Воздушный Винт самолета — Пропеллер. Лопасти самолета. Фото.
Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.
Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.
Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.
При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22, Ту-142 и Ту-95.
Технические параметры лопастных винтов
Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения
Параметры винтов:
Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.
Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.
Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.
Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.
Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.
Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.
Преимущества и недостатки воздушных винтов
Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.
Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95, который может развить скорость в 920 км/час.
Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.
Современные разработки и будущее винтов самолета
Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.
Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.
Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.
На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.
Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.
Другие части самолета
Конструкция лопасти несущего винта вертолета
Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).
Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.
Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.
При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.
Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:
Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.
При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.
Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.
Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего — стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.
Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.
К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора — нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части — к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.
Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5—6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.
При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.
Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.
Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.
Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.
Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.
Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.
Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти — 2 мм.
Предотвратить обледенение возможно двумя путями.
Первый путь — это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.
Второй путь — это оборудование лопастей противо-обледенительными устройствами.
Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может
быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.
Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.
Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.
Будущее покажет, какой из этих способов найдет себе более широкое применение.
Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.
Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.
Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.
Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади
Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05—0,08 (среднее значение 0,065).
Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9—12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.
Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.
Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.
Отстройка от флаттера лопастей
Упруго-массовые характеристик лопасти НВ
Характристика втулки несущего винта вертолета
Агрегаты техники
Композитные лопасти
В настоящее время американские военные заняты оснащением парка своих вертолетов углеродно-волоконными композитными (карбоновыми) лопастями, так как эти новые материалы обладают повышенным сроком службы, хорошо переносят повреждения, у них отсутствуют проблемы с коррозией, и они обладают высокой надежностью.
Крайним военным вертолетом, оборудованным композитными лопастями, стал Boeing AH-64D Апачи Блок III. В Форт-Ирвине, штат Калифорния, Апачи Блок III прошел первоначальные эксплуатационные испытания и оценки, продемонстрировав тем самым новые технологии и их возможности.
Одним из ключевых аспектов этих возможностей является повышение летно-технических характеристик и надежности главного ротора с лопастями из углеродного волокна, однако, по мнению руководителя программы Апачи Блок III подполковника Даниэля Бэйли (Daniel Bailey), использование таких материалов вряд ли остановится только на лопастях. «Лопасти являются первым очевидным шагом», — сказал он изданию Defence Helicopter.
Структурный элемент
Хотя такой важный летный компонент как лопасти может показаться странной отправной точкой для внедрения новых технологий, но именно здесь в последние годы американские военные оттачивали свои навыки в композитных материалах. Бейли указывает на то, что эти материалы будут широко представлены на американских военных «вертолетах завтрашнего дня»: «Следующим шагом станут композиты в фюзеляже, и мы уже идем по этому пути».
Апачи также получит новый хвостовой ротор примерно в следующем году. Вне зависимости от процесса Блок III, «наша программа композитных хвостовых роторов продолжается. Это параллельная программа Блок III, — объяснил Бэйли. — Мы находимся на заключительной стадии квалификации, но нам ещё предстоит провести множество летных испытаний. Вероятно, уже через год Апачи будет оснащен такой системой».
Новые хвостовые лопасти также будут установлены на модернизированные модели Блока II . Эта замена традиционных лопастей несущего и рулевого винтов происходит благодаря устареванию некоторых технологий. Эти лопасти, первое использование которых датируется 1970-ми годами, уже не были полностью металлическими. На вертолетах AH-64A и D Блок I и II для лопастей несущего и рулевого винтов используется композит из металла и стекловолокна.
В машиностроении композитным принято считать материал или структуру, состоящую более чем из одного элемента. Лопасти Апачи сделаны из экзотических сплавов в виде нержавеющей стали марки AM 355. Инженеры Boeing использовали различные многотрубчатые конфигурации AM 355, ламинированные и связанные вместе с трубками из стекловолокна в качестве препятствия распространению трещин, что придавало конструкции достаточно прочности для удовлетворения армейским требованиям по живучести. Эта сложная конструкция также является дорогой.
Нынешние композитные лопасти основного и хвостового винтов, представленные на Блоке III и его параллельной программе, состоят из углеродного волокна в полимерной матрице, именно это обычно имеют в виду, когда говорят о композитах.
Улучшенная конструкция
Углеродные волокна демонстрируют улучшения в том, как они изготовлены и как они функционируют. «По средствам изменения ориентации волокон и количества слоев и наполнителей вы можете довести композитные лопасти до уровней, которые были недосягаемы с металлами. По сути, вы можете изготовить лопасть с точки зрения её крутки, её аэродинамического профиля или функции хорды, оптимизируя её летные характеристики», — объяснил главный инженер вертолетных программ Боинга Джон Шиблер (John Schibler).
В композиционных материалах из углепластика слои из волокон часто расположены поочередно друг к другу под прямым углом. Правильно выбирая направление волокон в этих слоях, можно добиться необходимых характеристик в конкретных направлениях и областях.
«Преимущества заключаются в прочности материала и в том факте, что при равной прочности можно обеспечить до 30% снижения веса (по сравнению с металокомпозитами). При одинаковом весе он обеспечивает гораздо более высокую жесткость. Но обычно мы говорим об уменьшении веса», — сказал Даниэль Кагнатель (Daniele Cagnatel), вице президент современных композитных материалов GKN Aerospace North America. Компания поставляет фирме Сикорский современные углеродные волокна для лопастей основного ротора вертолета Black Hawk.
Кроме улучшения жесткости и прочности, Шиблер указывает и на экономическую выгоду: «Мы производим лопасти по сравнительно низкой закупочной стоимости, а также с низкими эксплуатационными расходами и более выгодной ремонтопригодностью».
Фирма Сикорский производит лопасти несущего и рулевого винтов с использованием лонжеронов из графитной смолы, оплетенных стекловолокном или углеродным волокном. Алан Валинг (Alan Walling), генеральный директор композитных лопастей Сикорского, сказал: «Сикорский способен производить полностью композитные лопасти несущего винта всего за треть времени, необходимого для производства металлических лопастей. При производстве композитных лопастей остается значительно меньше химических отходов. Это происходит потому, что металлические лопасти требуют травления в кислотной ванне для обеспечения необходимых летно-технических характеристик лопастей в течение долгого времени».
Улучшенные лопасти
По мнению Кагнателя: «Выбор углеродных волокон для лопастей является обязательным. Существующая структура лопастей доказала себя на практике, где углеродное волокно улучшило летно-технические характеристики по сравнению с металлом».
Выбор лопастей несущего винта Апачи Блок III, изготовленных из углеродного волокна, начался с программы Affordable Apache Rotor Program (AARP). В 2004-ом году Boeing завершила испытания лопастей в рамках программы AARP, доказав, что новые лопасти будут дешевле, прочнее и, с точки зрения усталостной долговечности, смогут служить в два раза дольше по сравнению с существующими металлическими лопастями. Бейли пояснил, что в 2006-ом году лопасти AARP были удлинены на 15 сантиметров для повышения летно-технических характеристик, а в 2008-ом году они были испытаны на Apache, в то время как квалификация лопастей Блок III была завершена в 2011-ом году.
«Композитные лопасти несущего винта для программы Апачи Блок III в настоящее время находятся в производстве. Мы изготавливаем около 20 лопастей в месяц и в ближайшее время нарастим их производство до 40 и до 60», — сказал Шиблер.
В 2013-ом году Блок III будет введен в эксплуатацию в 1-ом ударно-разведывательном батальоне американской армии (1-1 ARB), боевой авиационной бригаде, 1-й пехотной дивизии на базе Форт-Райли, штат Канзас. В мае пять вертолетов Апачи Блок III прибыли в 1-ый ударно-разведывательный батальон для подготовки пилотов и служб технического обслуживания, дополнительные вертолеты прибудут в ближайшие месяцы.
Британская армия летает на вертолетах моделей Апачи Блок I, но они могут быть модернизированы до уровня Блок III. Принятие решения по этому поводу ожидается в декабре. Если решение о модернизации до уровня Блок III будет принято, то Апачи Великобритании также могут получить лопасти несущего винта от британской экспериментальной программы ротора (British Experimental Rotor Programm IV, BERPV IV). Программа BERP IV была завершена в 2007-ом году, и композитные лопасти летают на Eh201 Merlin Mk 3 Королевских ВВС.
Испытаны и проверены
Тем не менее, это не первый европейский военный вертолет, использующий карбоновые лопасти. Предшественник Eurocopter, Aérospatiale утверждает, что эта честь выпала на вертолет SA 330 Puma, летающий с 1970-х годов. С тех пор этот тип используется многими вооруженными силами, включая французскую армию и ВМС США. Композитные хвостовые лопасти также используются на вертолетах AS532 Cougar, AS565 Panther, NH90 и Tiger.
Сикорский UH-60M Black Hawk использует углеродные композитные лопасти несущего винта с 2008-ого года. Из вертолетов Сикорского только MH-60R и MH-60S Seahawk имеют лопасти несущего винта из металлического (титанового) лонжерона.
Подполковник Билли Джексон (Billy Jackson), руководитель программы модернизации UH-60M Black Hawk, сказал: «Мы поставили в войска 384 вертолета UH-60М, Сикорский поставил около 400 вертолетов UH-60М, и они находятся в эксплуатации со второй половины 2008-го года. Некоторые из них уже вернулись из своего второго развертывания в Афганистане».
Армия использует более широкие композитные лопасти несущего винта, также известные как лопасти с широкой хордой благодаря их улучшенным весовым характеристикам. Экономия в весе составила 204 килограмма. «Это было основной причиной создания композитных лопастей, а не создание их просто потому, что они композитные. Главное — это их летно-технические характеристики», — объяснил Джексон.
«В течение некоторого времени они работают на Сикорском S-92 в несколько иной конфигурации, благодаря этому у нас уже был хороший объем данных. В решении перейти к полностью композитным лопастям не было много риска», — продолжил он. Фирма Сикорский применила полностью композитные лонжероны и обшивку лопастей несущего винта на своих вертолетах S-92 в конце 1990-х годов.
Летно-технические характеристики вертолетов UH-60M были проверены при двух развертываниях в Афганистане, и Джексон настаивает, что они показали хорошие результаты: «В настоящее время мы заняты сбором данных о надежности лопастей. У нас были поврежденные лопасти, а также отремонтированные и восстановленные. Что касается вопроса, обнаружили ли мы трещины в лопастях или непредвиденные сбои по причине новых композитных конструкций, ответ- нет». Основываясь на нынешнем успехе, следующим шагом могут стать полностью композитные цельноповоротные стабилизаторы.
Планы по уменьшению веса
В дополнение к тому что пояснил Бейли, что лопасти были первым шагом, а композитный фюзеляж являются следующим, Джексон сообщил: «Мы ищем другие области применения композитных материалов. Сейчас мы разрабатываем полностью композитный цельноповоротный стабилизатор, который обеспечит значительное снижение веса».
Армия приступила к разработке композитной хвостовой балки вертолета Black Hawk с целью снижения её веса, однако в настоящее время особый акцент делается на создании полностью композитного цельноповоротного стабилизатора, включающего внутренние компоненты. «Мы намерены сделать полностью композитный цельноповоротный стабилизатор для значительного уменьшения веса в области вертолета, имеющей основное воздействие на центр тяжести вертолета».
Джексон заявил, что, как уже отмечалось в предложении фирмы Сикорский, решение о создании полностью композитного цельноповоротного стабилизатора не было обусловлено стремлением улучшить его летно-технические характеристики, а лишь ставило цель сократить расходы на его производство.
«Мы ещё должны выполнить некоторые испытания, баллистические и другие виды летно-технических испытаний с целью убедиться, что новое изделие будет настолько же хорошо или даже лучше оригинального, а затем принять финансовое решение о том, как мы хотим внедрить его на существующую платформу, внедрить его в перспективное производство или пополнить им список существующих запасных частей».
Компанией, поставляющей композитную хвостовую балку, но не лопасти хвостовых винтов, является BLR Aerospace из штата Вашингтон. Вице-президент компании по сбыту и маркетингу Дэйв Мароне (Dave Marone) подтвердил изданию Defence Helicopter, что его компания производит полностью композитную хвостовую балку по заказу одного из военных заказчиков, но не согласился предоставить дополнительную информацию.
Планы на будущее
Ещё одним вертолетом, которому придется ждать до 2016-го года, чтобы получить композитные лопасти несущего винта из углеродного волокна, является американский армейский CH-47 Chinook. «Новые композитные лопасти называются Advanced Chinook Rotor Blade (ACRB). Программа успешно завершила стадию критического анализа проекта (critical design review, CDR) в январе 2012 года», — сообщил руководитель проекта модернизации CH-47 Chinook подполковник армии США Джо Хочерл (Joe Hoecherl). Летные и баллистические испытания были завершены в 2011-ом году.
Программа ACRB принесет изменения в форме лопастей и их летно-технических характеристиках, не затронув их крепления. «Эти лопасти будут взаимозаменяемыми на всех вертолетах Chinook», — сказал Хочерл. Были завершены масштабные тестирования в аэродинамической трубе, которые продемонстрировали, что новые лопасти способны обеспечить до 900 кг дополнительной вертикальной тяги, что позволит вертолету зависать с полной загрузкой на высоте в 1200 метров при температуре воздуха в 35° C.
Лопасти ACRB в аэродинамической трубе.
Предсерийное производство лопастей запланировано на апрель 2014-го года, летные испытания на третий квартал 2015-го года, а серийное производство на 2016-ый год. В феврале нынешнего года было объявлено, что Boeing разрабатывает композитные лопасти с повышенным сроком службы и требующие значительно меньше времени, необходимого для устранения несоконусности лопастей несущего винта и их балансировки. Эти лопасти также могут быть установлены на модели вертолетов CH-47D, однако эти вертолеты запланировано списать уже к 2019-му году.
Интеллектуальные композиты
Скорее всего, к 2019-му году лопасти из углеродного волокна потребуют более сложного подхода для достижения дальнейшего улучшения летно-технических характеристик. Промышленность сходится во мнении, что лопасти не будут состоять только из углеродного волокна. Кагнатель считает, что в них будут встроены датчики, способные следить за состоянием лопастей и позволяющие более точно прогнозировать срок их службы.
«Тенденции всё более указывают на встроенные системы, элементы подогрева передней кромки лопасти, а также датчики напряжения и деформации лопастей. В будущем такие датчики будут составной частью лопастей, нежели их внешними элементами», — сказал он.
Тем не менее, на лопасти также могут быть установлены движущиеся части. Директор по исследованиям и профессор инженерного факультета Бристольского Университета Пол Уивер (Paul Weaver) как раз работает над таким проектом для правительства Великобритании. Проект называется Интеллектуальные Реагирующие Композитные Структуры (Intelligent Responsive Composite Structures, IRCS). «Национальное агентство инноваций финансировало проект, завершившийся два года назад изменением формы закрылков», — сказал он изданию DH.
Национальное агентство инноваций принадлежит британскому правительству, оно занимается финансированием исследований, разработок и их коммерциализацией. В рамках программы IRCS было обнаружено, что щиткообразное устройство на задней кромке лопасти может быть использовано для повышения летно-технических характеристик при переходе от зависания к горизонтальному полету.
Фирма Сикорский также занята исследованиями в этой области. Она разрабатывает активные технологии лопастей несущего винта совместно с Министерством обороны США. На сегодняшний день не планируется установка этих устройств на существующие лопасти.
Американские военные не являются первопроходцами в развертывании углеволоконных лопастей, но тот факт, что они активно оснащают свой вертолетный парк новыми лопастями, подтверждает, что новые композиты активно внедряются в жизнь. Для Бейли важность углеродного волокна является очевидной: «Эти технологии будут стимулировать развитие будущих армейских вертолетов, будь то новые Apache, Black Hawk или Chinook».
Лопасти обои, лопасти картинки, лопасти фото
Лопасти обои, лопасти картинки, лопасти фото Приложение WallpapersCraft- 6.7 1280×720 5690 спиннер, лопасти, вращение
- 4.3 1280×720 7004 спиннер, лопасти, игрушка
- 6.2 1280×720 2328 ветровая электростанция, турбины, лопасти
- 5.2 1280×720 21378 ah-64d, apache, вертолет
- 2.5 1280×720 18900 белый, серый, мельница
- 1280×720 1854 вертолет, площадка, чб
- 6.7 1280×720 10871 небо, поле, лето
- 6.5 1280×720 4878 ветряки, закат, энергия
Как сделать лопасти для ветрогенератора
Лопасти для ветрогенератора своими руками, форма, размер, площадь и количество лопастей, фото, видео изготовления лопастей.
При самостоятельном изготовлении ветрогенератора, очень важно правильно подобрать форму, размер и количество лопастей, от этого зависит эффективность работы генератора.
Какую форму лопастей выбрать для ветрогенератора.
Для ветрогенераторов с горизонтальным размещением ротора можно использовать два типа лопастей с формой паруса и формой крыла.
Парусный тип лопастей (по форме напоминает ветряную мельницу) из-за своей прямой формы имеет большое аэродинамическое сопротивление, что делает его менее эффективным и довольно шумным в работе.
Наиболее удачной формой лопастей считается форма крыла (по форме лопасть напоминает крыло самолёта), такой тип лопасти имеет гораздо меньшее аэродинамическое сопротивление, больший КПД и издаёт меньше шума при работе.
Поэтому для ветрогенератора с горизонтальным ротором рекомендуется устанавливать лопасти в форме крыла.
Как определить количество лопастей для ветрогенератора.
Прежде всего, нужно определиться с количеством лопастей. На быстроходные, ветрогенераторы устанавливается минимальное количество лопастей 2 – 3, это позволяет максимально раскручивать ротор генератора, но устанавливать быстроходные генераторы можно только в районах с постоянными ветрами, например на берегу моря.
В условиях средней полосы страны преобладают слабые ветра, и если установить быстроходный ветряк, то он будет малоэффективным.
2 — 3 лопастный ветряк будет хорошо раскручиваться при сильном ветре, а при слабом он будет просто стоять.
На ветрогенераторы с 2 – 3 лопастями очень сильно идёт нагрузка от воздействия центробежной силы, такие ветряки способны раскручивать лопасти до скорости полёта пули, если лопасть сломается, то может отлететь и нанести травму человеку.
К тому же 3 лопастные ветряки очень сильно шумят, их не рекомендуется устанавливать возле жилых домов, при сильных порывах ветра такой ветрогенератор издаёт звук пролетающего вертолёта.
В средней полосе страны, где преобладают слабые и средние ветра практичней устанавливать низко оборотистые ветрогенераторы. Для таких генераторов оптимально использовать 5 – 6 лопастей в форме крыла. Такое количество лопастей позволяет ветряку ловить слабый поток ветра и стабильно работать на низких оборотах.
Как рассчитать размер и площадь лопастей для ветряка.
Рассчитать оптимальный размер лопастей можно по приведённой таблице.
Большинство разработчиков самодельных ветряков рекомендуют изготовлять ветряк диаметром примерно 2 метра, это оптимальный размер который позволяет самостоятельно обслуживать ветрогенератор.
Как сделать лопасти для ветрогенератора из ПВХ трубы.
Для ветрогенератора можно изготовить лопасти из пластиковой трубы. Для этого рекомендуется использовать ПВХ трубу для напорного трубопровода диаметром 160 мм, обычные трубы для безнапорной канализации использовать нельзя, при сильном ветре они сломаются.
На трубе рисуем маркером контур шаблона лопасти.
Вырезаем заготовку пилой или электро-лобзиком.
Заготовки обрабатываем шлифовальной машинкой, сглаживаем углы и края лопастей.
Лопасти из ПВХ трубы отлично подходят для небольших самодельных ветрогенераторов с диаметром ветроколеса не более 2 метров.
Лопасти обои, лопасти картинки, лопасти фото дата
Лопасти обои, лопасти картинки, лопасти фото дата Приложение WallpapersCraft- 6.7 1280×720 5690 спиннер, лопасти, вращение
- 4.3 1280×720 7004 спиннер, лопасти, игрушка
- 6.2 1280×720 2328 ветровая электростанция, турбины, лопасти
- 5.2 1280×720 21378 ah-64d, apache, вертолет
- 1280×720 1854 вертолет, площадка, чб
- 2.5 1280×720 18900 белый, серый, мельница
- 6.7 1280×720 10871 небо, поле, лето
- 6.5 1280×720 4878 ветряки, закат, энергия
Лопасти обои, лопасти картинки, лопасти фото популярность
Лопасти обои, лопасти картинки, лопасти фото популярность Приложение WallpapersCraft- 4.3 1280×720 7004 спиннер, лопасти, игрушка
- 6.7 1280×720 5690 спиннер, лопасти, вращение
- 6.2 1280×720 2328 ветровая электростанция, турбины, лопасти
- 5.2 1280×720 21378 ah-64d, apache, вертолет
- 2.5 1280×720 18900 белый, серый, мельница
- 1280×720 1854 вертолет, площадка, чб
- 6.7 1280×720 10871 небо, поле, лето
- 6.5 1280×720 4878 ветряки, закат, энергия