Кто и в каком году изобрел транзистор – Транзисторная история. Изобретение транзисторов и развитие полупроводниковой электроники

Содержание

История транзистора, часть 3: многократное переизобретение / Habr

Другие статьи цикла:
  • История реле
  • История электронных компьютеров
  • История транзистора
  • История интернета

Более сотни лет аналоговая собака виляла цифровым хвостом. Попытки расширить возможности наших органов чувств – зрения, слуха, и даже, в каком-то смысле, осязания, вели инженеров и учёных на поиски лучших компонентов для телеграфа, телефона, радио и радаров. Лишь по счастливой случайности эти поиски обнаружили путь к созданию новых типов цифровых машин. И я решил рассказать историю этой постоянной экзаптации, во время которой инженеры электросвязи поставляли исходные материалы для первых цифровых компьютеров, а иногда даже сами проектировали и создавали эти компьютеры.

Но к 1960-м годам это плодотворное сотрудничество подошло к концу, а с ним и моя история. Изготовителям цифрового оборудования уже не нужно было заглядывать в мир телеграфа, телефона и радио в поисках новых, улучшенных переключателей, поскольку сам транзистор обеспечил неисчерпаемый источник улучшений. Год за годом они копали всё глубже и глубже, всегда находя способы экспоненциально увеличивать скорость работы и уменьшать стоимость.


Однако ничего этого бы не произошло, если бы изобретение транзистора остановилось бы на работе Бардина и Бреттейна.

Медленный старт


В популярной прессе не наблюдалось активного энтузиазма в связи с объявлением лабораторий Белла об изобретении транзистора. 1 июля 1948 года в The New York Times этому событию отвели три абзаца внизу сводки «Новостей радио». Причём эта новость появилась после других, очевидно, считавшихся более важными: например, часового радиошоу «Время вальса», которое должно было появиться на NBC. Задним умом мы, возможно, захотим посмеяться, или даже побранить неизвестных авторов – как же они не смогли распознать перевернувшее мир событие?

Но взгляд в прошлое искажает восприятие, усиливая те сигналы, значимость которых нам известно, хотя в то время они терялись в море шума. Транзистор 1948 года сильно отличался от транзисторов компьютеров, на одном из которых вы читаете эту статью (если вы не решили её распечатать). Отличались так сильно, что, несмотря на одинаковое название, и связывающую их непрерывную линию наследования, их нужно считать разными видами, если не разными родами. У них разные составы, разная структура, разный принцип функционирования, не говоря уже о гигантском различии в размерах. Только благодаря постоянным повторным изобретениям неуклюжее устройство, сооружённое Бардином и Бреттейном, смогло преобразовать мир и нашу жизнь.

На самом деле, германиевый транзистор с одной точкой контакта не заслуживал внимания большего, чем получил. У него было несколько дефектов, унаследованных от электронной лампы. Он, конечно, был гораздо меньше самых компактных ламп. Отсутствие раскалённой нити означало, что он выдаёт меньше тепла, потребляет меньше энергии, не перегорает и не требует прогрева перед использованием.

Однако накопление грязи на контактной поверхности приводило к отказам и сводило на нет потенциал к более долгому сроку службы; он давал более шумный сигнал; работал только при низких мощностях и в узком диапазоне частот; отказывал при наличии жары, холода или влажности; и его не получалось производить единообразно. Несколько транзисторов, созданных одним и тем же способом одними и теми же людьми, обладали бы вызывающе разными электрическими характеристиками. И всё это сопровождалось стоимостью в восемь раз большей, чем у стандартной лампы.

Только к 1952 году лаборатории Белла (и другие владельцы патента) решили проблемы производства достаточно для того, чтобы транзисторы с одной точкой контакта стали практичными устройствами, и даже тогда они не особенно распространились дальше рынка слуховых аппаратов, на котором чувствительность к ценам была относительно низкой, а преимущества, касающиеся времени работы от аккумулятора, превышали недостатки.

Однако тогда уже начались первые попытки превратить транзистор в нечто лучшее и более полезное. Они вообще-то начались гораздо раньше того момента, когда общественность узнала о его существовании.

Амбиции Шокли


К концу 1947 года Билл Шокли в большом возбуждении предпринял поездку в Чикаго. У него были смутные идеи по поводу того, как превзойти недавно изобретённый Бардиным и Бреттейном транзистор, но ему пока не представилось шанса разработать их. Поэтому вместо того, чтобы наслаждаться перерывом между этапами в работе, он провёл Рождество и Новый год в отеле, заполнив порядка 20 страниц блокнота своими идеями. Среди них было предложение нового транзистора, состоящего из полупроводникового сэндвича – ломтика из германия p-типа между двумя кусочками n-типа.

Подбадриваемый наличием такого туза в рукаве, Шокли предъявил Бардину и Бреттейну претензии по их возвращению в Мюррей-Хилл, требуя всей славы за изобретение транзистора. Разве не его идея о полевом эффекте заставила Бардин и Бреттейна засесть в лаборатории? Разве не нужно из-за этого передать все права на патент ему? Однако хитрость Шокли вышла ему боком: патентные юристы лабораторий Белла выяснили, что неизвестный изобретатель, Юлий Эдгар Лилиенфельд, запатентовал полупроводниковый усилитель на полевом эффекте почти за 20 лет до этого, в 1930. Лилиенфельд, конечно, так и не воплотил свою идею, учитывая состояние материалов на то время, но риск пересечения был слишком велик – лучше было полностью избежать упоминания полевого эффекта в патенте.

Так что, хотя лаборатории Белла и выдали Шокли щедрую долю славы изобретателя, в патенте они упомянули только Бардина и Бреттейна. Однако, сделанного не воротишь: амбиции Шокли уничтожили его взаимоотношения с двумя подчинёнными. Бардин прекратил работу над транзистором, и сконцентрировался на сверхпроводимости. Он ушёл из лабораторий в 1951. Бреттейн остался там, но отказался вновь работать с Шокли, и настоял на перевод в другую группу.

Из-за неспособности работать с другими людьми Шокли так и не продвинулся в лабораториях, поэтому тоже ушёл оттуда. В 1956 он вернулся домой в Пало-Альто, чтобы основать собственную компанию по производству транзисторов, Shockley Semiconductor. Перед отъездом он расстался с женой Джин, когда она восстанавливалась от рака матки, и сошёлся с Эмми Леннинг, на которой вскоре женился. Но из двух половин его калифорнийской мечты – новая компания и новая жена – исполнилась лишь одна. В 1957 лучшие его инженеры, разгневанные его стилем управления и направлением, в котором он вёл компанию, ушли от него, чтобы основать новую фирму, Fairchild Semiconductor.


Шокли в 1956

Так что Шокли бросил пустую оболочку своей компании и устроился в департамент электротехники в Стэнфорде. Там он продолжал отталкивать от себя своих коллег (и своего старейшего друга, физика Фреда Зейтца) заинтересовавшими его теориями расового вырождения и расовой гигиены – темами, непопулярными в США со времени окончания последней войны, особенно в академических кругах. Он находил удовольствие в развязывании споров, взвинчивании СМИ и вызывании протестов. Он умер в 1989 году, отдалившись от детей и коллег, и посещаемый только вечно преданной ему второй женой, Эмми.

Хотя его жалкие попытки на поприще предпринимательства провалились, Шокли уронил зерно в плодотворную почву. Область залива Сан-Франциско произвела на свет множество небольших фирм, производящих электронику, которые сдабривало финансированием федеральное правительство во время войны. Fairchild Semiconductor, случайный отпрыск Шокли, породил десятки новых фирм, парочка которых известна и сегодня: Intel и Advanced Micro Devices (AMD). К началу 1970-х эта область заслужила насмешливое прозвище «Кремниевая долина». Но постойте-ка – ведь Бардин и Бреттейн создали германиевый транзистор. Откуда взялся кремний?


Так в 2009 году выглядело заброшенное место в Маунтин-Вью, где ранее находилась Shockley Semiconductor. Сегодня здание снесено.

К кремниевому перекрёстку


Судьба нового типа транзистора, придуманного Шокли в чикагском отеле, была гораздо счастливее, чем у его изобретателя. Всё благодаря стремлению одного человека выращивать единые чистые полупроводниковые кристаллы. Гордон Тил, физический химик из Техаса, изучавший бесполезный тогда германий для своей докторской, в 30-х годах устроился на работу в лаборатории Белла. Узнав о транзисторе, он уверился в том, что его надёжность и мощность можно значительно улучшить, создав его из чистого монокристалла, а не из использовавшихся тогда поликристаллических смесей. Шокли отверг его попытки, считая их бесполезной тратой ресурсов.

Однако Тил упорствовал и добился успеха, с помощью инженера-механика Джона Литла создав аппарат, достающий крохотный зародыш кристалла из расплавленного германия. Охлаждаясь вокруг зародыша, германий расширял его кристаллическую структуру, создавая непрерывную и почти чистую полупроводящую решётку. К весне 1949 года Тил и Литл могли создавать кристаллы по заказу, и испытания показали, что они оставляют далеко позади своих поликристаллических конкурентов. В частности, добавленные в них неосновные переносчики могли выживать внутри сотню микросекунд или даже дольше (против не более чем десяти микросекунд в других пробах кристаллов).

Теперь Тил мог позволить себе больше ресурсов, и набрал в свою команду больше людей, среди которых был ещё один физический химик, пришедший в лаборатории Белла из Техаса – Морган Спаркс. Они начали менять расплав для изготовления германия p-типа или n-типа, добавляя шарики соответствующих примесей. Ещё за год они усовершенствовали технологию до такой степени, что могли выращивать германиевый n-p-n сэндвич прямо в расплаве. И он работал именно так, как предсказывал Шокли: электрический сигнал материала p-типа модулировал электрический ток между двумя проводниками, соединёнными с окружающими его кусочками n-типа.


Морган Спаркс и Гордон Тил за верстаком в лабораториях Белла

Этот транзистор с выращенным переходом превзошёл своего предка с одним точечным контактом почти по всем статьям. В особенности, он стал более надёжным и предсказуемым, выдавал гораздо меньше шума (и, следовательно, был более чувствительным), и чрезвычайно энергоэффективным – потребляя в миллион раз меньше энергии, чем типичная электронная лампа. В июле 1951 года лаборатории Белла организовали ещё одну пресс-конференцию, чтобы объявить о новом изобретении. Ещё до того, как первый транзистор сумел выйти на рынок, он, по сути, уже стал несущественным.

И всё же это было лишь начало. В 1952 году General Electric (GE) объявила о разработке нового процесса создания транзисторов с переходом, сплавного метода. В его рамках два шарика индия (донор p-типа) сплавлялись с двух сторон тонкого ломтика из германия n-типа. Этот процесс был проще и дешевле, чем выращивание переходов в сплаве, такой транзистор давал меньше сопротивления и поддерживал большие частоты.


Выращенные и сплавные транзисторы

В следующем году Гордон Тил решил вернуться в свой родной штат, и устроился на работу в Texas Instruments (TI) в Далласе. Компания была основана под именем Geophysical Services, Inc., и сначала производила оборудование для разведывания нефтяных месторождений, TI открыла подразделение электроники во время войны, и теперь выходила на рынок транзисторов по лицензии от Western Electric (производственного подразделения лабораторий Белла).

Тил принёс с собой новые навыки, полученные в лабораториях: способность выращивать и легировать монокристаллы кремния. Самой очевидной слабостью германия была его чувствительность к температуре. Подвергаясь воздействию тепла, атомы германия в кристалле быстро сбрасывали свободные электроны, и он всё больше превращался в проводник. При температуре в 77 °C он вообще переставал работать, как транзистор. Главной целью продаж транзисторов были вооружённые силы – потенциальный потребитель с низкой ценовой чувствительностью и огромной потребностью в стабильных, надёжных и компактных электронных компонентах. Однако чувствительный к температуре германий не пригодился бы во многих случаях военного применения, особенно в аэрокосмической области.

Кремний был гораздо стабильнее, однако расплачиваться приходилось гораздо более высокой точкой плавления, сравнимой с точкой плавления стали. Это вызывало огромные трудности, учитывая, что для создания высококачественных транзисторов требовались очень чистые кристаллы. Горячий расплавленный кремний впитывал бы загрязнения из любого тигля, в котором бы находился. Тил с командой из TI сумели преодолеть эти трудности при помощи сверхчистых образцов кремния от DuPont. В мае 1954 на конференции института радиоинженеров в Дайтоне (Огайо) Тил продемонстрировал, что новые кремниевые устройства, произведённые в его лаборатории, продолжали работать, даже будучи погружёнными в горячее масло.

Успешные выскочки


Наконец, примерно через семь лет после первого изобретения транзистора, его можно было изготавливать из материала, с которым он стал синонимом. И ещё примерно столько же времени пройдёт до появления транзисторов, грубо напоминающих ту форму, что используется в наших микропроцессорах и чипах памяти.

В 1955 году учёные из лабораторий Белла успешно научились делать кремниевые транзисторы с новой технологией легирования – вместо того, чтобы добавлять твёрдые шарики примесей в жидкий расплав, они внедряли газообразные добавки в твёрдую поверхность полупроводника (термодиффузия). Тщательно контролируя температуру, давление и длительность процедуры, они достигали точно необходимой глубины и степени легирования. Усиление контроля над производственным процессом дало усиление контроля над электрическими свойствами конечного продукта. Что ещё важно, термодиффузия дала возможность производить продукт партиями – можно было легировать большую плиту кремния, а потом нарезать её на транзисторы. Военные обеспечили финансирование лабораторий Белла, поскольку на организацию производства требовались высокие предварительные траты. Им требовался новый продукт для ультравысокочастотной линии раннего радиолокационного обнаружения («линии Дью»), цепочке арктических радарных станций, предназначенных для обнаружения советских бомбардировщиков, летящих со стороны Северного полюса, и они готовы были выложить по $100 за транзистор (это были времена, когда новый автомобиль можно было купить за $2000).

Легирование вместе с фотолитографией, управлявшей расположением примесей, открыли возможность вытравливать весь контур целиком на одной полупроводниковой подложке – до этого одновременно додумались в Fairchild Semiconductor и Texas Instruments в 1959. «Планарная технология» от Fairchild использовала химическое осаждение металлических плёнок, соединяющих электрические контакты транзистора. Она избавляла от необходимости создания проводки вручную, уменьшала стоимость производства и увеличивала надёжность.

Наконец, в 1960-м два инженера из лабораторий Белла (Джон Аталла и Дэвон Кан) реализовали оригинальную концепцию Шокли транзистора на полевом эффекте. Тонкий слой оксида на поверхности полупроводника смог эффективно подавлять поверхностные состояния, в результате чего электрическое поле от алюминиевого затвора проникало внутрь кремния. Так родился MOSFET [metal-oxide semiconductor field-effect transistor] (или МОП-структура, от металл-оксид-полупроводник), который оказалось так легко миниатюризировать, и который до сих пор используется почти во всех современных компьютерах (интересно, что Аталла был родом из Египта, а Кан из Южной Кореи, и практически только эти двое инженеров из всей нашей истории не имеют европейских корней).

Наконец, спустя тринадцать лет после изобретения первого транзистора, появилось нечто, напоминающее транзистор вашего компьютера. Его было проще производить, он использовал меньше энергии, чем плоскостной транзистор, однако он довольно медленно реагировал на сигналы. Только после распространения крупных интегральных схем с сотнями или тысячами компонентов, расположенными на едином чипе, преимущества полевых транзисторов вышли на первый план.


Иллюстрация из патента на полевой транзистор

Полевой эффект стал последним серьёзным вкладом лабораторий Белла в разработку транзистора. Крупные производители электроники, такие, как лаборатории Белла (с их Western Electric), General Electric, Sylvania и Westinghouse наработали впечатляющий объём исследований полупроводников. С 1952 по 1965 только лаборатории Белла зарегистрировали более двух сотен патентов на эту тему. И всё же коммерческий рынок быстро перешёл в руки таких новых игроков, как Texas Instruments, Transitron и Fairchild.

Ранний рынок транзисторов был слишком маленьким для того, чтобы на него обращали внимание крупные игроки: порядка $18 млн в год в середине 1950-х, по сравнению с общим объёмом рынка электроники в $2 млрд. Однако исследовательские лаборатории этих гигантов служили непреднамеренными тренировочными лагерями, где молодые учёные могли впитывать знания, касающиеся полупроводников, чтобы после переходить к продаже своих услуг менее крупным фирмам. Когда рынок ламповой электроники в середине 1960-х начал серьёзно ужиматься, для лабораторий Белла, Westinghouse и остальных было уже слишком поздно состязаться с выскочками.

Переход компьютеров на транзисторы


В 1950-х транзисторы вторглись в мир электроники в четырёх наиболее значимых областях. Первыми двумя были слуховые аппараты и портативные радиоприёмники, в которых низкое энергопотребление, и, как следствие, долгая работа от батареи, пересиливали остальные соображения. Третьей было военное применение. Армия США возлагала большие надежды на транзисторы, как на надёжные и компактные компоненты, которые можно использовать везде, от полевого радио до баллистических ракет. Однако в первое время их траты на транзисторы больше были похожи на ставку на будущее технологии, чем на подтверждение их тогдашней ценности. И, наконец, были ещё цифровые вычисления.

В компьютерной области недостатки переключателей на электронных лампах были хорошо известны, причём некоторые скептики до войны даже считали, что электронный компьютер не удастся сделать практичным устройством. Когда тысячи ламп собирали в одном устройстве, они пожирали электроэнергию, выдавая огромное количество тепла, а в плане надёжности можно было положиться только на их регулярное выгорание. Поэтому мало потребляющий, холодный и не имеющий нити транзистор стал спасителем компьютерных производителей. Его недостатки как усилителя (к примеру, более шумный выходной сигнал) не представляли такой уж проблемы при использовании его в качестве переключателя. Единственным препятствием была стоимость, и в своё время она начнёт резко падать.

Все ранние американские эксперименты с транзисторными компьютерами происходили на пересечении желания военных изучить потенциал многообещающей новой технологии, и желания инженеров перейти на улучшенные переключатели.

В лабораториях Белла в 1954 году построили TRADIC для ВВС США, чтобы посмотреть, дадут ли транзисторы возможность установить цифровой компьютер на борту бомбардировщика, заменив им аналоговую навигацию и помощь в поиске целей. Лаборатория Линкольна из MIT разработала компьютер TX-0 в рамках обширного проекта ПВО в 1956. Машина использовала ещё один вариант транзистора, поверхностно-барьерный, хорошо подходивший для высокоскоростных вычислений. Philco построила свой компьютер SOLO по контракту с ВМФ (однако реально – по запросу АНБ), закончив его в 1958 (используя ещё один вариант поверхностно-барьерного транзистора).

В Западной Европе, не настолько обеспеченной ресурсами в ходе Холодной войны, история была совсем другой. Такие машины, как Manchester Transistor Computer, Harwell CADET (ещё одно название, вдохновлённое проектом ENIAC, и зашифрованное написанием задом наперёд), и австрийский Mailüfterl были побочными проектами, использовавшими ресурсы, которые их создатели могли наскрести – включая транзисторы с одной точкой контакта первого поколения.

Идёт множество споров по поводу титула первого компьютера, использовавшего транзисторы. Всё, конечно, упирается в выбор правильных определений таких слов, как «первый», «транзисторный» и «компьютер». В любом случае известно, где история заканчивается. Коммерциализация транзисторных компьютеров началась почти сразу. Год за годом компьютеры за одну и ту же цену становились всё более мощными, а компьютеры одной мощности становились всё дешевле, и этот процесс казался настолько неумолимым, что его возвели в ранг закона, рядом с гравитацией и сохранением энергии. Нужно ли нам спорить о том, какой камушек стал первым в обвале?

Откуда взялся закон Мура?


Приближаясь к окончанию истории переключателя, стоит задать вопрос: что привело к появлению этого обвала? Почему закон Мура существует (или существовал – поспорим об этом в другой раз)? Для самолётов или пылесосов закона Мура нет, как нет его для электронных ламп или реле.

Ответ состоит из двух частей:

  1. Логические свойства переключателя как категории артефакта.
  2. Возможность использовать чисто химические процессы для изготовления транзисторов.

Сначала о сути переключателя. Свойства большинства артефактов обязаны удовлетворять широкому спектру неумолимых физических ограничений. Пассажирский самолёт должен выдерживать общий вес множества людей. Пылесос должен уметь засасывать определённое количество грязи за определённое время с определённой физической площади. Самолёты и пылесосы будут бесполезными, если уменьшить их до наномасштабов.

У переключателя же – автоматического переключателя, которого никогда не касалась рука человека – физических ограничений гораздо меньше. У него должно быть два различных состояния, и он должен уметь сообщать другим таким же переключателям изменение их состояний. То есть, всё, что он должен уметь, это включаться и выключаться. Что же такого особенного в транзисторах? Почему другие виды цифровых переключателей не испытали таких экспоненциальных улучшений?

Тут мы подходим ко второму факту. Транзисторы можно изготавливать при помощи химических процессов без механического вмешательства. С самого начала ключевым элементом производства транзисторов было применение химических примесей. Затем появился планарный процесс, устранивший последний механический шаг из производства – присоединение проводов. В результате он избавился от последнего физического ограничения на миниатюризацию. Транзисторам уже не нужно было быть достаточно крупными для пальцев человека – или для любого механического устройства. Всё делала простая химия, на невообразимо маленьком масштабе: кислота для травления, свет для управления тем, какие части поверхности будут противостоять травлению, и пары для внедрения примесей и металлических плёнок на вытравленные дорожки.

А зачем вообще нужна миниатюризация? Уменьшение размера давало целую плеяду приятных побочных эффектов: увеличение скорости переключения, уменьшение потребления энергии и стоимости отдельных экземпляров. Эти мощные стимулы побудили всех заниматься поиском способов дальнейшего уменьшения переключателей. И полупроводниковая индустрия за время жизни одного человека перешла от изготовления переключателей размером с ноготь до упаковки десятков миллионов переключателей на квадратный миллиметр. От запроса восьми долларов за один переключатель до предложения двадцати миллионов переключателей за доллар.


Чип памяти Intel 1103 от 1971 года. Отдельные транзисторы, размером всего в десятки микрометров, уже неразличимы глазом. А с тех пор они уменьшились ещё в тысячу раз.

Что ещё почитать:


  • Ernest Bruan and Stuart MacDonald, Revolution in Miniature (1978)
  • Michael Riordan and Lillian Hoddeson, Crystal Fire (1997)
  • Joel Shurkin, Broken Genius (1997)

дата и история изобретения, принцип работы, назначение и применение

Кто создал первый транзистор? Этот вопрос волнует очень многих. Первый патент для полевого транзисторного принципа был оформлен в Канаде австро-венгерским физиком Юлием Эдгаром Лилиенфельдом 22 октября 1925 года, но Лилиенфельд не опубликовал никаких научных статей о своих устройствах, и его работа была проигнорирована промышленностью. Таким образом первый в мире транзистор канул в историю. В 1934 году немецкий физик доктор Оскар Хайль запатентовал другой полевой транзистор. Нет прямых доказательств того, что эти устройства были построены, но позже работа в 1990-х годах показала, что один из проектов Лилиенфельда работал так, как описано, и давал существенный результат. Ныне известным и общепринятым фактом считается то, что Уильям Шокли и его помощник Джеральд Пирсон создали рабочие версии аппаратов из патентов Лилиенфельда, о чем, разумеется, никогда не упоминали ни в одной из своих более поздних научных работ или исторических статей. Первые компьютеры на транзисторах, разумеется, были построены значительно позже.

Старый транзистор.

Лаборатория Белла

Лаборатория Белла работала на транзисторе, построенном для производства чрезвычайно чистых германиевых «кристальных» миксеров-диодов, используемых в радиолокационных установках в качестве элемента частотного микшера. Параллельно этому проекту существовало множество других, в их числе — транзистор на германиевых диодах. Ранние схемы на основе трубки не обладали функцией быстрого переключения, и вместо них команда Bell использовала твердотельные диоды. Первые компьютеры на транзисторах работали по похожему принципу.

Дальнейшие изыскания Шокли

После войны Шокли решил попытаться построить триодоподобное полупроводниковое устройство. Он обеспечил финансирование и лабораторное пространство, и затем стал разбираться с возникшей проблемой совместно с Бардином и Браттеном. Джон Бардин в конечном итоге разработал новую ветвь квантовой механики, известную как физика поверхности, чтобы объяснить свои первые неудачи, и этим ученым в конечном итоге удалось создать рабочее устройство.

Ключом к развитию транзистора стало дальнейшее понимание процесса подвижности электронов в полупроводнике. Было доказано, что если бы был какой-то способ контролировать поток электронов от эмиттера до коллектора этого вновь обнаруженного диода (обнаруженный 1874 г., запатентованный 1906 г.), можно было бы построить усилитель. Например, если поместить контакты по обе стороны от одного типа кристалла, ток не пройдет через него.

Модель первого транзистора.

На самом деле делать это оказалось очень сложно. Размер кристалла должен был бы быть более усредненным, а число предполагаемых электронов (или отверстий), которые необходимо было «впрыскивать», было очень большим, что сделало бы его менее полезным, чем усилитель, потому что для этого потребовался бы большой ток впрыска. Тем не менее вся идея кристаллического диода заключалась в том, что сам кристалл мог удерживать электроны на очень небольшом расстоянии, находясь при этом практически на грани истощения. По-видимому, ключ заключался в том, чтобы контакты ввода и вывода были очень близки друг к другу на поверхности кристалла.

Труды Браттена

Браттен начал работать над созданием такого устройства, и намеки на успех все также продолжали появляться, когда команда работала над проблемой. Изобретательство — сложная работа. Иногда система работает, но затем происходит очередной сбой. Порой результаты работы Браттена начинали неожиданно работать в воде, по-видимому, из-за ее высокой проводимости. Электроны в любой части кристалла мигрируют из-за близких зарядов. Электроны в эмиттерах или «дыры» в коллекторах аккумулировались непосредственно сверху кристалла, где и получают противоположный заряд, «плавающий» в воздухе (или воде). Однако их можно было оттолкнуть с поверхности с применением небольшого количества заряда из любого другого места на кристалле. Вместо того, чтобы потребовать большой запас инжектированных электронов, очень небольшое число в нужном месте на кристалле выполнит одно и то же.

Первый транзистор.

Новый опыт исследователей в какой-то степени помог решить ранее возникшую проблему небольшой контрольной области. Вместо необходимости использования двух отдельных полупроводников, соединенных общей, но крошечной областью, будет использоваться одна большая поверхность. Выходы эмиттера и коллектора были бы расположены сверху, а контрольный провод размещен на основании кристалла. Когда ток был применен к «базовому» выводу, электроны выталкивались бы через блок полупроводника и собирались на дальней поверхности. Пока излучатель и коллектор были очень близко расположены, это должно было бы обеспечивать достаточное количество электронов или дырок между ними, чтобы начать проведение.

Присоединение Брея

Ранним свидетелем этого явления был Ральф Брей, молодой аспирант. Он присоединился к разработке германиевого транзистора в Университете Пердью в ноябре 1943 года и получил сложную задачу измерения сопротивления рассеяния на контакте металл-полупроводник. Брей обнаружил множество аномалий, таких как внутренние барьеры высокого сопротивления в некоторых образцах германия. Наиболее любопытным явлением было исключительно низкое сопротивление, наблюдаемое при применении импульсов напряжения. Первые советские транзисторы разрабатывались на основе этих американских наработок.

Транзисторное радио.

Прорыв

16 декабря 1947 года, используя двухточечный контакт, был сделан контакт с поверхностью германия, анодированной до девяносто вольт, электролит смылся в H2O, а затем на нем выпало несколько золотых пятен. Золотые контакты были прижаты к голым поверхностям. Разделение между точками было около 4 × 10-3 см. Одна точка использовалась как сетка, а другая точка — как пластинка. Уклонение (DC) на сетке должно было быть положительным, чтобы получить усиление мощности напряжения на смещении пластины около пятнадцати вольт.

Изобретение первого транзистора

С историей сего чудомеханизма связано множество вопросов. Часть из них знакома читателю. К примеру: почему первые транзисторы СССР были PNP-типа? Ответ на этот вопрос кроется в продолжении всей этой истории. Браттен и Х. Р. Мур продемонстрировали нескольким коллегам и менеджерам в Bell Labs во второй половине дня 23 декабря 1947 года результат, которых они добились, потому этот день часто упоминается в качестве даты рождения транзистора. PNP-контактный германиевый транзистор работал в качестве речевого усилителя с коэффициентом усиления мощности 18. Это ответ на вопрос, почему первые транзисторы СССР были PNP-типа, ведь их закупили именно у американцев. В 1956 году Джон Бардин, Уолтер Хаузер Браттен и Уильям Брэдфорд Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие эффекта транзистора.

Музей транзисторов.

Двенадцать человек упоминаются как непосредственное участие в изобретении транзистора в лаборатории Bell.

Самые первые транзисторы в Европе

В то же время некоторые европейские ученые загорелись идеей твердотельных усилителей. В августе 1948 года немецкие физики Герберт Ф. Матаре и Генрих Велькер, работавшие в институте Compagnie des Freins et Signaux Westinghouse в Ольне-су-Буа, Франция, подали заявку на патент на усилитель, основанный на меньшинстве которые они назвали «транзистором». Поскольку Bell Labs не публиковал транзистор до июня 1948 года, транзистор считался независимо разработанным. Впервые Mataré наблюдала эффекты крутизны при производстве кремниевых диодов для немецкого радиолокационного оборудования во время Второй мировой войны. Транзисторы были коммерчески изготовлены для французской телефонной компании и военных, а в 1953 году на радиостанции в Дюссельдорфе была продемонстрирована твердотельная радиоприемник с четырьмя транзисторами.

Bell Telephone Laboratories нуждалось в названии для нового изобретения: Semiconductor Triode, Tried States Triode, Crystal Triode, Solid Triode и Iotatron были рассмотрены, но «транзистор», придуманный Джоном Р. Пирсом, был явным победителем внутреннего голосования (частично благодаря близости, которую инженеры Белла разработали для суффикса «-истор»).

Первая коммерческая линия по производству транзисторов в мире была на заводе Western Electric на Union Boulevard в Аллентауне, штат Пенсильвания. Производство началось 1 октября 1951 г. с точечного контактного германиевого транзистора.

Дальнейшее применение

Вплоть до начала 1950-х этот транзистор использовался во всех видах производства, но все еще существовали значительные проблемы, препятствующие его более широкому применению такие, как чувствительность к влаге и хрупкость проводов, прикрепленных к кристаллам германия.

Первый контактный транзистор.

Шокли часто обвиняли в плагиате из-за того, что его работы были очень приближены к трудам великого, но непризнанного венгерского инженера. Но адвокаты Bell Labs быстро уладили эту проблему.

Тем не менее Шокли был возмущен нападками со стороны критиков и решил продемонстрировать, кто был настоящим мозгом всей великой эпопеи по изобретению транзистора. Всего несколько месяцев спустя он изобрел совершенно новый тип транзистора, обладающего очень своеобразной «бутербродной структурой». Эта новая форма была значительно более надежной, чем хрупкая система точечного контакта, и в итоге именно она начала использоваться во всех транзисторах 60-х годов ХХ столетия. Вскоре она развилась в аппарат биполярного перехода, ставший основой для первого биполярного транзистора.

Статический индукционный прибор, первая концепция высокочастотного транзистора, был изобретен японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году и, наконец, смог создать экспериментальные прототипы в 1975 году. Это был самый быстрый транзистор в 80-е годы ХХ столетия.

Дальнейшие разработки включали в себя приборы с расширенным соединением, поверхностно-барьерный транзистор, диффузионный, тетродный и пентодный. Диффузионный кремниевый «меза-транзистор» был разработан в 1955 году в Bell и коммерчески доступен Fairchild Semiconductor в 1958 году. Пространство было типом транзистора, разработанного в 1950-х годах как улучшение по сравнению с точечным контактным транзистором и более поздним транзистором из сплава.

В 1953 году Филко разработал первый в мире высокочастотный поверхностно-барьерный прибор, который также был первым транзистором, подходящим для высокоскоростных компьютеров. Первое в мире транзисторное автомобильное радио, изготовленное Philco в 1955 году, использовало поверхностно-барьерные транзисторы в своей схеме.

Решение проблем и доработка

С решением проблем хрупкости осталась проблема чистоты. Создание германия требуемой чистоты оказалось серьезной проблемой и ограничило количество транзисторов, которые фактически работали из данной партии материала. Чувствительность германия к температуре также ограничивала его полезность.

Старый радио-транзистор.

Ученые предположили, что кремний будет легче изготовить, но мало кто изучил эту возможность. Morris Tanenbaum в Bell Laboratories были первыми, кто разработал рабочий кремниевый транзистор 26 января 1954 г. Несколько месяцев спустя, Гордон Тил, работающий самостоятельно в Texas Instruments, разработал аналогичное устройство. Оба эти устройства были сделаны путем контроля легирования кристаллов одного кремния, когда они выращивались из расплавленного кремния. Более высокий метод был разработан Моррисом Таненбаумом и Кальвином С. Фуллером в Bell Laboratories в начале 1955 года путем газовой диффузии донорных и акцепторных примесей в монокристаллические кремниевые кристаллы.

Полевые транзисторы

Полевой транзистор был впервые запатентован Юлисом Эдгаром Лилиенфельдом в 1926 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (транзисторы с полевым эффектом перехода [JFET]) были разработаны позднее, после того как эффект транзистора наблюдался и объяснялся командой Уильяма Шокли в Bell Labs в 1947 году, сразу же после истечения двадцатилетнего патентного периода.

Первым типом JFET был статический индукционный транзистор (SIT), изобретенный японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году. SIT — это тип JFET с короткой длиной канала. Полупроводниковый полевой транзистор (МОП-транзистор) из металла-оксида-полупроводника, который в значительной степени вытеснил JFET и оказал глубокое влияние на развитие электронной электронной техники, был изобретен Дауном Кахнгом и Мартином Аталлой в 1959 году.

Полевые транзисторы могут быть устройствами с мажоритарным зарядом, в которых ток переносится преимущественно мажоритарными носителями или устройствами с носителями меньших зарядов, в которых ток в основном обусловлен потоком неосновных носителей. Прибор состоит из активного канала, через который носители заряда, электроны или отверстия поступают из источника в канализацию. Концевые выводы источника и стока подключаются к полупроводнику через омические контакты. Проводимость канала является функцией потенциала, применяемого через клеммы затвора и источника. Этот принцип работы дал начало первым всеволновым транзисторам.

Все полевые транзисторы имеют клеммы источника, стока и затвора, которые примерно соответствуют эмиттеру, коллектору и базе BJT. Большинство полевых транзисторов имеют четвертый терминал, называемый корпусом, базой, массой или субстратом. Этот четвертый терминал служит для смещения транзистора в эксплуатацию. Редко приходится делать нетривиальное использование терминалов корпуса в схемах, но его присутствие важно при настройке физической компоновки интегральной схемы. Размер ворот, длина L на диаграмме, — это расстояние между источником и стоком. Ширина — это расширение транзистора в направлении, перпендикулярном поперечному сечению на диаграмме (т. е. в/из экрана). Обычно ширина намного больше, чем длина ворот. Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 до 30 ГГц.

Изобретение транзистора. Как был изобретен транзистор

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Изобретение транзистора

   Электронные лампы

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Изобретение транзистора

   Первый транзистор

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Изобретение транзистора
   Изобретение транзистора, Джон Бардин, Уильям Шокли и Уолтер Браттейн

За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Как это было, первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля.

В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» — огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радио-лаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода. 

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

Изобретение транзистора

   Изобретение транзистора

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния (обычный песок на пляже) в природе безграничны, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого — в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век».

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

Изобретение транзистора
   Изобретение транзистора на основе графена

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

Видео

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

1947 год — демонстрация первого транзистора — История — EADaily

23 декабря 1947 года опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph провело презентацию полупроводникового биполярного усилительного прибора. Этот день стал считаться датой рождения транзистора.

Транзистор — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Используется для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Первый действующий биполярный транзистор создали американские физики Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs. Работы велись с 1945 года, и после двух лет неудач долгожданное открытие было сделано благодаря нелепой случайности.

16 декабря 1947 года Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала.

Спустя неделю — 23 декабря 1947 года — состоялось официальное представление изобретения. Действующий макет биполярного транзистора был представлен руководству головной компании. Именно эта дата считается днём изобретения транзистора.

В 1956 году ученые были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Название для нового устройства придумал американский инженер и писатель-фантаст Джон Пирс. Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде.

30 июня 1948 г. в штаб-квартире фирмы American Telephone and Telegraph в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был собран радиоприемник.

И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики.

Однако позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.

Также в этот день:

1914 год — в России возникла Дальняя авиация

1900 год — первая в мире звуковая радиопередача

Кто создал транзистор и в каком году. Кто изобрел транзистор

1956 год. В Стокгольмском концертом зале три американских ученых Джон Бардин, Вильям Шокли и Уолтер Браттейн получают Нобелевскую премию «за исследования полупроводников и открытие транзисторного эффекта» — настоящий прорыв в области физики. Отныне их имена навсегда вписаны в мировую науку. Но более чем за 15 лет до этого, в начале 1941 года молодой украинский ученый Вадим Лашкарев экспериментально обнаружил и описал в своей статье физическое явление, которое, как оказалось, впоследствии получило название p-n переход (p-positive, n-negative). Он же в своей статье раскрыл и механизм инжекции — важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы.

Официально история транзистора звучит так: первое сообщение в печати о появлении полупроводникового усилителя-транзистора появилось в американской прессе в июле 1948 года. Его изобретатели – американские ученые Бардин и Браттейн. Они пошли по пути создания так называемого точечного транзистора на базе кристалла германия n-типа. Первый обнадеживающий результат они получили в конце 1947 г. Однако прибор вел себя неустойчиво, его характеристики отличались непредсказуемостью, и поэтому практического применения точечный транзистор не получил.

Прорыв произошел в 1951 году, когда Вильям Шокли создал свой более надежный плоскостной транзистор n-p-n типа, который состоял из трех слоев германия n, p и n типа, общей толщиной 1 см. Уже через несколько лет значимость изобретения американских ученых стала очевидной, и они были отмечены Нобелевской премией.

Задолго до этого, еще перед началом Великой Отечественной войны в 1941 году Лашкарев проводит серию успешных экспериментов и открывает р-n переход и раскрывает механизм электронно-дырочной диффузии, на основе которых под его руководством в начале 50-х годов, были созданы первые в Украине (тогда часть СССР) полупроводниковые триоды — транзисторы.

Говоря научным языком, p-n переход – это область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрическая проводимость материала зависит от того, насколько прочно ядра его атомов удерживают электроны. Так, большинство металлов являются хорошими проводниками, поскольку имеют огромное количество слабосвязанных с атомным ядром электронов, которые легко притягиваются положительными зарядами и отталкиваются отрицательными. Движущиеся электроны и есть носители электрического тока. С другой стороны, изоляторы, не пропускают ток, так как электроны в них прочно связаны с атомами и не реагируют на воздействие внешнего электрического поля.

Полупроводники ведут себя иначе. Атомы в кристаллах полупроводников образуют решетку, внешние электроны которой связаны силами химической природы. В чистом виде полупроводники подобны изоляторам: они или плохо проводят ток, или не проводят вообще. Но стоит добавить в кристаллическую решетку небольшое количество атомов определенных элементов (примесей), как их поведение кардинально меняется.

В некоторых случаях атомы примеси связываются с атомами полупроводника, образуя лишние электроны, избыток свободных электронов придает полупроводнику отрицательный заряд. В других случаях атомы примеси создают так называемые «дырки», способные «поглощать» электроны. Таким образом возникает недостаток электронов и полупроводник становится положительно заряженным. При соответствующих условиях полупроводники могут проводить электрический ток. Но в отличие от металлов они проводят его двояким образом. Отрицательно заряженный полупроводник стремится избавиться от лишних электронов, это проводимость n-типа (от negative — отрицательный). Носителями заряда в полупроводниках такого типа являются электроны. С другой стороны, положительно заряженные полупроводники притягивают электроны, заполняя «дырки». Но, когда заполняется одна «дырка» рядом возникает другая — покинутая электроном. Таким образом, «дырки» создают поток положительного заряда, который направлен в сторону, противоположную движению электронов. Это проводимость р-типа (от positive — положительный). В полупроводниках обоих типов так называемые не основные носители заряда (электроны в полупроводниках р-типа и «дырки» в полупроводниках п-типа) поддерживают ток в направлении, обратном движению основных носителей заряда.

Внесение примесей в кристаллы германия или кремния позволяет создать полупроводниковые материалы с желаемыми электрическими свойствами. Например, введение незначительного количества фосфора порождает свободные электроны, и полупроводник приобретает проводимость n-типа. Добавление атомов бора, наоборот, создает дырки, и материал становится полупроводником р-типа.

В дальнейшем оказалось, что полупроводник, в который введены примеси, обретает свойство пропускать электрический ток, т.е. обладает проводимостью, величина которой может при определенном воздействии изменяется в широких пределах.

Когда в США был найден способ для осуществления такого воздействия электрическим путем, появился транзистор (от первоначального названия трансрезистор). Тот факт, что 1941 году Лашкарев опубликовал результаты своих открытий в статьях «Исследование запирающих слоев методом термозонда» и «Влияние примесей на вентильный фотоэффект в закиси меди» (в соавторстве со своей коллегой К.М. Косоноговой), в связи с военным временем не попал в поле зрения научного мира. Предположительно, начавшаяся «холодная война» и опустившийся на Советский Союз «железный занавес» сыграли свою роль в том, что Лашкарев так и не стал Нобелевским лауреатом. Кстати сказать, Лашкарев разработал, находясь в Сибири во время войны, купроксные диоды, которые применялись в армейских радиостанциях и добился их промышленного выпуска.

В дополнение к двум первым работам, Лашкарев в соавторстве с В.И.Ляшенко в 1950 году опубликовал статью «Электронные состояния на поверхности полупроводника», в которой были описаны результаты исследований поверхностных явлений в полупроводниках, ставшие основой работы интегральных схем на базе полевых транзисторов.

В 50-е годы Лашкареву также удалось решить проблему массовой выбраковки монокристаллов германия. Он по новому сформулировал технические требования к этому элементу, так как предыдущие были неоправданно завышены. Тщательные исследования, проведенные Лашкаревым и Миселюком в Институте физики А

История транзистора — Мастерок.жж.рф — LiveJournal

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Рождение твердотельной электроники можно отнести к 1833 году. Именно тогда Майкл Фарадей, экспериментируя с сульфидом серебра, обнаружил, что проводимость данного вещества (а это был, как мы теперь называем, полупроводник) растет с повышением температуры, в противоположность проводимости металлов, которая в данном случае уменьшается. Почему так происходит? С чем это связано? На эти вопросы Фарадей ответить не смог.
Тонкий металлический проводник, с помощью которого осуществлялся контакт с поверхностью кристалла, внешне очень напоминал кошачий ус.

Кристаллический детектор Пикарда так и стали называть —кошачий ус.

Чтобы вдохнуть жизнь в детектор Пикарда и заставить его устойчиво работать, требовалось найти наиболее чувствительную точку на поверхности кристалла. Сделать это было непросто. На свет появляется множество хитроумных конструкций кошачего уса облегчающих поиск заветной точки, но стремительный выход на авансцену радиотехники электронных ламп надолго отправляет детектор Пикарда за кулисы.

И все же кошачий ус намного проще и меньше вакуумных диодов, к тому же намного эффективнее на высоких частотах. А что если заменить вакуумный триод, на котором была основана вся радиоэлектроника того времени, на полупроводник? Возможно ли это? В начале ХХ века подобный вопрос не давал покоя многим ученым.

Советская Россия. 1918 год. По личному распоряжению Ленина в Нижнем Новгороде создается радиотехническая лаборатория. Новая власть остро нуждается в беспроволочной телеграфной связи. К работе в лаборатории привлекаются лучшие радиоинженеры того времени — М. А. Бонч-Бруевич, В. П. Вологдин, В. К. Лебединский, В. В. Татаринов и многие другие. Приезжает в Нижний Новгород и Олег Лосев.

После окончания Тверского реального училища в 1920 году и неудачного поступления в Московский институт связи Лосев согласен на любую работу, только бы приняли в лабораторию. Его берут посыльным. Общежития посыльным не полагается.

17-летний Лосев готов жить в помещении лаборатории, на лестничной площадке перед чердаком, только бы заниматься любимым делом.

С раннего возраста он страстно увлекался радиосвязью. В годы Первой мировой войны в Твери была построена радиоприемная станция. В ее задачи входило принимать сообщения от союзников России по Антанте и далее по телеграфу передавать их в Петроград. Лосев часто бывал на радиостанции, знал многих сотрудников, помогал им и не мыслил свою дальнейшую жизнь без радиотехники. В Нижнем Новгороде у него не было ни семьи, ни нормального быта, но было главное — возможность общаться со специалистами в области радиосвязи, перенимать их опыт и знания. После выполнения необходимых работ в лаборатории ему разрешали заниматься самостоятельным экспериментированием.

В то время интерес к кристаллическим детекторам практически отсутствовал. В лаборатории никто особо не занимался этой темой. Приоритет в исследованиях был отдан радиолампам. Лосеву очень хотелось работать самостоятельно. Перспектива получить ограниченный участок работы по лампам его никак не вдохновляет. Может быть, именно по этой причине он выбирает для своих исследований кристаллический детектор. Его цель — усовершенствовать детектор, сделать его более чувствительным и стабильным в работе. Приступая к экспериментам, Лосев ошибочно предполагал, что в связи с тем, что некоторые контакты между металлом и кристаллом не подчиняются закону Ома, то вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания.

В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно, должен обязательно присутствовать падающий участок. Любой грамотный специалист не стал бы ожидать усиления от детектора. Но вчерашний школьник ничего этого не знает. Он меняет кристаллы, материал иглы, аккуратно фиксирует получаемые результаты и в один прекрасный день обнаруживает искомые активные точки у кристаллов, которые обеспечивают генерацию высокочастотных сигналов.

Все с детства знают, что то-то и то-то невозможно, но всегда находится невежда, который этого не знает, он-то и делает открытие — шутил Эйнштейн.
Свои первые исследования генераторных кристаллов Лосев производил на простейшей схеме.

Испытав большое количество кристаллических детекторов, Лосев выяснил, что лучше всего генерируют колебания кристаллы цинкита, подвергнутые специальной обработке. Для получения качественных материалов он разрабатывает технологию приготовления цинкита методом сплавливания в электрической дуге естественных кристаллов. При паре цинкит — угольное острие, при подаче напряжения в10 В получался радиосигнал с длиной волны 68 м. При снижении генерации реализуется усилительный режим детектора.

Первыми изобретенными транзисторами, как ни странно, были полевые. Австро-венгерский физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевого транзистора, который основан на электростатическом эффекте поля. Полевые транзисторы намного опередили биполярные, может быть из-за более простого принципа их работы. Сам полевой транзистор был запатентован в 1934 году немецким физиком Оскаром Хейлом.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» — огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радиолаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).
Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния в природе очень большие, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого — в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Поначалу при производстве транзисторов лишь каждый пятый получался не бракованным, но технология быстро развивалась. Уже в 1953 году вышел первый транзисторный слуховой аппарат, который ознаменовал начало коммерческого применения нового радиоэлемента. Через год в продажу поступил транзисторный радиоприемник.

В 1956 году Джон Бардин, Уильям Шокли и Уолтер Брайтейн были удостоены нобелевской премии за свое открытие. В 1958 году, когда пара транзисторов была помещена на один кремниевый кристалл, в мире появилась первая интегральная схема. Сегодня на одном кристалле их помещается более миллиарда.

С изобретением транзистора маховик научно-технического прогресса был запущен с новой силой. В 1960 году Sony выпустила портативный телевизор. В 1971 появился карманный калькулятор. В 1983 году с изобретением мобильного телефона началась эра мобильной связи.

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

[источники]Источники:
http://scsiexplorer.com.ua/index.php/istoria-otkritiy/601-istorija-tranzistora.html
http://electrik.info/main/fakty/622-istoriya-tranzistorov.html
http://www.kit-e.ru/articles/elcomp/2006_9_198.php 

История изобретения транзистора

Транзисторы и его путь изобретения

Мы все знаем, что «транзистор» является неотъемлемой частью любой электронной цепи или устройства. Очень редко можно увидеть схемы, построенные по крайней мере без одного транзистора. Это полупроводниковый прибор используется для целей переключения или для целей усиления в электронных устройствах. Они бывают в отдельном корпусе или в сочетании с интегральными микросхемами. Транзисторы бывают двух типов PNP и NPN. Наиболее часто используются транзисторы NPN.

В этой статье позволяет искать глубоко в интересную историю изобретения транзистора. Также имеется статья по Истории изобретения соединения PN.

Родители транзисторов

22 октября 1925 Австрийск-Венгерский физик, Юлиуса Эдгара Лилиенфельда записал первый патент для транзисторов в Канаде. Но, как он не сделал каких-либо научных публикаций относительно изобретения транзистора, отрасли игнорировать его работу. Тем не менее он имел большую роль в изобретении полевой транзистор. После работ Джулиус, в 1934, немецкий физик, Оскар Хайль отмечен другой патент на полевой транзистор. Хотя не выводы были сделаны в то время, позже исследования показывают, что Юлий Лилиенфельд транзистор дал отличный результат и получить. Джон Бардин, Уильям Брэдфорд Шокли и Уолтер Браттейн сделал параллельных исследований с Германий.

560px-Julius_Edgar_Lilienfeld_1881-1963Какова была необходимость?

Вы можете догадаться, что сделали эти люди работают так религиозно на транзисторы? Есть роль, которую играет кристаллах германий позади экрана! Конечная цель исследований было производить чистый Германий кристалл диода смеситель, который был использован в РЛС. Эти радары служил цели смеситель частоты.

Достижение с Германий

Университет Пердью доказал успех в производстве чистого и Германий стандарт качества полупроводниковых кристаллов. Как трубка на основе технологии не достаточно быстро, они пытались с полупроводниковые диоды. Узнать больше о этот диод, они пытались, оформляя триод; Однако они нашли этот процесс будет очень утомительным.

Bardeen_Shockley_Brattain_1948

Достижений с триода

Джон Бардин развитые поверхности физика, которая является результатом исследований и странное поведение предыдущего исследования. Бардин и Браттейн удалось сделать работы устройства и затем Шокли попытался разработать устройство полупроводникового триода на основе.

Что является базой для изобретения?

Принцип изобретения транзистора лежит на понимание подвижность электронов. Если поток электронов от эмиттера к коллектору может контролироваться одним так или иначе, усилитель может быть построен диода! Это казалось очень сложно, но Браттейн сделал шаг. Когда команда работает на создание такого устройства, было много недостатков в исследованиях. Во времена работала система, и иногда он неожиданно перестал работать.

И какие могут быть решения?

Если есть проблема, должно быть решение. Когда не работает настройка был помещен на воде, к счастью, он начал работать! Из-за чистой обвинения будет двигаться электроны в любой одной части кристаллов. Как противоположными зарядами, более вероятно, чтобы привлечь, электроны в излучателей и отверстия в коллекторы, как правило, двигаться в направлении поверхности кристалла. Противоположный заряд был получен из воздуха или воды. Эти чистые расходы могут быть легко оттеснили от применения очень мало количество заряда от часть кристалла. Максимальная инъекции электронов, что было необходимо промыть обвинения тогда был заменен с минимальным запасом электронов. Таким образом понимание исследователи проложили путь для решения проблемы. Нет никакой необходимости двух отдельных или отдельных полупроводники; Вместо этого немного больше одной поверхности может использоваться в качестве замены.

Новая система

В новом изобретении эмиттер и коллектор были расположены в верхней части которой были близко друг к другу и свинца управления был сделан на базе кристалл. На применении текущего, электронов или дырок от эмиттеров и коллекторов были очищены, по всему полу дирижер и они были собраны в дальнем конце поверхности кристалла.

Первый когда-либо транзистор

Replica-of-first-transistor

Хотя есть множество эволюций транзистора, первый транзистор был сделан после многих неудач. BELL laboratories телефон пытался на этот процесс и сталкиваются с нет успех. Изобретение транзистора точки контакт-это еще одна интересная история. Было установлено, что, когда контакты были более тесно, системы или Настройка стала еще более хрупким. Золото катушки был вставлен в конце пластиковый клин. Затем он был сокращен с помощью бритвы на кончике. В результате два близко расположенных червонцев. Было установлено, что тока начали поступать когда напряжения был применен на другой стороне кристалла, после того, как пластик был толкаемых вниз поверхность этого кристалла. Таким образом был изобретен транзистор контактной точки.

Это было 16 декабря 1947 года, было сделано двойной точкой контакта транзистор, создавая контакт с поверхностью Германий. Этот Германий был ранее анодированного до 90 вольт и несколько золотых пятен были испарялась. При нажатии золотые пятна на голой поверхности, на золото был установлен связаться поверхности идеально. Вопросы были разделены на расстоянии около 4 X 10-3 см. Среди две точки одна была использована как сетки и другой был использован как плита. Браттейн и Мур показал набор до несколько их коллег и изобретение транзистора было объявлено на 23РД декабря 1947 года.

Уильям Брэдфорд Шокли, Джон Бардин и Уолтер Хаузер Браттейн были награждены Нобелевской премией в 1956 году для этого преобразования жизни исследования на полупроводниках и их открытия (вместо изобретения) транзистора.

Помимо Уильям Брэдфорд Шокли, Джон Бардин и Браттейн, Уолтер Хаузер двенадцать больше людей сказали принимать непосредственное участие в изобретении транзисторов.

Transistron

В 1948 году Герберт Matare и Генрих Уэлкер применяется для патента на прочной основе транзисторов, которые назывались transistrons. Поскольку там не было каких-либо объявление от Белл, было объявлено, что transistrons были разработаны независимо друг от друга. Эти transistrons были коммерчески изготовлено и был использован в французской телефонной компании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *