Голос по проводам | Журнал Популярная Механика
После изобретения в 1833 году прообраза современных коммуникаций, электрического телеграфа, изобретатели стали думать над следующим шагом — передачей голоса. В 1854 году идею озвучил француз Шарль Бурсёль, предложивший свое устройство в виде «очень гибкой мембраны, способной регистрировать малейшие колебания».
По задумке изобретателя, такая мембрана замыкала и размыкала бы электрическую цепь, передавая звуковые колебания. Но дальше теории Бурсёль не пошел, поэтому первым человеком, которому удалось проверить эту схему на деле, стал немецкий преподаватель физики Иоганн Филипп Рейс. В 1860 году он продемонстрировал работающий аппарат, который с помощью вязальной спицы, мембраны из пергамента, платиновой фольги и пружинки замыкал и размыкал цепь в такт колебаниям воздуха и был способен передавать звук на расстояние с помощью электричества. Звук — но, увы, не речь! Если музыкальные тона еще более-менее можно было разобрать, то для передачи человеческой речи аппарат Рейса не годился.
В 1870-х свет увидели несколько усовершенствований телеграфа, позволившие передавать по одной паре проводов несколько независимых сообщений одновременно. Вдохновленные успехами «квадруплекса» Томаса Эдисона, многие изобретатели начали эксперименты с «гармоническим телеграфом». Сообщения передавались с помощью набора магнитных стерженьков, каждый из которых колебался со своей частотой. В число экспериментаторов входили Элиша Грей из Огайо и Александр Грэхем Белл из Бостона. Они практически одновременно создали работоспособную схему с использованием уже не размыкателя цепи, а элемента, способного изменять свое сопротивление непрерывно, — электрического провода, опущенного в проводящую жидкость. Оба изобретателя подали заявки на патент в один день — 14 февраля 1876 года, но Белл успел сделать это на пару часов раньше. В результате именно он получил 7 марта 1876 года патент № 174465 с формулировкой «Усовершенствование в области телеграфии».
Телефон быстро стал пользоваться успехом. Несмотря на скептицизм и многочисленные патентные споры, к 1880 году в США количество аппаратов уже перевалило за 30 000.
Изначально Элиша Грей не стал оспаривать решение о выдаче патента Беллу по совету своих юристов, которые посчитали это изобретение малозначительным по сравнению с дальнейшим усовершенствованием «гармонического телеграфа». Правда, позднее этот вопрос послужил причиной множества споров и судебных исков, хотя ни одно расследование не смогло опровергнуть приоритета Белла. Скорее всего, изобретатели независимо пришли к очень похожим решениям. К тому же Белл в своей заявке уделил основное внимание другой схеме — с использованием электромагнитов, фактически прообраза современных динамиков. А схему с проводящей жидкостью он использовал только один раз — чтобы продемонстрировать саму возможность передачи голоса с помощью электричества: 10 марта 1876 года Александр Грэхем Белл включил аппарат и сказал своему помощнику Томасу Уотсону, находившемуся в соседней комнате, фразу, вошедшую в историю техники: «Мистер Уотсон, подойдите ко мне, вы мне нужны!». О фразах, которые Элиша Грей сказал своим юристам, история умалчивает.
Беспроводная передача электричества по теории Тесла. Кто впервые передал звук на расстояние с помощью электричества
ГлавнаяРазноеКто впервые передал звук на расстояние с помощью электричестваБеспроводное электричество. Как это работает. Применение
Беспроводное электричество стало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.
На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.
Как это работает
Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.
Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.
1.Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.2.Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.3.При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.4.На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.
Принципы передачи
До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.
Эксперимент позволил передать на частоте 20 кГц:
- 209 Вт на 5 м;
- 471 Вт на 4 м;
- 1403 Вт на 3 м.
Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:
1.Лазерное излучение. Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
2.Микроволновое излучение. Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.
Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.
Особенности
1.Самая реалистичная из технологий — беспроводное электропитан
Передача электричества на расстоянии Википедия
Беспроводное зарядное устройство для мобильного телефона стандарта QiБеспроводна́я переда́ча электри́чества — способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи. К 2011 году имели место следующие успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 %: в 1975 году в обсерватории Goldstone (Калифорния) и в 1997 году в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до СВЧ).
История беспроводной передачи энергии[ | ]
Передача электричества на расстояние Википедия
Беспроводное зарядное устройство для мобильного телефона стандарта QiБеспроводна́я переда́ча электри́чества — способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи. К 2011 году имели место следующие успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 %: в 1975 году в обсерватории Goldstone (Калифорния) и в 1997 году в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до СВЧ).
История беспроводной передачи энергии[ | ]
Беспроводная передача электроэнергии на расстояния
Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта Сам Электрик мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.История развития
В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.
М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно закон Фарадея мы рассматривали в статье ранее.
Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.
Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.
Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:
Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.
Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.
Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.
Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:
- Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
- А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
- В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.
Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.
И к 1899 году Тесла приходит к выводу:
Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.
Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.
В наши дни
Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.
Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:
На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.
Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.
Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.
В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.
Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.
Рекомендуем просмотреть видео, на котором более подробно рассмотрен вопрос:
В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.
Похожие материалы:
Передача электроэнергии без проводов на растояние.
Передача электроэнергии без проводов, это способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи.
Беспроводная передача электроэнергии в наши дни
В период с 1961 по 1964 годы, эксперт в области СВЧ-электроники Вильям Браун экспериментировал в США. В 1964 году им было впервые испытано устройство (модель вертолета) способное принимать и использовать энергию СВЧ пучка в виде постоянного тока, благодаря антенной решётке, состоящей из полуволновых диполей, каждый из которых нагружен на высокоэффективные диоды Шоттки. Уже к 1976 году Вильям Браун осуществил передачу СВЧ-пучком мощности в 30 кВт на расстояние в 1,6 км с КПД превышающим 80%.
В 2010 году Haier Group, китайский производитель бытовой техники, представила на всеобщее обозрение на выставке CES 2010 свой уникальный продукт — полностью беспроводной LCD телевизор, основанный на данной технологии.
Из длинного перечня фантастических технических идей, реализованных сегодня, только мечта о беспроводной передаче электрической энергии продолжает оставаться неприступной. Подробные описания энергетических лучей в фантастических романах дразнят инженеров своей очевидной потребностью, и при этом практической невозможностью реализации. Но ситуация постепенно меняется к лучшему. С самого начала открытия электричества возникла проблема его передачи конечному потребителю. Развитие промышленного производства привело к резкому увеличению спроса на электроэнергию. Провода и столбы линий электрических передач стали неотъемлемым элементом пейзажей. Но только специалисты знают, сколько средств и усилий тратится на поддержание этих линий в работоспособном состоянии, и сколько энергии в них теряется.
Ископаемые ресурсы постепенно иссякают, и проблемы энергообеспечения настойчиво стучатся в двери энергетики. Современное человеческое общество вошло в эру освоения космоса, поэтому наши взгляды обращаются к очевидному источнику неисчерпаемой энергии – Солнцу. Этот термоядерный реактор миллиардами лет излучает фантастические количества энергии, малой части которой хватило бы человечеству на долгие годы.
Но одна «маленькая» проблема: как передать полученную энергию потребителю на Землю? С этого момента и начинается серьезный разговор о возможностях осчастливить человечество неограниченными ресурсами. Пока в перечне средств современных космических технологий есть два пути решения проблемы. Один связан с передачей энергии лазерными лучами на наземные приемные терминалы. Второй — с передачей энергии СВЧ-излучением.
Рассмотрим их более подробно
Передача энергии лазерным излучением сталкивается с несколькими принципиальными трудностями. Первая связана с эффективностью первичного преобразования излучения Солнца в когерентное лазерное излучение. А вторая упирается в КПД передачи энергии из космоса на Землю. По первой проблеме наметился прогресс: ученые из Японии сообщили о преобразовании энергии Солнца в излучение лазера с КПД, равным 42%.
Но передача электроэнергии на поверхность сопряжена с рядом задач, которые с трудом поддаются решению. Ослабление лазерного луча, диаметр которого у поверхности Земли может составлять сотни метров. Его интенсивность зависит от погодных условий, точности наведения на приемный терминал и еще массы параметров. Пролетающие самолеты или стаи птиц, попавших в силовой луч, исказят или ослабят его мощность. Если для самолета подобный инцидент пройдет незаметно, то птицы пострадают значительно: интенсивность излучения вблизи поверхности Земли будет в десятки раз мощнее полуденного Солнца.
Второй путь передачи энергии – это радиоволны СВЧ диапазона с частотами от 2,4 до 5,8ГГц. Здесь существует атмосферное «окно», в котором ослабление энергии минимально. Но приемная часть энергии очень сложна и требует разработки современных компонент антенны. По оценкам ученых, для передачи с высоты 36000 км (геостационарная орбита) мощности 5 МВт, потребуется передающая антенна размером 1 км и приемная в поперечнике 10 км. Такие сооружения в ближайшее время для человечества не по карману.
Беспроводная передача электроэнергии, новые технологии
В этой ситуации прогресс начался с другой стороны. Развитие современных средств связи и мобильных вычислительных устройств потребовало частой подзарядки их аккумуляторов. В принципе, особой проблемы это не представляет, особенно когда у вас одно или два таких устройства. Но если в семье или офисе их десятки, то непрерывный поиск зарядных блоков, совместимых с изделиями, отвлекает и раздражает.
По слухам, именно это обстоятельство натолкнуло Марина Солячича, сотрудника Массачусетского университета, на идею способа передачи энергии без проводов. После того, как его среди ночи несколько раз разбудил сигнал разряженного мобильного телефона, он решил серьезно заняться проблемой беспроводной зарядки своих мобильных устройств. В результате появилась совершенно новая технология передачи энергии из сети в мобильные устройства. Метод заключается в резонансном связывании с помощью магнитного поля приемника и передатчика. За непонятным названием и не менее неясным механизмом (метод запатентован и держится в секрете), скрывается способ передачи энергии без проводников с эффективностью более 40%. Технология получила название «WiTricity».
По заявлению авторов изобретения, это не «чистый» резонанс связанных контуров и не трансформатор Теслы, с индуктивной связью. Радиус передачи энергии на сегодня составляет чуть больше двух метров, в перспективе – до 5-7 метров. Сходные технологии лихорадочно разрабатываются и другими фирмами: компания Intel демонстрировала свою технологию WREL с КПД передачи энергии до 75%. В 2009 году фирма Sony продемонстрировала работу телевизора без сетевого подключения.
Настораживает только одно обстоятельство: независимо от способа передачи и технических ухищрений, плотность энергии и напряженность поля в помещениях должна быть достаточно высокой, чтоб питать устройства мощностью несколько десятков ватт. По признанию самих разработчиков, информации о биологическом воздействии на человека подобных систем пока нет. Учитывая недавнее появление, и разный подход к реализации устройств передачи энергии, подобные исследования еще только предстоят, а результаты появятся не скоро. А мы сможем судить об их негативном воздействии только косвенно. Что-то опять исчезнет из наших жилищ, как, например, тараканы.
Передача электроэнергии по Wi-Fi
Инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).
Передача электроэнергии. Технология передачи электроэнергии по Wi-Fi
На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем.
Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.
На вопрос о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.
Перспектива технологии PoWiFi
В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику, такую как кофеварки, кондиционеры, стиральные машины, чтобы управлять ими беспроводным способом. Такие датчики уже весьма распространены, они не требуют много энергии, а служат лишь для управления, поэтому со временем необходимость их подключения к традиционным источникам питания отпадет. Кто знает, может быть дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, инженеры не исключают такой возможности.
Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным.
И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии. Планы разработчиков, тем не менее, заключаются в том, чтобы улучшить систему PoWiFi. Повысить ее эффективность, используя многочисленные датчики на больших расстояниях, и таким образом масштабировать ее.
Уже в декабре 2015 года на конференции CoNEXT 2015 в Гейдельберге, Германия, Ассоциации по вычислительной технике был представлен итоговый документ по PoWiFi.
Так же читайте по теме:
Беспроводная зарядка для телефона. Как устроена и работает?
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Передача электроэнергии на расстояние: принцип передачи
Передача тока на расстоянии сегодня это основа работы всех электроприборов дома и в условиях производства. Поэтому при подробном изучении электрики такой момент, как передача электроэнергии на расстояние, актуален. Об этом и о том, какие имеются потери электроэнергии при передаче на большие расстояния, другом далее.
Параметры
Главными конструктивными параметрами воздушной линии является длина пролета со стрелой проводного провеса, расстоянием от проводника до поверхности земли, покрытием пересекаемых дорожных линий и другим инженерным сооружением.
Передача электроэнергии на расстояние
Длина в промежуточном пролете — промежуток вдоль токовой линии, образующийся между несколькими смежными опорами. Длина пролета зависит от того, какой тип опор с маркой, проводным сечением и климатическим районным условием используется.
Стрела проводного провеса — промежуток по вертикальной линии между линией, который соединяет крепежные проводные точки на несколько опор смежного типа и низшую провесную точку в пролете. Провес зависит от длины пролета.
Габарит воздушной линии электропередач — наименьший промежуток расстояния по вертикали от проводника до земли, озера, связи, шоссейной или железной дороги. Его регламентируют правила установки электропередач. Он зависит от того, какое имеется напряжение в сети.
Обратите внимание! Чтобы обеспечить нормальную работу и безопасное обслуживание воздушной линии, нужно при установке соответствовать установленным нормам. Так проводное расстояние должно быть не меньше шести метров в поселке до земли по вертикали. Расстояние от верха до низа может быть меньше на 3,5 метров или же на 1 метр. Промежуток по горизонтали от проводника до балкона, террасы, здания и глухих окон не меньше метра. Стоит указать, что электропередачи не проводятся над сооружениями.
Параметры электропередачи
Принцип передачи
Передается электроэнергия благодаря возникновению и передачи тока. Он, в свою очередь, образуется благодаря напряжению. Мощность — это произведение показателя напряжения на электроток. Поэтому при увеличении напряжения, необходимо уменьшение передаваемого тока и уменьшения проводного сечения, которое нужно, чтобы передавать данную мощность и удешевить линию.
Принцип передачи
Способы электропередачи на дальние расстояния
Осуществление передачи электрической энергии можно сделать при помощи прямой передачи и преобразования электричества в другую энергию. В первом случае электричество идет по проводниковым элементам, а именно проводу или токопроводящей среде. В воздушной или кабельной линии используется данный метод электропередачи.
Обратите внимание! Благодаря преобразованию энергии в другую энергию открывается беспроводной способ снабжения потребителей. Из-за этого пользователи могут отказаться от электрической передачи и избавиться от монтажа и обслуживания.
Стоит также указать, что передается электроэнергия благодаря индуктивной, резонансной индуктивной, емкостной, магнитодинамической связи, свч-излучению и оптическому излучению. При этом переносчиком всех этих способов является магнитное и электрическое поле, а также видимый свет с инфракрасным излучением и ультрафиолетовым излучением.
Способы электропередачи
Передача через катушки
Самым легко реализуемым способом передачи электроэнергии является использовать катушку индуктивности. Принцип подключения при этом простой. Ставится несколько катушек рядом друг с другом. На одну подается напряжение, а другая является приемником. При регулировании или изменении силы тока, вторая катушка также автоматическим способом видоизменяется. По закону физику, при этом будет появляться сила, которая будет напрямую зависеть от того, как изменяется поток электрической энергии.
Минусов в подобной передачи энергии много. Они заключаются в маленькой мощности, небольшом расстоянии и малом коэффициенте полезного действия.
Данный способ не позволяет передать большой объем энергии и подключить мощностное электрооборудование. При попытке совершения этого, можно просто поплавить все электрообмотки.
Кроме того, данным методом нельзя передавать энергию на десятки с сотней метров. Он обладает ограниченным действием. Для физического понимания ситуации, нужно взять несколько и прикинуть местоположение и дальности их разводки, чтобы перестало появляться притяжение или отталкивание. Примерно так эффективны катушки.
Обратите внимание! Еще одной проблемой данного метода является низкий коэффициент полезного действия. Подобный способ не дает передачи большой энергии на соответствующее расстояние.
Передача энергии через катушки
Лазерный способ
С помощью линии электропередач передать энергию можно на приличное расстояние. Однако из-за наличия атмосферы, которая хорошо потребляет лазерную энергию, необходимо устанавливать подобное оборудование в космосе.
Лазерная передача энергии
Микроволны
Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.
Микроволновая передача энергии
Схемы
На данный момент есть одноцепная, двухцепная или многоцепная схема электропередач. Одна из таких представлена на схеме ниже и может быть использована для обеспечения электроэнергией целого поселка или производственной станции. Другие схемы можно отыскать в гостах.
Схема электропередачи
В целом, электропередача энергии, благодаря которой функционирует вся домашняя и производственная сеть вместе с оборудованием, происходит катушками, лазером и микроволнами. Также есть способы перенаправления потока на дальние расстояния. Зависит это от длины проводов, стрелы их провеса, расстояния от земли и других факторов.