Курсы электроники – Дистанционное обучение инженеров-электроников — переподготовка и курсы по профессии

Как самостоятельно изучить электронику с нуля?

Научиться можно только тому, что любишь.
Гёте И.

  1. Творчество и результат
  2. Типичный подход к обучению
  3. Математика в электронике 
  4. Книги по электронике
  5. Дорого ли заниматься электроникой?
  6. Что делать, если не получается?
  7. О практике

«Как самостоятельно изучить электронику с нуля?» — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку — будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину… Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле. 

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: «Раз ты хорош в математике, то тебе надо пойти в электронику». Типичная чушь. Электроника — это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное — это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на «метод тыка», но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование — это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе. 

 

 

 

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения, владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше — люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать — это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше

Дистанционное обучение инженеров-электроников — переподготовка и курсы по профессии

О Международной Академии
Экспертизы и Оценки

ЧУ «ООДПО «Международная Академия Экспертизы и Оценки» осуществляет переподготовку инженеров-
электроников. А также по 350 другим направлениям в дистанционном формате по всей России.

Лицензия на образовательную деятельность № 1420 от 21.04.2014.

Академия основана в 2013 году и благодаря доступным ценам и высокому качеству обучения быстро стала организацией федерального масштаба. У нас успешно прошли обучение более 10 056 человек из всех 85

субъектов Российской Федерации. По данным Интерпрофстата, в 2018 г. мы вошли в 100 лучших
образовательных учреждений России. По данным Росстата, в рамках аудита социально-экономического
проекта «Элита Нации», заняли 34 место среди 700 предприятий России по ОКВЭД «Образование
профессиональное дополнительное».

Деятельность академии носит международный характер. Среди наших выпускников представители
Германии, Болгарии, Франции, Израиля, Азербайджана, Казахстана, Республики Беларусь, Армении и др.

Наша миссия: сделать качественное дополнительное профессиональное образование максимально

доступным.

МАЭО входит в группу компаний, к которой также относятся:

УМЦ «Интеллект» Саратовский государственный технический университет имени Гагарина Ю.А.
(umcin.ru), который осуществляет подготовку экспертов-оценщиков на базе государственного ВУЗа: Более 1300 оценщиков выпущено; 17 лет опыта обучения оценщиков.

Консалтинговая компания «Центр Реформ Предприятий» (crpocenka.ru), которая занимается оценкой

всех видов имущества по всей России. А так же сертификацией персонала по профстандартам: С 1998 года на рынке; Лауреат XXVIII премии «Элита национальной экономики 2013». Медаль «За развитие
предпринимательства»; Член Международной Палаты Оценщиков, Гильдии Профессиональных Экспертов и Оценщиков,
ОПОРЫ России, Торгово-промышленной палаты Саратовской области; Собственные разработки в области экономического и социального развития, получившие
положительный отзыв в Экономическом управлении Президента Российской Федерации,
Минэкономразвития России и Рабочем центре экономических реформ при Правительстве
Российской Федерации.

АНО «Профессиональный стандарт» (профессиональный-стандарт.рф, классификация-гостиницы.рф),
который осуществляет обучение рабочих и служащих. А так же оказывает услуги по классификации
гостиниц и иных средств размещения, пляжей и горнолыжных трасс.

Проходя обучение у нас, вы можете быть уверены, что обратились в крупную серьезную организацию,
которая существует уже не первый десяток лет и обеспечивает наилучшее качество образовательных
услуг.

Курсы — Основы электроники

Видеокурс «Черчение схем в программе sPlan 7»

 

Бесплатный обучающий видеокурс для тех, кто хочет научиться чертить схемы в широко известной программе sPlan 7.

Программа sPlan 7 — это графический редактор электрических схем, однако он успешно справляется с рисованием не только электрических, но и других видов схем: кинематических, гидравлических, блок-схем программ, а так же с его помощью можно создавать различные рисунки и иллюстрации.

Видеокурс «Черчение схем в программе sPlan» содержит 19 видеоуроков общей продолжительностью более 3 часов.

 

Узнать подробности, содержание и скачать курс==>>

 


 

Видеокурс «Программирование микроконтроллеров для начинающих»

 

 Обучающий видеокурс для тех, кто хочет с нуля научиться собирать и программировать устройства на микроконтроллерах AVR компании Atmel.  Курс не подразумевает начального знания микроконтроллеров, однако вы должны быть знакомы с основами электроники и уметь держать в руках паяльник.

Видеокурс содержит более 70 часов видео, а так же различные дополнительные материалы, в том числе и видеоматериалы.

КРАТКИЙ ВИДЕООБЗОР КУРСА

 


 

Видеокурс «Программирование микроконтроллеров на языке С»

 

Этот видеокурс специально создан для тех, кто хочет освоить язык программирования С для микроконтроллеров, но устал собирать информацию по крупицам.

Лучше один раз увидеть! Специальный видеокурс позволяет усвоить возможности языка С в течение одного месяца. Вам не нужно будет штудировать учебники и вникать в ход мыслей их автора. Все действия вы увидите на экране в режиме реального времени. Наглядные уроки позволят максимально быстро овладеть навыками программирования микроконтроллеров на языке С.

Курс дает возможность сразу же начать писать простые программы. Уже через пару уроков вы сможете начать более уверенно писать программы на языке С с использованием интересных возможностей о которых вы раньше, возможно, и не подозревали.

А к концу обучения вы будете способны писать программы на языке С используя все возможности языка, как это делают настоящие профессионалы. Это позволит вам решать сложные задачи очень эффективными и надежными методами. А чем эффективней решения задач, тем меньше вам придется потратить сил и времени на ее решение и тем более простой микроконтроллер можно будет использовать!.

Видеокурс содержит 56 видеоуроков, а это более 23 часов видео!.

 


Видеокурс «Создание устройств на микроконтроллерах»

 

Научитесь самостоятельно программировать сложные устройства на микроконтроллерах на профессиональном уровне с глубоким пониманием их работы!

 

— Воспроизводить речь

— Создавать надежные системы управления по радиоканалу, передавать шифрованные данные

— Побайтово считывать и записывать на карты памяти текст, изображения и любые другие данные

— Воспроизводить звуковые файлы с высоким качеством

— Выводить информацию почти на любые цветные жидкокристаллические TFT дисплеи

— Считывать координаты и усилие нажатия с сенсорного экрана

— Считывать и распознавать радиочастотные метки (RFID-метки)

— Считывать и записывать произвольные данные во внутреннюю память проездных билетов

Видеокурс содержит 78 видеоуроков продолжительностью 38 часов!.

 


Начинающим | Электроника для всех

Иногда нужно измерять амплитуду сетевого напряжения, или частоту или еще какие параметры. Вот как у меня тут — перед включением компрессорной установки надо убедиться, что напряжение в сети не ниже номинальной. Иначе движок не стартанет, а вентили могут не встать в нужное положение. Главная сложность тут в том, что крайне желательно иметь гальваническую развязку от сетевого напряжения. Т.е. напрямую измерять сетевую напругу через простой делитель может быть черевато.

▌Измерить толщину сиськи
Изначально в проекте было заложено вот такое решение:

На резистора гасится большая часть напряжения, стабилитрон стоит тут больше для подстраховки и в качестве обратного диода для противоположной полуволны. На деле он не особо нужен.

Ну, а дальше все просто. У оптопары h21L1M внутри стоит триггер Шмитта, т.е. есть некоторый гистерезис на включение и выключение. Включается он при токе через его светодиод примерно в 1мА, а выключается на токе 0.8мА.

Если посмотреть осциллограмму тока на светодиоде, сняв ее с резистора R35, то увидим такую картину для 220 вольт:


Разрешение 50мВ на деление, триггер стоит на 80мВ по спаду.

Включаться он должен на 100мВ, а выключаться на 80мВ, что будет 1мА и 0.8мА соответственно. Курсорами выделены моменты включения и выключения. Разница по времени, dx = 8.38ms

Если снизить напряжение до 110 вольт, то:

dx уменьшится до 6.94ms т.е. А что такое миллисекунда для микроконтроллера тикающего на мегагерцовых частотах? Да колоссальная величина! Замерить ее точно таймером в режие захвата не составляет проблем. Дальше сунуть в память таблицу соответствия и, казалось бы, все круто? Да, но не совсем…

Решение дешевое, простое. Но не слишком точное. А в ряде случаев его вообще не получится применить.

Вся проблема в том, что длительность у нас от амплитуды зависит косвенно. В идеальном мире оно бы проканало, но современные сети, особенно промышленные, сильно засраны разными импульсными потребителями.

Вроде всяких там, сварочников, инверторов, мощных приводов и прочего. Что искажает форму синуса. Делая его вообще каким-то непотребным. А если это не синус, а херня какая-то, то все эти наши красивые построения основанные на таймингах пролетают. Во-первых, точность падает катастрофически, а она изначально была так себе. Во-вторых, калибровать придется каждый раз под новую сеть, раз и навсегда таблицы в память не забить. Ну и форма синуса зависит вовсе не от вас, а от ООО «Сварщик каннибал» расположенную в соседнем цехе.

Так что 220 вольт от 110 вы еще отличите, а вот о точности хотя бы до 5 вольт можно позабыть. Но в некоторых случаях большего и не требуется.

Мне же внезапно потребовалось. Поэтому начинаем переделывать исходный проект, доставшийся мне от предшественника.

(далее…)

Read More »

Репетиторы по основам электроники в Москве

Популярные категории репетиторов физики: Подготовка к ЕГЭ Подготовка к ОГЭ (ГИА) Школьный курс Репетиторы на дом

У репетитора или ученика

У репетитора

У ученика

Дистанционно

Только с фото

Только с отзывами

Только проверенные

Студент

Аспирант

Школьный преподаватель

Преподаватель вуза

Частный преподаватель

Носитель языка

До года

1—5 лет

5—10 лет

Больше 10 лет

Мужчина

Женщина

До 30 лет

30—50 лет

Старше 50 лет


Статистика:

259 репетиторов

544 отзыва

Средняя оценка: 4,5 5 1

Найдено 259 репетиторов

Курс начинающего электронщика часть 2

Перевёл alexlevchenko для mozgochiny.ru

Представляю вашему вниманию вторую часть «Курса начинающего электронщика«.

Шаг 5: Цветовая маркировка резисторов

Мы уже познакомились с различными типами резисторов и характеристиками, что им свойственны. Однако, для того, чтобы использовать элемент по  прямому назначению необходимо точно знать величину сопротивления.

Значение сопротивления, допустимая мощность – обычно наноситься на сам резистор, как числа или буквы (это в том случае, когда размеры достаточно большие). Но когда элементы небольшого размера (углеродные или пленочные) спецификация должна отображаться иным способом, поскольку текст был бы не читаемый.

В таких случаях на поверхность наносят полосы, что указывают значения сопротивление и рассеиваемую мощность. Эти линии – цветовой код резисторов. Международная универсальная схема цветового кода была разработана много лет назад, как простой и быстрый способ идентификации резисторов независимо от того, какого они размера и состояния. Маркировка всегда читается слева направо (с широкой полосы), путем сопоставления цвета первой полоски с соответствующим номером в колонке цифр-цвета (это первая цифра значения сопротивления) и т.д.

Золотая или серебряная полоса (допуск) всегда является последней полосой. Кроме того можно измерить сопротивление мультиметром, ведь в некоторых случаях – это является единственным способом определения значения сопротивления (например, когда цветные полосы стёрты).

Резисторы поверхностного монтажа

Резисторы поверхностного монтажа или SMD резисторы — элементы прямоугольной формы, что предназначены для монтажа непосредственно на поверхность печатной платы. SMD резистор состоит из керамической подложки, на который нанесён толстый слой оксида металла. Значение сопротивления контролируется путем изменения желаемой толщины, длины или типа осажденной пленки. Благодаря металлическим клеммам  с обоих концов, элементы припаиваются непосредственно на печатную плату. SMD маркируются 3-мя или 4-мя цифрами (кодом) для обозначения заданного сопротивления. Стандартные резисторы SMD помечены кодом с тремя цифрами, в котором первые две цифры представляют первые два числа значения сопротивления, а третья цифра – множителем x1, x10, x100 и т.д. Например:

  • “103” = 10 × 1,000 Ом = 10 KΩ
  • “392” = 39 × 100 Ом = 3.9 KΩ
  • “563” = 56 × 1,000 Ом = 56 KΩ
  • “105” = 10 × 100,000 Ом = 1 MΩ

Резисторы поверхностного монтажа, у которых значение меньше, чем 100 Ом, обычно маркируются: “390”, “470”, “560” с заключительным нулём, представляющим множитель 10^0, который эквивалентен 1. Например: “390” = 39 × 1Ω = 39 Ом или 39RΩ “470” = 47 × 1Ω = 47 Ом или 47RΩ (значения сопротивления с буквой “R” обозначают положение десятичной запятой, например 4R7 = 4.7Ω). Резисторы поверхностного монтажа, которые имеют маркировку «000» или «0000» называются 0 Ом, поскольку эти элементы имеют нулевое сопротивление.

Шаг 6: Последовательно-параллельное соединение резисторов

Резисторы соединяются либо последовательно, либо параллельно. Для определения полного сопротивления «сборки» используется одно из двух уравнений.

При подключении резисторов последовательно их значения просто складывают. Так, например, если нужно получить сопротивление 12.33kΩ, берём резисторы на 12kΩ и 330Ω и соединяем их последовательно.

Расчёт величины сопротивления резисторов соединённых параллельно имеет немного другой вид (смотри рисунок).

Примеры применения резисторов:

Одно из основных применений резистора – ограничитель тока. Резистор является основным элементом, который не позволяет сгорать светодиодам (как пример) при подаче на них питания. При подключении резистора последовательно с LED, ток, протекающий через резистор, ограничивается до «безопасного значения». Обратите внимание на схему, приведенную ниже. Резистор R соединён последовательно со светодиодом.

Для расчета значения резистора необходимо рассматривать прямое напряжение (VF) и максимальный прямой ток (I). Прямое напряжение — напряжение, которое требуется для работы светодиода (варьируется между 1.7 В и 3.4 В в зависимости от цвета LED). Максимальный прямой ток для светодиодов обычно составляет около 20mA. Как только получено значение VF и тока, номинал резистора может быть вычислен согласно формуле:

R = (Vs — Vf) / I

где Vs – напряжение питания.

В нашем случае: 5-вольтовий источник питания, прямое напряжение – 1.8 В. Максимальный прямой ток светодиода 10mA (0,01 А):

R = (5 — 1.8) / 0,01 = 320 Ом.

Делители напряжения

Делитель напряжения – схема подключения резисторов, которая уменьшает величину напряжения. Используя всего два последовательно соединенных резистора, можно получить выходное напряжение, что будет лишь частью входного и будет зависеть от отношения этих двух резисторов.

Два резистора (R1 и R2) соединены последовательно, а источник напряжения (Vнар) подключён через них. Напряжение с Vвн может быть вычислено как:

Vвн = Vнар x R2 / (R1 + R2)

Например, если бы R1 был 1.7kΩ, и R2 был 3.3kΩ, то 5-вольтовое входное напряжение могло бы быть превращено в 3.3 В.

Нагрузочные резисторы (НР)

Нагрузочный резистор используется при необходимости смещения входного контакта микроконтроллера (MCU) к заданному состоянию. Один конец резистора соединён с контактом MCU, а другой конец соединен с высоким напряжением (обычно 5 В или 3.3 В).

Нагрузочные резисторы часто используются при взаимодействии через интерфейс с вводом переключателя или кнопкой. «НР» смещает входной контакт, когда переключатель открыт. Благодаря этому схема защищена от короткого замыкания.

Когда переключатель открыт, входной контакт MCU соединен через резистор с 5В. Когда ключ замкнут, входной вывод подключен непосредственно к GND (земле).

Значение нагрузочного резистора может быть неточным, но должно быть достаточно высоким (во избежании потери  мощности при пропускании через него 5В). Обычно значения составляет около 10kΩ.

Шаг 7: Конденсатор

Конденсатор немного похож на батарею, но выполняет свою работу по-другому. Батарея использует химреактивы, чтобы хранить электроэнергию и отдает её очень медленно (в случае кварцевых часов – несколько лет). Конденсатор обычно выпускает свою энергию намного быстрее — часто за секунду или меньше.

Есть много различных видов конденсаторов: от очень маленьких (используемых в резонансных схемах) до крупных конденсаторов (коррекции коэффициента мощности), но все они делают то же самое – они хранят заряд. Конденсатор состоит из двух или более параллельных проводящих (металлических) пластин, которые разделены либо воздухом либо изолирующим материалом (вощеная бумага, слюда, керамика, пластик или некоторые формы жидкого геля, который используется в электролитических конденсаторах). Изолирующий слой между пластинами конденсаторов обычно называют диэлектриком.

Конденсаторы и их ёмкость

Всю электроэнергию, которую может сохранить конденсатор, называют его ёмкостью. Ёмкость конденсатора немного походит на ведро: чем больше ведро, тем больше воды может оно вместить, чем больше ёмкость, тем более крупный заряд может сохранить конденсатор. Есть три способа увеличить емкость конденсатора:

  • Нужно увеличить размер пластин;
  • Нужно сдвинуть пластины «ближе» друг к другу;
  • Взять очень хороший изолятор.

Размер ёмкости измеряется в единицах, называемых фарадами (F). Один фарад — огромная ёмкость, поэтому на практике ёмкости большинства конденсаторов составляют обычно микрофарады (μF), нанофарады (nF) и пикофарады (pF).

По конструкции, конденсаторы бывают:

Электролитические

Тип конденсаторов, которые в качестве диэлектрика используют тонкую оксидную пленку, нанесенную на поверхность одного из электродов — анода, а в качестве второго электрода (обычно катода) используется электролит в форме желе или пасты.

Диэлектрик — очень тонкий слой окиси (толщиной меньше чем десять микрон), которая получается электрохимическим путем в процессе производства.

Большинство электролитических конденсаторов полярные. Это означает, что напряжение поступающее к выводам конденсатора, должно быть правильной полярности. Если её не соблюдать, то будет разрушен слой изолирующего оксида, а это в свою очередь приведёт к выходу из с строя элемента. У электролитов полярность отмечена знаком минус.

Электролитические конденсаторы обычно используются в цепях питания с постоянным током (из-за небольшого размера и большой ёмкости) для уменьшения пульсации напряжение. Один из основных недостатков электролитических конденсаторов — их относительно низковольтная оценка напряжения.

Электролитический конденсатор обычно маркируется:

  1. Значение ёмкости.
  2. Максимальное напряжение.
  3. Максимальная температура.
  4. Полярность.

Максимальное напряжение конденсатора

Максимальное напряжение – это напряжение, которое может быть приложено к конденсатору без повреждения его диэлектрического материала. Если прикладываемое напряжение, станет слишком большим, то диэлектрик прогорит (электрический пробой) и произойдет образование электрической дуги между конденсаторными пластинами, что приведёт к короткому замыканию. Рабочее напряжение конденсатора зависит от типа используемого диэлектрического материала и его толщины. Рабочее напряжение конденсатора – это максимальное напряжение постоянного тока, а НЕ максимальное напряжение переменного тока, поскольку конденсатор со значением напряжения постоянного тока 100 В не может быть использован при переменном напряжении 100 В. Так как у переменного среднеквадратическое значение 100 В, но пиковое значение более 141 В! Для того, чтобы конденсатор работал с переменным током 100 В, его рабочее напряжение должно быть по крайней мере 200 В. На практике при выборе конденсатора следует, чтобы рабочее напряжение было на 50 процентов больше, чем напряжение питания схемы.

Конденсаторы полиэфирные:

Полиэфирные конденсаторы — конденсаторы, состоящие из металлических пластин с полиэфирной плёнкой между ними или металлизированной плёнкой на изоляторе.

Полиэфирные конденсаторы доступны в диапазоне ёмкостей от 1 нФ до 15μФ, и с рабочими напряжениями от 50В до 1500В. Кроме того, они обладают высоким температурным коэффициентом. Их изоляция имеет высокую стойкость (являются хорошими вариантами для схем связи и хранения информации). По сравнению с большинством других типов, полиэфирные конденсаторы имеют более высокую ёмкость на единицу объёма.

Танталовые конденсаторы являются элементами, которые используют оксид тантала. Широко используются в миниатюрном оборудовании и компьютерах. Доступны как в полярном, так и неполярном исполнении. Хорошее отношение ёмкости к объёму, малый размер, хорошая стабильность, большой диапазон рабочих температур. Твёрдотельные танталовые конденсаторы имеют намного лучшие характеристики по сравнению с имеющими жидкий электролит.

Максимальное напряжение ограничено – 50 вольт. Взрываются при превышении допустимого тока, напряжения или скорости нарастания напряжения, а также при подаче напряжения неправильной полярности. В основном используются в аналоговых сигнальных системах, которые не имеют высокочастотных шумов.

Керамические конденсаторы:

Керамические конденсаторы (КК) имеют высокую диэлектрическую постоянную, небольшие габариты и высокую ёмкость. КК за счёт больших нелинейных изменений (ёмкости от температуры) используется в качестве разъединителя, поскольку КК не поляризованные. Значение ёмкости КК лежит в диапазоне от нескольких пикофарад до одного или двух мкФ, но их номинальное напряжение, как правило, довольно низкое. Керамические конденсаторы, как правило, имеют 3-значный код, который печатается на их корпусе. Емкость определяется в пикофарадах, первые две цифры указывают значение конденсатора, а третья цифра указывает на количество нулей, что должны быть добавлены. Например, керамический конденсатор с маркировкой 103 будет означать – 10 и 3 нуля пико-фарад, что эквивалентно 10000 пФ или 10nF. Аналогичным образом, цифры показывают, 104 – 10 и 4 нуля пико-фарад, что эквивалентно 100000 пФ или 100nF и так далее. На изображении керамический конденсатор со значением 154 – это значит 15 и 4 нуля пико-фарад, что эквивалентно 150000 пФ или 150nF или 0.15uF. Буквенные коды иногда используются, чтобы указать их значение допуска, такие как: J = 5%, K = 10%, или М = 20% и т.д.

Шаг 8: Дроссель/катушка индуктивности

Катушка индуктивности  — пассивный электронный компонент, что обладает высоким сопротивлением переменному току и малым сопротивлением постоянному. Она состоит из проволоки, плотно обмотанной вокруг твердого центрального ядра, которое концентрирует магнитный поток.

Катушка при протекании тока запасает энергию в создаваемом магнитном поле. При отключении внешнего источника, компонент отдаёт запасенную энергию, стремясь поддержать величину тока в цепи.

Стандартная единица индуктивности Генри, сокращённо Н. Это – общее название. Другое название — микрогенри, µH (1 µH =10^-6H) и милигенри mH (1 мГн =10^-3 H). Иногда, наногенри nH(1 nH = 10^-9 H).

Применения индукторов

Фильтры

Катушка индуктивность вместе с конденсаторами и резисторами используется для создания фильтров, цепей обратной связи, колебательных контуров. Катушка функционирует, как фильтр низких частот, так как импеданс (полное сопротивление переменному току) увеличивается, когда частота сигнала увеличивается.

Датчики

Бесконтактные датчики ценятся за их надежность и простоту работы, кроме того катушки могут использоваться для обнаружения магнитных полей или магнитопроницаемых материалов.

 

 

 

Индукторы также используются для беспроводной передачи тока и в электромеханическом реле.

Шаг 9: Диод

Диод — специализированный электронный компонент с двумя выводами, которые называются анодом и катодом. Большинство диодов сделано из полупроводниковых материалов, таких как кремний, германий или селен. Диоды могут использоваться в качестве выпрямителей, сигнальных ограничителей, стабилизаторов напряжения, переключателей, сигнальных модуляторов, сигнальных микшеров, сигнальных демодуляторов и осцилляторов.

Фундаментальное свойство диода — проводить электрический ток только в одном направлении.

Напряжение пробоя

Если приложить достаточно большое отрицательное напряжение к диоду, то ток потечёт в обратном направлении. Это большое отрицательное напряжение называют напряжением пробоя. Некоторые диоды фактически разработаны таким образом, чтобы работать в области пробоя, но для большинства диодов напряжение пробоя составляет около 50В-100В.

Типы диодов

Выпрямительный диод:

Используется в преобразователях переменного напряжения в постоянное.

Диоды Зенера (стабилитроны) — странные изгои диодной семьи. Они обычно используются, чтобы преднамеренно пропустить обратный ток.

Светодиоды:

Как и обычные диоды, светодиоды пропускают ток только в одном направлении и при этом излучают свет.

Фотодиод:

Фотодиоды используются для обнаружения излучения широкого спектра. Они могут быть использованы для выработки электроэнергии, в качестве солнечных батарей и даже в фотометрии.

Лазерный диод:

Этот диод производит когерентный свет. Такие элементы применяются в DVD и CD-приводах, лазерных указателях, и т.д. Лазерные диоды имеют ограниченный срок службы.

Продолжение следует….

(A-z Source)


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About alexlevchenko
Ценю в людях честность и открытость. Люблю мастерить разные самоделки. Нравится переводить статьи, ведь кроме того, что узнаешь что-то новое — ещё и даришь другим возможность окунуться в мир самоделок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *