перед воспроизведением. Это позволяет использовать магнитострикционный эффект на частицах с низкой коэрцитивной силой. 23

Чтобы свести к минимуму сквозную печать для дальнейшего воспроизведения, воспроизводимые ленты следует довести до температуры хранения, а затем перемотать несколько раз, чтобы минимизировать исходный уровень сквозной печати.

Следует помнить, что любая неспособность свести к минимуму сквозную печать перед передачей сделает напечатанный сигнал частью новой записи.


Рис. 28: Взаимная интерференция соседних магнитных слоев.


Рис. 29: Эхо до и после.


19. Систематические измерения металлических полок показали наличие постоянных полей постоянного тока величиной до 1 Э. Рекомендуется указать этот уровень как максимально допустимый при заказе стальных полок и измерить при доставке.

20. В Австрии, например, средние удары молнии не превышают 30 кА. Следовательно, молниеотводы должны выдерживать удар до 60 кА.

21. Его увеличение в первой единице времени такое же, как и в следующих десяти, а затем сотнях (или любой другой экспоненциальной серии) единиц времени.

22. Из-за соотношения длины волны к толщине ленты и из-за оптимального восприятия сигнала в диапазоне низких и средних частот около 1000 Гц субъективное раздражение также зависит от скорости записи. Таким образом, сквозная печать значительно больше раздражает при записи со скоростью 38 см / с на стандартной кассете для воспроизведения, чем, например, на компактной кассете с низкой скоростью записи 4,76 см / с.

23. С большинством лент сквозную печать за 224 дня можно было бы уменьшить ниже 24-часового уровня путем трехкратной быстрой намотки ленты (Schüller 1980).

Электроэнергия из магнитного поля Земли

& bullet; Physics 9, 91

Лазейка в результате классического электромагнетизма может позволить простому устройству на поверхности Земли генерировать крошечный электрический ток из магнитного поля планеты.

P. Reid / Univ. Эдинбурга

Отслеживание вращения Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, есть компонент поля, симметричный относительно этой оси.Предлагаемое устройство, взаимодействующее с этим компонентом, будет извлекать энергию из вращения Земли для производства электроэнергии. Вращение Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, есть компонент поля, симметричный относительно этой оси. Предлагаемое устройство, взаимодействующее с этим компонентом, будет … Показать еще

P. Reid / Univ. Эдинбурга

Отслеживание вращения Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, есть компонент поля, симметричный относительно этой оси.Предлагаемое устройство, взаимодействующее с этим компонентом, будет извлекать энергию из вращения Земли для производства электроэнергии. ×

Может показаться, что классическая электромагнитная теория преподнесет немного сюрпризов, но два исследователя утверждают, что один аспект полученной мудрости неверен. Теоретически они показывают, что устройство, пассивно сидящее на поверхности Земли, может генерировать электрический ток за счет взаимодействия с магнитным полем Земли. Мощность предлагаемого устройства будет измеряться в нановаттах, но, в принципе, ее можно увеличить.

Эксперимент столетней давности показал, что если любой электромагнит с цилиндрической симметрией (симметрией стержневого магнита) вращается вокруг своей длинной оси, его магнитное поле не вращается [1]. В магнитном поле Земли есть компонент, симметричный относительно оси вращения (который не совмещен с магнитными полюсами), поэтому согласно этому старому принципу осесимметричный компонент не вращается. Любой неподвижный объект на поверхности Земли проходит через эту составляющую поля, которая постоянна на любой заданной широте.

Другой основной результат электромагнетизма гласит, что электрический ток не будет развиваться внутри проводящего объекта, движущегося через однородное магнитное поле. Заряды внутри материала испытывают боковую силу, которая, в принципе, может производить ток. Но смещения электронов и ядер атомов быстро создают статическое электрическое поле, противодействующее магнитной силе. Равновесие между электрическими и магнитными силами устанавливается быстро, поэтому после небольшой начальной перестройки нет чистого движения заряда.

Этот принцип, кажется, подавляет любую идею о том, что стационарное устройство на поверхности Земли, движущееся с постоянной скоростью через невращающуюся часть поля Земли, может генерировать любую электрическую энергию. Но Крис Чиба из Принстонского университета и Кевин Хэнд из Лаборатории реактивного движения в Пасадене, Калифорния, увидели путь вперед.

Чтобы произвести ток в проводнике, им нужно было создать магнитную силу на электронах, которую нельзя было полностью нейтрализовать с помощью электрической силы.Используя то, что они называют лазейкой в ​​традиционном аргументе о невозможности, теоретики показывают, что существуют конфигурации магнитных полей, которые нельзя устранить электрически; однако для этих конфигураций требуются особые условия.

Исследователи показывают, что такая конфигурация магнитного поля возможна в проводящей цилиндрической оболочке из материала с необычными магнитными свойствами. Во-первых, они указывают, что (как показали другие) магнитное поле внутри такой оболочки, расположенной на поверхности Земли, скажем, ориентированной вертикально на экваторе, значительно меньше поля снаружи.Когда этот объект движется через поле планеты, он постоянно сталкивается с однородным полем Земли и искажает его в некоторую неоднородную конфигурацию, при которой поле подавляется во внутреннем пространстве. Если магнитные свойства материала оболочки препятствуют быстрому искажению входящего поля, то поле никогда не достигнет той конфигурации, в которой оно находилось бы в состоянии покоя. Чиба и Хэнд утверждают, что возникающая магнитная сила не может быть нейтрализована возникающим электрическим полем. Команда показывает, что в этой ситуации электрический ток может течь по определенным замкнутым путям внутри цилиндрической оболочки.Электроды могут подключаться к этому источнику энергии, который, как доказывают Чиба и Хэнд, в конечном итоге исходит из энергии вращения Земли.

Чтобы разработать свое новое устройство, Чибе и Хэнд понадобился проводящий материал с таким необычным магнитным откликом — сложная комбинация. В качестве примера такого материала они обнаружили марганцево-цинковый феррит под названием MN60, который имеет нужные свойства, будучи, по словам Чибы, «плохим проводником, проводимость которого составляет примерно одну десятую проводимости морской воды».

Во многом из-за плохой проводимости мощность, которую прогнозирует команда, мала.Цилиндр длиной 20 см и диаметром 2 см будет генерировать десятки нановатт при десятках микровольт. Чиба думает, что есть способы увеличить эти цифры, но подчеркивает, что первая задача — это экспериментальное испытание, чтобы показать, что механизм действительно работает.

Филип Хьюз, радиоастроном из Мичиганского университета в Анн-Арборе, изучающий магнитогидродинамику астрофизических объектов, говорит, что механизм Чибы и Хэнда «основан на физике звука», но менее оптимистично настроен по поводу возможности масштабирования.Чиба говорит, что если механизм окажется правильным — а он непреклонен в том, что только эксперименты могут сказать наверняка, — он надеется, что инженеры поработают над улучшением результатов. По его мнению, одна из возможностей, которую стоит изучить, — это двухслойный цилиндр, в котором медленный магнитный материал индуцирует геометрию поля, генерирующего ток, в соседнем материале с более высокой проводимостью.

Это исследование опубликовано в журнале « Physical Review Applied ».

–Дэвид Линдли

Дэвид Линдли — внештатный научный писатель из Александрии, Вирджиния.

Ссылки

  1. С. Дж. Барнетт, «Об электромагнитной индукции и относительном движении», Phys. Ред. (Серия I) 35 , 323 (1912).

Тематические области

Статьи по теме

Магнетизм

Обнаружено спиновое смешение в ферромагнетиках

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *