Параметры, цоколёвка и схемы включения LM317
Микросхема LM317 — регулируемый стабилизатор тока и напряжения, с током до 1,5А. Диапазон выходного напряжения составляет от 3 до 40 В.
С помощью LM317 очень удобено сделать стабилизатор, требуется добавить только пару наружных резисторов, обеспечивающих выходное напряжение.
Ниже представлены:
Основные технические параметры LM317.
2. Цоколёвка LM317.
3. Схемы включения LM317.
Источник: www.ti.com
P.S.
- На рисунке №13 схема регулируемого стабилизатора с параллельным включением LM317 U= от4,5в до 25В; J=4А.
- На рисунке №14 схема регулируемого стабилизатора на LM317 повышенной мощности с выходным составным транзистором LM317 (выходной ток зависит от типа применяемых транзисторов).
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Цветовая маркировка транзисторов.
- Параметры транзисторов МП9 — МП25
- Мыловарение как хобби
Таблица определения типа транзистора по цветовой маркировке Подробнее…
Параметры транзисторов
МП9, МП10, МП11, МП13
Тип прибора | Структура | Pк max[ мВт ] | fгр, f*h316 [ МГц ] | Uкбо max[ В ] | Uэбо max [ В ] |
МП9А МП10 МП10А МП10Б | n-p-n n-p-n n-p-n n-p-n | 150 150 150 150 | ≥1* ≥1* ≥1* ≥1* | 15 15 30 30 | 15 15 30 30 |
МП11 МП11А | n-p-n n-p-n | 150 150 | ≥2* ≥2* | 15 15 | 15 15 |
МП13 МП13А | p-n-p p-n-p | 150 150 | ≥0.5* ≥1* | 15 15 | 15 15 |
Подробнее…
Чтобы мыться было в радость
Если вы любите делать вещи своими руками вам подойдёт такое хобби, как мыловарение. Это очень полезное и увлекательное занятие. Возможно, поэтому сейчас оно приобретает такую популярность, в том числе и среди молодёжи. Ведь мыло, сделанное своими руками, будет уникальным и выйдет гораздо дешевле подобного хенд-мейд продукта в магазине. Подробнее…
Популярность: 31 431 просм.
LM217, LM317 — Регулируемые стабилизаторы напряжения — DataSheet
Описание
LM217, LM317 — монолитные интегральные схемы в корпусах TO-220, TO-220FP и D²PAK , предназначенные для использования в качестве стабилизаторов напряжения. Могут поддерживать ток в нагрузке более 1.5 А и регулируемое напряжение в диапазоне от 1.2 В до 37 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя, что делает использование устройства очень простым. Отечественным аналогом является микросхема КР142ЕН12А.
Свойства
- Выходное напряжение от 1.2 В до 37 В
- Выходной ток 1.5 А
- 0.1 % отклонение регулировки в линии и нагрузке
- Изменяемое управление для высоких напряжений
- Полный набор защиты: ограничение тока; отключение при перегреве; контроль качества SOA
Маркировка
TO-220 | TO-220 | D²PAK | TO-220FP |
LM217T | LM217T-DG | LM217D2T-TR | |
LM317T | LM317T-DG | LM317D2T-TR | LM317P |
LM317BT |
Расположение выводов
Рис. 1 Вид сверхуКупить LM317 можно здесь.
Максимальные значения
Обозначение | Параметр | Значение | Ед. изм. | |
VI — VO | Входное напряжение | 40 | В | |
IO | Выходной ток | Внутренне ограничен | А | |
TOP | Рабочая температура p-n перехода для: | LM217 | от — 25 до 150 | °C |
LM317 | 0 до 125 | |||
LM317B | от -40 до 125 | |||
PD | Рассеиваемая мощность | Внутренне ограничена | Вт | |
TSTG | Температура хранения | от — 65 до 150 | °C |
Обозначение | Параметр | D²PAK | TO-220 | TO-220FP | Ед. изм. |
RthJC | Тепловое сопротивление кристалл-корпус | 3 | 5 | 5 | °C/Вт |
RthJA | Тепловое сопротивление кристалл-среда | 62.5 | 50 | 60 | °C/Вт |
Схема
Рис. 2 Внутренняя схема
Электрические характеристики
Обозначение | Параметр | Условия | Мин. | Тип. | Макс. | Ед. изм. | |
ΔVO | Нестабильность выходного напряжения в линии | VI — VO = 3 — 40 В | T | 0.01 | 0.02 | %/В | |
0.02 | 0.05 | ||||||
ΔVO | Нестабильность выходного напряжения на нагрузке | VO ≤5 В IO от 10 мA до IMAX | TJ = 25°C | 5 | 15 | мВ | |
20 | 50 | ||||||
VO ≥5 В IO от 10 мA до IMAX | TJ = 25°C | 0.1 | 0.3 | % | |||
0.3 | 1 | ||||||
IADJ | Ток на регулирующем выводе | 50 | 100 | мкА | |||
ΔIADJ | Изменение тока на регулирующем выводе | VI — VO от 2.5 до 40 В IO от 10 мА до IMAX | 0.2 | 5 | мкА | ||
VREF | Опорное напряжение | VI — VO от 2.5 до 40 В IO = от 10 мА до IMAX, PD ≤ PMAX | 1.2 | 1.25 | 1.3 | В | |
ΔVO/VO | Выходное напряжение, температурная стабильность | 1 | % | ||||
Минимальный нагрузочный ток | VI — VO = 40 В | 3.5 | 5 | мА | |||
IO(max) | Максимальный нагрузочный ток | VI — VO ≤ 15 В, PD < PMAX | 1.5 | 2.2 | А | ||
VI — VO = 40 В, PD < PMAX, TJ = 25°C | 0.4 | ||||||
eN | Выходное напряжение шумов (в процентах от VO) | B = от 10 Гц до 100 кГц, TJ = 25°C | 0.003 | % | |||
SVR | Отклонение напряжения питания (1) | TJ = 25°C, f = 120 Гц | CADJ=0 | 65 | dB | ||
CADJ=10 мкФ | 66 | 80 |
1. CADJ подключается между выводом управления и землей.
Обозначение | Параметр | Условия | Мин. | Тип. | Макс. | Ед. изм. | |
ΔVO | Нестабильность выходного напряжения в линии | VI — VO = 3 — 40 В | TJ = 25°C | 0.01 | 0.04 | %/В | |
0.02 | 0.07 | ||||||
ΔVO | Нестабильность выходного напряжения на нагрузке | VO ≤5 В IO от 10 мA до IMAX | TJ = 25°C | 5 | 25 | мВ | |
20 | 70 | ||||||
VO ≥5 В IO от 10 мA до IMAX | TJ = 25°C | 0.1 | 0.5 | % | |||
0.3 | 1.5 | ||||||
IADJ | Ток на регулирующем выводе | 50 | 100 | мкА | |||
ΔIADJ | Изменение тока на регулирующем выводе | VI — VO от 2.5 до 40 В IO от 10 мА до 500 мА | 0.2 | 5 | мкА | ||
VREF | Опорное напряжение | VI — VO от 2.5 до 40 В IO = от 10 мА до 500 мА, PD ≤ PMAX | 1.2 | 1.25 | 1.3 | В | |
ΔVO/VO | Выходное напряжение, температурная стабильность | 1 | % | ||||
IO(min) | Минимальный нагрузочный ток | VI — VO = 40 В | 3.5 | 10 | мА | ||
IO(max) | Максимальный нагрузочный ток | VI — VO ≤ 15 В, PD < PMAX | 1.5 | 2.2 | А | ||
VI — VO = 40 В, PD < PMAX, TJ = 25°C | 0.4 | ||||||
eN | Выходное напряжение шумов (в процентах от VO) | B = от 10 Гц до 100 кГц, TJ = 25°C | 0.003 | % | |||
SVR | Отклонение напряжения питания (1) | TJ = 25°C, f = 120 Гц | CADJ=0 | 65 | dB | ||
CADJ=10 мкФ | 66 | 80 |
1. CADJ подключается между выводом управления и землей.
Обозначение | Параметр | Условия | Мин. | Тип. | Макс. | Ед. изм. | |
ΔVO | Нестабильность выходного напряжения в линии | VI — VO = 3 — 40 В | TJ = 25°C | 0.01 | 0.04 | %/В | |
0.02 | 0.07 | ||||||
ΔVO | Нестабильность выходного напряжения на нагрузке | VO ≤5 В IO от 10 мA до IMAX | TJ = 25°C | 5 | 25 | мВ | |
20 | 70 | ||||||
VO ≥5 В IO от 10 мA до IMAX | TJ = 25°C | 0.1 | 0.5 | % | |||
0.3 | 1.5 | ||||||
IADJ | Ток на регулирующем выводе | 50 | 100 | мкА | |||
ΔIADJ | Изменение тока на регулирующем выводе | VI — VO от 2.5 до 40 В IO от 10 мА до 500 мА | 0.2 | 5 | мкА | ||
VREF | Опорное напряжение | VI — VO от 2.5 до 40 В IO = от 10 мА до 500 мА, PD ≤ PMAX | 1.2 | 1.25 | 1.3 | В | |
ΔVO/VO | Выходное напряжение, температурная стабильность | 1 | % | ||||
IO(min) | Минимальный нагрузочный ток | VI — VO = 40 В | 3.5 | 10 | мА | ||
IO(max) | Максимальный нагрузочный ток | VI — VO ≤ 15 В, PD < PMAX | 1.5 | 2.2 | А | ||
VI — VO = 40 В, PD < PMAX, TJ = 25°C | 0.4 | ||||||
eN | Выходное напряжение шумов (в процентах от VO) | B = от 10 Гц до 100 кГц, TJ = 25°C | 0.003 | % | |||
SVR | Отклонение напряжения питания (1) | TJ = 25°C, f = 120 Гц | CADJ=0 | 65 | dB | ||
CADJ=10 мкФ | 66 | 80 |
1. CADJ подключается между выводом управления и землей.
Типовые характеристики
Рис. 3 Выходной ток от входного-выходного дифференциального напряженияРис. 4 Падение напряжения от температуры p-n переходаРис. 5 Опорное напряжение от температуры p-n перехода
Рис. 6 Упрощенная схема управляемого стабилизатора
Применение
Стабилизаторы серии LM217, LM317 поддерживают опорное напряжение 1.25 В между выходом и регулировочным выводом. Оно используется поддержания постоянного тока через делитель напряжения (см. Рис. 6), что дает выходное напряжение VO рассчитываемое по формуле:
VO = VREF (1 + R2/R1) + IADJ R2
Регуляторы были разработаны для того, чтобы уменьшить ток IADJ и поддерживать его постоянным в линии при изменении нагрузки. Как правило, отклонением IADJ × R2 можно пренебречь. Чтобы обеспечить выше описанные требования, стабилизатор возвращает ток покоя на выходной вывод для поддержания минимального нагрузочного тока. Если нагрузка недостаточна, то выходное напряжение будет расти. Поскольку LM217, LM317 стабилизаторы с незаземленным «плавающим» выходом и видят только разность между входным и выходным напряжением, для источников с очень высоким напряжением относительно земли, можно стабилизировать напряжение так долго, пока не будет превышена максимальная разность между входным и выходным напряжением. Кроме того, можно легко собрать программируемый стабилизатор. При подключении постоянного резистора между выходом и регулировкой, устройство может быть использовано в качестве прецизионного стабилизатора тока. Характеристики могут быть улучшены добавлением емкостей, как описано ниже:
- На вход байпаса конденсатор 1 мкФ.
- На вывод управления конденсатор 10 мкФ, чтобы улучшить подавление пульсаций на 15 dB (CADJ ).
- Танталовый электролитический конденсатор на выходе, чтобы улучшить переходную характеристику. Помимо конденсаторов можно добавить защитные диоды, как показано на рис. 7. D1 используется для защиты стабилизатора от короткого замыкания на входе, D2 для защиты от короткого замыкания на выходе и разряда емкости.
Рис. 8 Стабилизатор на 15 В с плавным включениемРис. 9 Стабилизатор тока
IO = (VREF / R1) + IADJ = 1.25 В / R1
Рис. 10 Стабилизатор на 5 В с электронным выключениемРис. 11 Стабилизатор с цифровой регулировкой напряженияR2 соответствует максимальному значению выходного напряжения
Рис. 12 Зарядка для батареи 12 В
RS устанавливает выходное сопротивление зарядки, рассчитываемое по формуле ZO = RS (1 + R2/R1). Применение RS дает возможность снизить уровень заряда при полностью заряженной батарее.
Рис. 13 Зарядное устройство на 6 В, с ограничением по току*R3 устанавливает максимальный ток (0.6 А для 1 Ома).
*C1 рекомендуется подключить для фильтрации входных переходных процессов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350
Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.
Схема включения стабилизатора
Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.
LM3ХХ — схема принципиальная подключенияК сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.
На что обратить внимание
- Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
- Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
- Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
- В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.
После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.
БП на макетной платеПечатная плата для LM3ХХ
Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.
Плата печатная рисунок для LM350Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.
Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.
Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).
БП на микросхеме LM350Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).
БП НА LM317 С БЛОКОМ ЗАЩИТЫ
Блок питания — одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.
Детали для регулируемого блока питания
- Стабилизатор LM317 ТО-220 корпусе.
- Кремниевый транзистор, p-n-p КТ818.
- Резистор 62 Ом.
- Конденсатор электролитический 1 мкф*43В.
- Конденсатор электролитический 10 мкф*43В.
- Резистор 0,2 Ом 5W.
- Резистор 240 Ом.
- Подстроечный резистор 6.8 Ком.
- Конденсатор электролитический 2200 мкф*35В.
- Любой светодиод.
Схема блока питания
Схема блока защиты
Схема блока выпрямителя
Детали для построения защиты от КЗ
- Кремниевый транзистор, n-p-n КТ819.
- Кремниевый транзистор, n-p-n КТ3102.
- Резистор 2 Ом.
- Резистор 1 Ком.
- Резистор 1 Ком.
- Любой светодиод.
Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.
Для дополнительного охлаждения, был установлен кулер.
Печатная плата была нарисована в Sprint layout v6.0.
Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.
Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.
Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.
Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected]
Форум по БП
Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ
LM317, LM317t, LM117, LM217
Габариты, электрические параметры, характеристики, маркировка…
Функции каждого вывода определяются цоколевкой, или схемой расположения выводов. Цоколевка не печатается на корпусе устройства, и, чтобы правильно подсоединить ИС к схеме, необходимо найти и изучить расположение ножек ИМС в спецификации.
Цоколевка
В LM317 LM117, LM217 — монолитные интегральные схемы в TO-220, TO-220FP, TO-3 и D²PAK корпусах, они используются в качестве позитивных регулируемых стабилизаторов напряжения. Они предназначены для тока более чем1,5 A, нагрузки с выходным регулируемым напряжением в диапазоне 1.2В до 37В.
Номинальное выходное напряжение выбирается путем использования только резистивного разделителя, что делает устройство исключительно простым в использовании. Эта микросхема может заменить большое количество стабилизаторов с фиксированным напряжением.
Выходной диапазон напряжения: 1.2-37 V
Выходной ток по свыше1,5 A
Регулирование нагрузки 0,1 %
Операция с плавающей для высокого напряжения
Завершение серии защиты: ограничение, температурного выключения и управления SOA
Требования к I/O DC/DC выбран PN:
Table 1. Device summary
Order codes
TO-220 D²PAK (tape and reel) TO-220FP TO-3
TO-220 | D²PAK | TO-220FP | TO-3 | |
LM117K | ||||
LM217T | LM217D2T-TR | LM217K | ||
LM317T | LM 317T-DG (1) | LM317D2T-TR | LM317P | LM317K |
- TO-220 Dual Gauge frame.(двойной датчик)
Электрические параметры, характеристики, маркировку, цоколевку можете посмотреть скачав DATASHEET