Линии магнитной индукции направлены: Физический класс | Линии магнитной индукции « – Направление индукционного тока. Правило Ленца. Вихревое поле.

Содержание

Как направлены линии магнитной индукции постоянного магнита

Тестирование онлайн

Магнитное поле

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов.

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем.

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.

Магнитное поле проводника с током

А теперь о том, что обнаружили Ханс Кристиан Эрстед

и Андре Мари Ампер в 1820 г. Оказывается, магнитное поле существует не только вокруг магнита, но и любого проводника с током. Любой провод, например, шнур от лампы, по которому протекает электрический ток, является магнитом! Провод с током взаимодействует с магнитом (попробуйте поднести к нему компас), два провода с током взаимодействуют друг с другом.

Силовые линии магнитного поля прямого тока — это окружности вокруг проводника.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика или правилу правой руки.

Вектор магнитной индукции

Это векторная величина, характеризующая силовое действие поля.

Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:

Индукция магнитного поля в центре тонкого кругового витка радиуса r:

Индукция магнитного поля соленоида (катушка, витки которой последовательно обходятся током в одном направлении):

Принцип суперпозиции

Если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности

Сравнительная таблица магнитного и электрического полей

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени —

вековые изменения. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Внутренняя структура магнита

Применение магнитного поля

Частицы диоксида железа на магнитной пленке хорошо намагничиваются в процессе записи.

Поезда на магнитной подушке скользят над поверхностью совершенно без трения. Поезд способен развивать скорость до 650 км/ч.

Работа головного мозга, пульсация сердца сопровождается электрическими импульсами. При этом в органах возникает слабое магнитное поле.

Познакомиться сначала с понятием магнитного поля.

Рассмотрим два явления. Первое хорошо всем известное – это притягивание или отталкивание магнитов. Принято считать, что у магнита есть два полюса: северный и южный. Одноименные полюса магнитов отталкиваются, а разноименные – притягиваются. Надо отметить, что по отдельности магнитные полюса существовать не могут. Если мы разделим магнит, например, пополам, то у каждой половинки вновь образуется два полюса (рис. 1).

Примером магнита является компас, синяя стрелка которого показывает на север (рис. 2). Это значит, что если представить внутри Земли большой магнит, то на северном полюсе Земли будет находиться южный полюс этого магнита, а на южном полюсе Земли северный полюс магнита. Таким образом, имея под рукой стрелку компаса и магнит, мы можем определить полюса магнита. Важным во всех этих опытах является то, что один магнит или стрелка компаса, которая также является легким подвижным магнитом, каким то образом ”

чувствуют” присутствие где-то рядом других магнитов и безошибочно точно определяют направление на них. Или другими словами один магнит действует на другой, даже если они находятся на расстоянии друг от друга.

Второе явление легко продемонстрировать, если взять два проводника и укрепить их для удобства вертикально на некотором расстоянии друг от друга. Если концы проводников соединить между собой, как это показано на рис. 3, а и подсоединить к источнику постоянного тока так, что в них потекут токи противоположного направления, то окажется, что провода отталкиваются друг от друга. Если же соединить их, как показано на рис. 3, б и токи в них потекут в одну сторону – проводники будут притягиваться.

N S N S N S N S

Рис.1. Одинаковые полюса магнитов отталкиваются (а), разные полюса – притягиваются (б). Полюса не могут существовать по отдельности (в)

Рис.2. Направление магнитной стрелки

Связь между этими двумя явлениями была установлена в 1821 году Эрстедом. Во время его экспериментов рядом с одним из проводников, по которому он пропускал ток, оказалась магнитная стрелка, которая начала двигаться и устанавливалась в направлении перпендикулярном проводу, независимо от места ее расположения (рис. 3, в). При изменении направления тока на противоположное стрелка поворачивалась в каждой точке на 180°. Таким образом, был сделан вывод о том, что на магнитную стрелку могут действовать не только находящиеся рядом другие магниты, но и проводники с током. Это указывает на одинаковую природу взаимодействия магнитов и проводников с током.

Рис. 3. Силы действующие между проводниками при различном (а) и одинаковом (б) направлениях электрического тока.
Действие проводника с током на магнитную стрелку (в)

Первоначально считали, что все окружающее нас пространство заполнено невидимым для глаз веществом – эфиром, частицы которого и осуществляют взаимодействие (отсюда осталась фраза: в эфире радиостанция…). Однако многочисленные наблюдения и эксперименты показали, что эфира как такового нет, поэтому стали говорить, что на расстоянии взаимодействие осуществляется через

поле, в данном случае — магнитное поле. Таким образом, магнитное поле это нечто реально существующее, но не видимое глазом и не воспринимаемое другими органами чувств. Обнаружить магнитное поле можно, например, при помощи магнитной стрелки, специальных устройств и приборов или других индикаторов типа железного порошка. Одним из таких устройств является также феррозонд.

Теперь опыты с магнитами можно объяснить следующим образом. Первый магнит создает в пространстве около себя магнитное поле. Это поле действует на второй магнит или магнитную стрелку. Во втором опыте проводник, по которому протекает ток, создает вокруг себя магнитное поле и это магнитное поле действует на второй проводник с током или магнитную стрелку. Но в обоих опытах было замечено, что это магнитное поле имеет вполне определенное направление. Поскольку магнитное поле невидимо, чтобы хоть как-то наглядно представить его себе, договорились графически изображать его в виде линий со стрелками, которые назвали магнитными силовыми линиями. Условились, что магнитные силовые линии выходят из северного полюса постоянного магнита и входят в южный полюс и вне магнита силовая линия направлена от северного полюса к южному. Магнитные линии не пересекаются между собой. Наглядную картинку силовых линий можно наблюдать, если на постоянный магнит положить лист бумаги и посыпать железный порошок (рис. 4, д). В качестве примера на рис. 4, а – г приведены силовые линии магнитных полей постоянных магнитов в виде полосы и подковы, а также прямолинейного проводника с током и кольцевого витка (короткой катушки). В каждой точке направление магнитного поля, создаваемое прямолинейным проводником с током, (рис. 4, в) можно определить по правилу буравчика: если направить буравчик по направлению тока, направление вращения его будет совпадать с направлением силовых линий магнитного поля. В последнем случае поле внутри кольца будет больше, чем снаружи, так как магнитные поля создаваемые отдельными элементами направлены в одну сторону и складываются. Направления поля в центре кольца приведено на рис. 4, г.

В3 а б в

Рис. 4. Силовые линии магнитного поля постоянного магнита в виде полосы (а), подковы (б), прямолинейного проводника стоком (в), кольцевого витка с током (г), визуализация поля при помощи магнитного порошка (д), зависимость поля прямолинейного проводника с током от расстояния (е)

Основную количественную характеристику магнитного поля в каждой точке называют магнитной индукцией и обозначают буквой В. Стрелка над буквой подчеркивает, что магнитное поле имеет не только количественное значение, но и направление. В печатных изданиях стрелку обычно не ставят, а просто обозначают жирной буквой В. Такие величины часто встречаются в физике и их называют векторами. Очевидно, что в отличие от векторных величин, такие величины, как температура, объем, площадь направления не имеют (их называют скалярными). Примерами векторов являются хорошо знакомые всем скорость, ускорение, сила. На рисунках их изображают в виде отрезка со стрелкой на конце. По магнитным силовым линиям можно в каждой точке нарисовать вектор магнитной индукции. Его направление будет совпадать с направлением касательной к силовой линии в данной точке, а величина (длина) будет тем больше, чем гуще расположены магнитные силовые линии. Пример приведен на рис. 4, а для постоянного магнита в виде полосы. Из рисунка видно, что направление векторов магнитной индукции В1, В2 и В3 различны, а по величине (длине) В1 > В2 > В3, что соответствует густоте линий. Единица измерения магнитной индукции – Тесла (Тл). Поскольку Тесла – это достаточно большая индукция, в технике чаще используют дольную единицу: 1 мТл = 0,001 Тл, или 1000 мТл = 1 Тл.

При проведении неразрушающего контроля магнитными методами в деталях магнитная индукция составляет 0,1…2 Тл, а магнитная индукция около детали после размагничивания – 0,3…0,6 мТл.

На рис. 4 а – г хорошо видно, что в разных точках, даже близко расположенных друг к другу, магнитная индукция имеет различное значение и направление. Такие магнитные поля носят название неоднородных. Магнитное поле одинаковое в некоторой области по величине и направлению называется однородным. Такое поле может создаваться, например, в небольшом зазоре между полюсами магнита или в центре длинной катушки (соленоида) (рис. 5).

Рис. 5. Однородные магнитные поля в зазоре между полюсами

магнита (а) и внутри длинного соленоида (б)

Довольно часто при рассмотрении магнитных явлений, особенно при рассмотрении явления электромагнитной индукции Фарадея, пользуются понятием магнитного потока. Магнитный поток Ф определяется, как число силовых линий проходящих через выбранную площадку. Если эта площадка будет перпендикулярна магнитным силовым линиям, то Ф = ВS (S – площадь выбранной площадки, В – значение магнитной индукции на площадке), если силовые линии параллельны площадке, то они не пересекают ее и

Рис. 6. Магнитный поток через площадку: Ф = В S (а), Ф = 0 (б),
Ф = В S cos a (в)

Ф = 0. В общем случае Ф = ВScosa, где a – угол между направлением вектора магнитной индукции Ви вектором нормали n (перпендикуляром) к выбранной площадке. Предполагается, что площадка имеет небольшие размеры и в пределах этой площадки магнитная индукция одинакова (поле однородно).

Итак, вернемся к тому, что магнитные поля создаются постоянными магнитами или электромагнитами (проводниками с током). В тоже время мы знаем, что помимо макро токов (или просто токов), идущих в проводниках, в любом теле существуют микроскопические токи (микро токи, или токи Ампера), создаваемые движением электронов в атомах и молекулах. С одной стороны внешние поля, создаваемые макро токами или постоянными магнитами действуют на микро токи, в тоже время эти микро токи создают свое магнитное поле.

Магнитная индукция В – характеризует результирующее поле микро- и макро токов, поэтому В зависит от среды в которой создается поле и от расположения макро токов и постоянных магнитов. Указанный факт может значительно усложнить технические расчеты, если пользоваться только характеристикой поля В. Поэтому была введена еще одна величина, характеризующая магнитное поле, названная напряженностью магнитного поля и обозначаемая буквой Н. Величина Н также является векторной величиной, т.е. имеет направление и численное значение, но в отличие от магнитной индукции В не зависит от магнитных свойств среды и определяется только расположением постоянных магнитов и проводников с током.

Таким образом, напряженность магнитного поля Н – характеризует поле, создаваемое макро токами (соленоидами, катушками, проводниками с током) и постоянными магнитами (прикладные намагничивающие устройства с постоянными магнитами).

Величина магнитной индукции В связана с напряженностью магнитного поля Н соотношением:

В = mmН, (1)

где m – магнитная проницаемость вещества (величина безразмерная), а m – магнитная постоянная, равная 4p 10 -7 Гн/м (Генри на метр). Магнитная проницаемость m показывает, во сколько раз магнитная индукция в веществе отличается от магнитной индукции в воздухе (для воздуха m = 1).

Единицей измерения напряженности магнитного поля Н в системе СИ является А/м (Ампер на метр). Часто в литературе и инструкциях приводят напряженность магнитного в А/см (Ампер на сантиметр). 1А/см = 100А/м, а 1 А/м = 0,01 А/см.

Поскольку магнитная проницаемость воздуха равна единице, то иногда, когда говорят о магнитном поле в воздухе, имеют ввиду не его напряженность Н, а его индукцию В (В = mН). Зная значение m можно установить связь между численными значениями Н и В: 1А/см = 100А/м = 0,1256 мТл или 1 мТл = 7,96 А/см. Так, например, согласно инструкции на магнитопорошковый контроль после размагничивания магнитное поле около деталей должно быть не больше 5 А/см или 0,6 мТл, а для внутренних и наружных колец роликовых подшипников меньше 3 А/см или 0,375 мТл.

Поля, используемые для контроля деталей составляют 100…200 А/см, а поле на полюсах постоянного магнита, используемого для намагничивания деталей более 1000 А/см. Магнитное поле Земли на нашей широте составляет 0,36 А/см.

Внутри прямолинейного проводника с током напряженность поля растет по линейному закону, а вне него убывает обратно пропорционально с расстоянием (рис. 4, е): Н = I/2pr (I – ток в проводнике, r – расстояние от центра проводника). Для соленоида длиной l, диаметром d и содержащего n витков на его оси поле определяется формулой H = I´n/Öl 2 + d 2 .

Не нашли то, что искали? Воспользуйтесь поиском:

«Физика — 11 класс»

Электрическое поле характеризуется напряженностью электрического поля.
Напряженность электрического поля — это величина векторная. Магнитное поле характеризуется магнитной индукцией.
Магнитная индукция — это векторная величина, она обозначается буквой .

Направление вектора магнитной индукции

За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.

Правило буравчика

Направление вектора магнитной индукции устанавливают с помощью правила буравчика.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

Линии магнитной индукции

Магнитное поле можно показать с помощью линий магнитной индукции.
Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.

Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.

Магнитное поле прямолинейного проводника с током

Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.

Магнитное поле катушки с током (соленоида)

Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным.
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.

Магнитное поле Земли

Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.

Вихревое поле

Силовые линии электростатического поля всегда имеют источники: они начинаются на положительных зарядах и оканчиваются на отрицательных.
А линии магнитной индукции не имеют ни начала, ни конца, они всегда замкнуты.
Поля с замкнутыми векторными линиями называют вихревыми.
Магнитное поле — вихревое поле.
Магнитное поле не имеет источников.
Магнитных зарядов, подобных электрическим, в природе не существует.

Итак, магнитное поле — это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Направление тока и направление линий его магнитного поля (Зарицкий А.Н.)

На этом уроке мы узнаем о магнитном действии тока на примере опыта Эрстеда и опыта Ампера. Рассмотрим правило буравчика и правило правой руки для прямого проводника с током и для соленоида с током

Продолжительное время электрические и магнитные поля изучались раздельно. Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. Рис. 1). Это доказало магнитное действие тока. После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.

Опыт Эрстеда

Рис. 1. Опыт Эрстеда

Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. Рис. 2, ток Опыт Эрстеда направлен в рисунок, Опыт Эрстеда – из рисунка), возле которого установлены магнитные стрелки. После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу. Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.

Расположение магнитных стрелок возле прямого проводника с током

Рис. 2. Расположение магнитных стрелок возле прямого проводника с током

Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис. 3).

Расположение железных опилок вокруг проводника с током

Рис. 3. Расположение железных опилок вокруг проводника с током (Источник)

Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) – если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. Рис. 4).

Правило буравчика

Рис. 4. Правило буравчика (Источник)

Также можно использовать правило правой руки – если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 5).

Правило правой руки

Рис. 5. Правило правой руки (Источник)

Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.

После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы. Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. Рис. 6 б) если ток течёт в противоположные стороны – проводники отталкиваются (см. Рис. 6 а).

Опыт Ампера

Рис. 6. Опыт Ампера (Источник)

Из своих опытов Ампер сделал следующие выводы:

1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.

2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.

3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.

На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.

 Иллюстрация к задаче

Рис. 7. Иллюстрация к задаче

Решение

Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.

Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с помощью правила стрелы в виде точки слева от проводника и крестика справа от него (см. Рис. 8).

Аналогично определяем направление магнитных линий возле других сторон рамки.

Иллюстрация к задаче

Рис. 8. Иллюстрация к задаче

Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см. Рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.

 Опыт Ампера. Образование магнитного поля вблизи катушки с током

Рис. 9. Опыт Ампера. Образование магнитного поля вблизи катушки с током

Для определения магнитных полюсов катушки с током используется правило правой руки для соленоида (см. Рис. 10) – если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то большой палец покажет направление линий магнитного поля внутри соленоида, то есть на его северный полюс. Это правило позволяет определять направление тока в витках катушки по расположению её магнитных полюсов.

 Правило правой руки для соленоида с током

Рис. 10. Правило правой руки для соленоида с током

Определите направление тока в катушке и полюсы у источника тока, если при прохождении тока в катушке возникают указанные на рисунке 11 магнитные полюсы.

 Иллюстрация к задаче

Рис. 11. Иллюстрация к задаче

Решение

Согласно правилу правой руки для соленоида, обхватим катушку таким образом, чтобы большой палец показывал на её северный полюс. Четыре согнутых пальца укажут на направление тока вниз по проводнику, следовательно, правый полюс источника тока положительный (см. Рис. 12).

Иллюстрация к задаче

Рис. 12. Иллюстрация к задаче

На данном уроке мы рассмотрели явление возникновения магнитного поля вблизи прямого проводника с током и катушки с током (соленоида). Также были изучены правила нахождения магнитных линий данных полей.

 

Список литературы

  1. А.В. Перышкин, Е.М. Гутник. Физика 9. – Дрофа, 2006.
  2. Г.Н. Степанова. Сборник задач по физике. – М.: Просвещение, 2001.
  3. А.Фадеева. Тесты физика (7 – 11 классы). – М., 2002.
  4. В. Григорьев, Г. Мякишев Силы в природе. – М.: Наука, 1997.

 

Домашнее задание

  1. А.В. Перышкин, Е.М. Гутник. Физика 9: § 44, стр. 149, упр. 35 (1–5) (Источник).
  2. Что можно определить, используя правило буравчика?
  3. Что можно определить, используя правило правой руки?
  4. Определить направление тока по известному направлению магнитных линий (см. Рис. 13).
    Иллюстрация к задачеИллюстрация к задаче
    Рис. 13. Иллюстрация к задаче

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Clck.ru (Источник).
  2. Интернет-портал Class-fizika.narod.ru (Источник).
  3. Интернет-портал Festival.1september.ru (Источник).

Направление линий магнитной индукции определяется по правилу буравчика (правой руки).

⇐ ПредыдущаяСтр 9 из 11Следующая ⇒
Примеры некоторых магнитных полей Линии поля Определение направления линий магнитной индукции
Поле прямого тока Линии магнитной индукции прямого тока представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной току. Большой палец правой руки направляют по току в проводнике, четыре пальца сжимают в кулак, направление, в котором загибаются пальцы, совпадает с направлением линии магнитной индукции.
Поле кругового тока Четыре пальца правой руки сжимают в кулак, так, чтобы направление, в котором загибаются пальцы, совпадало с направлением тока в проводнике, тогда отогнутый большой палец укажет направление линии магнитной индукции.
Поле соленоида (катушки с током) Тот конец соленоида, из которого линии магнитной индукции выходят, является ее северным магнитным полюсом, другой конец, в который линии индукции входят, является южным магнитным полюсом.   Определяется аналогично полю кругового тока.

 

Магнитное поле обнаруживается по действию на проводники с током или движущуюся заряженную частицу.

 

  Сила Ампера Сила Лоренца
Определение Сила, с которой магнитное поле действует на проводник с током. Сила, с которой магнитное поле действует на движущуюся заряженную частицу.
Формула
Направление Правило левой руки:если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, четыре вытянутых пальца были направлены по току, то отогнутый на 90обольшой палец укажет направление силы Ампера. Правило левой руки:если руку расположить так, чтобы линии магнитной индукции входили в ладонь, четыре вытянутых пальца были направлены по направлению движения положительно заряженной частицы, то отогнутый на 90обольшой палец укажет направление силы Лоренца.    
Работа силы ,где угол между векторами и . Сила Лоренца не совершает над частицей работу и не изменяет ее кинетическую энергию, она только искривляет траекторию частицы, сообщая ей центростремительное ускорение.

 

Характер движения заряженных частиц в магнитном поле.

1) Частица с зарядом попадает в магнитное поле так, что вектор параллелен , в этом случае , частица движется прямолинейно и равномерно.

2) Частица с зарядом попадает в магнитное поле так, что вектор перпендикулярен , в этом случае частица движется по окружности в плоскости, перпендикулярной линиям индукции.

3) Частица с зарядом попадает в магнитное поле так, что вектор составляет некоторый угол с вектором , в этом случае частица движется по спирали.

 

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ НА ДВИЖЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В МАГНИТНОМ ПОЛЕ

Электрон движется в однородном магнитном поле с индукцией 4 . Найти период его обращения.

Ответ: 8,9

Из формулы, полученной при решении задачи, следует, что период обращения заряженной частицы в магнитном поле не зависит от скорости, с которой она влетает в магнитное поле и не зависит от радиуса окружности, по которой она движется.

Содержание

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Электромагнитная индукция – это явление возникновения ЭДС индукции в проводящем контуре, находящемся в изменяющемся магнитном поле. Если проводящий контур замкнут, то в нем возникает индукционный ток.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ (ЗАКОН ФАРАДЕЯ): ЭДС индукции равна по модулю скорости изменения магнитного потока.

или , где число витков в контуре, магнитный поток.

Знак «минус» в законе отражает правило Ленца: индукционный ток своим магнитным потоком препятствует изменению того магнитного потока, которым он вызван.

, где площадь поверхности контура, угол между вектором магнитной индукции и нормалью к плоскости контура.

, где индуктивность проводника.

Индуктивность зависит от формы, размеров проводника (индуктивность прямого проводника меньше индуктивности катушки), от магнитных свойств окружающей проводник среды.

 

Способы получения ЭДС индукции Формула Природа сторонних сил Определение направления индукционного тока
Проводник находится в переменном магнитном поле , где Вихревое электрическое поле, которое порождается изменяющимся магнитным полем. Алгоритм: 1) Определить направление внешнего магнитного поля. 2) Определить увеличивается или уменьшается магнитный поток. 3) Определить направление магнитного поля индукционного тока. Если >0,то , если <0, то 4) По правилу буравчика (правой руки) по направлению определить направление индукционного тока.
Изменяется площадь контура , где
Изменяется положение контура в магнитном поле (изменяется угол ) , где
Проводник движется в однородном магнитном поле , , где угол между Сила Лоренца Правило правой руки: если ладонь расположить так, чтобы вектор магнитной индукции входил в ладонь, отставленный большой палец совпадал с направлением скорости проводника, то четыре вытянутых пальца укажут направление индукционного тока.
Самоиндук-ция – явление возникнове-ния ЭДС индукции в проводнике, по которому идет изменяющий-ся ток или Вихревое электрическое поле Ток самоиндукции направлен в ту же сторону, что и ток созданный источником, если сила тока уменьшается, ток самоиндукции направлен против тока созданного источником, если сила тока увеличивается.

Пример использования алгоритма:

При решении задач на электромагнитную индукцию используют закон Ома: , причем .

ЭНЕГРИЯ МАГНИТНОГО ПОЛЯ

ВИХРЕВЫЕ И ПОТЕНЦИАЛЬНЫЕ ПОЛЯ

 

  Потенциальные поля: гравитационное, электростатическое Вихревые (непотенциальные) поля
магнитное вихревое электрическое
Источник поля Неподвижный электрический заряд Движущийся заряд (электрический ток) Изменяющее-ся магнитное поле
Индикатор поля (объект, на который поле действует с некоторой силой) Электрический заряд Движущийся заряд (электрический ток) Электричес-кий заряд
Линии поля Незамкнутые линии напряженности электрического поля, начинаются на положительных зарядах Замкнутые линии магнитной индукции Замкнутые линии напряженнос-ти

 

Свойства сил потенциальных полей (консервативных сил):

1) Работа сил потенциального поля не зависит от формы траектории, а определяется только начальным и конечным положением тела.

2) Работа сил потенциального поля при перемещении тела (заряда) по замкнутой траектории равна нулю.

3) Работа сил потенциального поля равна изменению потенциальной энергии тела (заряда), взятому со знаком «минус».

Содержание

 

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Электромагнитные колебания – это периодические изменения заряда, силы тока, напряжения.

формула для расчета периода электромагнитных колебаний (формула Томсона).

СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ осуществляются в колебательном контуре, состоящем из катушки индуктивностью и конденсатора емкости .Для того, чтобы в контуре возникли колебания, конденсатор необходимо зарядить, сообщив ему заряд .

Идеальный колебательный контур – контур, сопротивление которого равно нулю. В реальных контурах , поэтому колебания затухают, сообщенная контуру первоначально энергия превращается в тепло.

ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ (ПЕРЕМЕННЫЙ ТОК)

Переменный ток можно получить, вращая проводящую рамку в магнитном поле. При этом магнитный поток будет изменяться по закону синуса или косинуса.

Мгновенное значение ЭДС индукции в контуре

где максимальное значение ЭДС индукции если рамка содержит витков, то

Действующим значением напряжения и силы переменного тока называют напряжение и силу такого постоянного тока, при котором в цепи выделяется такое же количество теплоты, как и при данном переменном токе.

Вольтметры и амперметры, включенные в цепь переменного тока, измеряют действующие значения.

 

 

НАГРУЗКИ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

 

РЕЗОНАНС В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ – это резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты подаваемого в цепь переменного тока с собственной частотой колебания цепи. Резонанс возможен, если цепь, содержащую индуктивность и емкость и имеющую собственную частоту колебаний , которая зависит только от и , подключают к цепи переменного тока с частотой причем Резонансная частота

При резонансе

ТРАНСФОРМАТОР – прибор, преобразующий переменный ток одного напряжения в переменный ток другого напряжения без изменения частоты. Состоит из первичной и вторичной катушек, надетых на замкнутый сердечник. Первичная катушка содержит количество витков и подключается к источнику переменного тока, вторичная катушка содержит количество витков и подключается к потребителю электроэнергии.

Коэффициент трансформации

Повышая напряжение в несколько раз, трансформатор уменьшает силу тока во столько же раз:

Повышают напряжение и понижают соответственно силу тока при передаче энергии от электростанций к потребителю для того, чтобы уменьшить тепловые потери на проводах ЛЭП, затем получают напряжение, необходимое для потребителя с помощью понижающих трансформаторов.

Содержание

 

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

 

Электромагнитная волна– распространяющееся в пространстве электромагнитное поле. Теория электромагнитных волн создана Дж. Максвеллом в 60-х годах 19 века:

1) Переменное магнитное поле порождает переменное электрическое поле, переменное электрическое поле порождает переменное магнитное поле и т. д. Этот процесс лежит в образовании электромагнитной волны.

2) Источником электромагнитной волны является колеблющийся (движущийся с ускорением) заряд.

3) Электромагнитная волна в вакууме распространяется со скоростью света

4) Электромагнитные волны поперечные. Колебания векторов и происходят во взаимно перпендикулярных плоскостях, которые перпендикулярны направлению скорости распространения волны, т.е. взаимно перпендикулярны.

5) Колебания векторов и совпадают по фазе, т. е. они одновременно обращаются в нуль и одновременно достигают максимума.

6) Электромагнитные волны могут отражаться, преломляться, им присущи явления интерференции, дифракции, дисперсии, поляризации.

Впервые электромагнитные волны были обнаружены немецким физиком Генрихом Герцем в 1887 г. В своих экспериментах Герц использовал открытый колебательный контур, представляющий собой отрезок металлического проводника (антенну или вибратор Герца).

ПРИНЦИПЫ РАДИОСВЯЗИ

Радиосвязь – передача информации с помощью электромагнитных волн.

РАДИОПЕРЕДАТЧИК

Элементы Назначение
Микрофон Преобразует звуковые колебания в электромагнитные колебания низкой частоты, которые несут информацию, но не излучаются в пространство.
Генератор высокой частоты Создает высокочастотные колебания, которые могут излучаться в пространство, но не несут информацию.
Модулятор Изменяет параметры высокочастотных колебаний с помощью колебаний низкой частоты, создаются волны, которые несут информацию и могут излучаться в пространство.
Передающая антенна Излучает модулированные колебания в пространство

РАДИОПРИЕМНИК

Элементы Назначение
Приемная антенна В приемной антенне электромагнитные волны возбуждают высокочастотные колебания.
Колебательный контур переменной емкости Выделяет из всевозможных электромагнитных колебаний те колебания, частота которых совпадает с частотой этого контура. Частоту контура можно изменять за счет изменения емкости контура.
Детектор Выделяет из модулированных высокочастотных колебаний низкочастотные колебания.
Динамик Преобразует низкочастотные электрические колебания в звуковые колебания.

КЛАССИФИКАЦИЯ РАДИОВОЛН

Наименование Диапазон длин волн (м) Свойства
Длинные Средние 10000 – 1000 1000 — 100 Огибают земную поверхность. Используются для радиосвязи между пунктами расположенными на поверхности Земли вне прямой видимости.
Короткие 100 — 10 Отражаются от ионосферы и поверхности Земли. Используются для радиосвязи на любых расстояниях между двумя пунктами на Земле.
Ультракороткие <10 Проникают сквозь ионосферу и почти не огибают Землю. Используются для радиосвязи между пунктами, находящимися в пределах прямой видимости, для радиосвязи с космическими кораблями.

Содержание

 

 

ГЕОМЕТРИЧЕСКАЯ ОПТИКА

ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

1)Закон прямолинейного распространения света:




Линии магнитной индукции — это… Что такое Линии магнитной индукции?


Линии магнитной индукции

Линии магнитной индукции — линии, касательные к которым направлены также как и вектор магнитной индукции в данной точке поля. Магнитные поля, так же как и электрические, можно изображать графически при помощи линий магнитной индукции. Через каждую точку магнитного поля можно провести линию индукции. Так как индукция поля в любой точке имеет определённое направление, то и направление линии индукции в каждой точке данного поля может быть только единственным, а значит, линии магнитного поля, так же как и электрического поля, линии индукции магнитного поля прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) индукции магнитного поля в данном месте. Поэтому, изображая линии индукции, можно наглядно представить, как меняется в пространстве индукция, а следовательно, и напряжённость магнитного поля по модулю и направлению.

Ссылки

Wikimedia Foundation. 2010.

  • Линии горизонта (книга)
  • Линии мира

Смотреть что такое «Линии магнитной индукции» в других словарях:

  • ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ — линии, мысленно проведённые в магнитном поле так, что в любой точке поля вектор магнитной индукции направлен по касательной к Л. м. и., проходящей через эту точку. Л. м. и. поля пост. электрич. тока охватывают проводники с током и либо замкнуты,… …   Большой энциклопедический политехнический словарь

  • трубка магнитной индукции — Область магнитного поля, ограниченная непрерывной поверхностью, образующими которой являются линии магнитной индукции …   Политехнический терминологический толковый словарь

  • силовые линии — электрического и магнитного полей, линии, касательные к которым в каждой точке поля совпадают с направлением напряжённости электрического или соответственно магнитного поля; качественно характеризуют распределение электромагнитного поля в… …   Энциклопедический словарь

  • Силовые линии векторного поля — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • Силовые линии —         линии, проведённые в каком либо силовом поле (электрическом, магнитном, гравитационном), касательные к которым в каждой точке пространства совпадают по направлению с вектором, характеризующим данное поле (напряжённостью электрического или …   Большая советская энциклопедия

  • СИЛОВЫЕ ЛИНИИ — линии, мысленно проведённые в к. л. силовом поле (электрич.. магнитном, тяготения) так, что в каждой точке поля направление касательной к линии совпадает с направлением напряжённости поля (магнитной индукции в случае магнитного поля). Через… …   Большой энциклопедический политехнический словарь

  • путь прохождения магнитной силовой линии — линия магнитной индукции — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы линия магнитной индукции EN… …   Справочник технического переводчика

  • Средняя длина магнитной силовой линии образца — длина однородно намагниченного образца из того же магнитного материала, что и испытуемый образец, намагничиваемого одинаковой с последним напряженностью магнитного поля при одних и тех же значениях магнитной индукции, магнитодвижущей силы и… …   Словарь-справочник терминов нормативно-технической документации

  • Магнетизм — 1) Свойства магнитов. Наиболее характерное магнитное явление притяжение магнитом кусков железа известно со времен глубокой древности. Однако в Европе вплоть до XII столетия наблюдали это явление лишь с естественными магнитами, т. е. с кусками… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Магнитное поле —         силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом (См. Магнитный момент), независимо от состояния их движения. М. п. характеризуется вектором магнитной индукции В, который определяет:… …   Большая советская энциклопедия


Направление тока и направление линий его магнитного поля. Правило левой руки

1779. На рисунке 240 изображен проводник, который приблизили к магниту. Направление тока в проводнике показано стрелками. В какую сторону будет двигаться проводник?

 Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 

1780*. На рисунке 241 изображены четыре проводника с током, расположенные между полюсами магнитов. Как движется каждый из них?

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1781*. Четыре проводника с током находятся в магнитном поле (рис. 242). Как движется каждый из них? Взаимодействую ли они между собой?

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1782. Обозначьте стрелками, как взаимодействуют параллельные точки в случаях а, б, в на рисунке 243.

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1783. Взаимодействуют ли два провода троллейбусной линии? Если да, то как именно?
Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1784. На рисунке 244 показано, как взаимодействуют проводники с током. Покажите стрелками направления токов в проводниках.

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

1785*. Струя расплавленного алюминия при пропускании по ней тока сужается. Чем объяснить это явление?
Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1786. На рисунке 245 изображена электрическая цепь с проводником в форме пружины. Нижний конец пружины погружен в ртуть. Что происходит с пружиной в электрической цепи после замыкания ключа? Как при этом изменяется сила тока в цепи?

 

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1787. Какое действие оказывает однородное магнитное поле на рамку с током (рис. 246) ? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы магнитное поле сжимало рамку?

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1788*. Как будет поворачиваться рамка с током в однородном магнитном поле (рис. 247)? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы рамка повернулась в противоположную сторону?

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1789. Рамка с током подвешена между полюсами магнита. Направление тока в ней указано стрелками (рис. 248). Как будет двигаться рамка в случае а и в случае б? Как магнитное поле действует на каждую сторону рамки в случае а? в случае б?

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 

1790. Если рукой остановить лопасть работающего настольного вентилятора, его корпус начинает нагреваться. Почему?
Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

1791. На рисунке 249 изображен провод длиной 50 см в однородном магнитном поле с индукцией 0,4 Тл. Провод расположен перпендикулярно линиям магнитной индукции, и по нему течет ток силой 0,5 А. Найдите модуль и направление силы, действующей на проводник.

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1792. Двухметровый прямолинейный проводник, по которому течет ток силой 0,4 А, находится в однородном магнитном поле. На проводние со стороны поля действует сила, по модулю равная 0,4 Н (рис. 250), а вектор индукции магнитного поля перпендикулярен проводнику. Найдите модуль и направление вектора индукции магнитного поля.

Направление тока и направление линий его магнитного поля. Правило левой рукиНаправление тока и направление линий его магнитного поля. Правило левой руки

 1793. На прямолинейный проводник длиной 80 см, помещенный в однородное магнитное поле, сто стороны магнитного поля действует сила, равная 0,2 Н (рис. 251). Определите силу тока и направление тока в проводнике, если индукция магнитного поля равна 0,04 Тл.

Направление тока и направление линий его магнитного поля. Правило левой руки

Направление тока и направление линий его магнитного поля. Правило левой руки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *