Кто и в каком году изобрел транзистор: Как был изобретен транзистор | В мире музыки

Содержание

Как был изобретен транзистор | В мире музыки

УВЕРЕННАЯ ПОСТУПЬ ТРАНЗИСТОРА

 

С 17 ноября до 23 декабря 1947 года ученые Уильям Шокли, Уолтер Браттейн и Джон Бардин проводили эксперименты по исследованию полупроводников, в результате которых был изобретен «полупроводниковый триод», а 30 июня 1948 года Bell Laboratories официально представила это изобретение публике на прес-конференции, сменив слишком длинное название на более емкое транзистор. Именно эту дату принято считать днем изобретения транзистора. Но великий поход в «страну Полупроводников» начался еще в 1833, когда Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. И только через 125 лет в Америке на основе другого полупроводника, германия, была создана микросхема.

Новое изобретение

О первой демонстрации транзистора газета «New York Times» сообщила 1 июля 1948 года на предпоследней странице: «Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием

«транзистор», его в некоторых случаях можно использовать в области радиотехники вместо электронных ламп. Было также показано его использование в телефонной системе и телевизионном устройстве. В каждом из этих случаев транзистор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны».

Транзисторный магнитофон Комета МГ-209

Новость, по мнению редактора, не походила на сенсацию. Публика не проявила поначалу интереса к новому прибору, и Bell пыталась продвинуть новинку, раздавая лицензии на использование

транзистора всем желающим. А инвесторы между тем делали миллионные вложения в радиолампы, которые после тридцати лет развития переживали бум, – конец ему положит именно новое изобретение.

Потесненная лампа

До середины ХХ века казалось, что электронная лампа навсегда заняла место в радиоэлектронике. Она работала везде: в радиоприемниках и телевизорах, магнитофонах и радарах. Радиоэлектронная лампа сильно потеснила кристаллический детектор Брауна, оставив ему место только в детекторных приемниках. Удалось ей также составить конкуренцию и кристадину Лосева, – это был прообраз будущих полупроводниковых

транзисторов.

Копия первого в мире работающего транзистора

Но у лампы был большой недостаток – ограниченный срок службы. Необходимость создания нового элемента с неограниченным временем действия становилась в радиоэлектронике все острее. Но, как не парадоксально, разработка полупроводниковых приборов тормозилась, кроме объективных причин, еще и субъективными – инерцией мышления самих ученых. Достаточно сказать, что лабораторию американской компании «Bell telefon», где проводились исследования со сверхчистым германием, коллеги пренебрежительно называли «хижиной ненужных материалов».

Давние конкуренты

Эксперты, впервые увидев пластинку германия с присоединенными к ней проводниками, заявили: «Такой примитив никогда не сможет заменить лампу». И все же, не обращая внимания на все преграды, 30 июня 1948 года компания «Bell telefon» впервые публично продемонстрировала твердотельный усилитель – точечный

транзистор. Его годом раньше разработали сотрудники Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли.

Транзисторный радиоприемник 1959 года

На вопрос журналиста: «Как вы этого достигли?», Уильям Шокли ответил: «Транзистор создан в результате соединения человеческих усилий, потребностей и обстоятельств».

Название «транзистор» происходит от английского слова TRANsferreSISTance, а окончание слова – «OR« соответствует раннее появившимся радиоэлементам – «термистор и варистор» и дал его Джон Пирс. В основе названия заложен тот факт, что прибором можно управлять путем изменения его сопротивления.

Бардин Шокли и Браттейн в лаборатории Bell, 1948

В 1956 году трем американским ученым за это открытие была присуждена Нобелевская премия в области физики. Интересно, что когда Джон Бардин опоздал на пресс-конференцию по поводу присуждения ему этой премии, то войдя в зал, в свое оправдание сказал: «Прошу извинить меня, но я не виноват, так как не мог попасть в гараж: отказал транзистор

в электронном замке».

Транзисторы в музыке

Уильям Шокли не остановился на достигнутом и разработал еще несколько новых типов транзисторов. К этим трудам своего сотрудника эксперты компании проявили скепсис. Более дальновидными оказались специалисты японской фирмы «SONY», она приобрела лицензию на эти транзисторы.

Полностью вытеснить радиолампу транзистору пока еще не удалось. Можно, наверное, утверждать, что полупроводниковые приборы и электронные лампы будут сосуществовать еще долго, не заменяя друг друга, а дополняя, и занимать то место в радиоэлектронике, где они дают наибольший эффект.

Современный макет транзистора Бардина и Браттейна

Не составляет исключение и музыкальная индустрия, так как звучание транзисторов и ламп серьезно отличается друг от друга. Очевидно то, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то – транзистор.

При современном развитии электроники существует возможность сделать звук транзисторного прибора теплым, а лампового – достоверным. Такая техника существует, но стоит очень дорого.

Все же есть надежда, что в будущем лампа и

транзистор станут жить дружно, дополняя друг друга и радуя потребителей. Отзывы же о комбинированной аппаратуре на сегодня очень обнадеживающие.

 

Транзисторная история. Изобретение транзисторов и развитие полупроводниковой электроники — Компоненты и технологии

Ровно 50 лет назад американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли (рис. 1) была присуждена Нобелевская премия по физике «За исследования в области полупроводников и открытие транзистора». Тем не менее, анализ истории науки однозначно свидетельствует, что открытие транзистора — это не только заслуженный успех Бардина, Браттейна и Шокли.

Рис. 1. Лауреаты Нобелевской премии по физике за 1956 год

Первые опыты

Рождение твердотельной электроники можно отнести к 1833 году.

Именно тогда Майкл Фарадей (рис. 2), экспериментируя с сульфидом серебра, обнаружил, что проводимость данного вещества (а это был, как мы теперь называем, полупроводник) растет с повышением температуры, в противоположность проводимости металлов, которая в данном случае уменьшается. Почему так происходит? С чем это связано? На эти вопросы Фарадей ответить не смог.

Рис. 2. Майкл Фарадей и его лаборатория

Следующей вехой в развитии твердотельной электроники стал 1874 год. Немецкий физик Фердинанд Браун (рис. 3), будущий нобелевский лауреат (в 1909 году он получит премию «За выдающийся вклад в создание беспроволочной телеграфии») публикует статью в журнале Analen der Physik und Chemie, в которой на примере «естественных и искусственных серных металлов» описывает важнейшее свойство полупроводников — проводить электрический ток только в одном направлении. Выпрямляющее свойство контакта полупроводника с металлом противоречило закону Ома. Браун (рис. 4) пытается объяснить наблюдаемое явление и проводит дальнейшие исследования, но безрезультатно.

Явление есть, объяснения нет. По этой причине современники Брауна не заинтересовались его открытием, и только пять десятилетий спустя выпрямляющие свойства полупроводников были использованы в детекторных приемниках.

Рис. 3. Фердинанд Браун

Рис. 4. Фердинанд Браун в своей лаборатории

Год 1906. Американский инженер Гринлиф Виттер Пикард (рис. 5) получает патент на кристаллический детектор (рис. 6). В своей заявке на получение патента он пишет: «Контакт между тонким металлическим проводником и поверхностью некоторых кристаллических материалов (кремний, галенит, пирит и др.) выпрямляет и демодулирует высокочастотный переменный ток, возникающий в антенне при приеме радиоволн».

Рис. 5. Гринлиф Пикард

Рис. 6. Принципиальная схема кристаллического детектора Пикарда

Тонкий металлический проводник, с помощью которого осуществлялся контакт с поверхностью кристалла, внешне очень напоминал кошачий ус.

Кристаллический детектор Пикарда так и стали называть — «кошачий ус» (cat’s whisker).

Чтобы «вдохнуть жизнь» в детектор Пикарда и заставить его устойчиво работать, требовалось найти наиболее чувствительную точку на поверхности кристалла. Сделать это было непросто. На свет появляется множество хитроумных конструкций «кошачего уса» (рис. 7), облегчающих поиск заветной точки, но стремительный выход на авансцену радиотехники электронных ламп надолго отправляет детектор Пикарда за кулисы.

Рис. 7. Вариант конструкции «кошачий ус»

И все же «кошачий ус» намного проще и меньше вакуумных диодов, к тому же намного эффективнее на высоких частотах. А что если заменить вакуумный триод, на котором была основана вся радиоэлектроника того времени, (рис. 8) на полупроводник? Возможно ли это? В начале ХХ века подобный вопрос не давал покоя многим ученым.

Рис. 8. Вакуумный триод

Лосев

Советская Россия. 1918 год. По личному распоряжению Ленина в Нижнем Новгороде создается радиотехническая лаборатория (рис. 9). Новая власть остро нуждается в «беспроволочной телеграфной» связи. К работе в лаборатории привлекаются лучшие радиоинженеры того времени — М. А. Бонч-Бруевич, В. П. Вологдин, В. К. Лебединский, В. В. Татаринов и многие другие.

Рис. 9. Нижегородская радиолаборатория

Приезжает в Нижний Новгород и Олег Лосев (рис. 10).

Рис. 10. Олег Владимирович Лосев

После окончания Тверского реального училища в 1920 году и неудачного поступления в Московский институт связи Лосев согласен на любую работу, только бы приняли в лабораторию. Его берут посыльным. Общежития посыльным не полагается.

17-летний Лосев готов жить в помещении лаборатории, на лестничной площадке перед чердаком, только бы заниматься любимым делом.

С раннего возраста он страстно увлекался радиосвязью. В годы Первой мировой войны в Твери была построена радиоприемная станция. В ее задачи входило принимать сообщения от союзников России по Антанте и далее по телеграфу передавать их в Петроград. Лосев часто бывал на радиостанции, знал многих сотрудников, помогал им и не мыслил свою дальнейшую жизнь без радиотехники. В Нижнем Новгороде у него не было ни семьи, ни нормального быта, но было главное — возможность общаться со специалистами в области радиосвязи, перенимать их опыт и знания. После выполнения необходимых работ в лаборатории ему разрешали заниматься самостоятельным экспериментированием.

В то время интерес к кристаллическим детекторам практически отсутствовал. В лаборатории никто особо не занимался этой темой. Приоритет в исследованиях был отдан радиолампам. Лосеву очень хотелось работать самостоятельно. Перспектива получить ограниченный участок работы «по лампам» его никак не вдохновляет. Может быть, именно по этой причине он выбирает для своих исследований кристаллический детектор. Его цель — усовершенствовать детектор, сделать его более чувствительным и стабильным в работе. Приступая к экспериментам, Лосев ошибочно предполагал, что «в связи с тем, что некоторые контакты между металлом и кристаллом не подчиняются закону Ома, то вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно, должен обязательно присутствовать падающий участок. Любой грамотный специалист не стал бы ожидать усиления от детектора. Но вчерашний школьник ничего этого не знает. Он меняет кристаллы, материал иглы, аккуратно фиксирует получаемые результаты и в один прекрасный день обнаруживает искомые активные точки у кристаллов, которые обеспечивают генерацию высокочастотных сигналов.

«Все с детства знают, что то-то и то-то невозможно, но всегда находится невежда, который этого не знает, он-то и делает открытие», — шутил Эйнштейн.

Свои первые исследования генераторных кристаллов Лосев производил на простейшей схеме, представленной на рис. 11.

Рис. 11. Схема первых опытов Лосева

Испытав большое количество кристаллических детекторов, Лосев выяснил, что лучше всего генерируют колебания кристаллы цинкита, подвергнутые специальной обработке. Для получения качественных материалов он разрабатывает технологию приготовления цинкита методом сплавливания в электрической дуге естественных кристаллов. При паре цинкит — угольное острие, при подаче напряжения в10 В получался радиосигнал с длиной волны 68 м. При снижении генерации реализуется усилительный режим детектора.

Заметим, что «генерирующий» детектор был впервые продемонстрирован еще в 1910 году английским физиком Уильямом Икклзом (рис. 12).

Рис 12. Уильям Генри Икклз

Новое физическое явление не привлекает внимания специалистов, и о нем на какое-то время забывают. Икклз тоже ошибочно объяснял механизм «отрицательного» сопротивления исходя из того, что сопротивление полупроводника падает с увеличением температуры вследствие тепловых эффектов, возникающих на границе «металл–полупроводник».

В 1922 году на страницах научного журнала «Телеграфия и телефония без проводов» появляется первая статья Лосева, посвященная усиливающему и генерирующему детектору. В ней он очень подробно описывает результаты своих экспериментов, причем особое внимание уделяет обязательному присутствию падающего участка вольтамперной характеристики контакта.

В те годы Лосев активно занимается самообразованием. Его непосредственный руководитель профессор В. К. Лебединский помогает ему в изучении радиофизики. Лебединский понимает, что его молодой сотрудник сделал настоящее открытие и тоже пытается дать объяснение наблюдаемому эффекту, но тщетно. Фундаментальная наука того времени еще не знает квантовой механики. Лосев, в свою очередь, выдвигает гипотезу, что при большом токе в зоне контакта возникает некий электрический разряд наподобие вольтовой дуги, но только без разогрева. Этот разряд закорачивает высокое сопротивление контакта, обеспечивая генерацию.

Лишь через тридцать лет сумели понять, что собственно было открыто. Сегодня мы бы сказали, что прибор Лосева — это двухполюсник с N-образной вольтамперной характеристикой, или туннельный диод, за который в 1973 году японский физик Лео Исаки (рис. 13) получил Нобелевскую премию.

Рис. 13. Лео Исаки

Руководство нижегородской лаборатории понимало, что серийно воспроизвести эффект не удастся. Немного поработав, детекторы практически теряли свойства усиления и генерации. Об отказе от ламп не могло быть и речи. Тем не менее практическая значимость открытия Лосева была огромной.

В 1920-е годы во всем мире, в том числе и в Советском Союзе, радиолюбительство принимает характер эпидемии. Советские радиолюбители пользуются простейшими детекторными приемниками, собранными по схеме Шапошникова (рис. 14).

Рис. 14. Детекторный приемник Шапошникова

Для повышения громкости и дальности приема применяются высокие антенны. В городах применять такие антенны было затруднительно из-за промышленных помех. На открытой местности, где практически нет помех, хороший прием радиосигналов не всегда удавался из-за низкого качества детекторов. Введение в антенный контур приемника отрицательного сопротивления детектора с цинкитом, поставленного в режим, близкий к самовозбуждению, значительно усиливало принимаемые сигналы. Радиолюбителям удавалось услышать самые отдаленные станции. Заметно повышалась избирательность приема. И это без использования электронных ламп!

Лампы были не дешевы, причем к ним требовался специальный источник питания, а детектор Лосева мог работать от обычных батареек для карманного фонарика.

В итоге оказалось, что простые приемники конструкции Шапошникова с генерирующими кристаллами предоставляют возможность осуществлять гетеродинный прием, являвшийся в то время последним словом радиоприемной техники. В последующих статьях Лосев описывает методику быстрого поиска активных точек на поверхности цинкита и заменяет угольное острие металлическим. Он дает рекомендации, как следует обрабатывать кристаллы и приводит несколько практических схем для самостоятельной сборки радиоприемников (рис. 15).

Рис. 15. Принципиальная схема кристадина О. В. Лосева

Устройство Лосева позволяет не только принимать сигналы на больших расстояниях, но и передавать их. Радиолюбители в массовом порядке, на основе детекторов-генераторов, изготавливают радиопередатчики, поддерживающие связь в радиусе нескольких километров. Вскоре издается брошюра Лосева (рис. 16). Она расходится миллионными тиражами. Восторженные радиолюбители писали в различные научно-популярные журналы, что «при помощи цинкитного детектора в Томске, например, можно услышать Москву, Нижний и даже заграничные станции».

Рис. 16. Брошюра Лосева, издание 1924 года

На все свои технические решения Лосев получает патенты, начиная с «Детекторного приемника-гетеродина», заявленного в декабре 1923 года.

Статьи Лосева печатаются в таких журналах, как «ЖЭТФ», «Доклады АН СССР», Radio Revue, Philosophical Magazine, Physikalische Zeitschrift.

Лосев становится знаменитостью, а ведь ему еще не исполнилось и двадцати лет!

Например, в редакторском предисловии к статье Лосева «Осциллирующие кристаллы» в американском журнале The Wireless World and Radio Review за октябрь 1924 года говорится: «Автор этой статьи, господин Олег Лосев из России, за сравнительно короткий промежуток времени приобрел мировую известность в связи с его открытием осциллирующих свойств у некоторых кристаллов».

Другой американский журнал — Radio News — примерно в то же время публикует статью под заголовком «Сенсационное изобретение», в которой отмечается: «Нет необходимости доказывать, что это — революционное радиоизобретение. В скором времени мы будем говорить о схеме с тремя или шестью кристаллами, как мы говорим сейчас о схеме с тремя или шестью усилительными лампами. Потребуется несколько лет, чтобы генерирующий кристалл усовершенствовался настолько, чтобы стать лучше вакуумной лампы, но мы предсказываем, что такое время наступит».

Автор этой статьи Хьюго Гернсбек называет твердотельный приемник Лосева — кристадином (кристалл + гетеродин). Причем не только называет, но и предусмотрительно регистрирует название, как торговую марку (рис. 17). Спрос на кристадины огромен.

Рис. 17. Кристаллический детектор Лосева. Изготовлен в Radio News Laboratories. США, 1924 год

Интересно, что когда в нижегородскую лабораторию приезжают немецкие радиотехники, чтобы лично познакомиться с Лосевым, они не верят своим глазам. Они поражаются таланту и юному возрасту изобретателя. В письмах из-за границы Лосева величали не иначе как профессором. Никто и представить не мог, что профессор еще только постигает азы науки. Впрочем, очень скоро Лосев станет блестящим физиком-экспериментатором и еще раз заставит мир заговорить о себе.

В лаборатории с должности рассыльного его переводят в лаборанты, предоставляют жилье. В Нижнем Новгороде Лосев женится (правда, неудачно, как оказалось впоследствии), обустраивает свой быт и продолжает заниматься кристаллами.

В 1928 году, по решению правительства, тематика нижегородской радиолаборатории вместе с сотрудниками передается в Центральную радиолабораторию в Ленинграде, которая, в свою очередь, тоже постоянно реорганизуется. На новом месте Лосев продолжает заниматься полупроводниками, но вскоре Центральную радиолабораторию преобразовывают в Институт радиовещательного приема и акустик. В новом институте своя программа исследований, тематика работ сужается. Лаборанту Лосеву удается устроиться по совместительству в Ленинградский физико-технический институт (ЛФТИ), где у него появляется возможность продолжить исследования новых физических эффектов в полупроводниках. В конце 1920-х годов у Лосева появилась идея создать твердотельный аналог трехэлектродной вакуумной радиолампы.

В 1929–1933 гг., по предложению А. Ф. Иоффе, Лосев проводит исследования полупроводникового устройства, полностью повторяющего конструкцию точечного транзистора. Как известно, принцип действия этого прибора заключается в управлении током, текущим между двумя электродами, с помощью дополнительного электрода. Лосев действительно наблюдал данный эффект, но, к сожалению, общий коэффициент такого управления не позволял получить усиление сигнала. Для этой цели Лосев использовал только кристалл карборунда (SiC), а не кристалл цинкита (ZnO), имевшего значительно лучшие характеристики в кристаллическом усилителе (Что странно! Ему ли не знать о свойствах этого кристалла.) До недавнего времени считалось, что после вынужденного ухода из ЛФТИ Лосев не возвращался к идее полупроводниковых усилителей. Однако существует довольно любопытный документ, написанный самим Лосевым. Он датирован 12 июля 1939 года и в настоящее время хранится в Политехническом музее. В этом документе, озаглавленном «Жизнеописание Олега Владимировича Лосева», кроме интересных фактов его жизни содержится и перечень научных результатов. Особый интерес вызывают следующие строки: «Установлено, что с полупроводниками может быть построена трехэлектродная система, аналогичная триоду, как и триод, дающая характеристики, показывающие отрицательное сопротивление. Эти работы в настоящее время подготавливаются мною к печати…».

К сожалению, пока не установлена судьба этих работ, которые могли бы полностью изменить представление об истории открытия транзистора — самого революционного изобретения XX века.

Рассказывая о выдающемся вкладе Олега Владимировича Лосева в развитие современной электроники, просто невозможно не упомянуть о его открытии светоизлучающего диода.

Масштаб этого открытия нам еще только предстоит понять. Пройдет не так много времени, и в каждом доме вместо привычной лампы накаливания будут гореть «электронные генераторы света», как назвал светодиоды Лосев.

Еще в 1923 году, экспериментируя с кристадинами, Лосев обратил внимание на свечение кристаллов при пропускании через них электрического тока. Особенно ярко светились карборундовые детекторы. В 1920-е годы на Западе явление электролюминесценции одно время даже называли «свет Лосева» (Losev light, Lossew Licht). Лосев занялся изучением и объяснением полученной электролюминесценции. Он первым оценил огромные перспективы таких источников света, особо подчеркивая их высокую яркость и быстродействие. Лосев стал обладателем первого патента на изобретение светового релеприбора с электролюминесцентным источником света.

В 70-х годах ХХ века, когда светодиоды стали широко применяться, в журнале Electronic World за 1907 год была обнаружена статья англичанина Генри Роунда, в которой автор, будучи сотрудником лаборатории Маркони, сообщал, что видел свечение в контакте карборундового детектора при подаче на него внешнего электрического поля. Никаких соображений, объясняющих физику этого явления, не приводилось. Данная заметка не оказала никакого влияния на последующие исследования в области электролюминесценции, тем не менее, автор статьи сегодня официально считается первооткрывателем светодиода.

Лосев независимо открыл явление электролюминесценции и провел ряд исследований на примере кристалла карборунда. Он выделил два физически различных явления, которые наблюдаются при разной полярности напряжения на контактах. Его несомненной заслугой является обнаружение эффекта предпробойной электролюминесценции, названной им «свечение номер один», и инжекционной электролюминесценции — «свечение номер два». В наши дни эффект предпробойной люминесценции широко применяется при создании электролюминесцентных дисплеев, а инжекционная электролюминесценция является основой светодиодов и полупроводниковых лазеров. Лосеву удалось существенно продвинуться в понимании физики этих явлений задолго до создания зонной теории полупроводников. Впоследствии, в 1936 году, свечение номер один было заново обнаружено французским физиком Жоржем Дестрио. В научной литературе оно известно под названием «эффект Дестрио», хотя сам Дестрио приоритет в открытии этого явления отдавал Олегу Лосеву. Наверное, было бы несправедливо оспаривать приоритет Роунда в открытии светодиода. И все же нельзя забывать, что изобретателями радио по праву считаются Маркони и Попов, хотя всем известно, что радиоволны первым наблюдал Герц. И таких примеров в истории науки множество.

В своей статье Subhistory of Light Emitting Diode известный американский ученый в области электролюминесценции Игон Лобнер пишет о Лосеве: «Своими пионерскими исследованиями в области светодиодов и фотодетекторов он внес вклад в будущий прогресс оптической связи. Его исследования были так точны и его публикации так ясны, что без труда можно представить сейчас, что тогда происходило в его лаборатории. Его интуитивный выбор и искусство эксперимента просто изумляют».

Сегодня мы понимаем, что без квантовой теории строения полупроводников представить развитие твердотельной электроники невозможно. Поэтому талант Лосева поражает воображение. Он с самого начала видел единую физическую природу кристадина и явления инжекционной люминесценции и в этом значительно опередил свое время.

После него исследования детекторов и электролюминесценции проводились отдельно друг от друга, как самостоятельные направления. Анализ результатов показывает, что на протяжении почти двадцати лет после появления работ Лосева не было сделано ничего нового с точки зрения понимания физики этого явления. Только в 1951 году американский физик Курт Леховец (рис. 18) установил, что детектирование и электролюминесценция имеют единую природу, связанную с поведением носителей тока в p-n-переходах.

Рис. 18. Курт Леховец

Следует отметить, что в своей работе Леховец приводит в первую очередь ссылки на работы Лосева, посвященные электролюминесценции.

В 1930–31 гг. Лосев выполнил на высоком экспериментальном уровне серию опытов с косыми шлифами, растягивающими исследуемую область, и системой электродов, включаемых в компенсационную измерительную схему, для измерения потенциалов в разных точках поперечного сечения слоистой структуры. Перемещая металлический «кошачий ус» поперек шлифа, он показал с точностью до микрона, что приповерхностная часть кристалла имеет сложное строение. Он выявил активный слой толщиной приблизительно в десять микрон, в котором наблюдалось явление инжекционной люминесценции. По результатам проведенных экспериментов Лосев сделал предположение, что причиной униполярной проводимости является различие условий движения электрона по обе стороны активного слоя (или, как бы мы сказали сегодня, — разные типы проводимости). Впоследствии, экспериментируя с тремя и более зондами-электродами, расположенными в данных областях, он действительно подтвердил свое предположение. Эти исследования являются еще одним значительным достижением Лосева как ученого-физика.

В 1935 году, в результате очередной реорганизации радиовещательного института и непростых отношений с руководством, Лосев остается без работы. Лаборанту Лосеву дозволялось делать открытия, но не греться в лучах славы. И это при том, что его имя было хорошо известно сильным мира сего. В письме, датируемом 16 мая 1930 года, академик А. Ф. Иоффе пишет своему коллеге Паулю Эренфесту: «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2–6 вольт. Граница свечения в спектре ограничена…».

В ЛФТИ у Лосева долгое время было свое рабочее место, но в институт его не берут, слишком независимый он человек. Все работы выполнял самостоятельно — ни в одной из них нет соавторов.

При помощи друзей Лосев устраивается ассистентом на кафедру физики Первого медицинского института. На новом месте ему намного сложнее заниматься научной работой, поскольку нет необходимого оборудования. Тем не менее, задавшись целью выбрать материал для изготовления фотоэлементов и фотосопротивлений, Лосев продолжает исследования фотоэлектрических свойств кристаллов. Он изучает более 90 веществ и особо выделяет кремний с его заметной фоточувствительностью.

В то время не было достаточно чистых материалов, чтобы добиться точного воспроизведения полученных результатов, но Лосев (в который раз!) чисто интуитивно понимает, что этому материалу принадлежит будущее. В начале 1941 года он приступает к работе над новой темой — «Метод электролитных фотосопротивлений, фоточувствительность некоторых сплавов кремния». Когда началась Великая Отечественная война, Лосев не уезжает в эвакуацию, желая завершить статью, в которой излагал результаты своих исследований по кремнию. По всей видимости, ему удалось закончить работу, так как статья была отослана в редакцию «ЖЭТФ». К тому времени редакция уже была эвакуирована из Ленинграда. К сожалению, после войны не удалось найти следы этой статьи, и теперь можно лишь догадываться о ее содержании.

22 января 1942 года Олег Владимирович Лосев умер от голода в блокадном Ленинграде. Ему было 38 лет.

В том же 1942 году в США компании Sylvania и Western Electric начали промышленное производство кремниевых (а чуть позже и германиевых) точечных диодов, которые использовались в качестве детекторовсмесителей в радиолокаторах. Смерть Лосева совпала по времени с рождением кремниевых технологий.

Военный трамплин

В 1925 году корпорация American Telephone and Telegraph (AT&T) открывает научный и опытно-конструкторский центр Bell Telephone Laboratories. В 1936 году директор Bell Telephone Laboratories Мервин Келли решает сформировать группу ученых, которая провела бы серию исследований, направленных на замену ламповых усилителей полупроводниковыми. Группу возглавил Джозеф Бекер, привлекший к работе физика-теоретика Уильяма Шокли и блестящего экспериментатора Уолтера Браттейна.

Окончив докторантуру в Массачусетском технологическом институте, знаменитом МТИ, и поступив на работу в Bell Telephone Laboratories, Шокли, будучи исключительно амбициозным и честолюбивым человеком, энергично берется за дело. В 1938 году, в рабочей тетради 26-летнего Шокли появляется первый набросок полупроводникового триода. Идея проста и не отличается оригинальностью: сделать устройство, максимально похожее на электронную лампу, с тем лишь отличием, что электроны в нем будут протекать по тонкому нитевидному полупроводнику, а не пролетать в вакууме между катодом и анодом. Для управления током полупроводника предполагалось ввести дополнительный электрод (аналог сетки) — прикладывая к нему напряжение разной полярности. Таким образом, можно будет либо уменьшать, либо увеличивать количество электронов в нити и, соответственно, изменять ее сопротивление и протекающий ток. Все как в радиолампе, только без вакуума, без громоздкого стеклянного баллона и без подогрева катода. Вытеснение электронов из нити или их приток должен был происходить под влиянием электрического поля, создаваемого между управляющим электродом и нитью, то есть благодаря полевому эффекту. Для этого нить должна быть именно полупроводниковой. В металле слишком много электронов и никакими полями их не вытеснишь, а в диэлектрике свободных электронов практически нет. Шокли приступает к теоретическим расчетам, однако все попытки построить твердотельный усилитель ни к чему не приводят.

В то же время в Европе немецкие физики Роберт Поль и Рудольф Хилш создали на основе бромида калия работающий контактный трехэлектродный кристаллический усилитель. Тем не менее, никакой практической ценности немецкий прибор не представлял. У него была очень низкая рабочая частота. Есть сведения, что в первой половине 1930-х годов трехэлектродные полупроводниковые усилители «собрали» и два радиолюбителяканадец Ларри Кайзер и новозеландский школьник Роберт Адамс. Адамс, в дальнейшем ставший радиоинженером, замечал, что ему никогда не приходило в голову оформить патент на изобретение, так как всю информацию для своего усилителя он почерпнул из радиолюбительских журналов и других открытых источников.

К 1926–1930 гг. относятся работы Юлиуса Лилиенфельда (рис. 19), профессора Лейпцигского университета, который запатентовал конструкцию полупроводникового усилителя, в наше время известного под названием полевой транзистор (рис. 20).

Рис. 19. Юлиус Лилиенфельд

Рис. 20. Патент Ю. Лилиенфельда на полевой транзистор

Лилиенфельд предполагал, что при подаче напряжения на слабо проводящий материал будет меняться его проводимость и в связи с этим возникнет усиление электрических колебаний. Несмотря на получение патента, создать работающий прибор Лилиенфельд не сумел. Причина была самая прозаическая — в 30-х годах ХХ века еще не нашлось необходимого материала, на основе которого можно было бы изготовить работающий транзистор. Именно поэтому усилия большинства ученых того времени были направлены на изобретение более сложного биполярного транзистора. Таким образом, пытались обойти трудности, возникшие при реализации полевого транзистора.

Работы по твердотельному усилителю в Bell Telephone Laboratories прерываются с началом Второй мировой войны. Уильям Шокли и многие его коллеги откомандированы в распоряжение министерства обороны, где работают до конца 1945 года.

Твердотельная электроника не представляла интереса для военных — достижения им представлялись сомнительными. За одним исключением. Детекторы. Они-то как раз и оказались в центре исторических событий.

В небе над Ла-Маншем развернулась грандиозная битва за Британию, достигшая апогея в сентябре 1940 года. После оккупации Западной Европы Англия осталась один на один с армадой немецких бомбардировщиков, разрушающих береговую оборону и подготавливающих высадку морского десанта для захвата страны — операцию «Морской лев». Трудно сказать, что спасло Англию — чудо, решительность премьера Уинстона Черчилля или радиолокационные станции. Появившиеся в конце 30-х годов радары позволяли быстро и точно обнаруживать вражеские самолеты и своевременно организовывать противодействие. Потеряв в небе над Британией более тысячи самолетов, гитлеровская Германия сильно охладела к идее захвата Англии в 1940-м и приступила к подготовке блицкрига на Востоке.

Англии были нужны радары, радарам — кристаллические детекторы, детекторам — чистые германий и кремний. Первым, и в значительных количествах, на заводах и в лабораториях появился германий. С кремнием, из-за высокой температуры его обработки, сначала возникли некоторые трудности, но вскоре проблему решили. После этого предпочтение было отдано кремнию. Кремний был дешев по сравнению с германием. Итак, трамплин для прыжка к транзистору был практически готов.

Вторая мировая стала первой войной, в которой наука, по своей значимости для победы над врагом, выступила на равных с конкретными оружейными технологиями, а в чем-то и опередила их. Вспомним атомный и ракетный проекты. В этот список можно включить и транзисторный проект, предпосылки для которого были в значительной степени заложены развитием военной радиолокации.

Открытие

В послевоенные годы в Bell Telephone Laboratories начинают форсировать работы в области глобальной связи. Аппаратура 1940-х годов использовала для усиления, преобразования и коммутации сигналов в абонентских цепях два основных элемента: электронную лампу и электромеханическое реле. Эти элементы были громоздки, срабатывали медленно, потребляли много энергии и не отличались высокой надежностью. Усовершенствовать их значило вернуться к идее использования полупроводников. В Bell Telephone Laboratories вновь создается исследовательская группа (рис. 21), научным руководителем которой становится вернувшийся «с войны» Уильям Шокли. В команду входят Уолтер Браттейн, Джон Бардин, Джон Пирсон, Берт Мур и Роберт Гибни.

Рис. 21. г. Мюррей Хилл, штат Нью-Джерси, США, Bell Laboratories. Место рождение транзистора.

В самом начале команда принимает важнейшее решение: направить усилия на изучение свойств только двух материалов — кремния и германия, как наиболее перспективных для реализации поставленной задачи. Естественно, группа начала разрабатывать предвоенную идею Шокли — усилителя с эффектом поля. Но электроны внутри полупроводника упрямо игнорировали любые изменения потенциала на управляющем электроде. От высоких напряжений и токов кристаллы взрывались, но не желали изменять свое сопротивление.

Над этим задумался теоретик Джон Бардин. Шокли, не получив быстрого результата, охладел к теме и не принимал активного участия в работе. Бардин предположил, что значительная часть электронов на самом деле не «разгуливает» свободно по кристаллу, а застревает в каких-то ловушках у самой поверхности полупроводника. Заряд этих «застрявших» электронов экранирует прикладываемое извне поле, которое не проникает в объем кристалла. Вот так в 1947 году в физику твердого тела вошла теория поверхностных состояний. Теперь, когда, казалось, причина неудач найдена, группа начала более осмысленно реализовывать идею эффекта поля. Других идей просто не было. Стали различными способами обрабатывать поверхность германия, надеясь устранить ловушки электронов. Перепробовали все — химическое травление, механическую полировку, нанесение на поверхность различных пассиваторов. Кристаллы погружали в различные жидкости, но результата не было. Тогда решили максимально локализовать зону управления, для чего один из токопроводов и управляющий электрод изготовили в виде близко расположенных подпружиненных иголочек. Экспериментатор Браттейн, за плечами которого был 15-летний опыт работы с различными полупроводниками, мог по 25 часов в сутки крутить ручки осциллографа.

Теоретик Бардин всегда был рядом, готовый сутки напролет проверять свои теоретические выкладки. Оба исследователя, как говорится, нашли друг друга. Они практически не выходили из лаборатории, но время шло, а сколько-нибудь существенных результатов по-прежнему не было.

Однажды Браттейн, издерганный от неудач, сдвинул иголки почти вплотную, более того — случайно перепутал полярности прикладываемых к ним потенциалов. Ученый не поверил своим глазам. Он был поражен, но на экране осциллографа было явно видно усиление сигнала. Теоретик Бардин отреагировал молниеносно и безошибочно: эффекта поля никакого нет, и дело не в нем. Усиление сигнала возникает по другой причине. Во всех предыдущих оценках рассматривались только электроны, как основные носители тока в германиевом кристалле, а «дырки», которых было в миллионы раз меньше, естественно игнорировались. Бардин понял, что дело именно в «дырках». Введение «дырок» через один электрод (этот процесс назвали инжекцией) вызывает неизмеримо больший ток в другом электроде. И все это на фоне неизменности состояния огромного количества электронов.

Вот так, непредсказуемым образом, 19 декабря 1947 года на свет появился точечный транзистор (рис. 22).

Рис. 22. Страница рабочей тетради Браттейна. 19 декабря 1947 г.

Сначала новое устройство назвали германиевым триодом. Бардину и Браттейну название не понравилось. Не звучало. Они хотели, чтобы название заканчивалось бы на «тор», по аналогии с резистором или термистором. Здесь им на помощь приходит инженер-электронщик Джон Пирс, который прекрасно владел словом (в дальнейшем он станет известным популяризатором науки и писателем-фантастом под псевдонимом J. J. Coupling). Пирс вспомнил, что одним из параметров вакуумного триода служит крутизна характеристики, по-английски — transconductance. Он предложил назвать аналогичный параметр твердотельного усилителя transresistance, а сам усилитель, а это слово просто вертелось на языке, — транзистором. Название всем понравилось.

Через несколько дней после замечательного открытия, в канун Рождества, 23 декабря 1947 года состоялась презентация транзистора руководству Bell Telephone Laboratories (рис. 23).

Рис. 23. Точечный транзистор Бардина-Браттейна

Уильям Шокли, который проводил отпуск в Европе, срочно возвратился в Америку. Неожиданный успех Бардина и Браттейна глубоко задевает его самолюбие. Он раньше других задумался о полупроводниковом усилителе, возглавил группу, выбрал направление исследований, но на соавторство в «звездном» патенте претендовать не мог. На фоне всеобщего ликования, блеска и звона бокалов с шампанским Шокли выглядел разочарованным и мрачным. И тут происходит нечто, что всегда будет скрыто от нас пеленой времени. За одну неделю, которую впоследствии Шокли назовет своей «страстной неделей», он создает теорию транзистора с p-n-переходами, заменившими экзотические иголочки, и в новогоднюю ночь изобретает плоскостной биполярный транзистор. (Заметим, что реально работающий биполярный транзистор был изготовлен только в 1950 году.)

Предложение принципиальной схемы более эффективного твердотельного усилителя со слоеной структурой уравняло Шокли в правах на открытие транзисторного эффекта с Бардиным и Браттейном.

Через полгода, 30 июня 1948-го, в Нью-Йорке, в штаб-квартире Bell Telephone Laboratories, после улаживания всех необходимых патентных формальностей, прошла открытая презентация транзистора. В то время уже началась холодная война между США и Советским Союзом, поэтому технические новинки прежде всего оценивались военными. К удивлению всех присутствующих, эксперты из Пентагона не заинтересовались транзистором и порекомендовали использовать его в слуховых аппаратах.

Через несколько лет новое устройство стало незаменимым компонентом в системе управления боевыми ракетами, но именно в тот день близорукость военных спасла транзистор от грифа «совершенно секретно».

Журналисты отреагировали на изобретение тоже без особых эмоций. На сорок шестой странице в разделе «Новости радио» в газете «Нью-Йорк Таймс» была напечатана краткая заметка об изобретении нового радиотехнического устройства. И только.

В Bell Telephone Laboratories не ожидали такого развития событий. Военных заказов с их щедрым финансированием не предвиделось даже в отдаленной перспективе. Срочно принимается решение о продаже всем желающим лицензий на транзистор. Сумма сделки — $25 тыс. Организовывается учебный центр, проводятся семинары для специалистов. Результаты не заставляют себя ждать (рис. 24).

Рис. 24. Серийное производство транзисторов. Одно из первых рекламных объявлений. США. Февраль 1953 года

Транзистор быстро находит применение в самых различных устройствах — от военного и компьютерного оборудования до потребительской электроники. Интересно, что первый портативный радиоприемник долгое время так и называли — транзистор.

Европейский аналог

Работы по созданию трехэлектродного полупроводникового усилителя велись и по другую сторону океана, но о них известно намного меньше.

Совсем недавно бельгийский историк Арманд Ван Дормел и профессор Стэнфордского университета Майкл Риордан обнаружили, что в конце 1940-х годов в Европе был изобретен и даже запущен в серию «родной брат транзистора» Бардина-Браттейна.

Европейских изобретателей точечного транзистора звали Герберт Франц Матаре и Генрих Иоганн Велкер (рис. 25). Матаре был физиком-экспериментатором, работал в немецкой фирме Telefunken и занимался микроволновой электроникой и радиолокацией. Велкер больше был теоретиком, долгое время преподавал в Мюнхенском университете, а в военные годы трудился на люфтваффе.

Рис. 25. Изобретатели транзитрона Герберт Матаре и Генрих Велкер

Встретились они в Париже. После разгрома фашистской Германии оба физика были приглашены в европейский филиал американской корпорации Westinghouse.

Еще в 1944 году Матаре, занимаясь полупроводниковыми выпрямителями для радаров, сконструировал прибор, который назвал дуодиодом. Это была пара работающих параллельно точечных выпрямителей, использующих одну и ту же пластинку германия. При правильном подборе параметров устройство подавляло шумы в приемном блоке радара. Тогда Матаре обнаружил, что колебания напряжения на одном электроде могут обернуться изменением силы тока, проходящего через второй электрод. Заметим, что описание подобного эффекта содержалось еще в патенте Лилиенфельда, и не исключено, что Матаре знал об этом. Но как бы там ни было, он заинтересовался наблюдаемым явлением и продолжал исследования.

Велкер пришел к идее транзистора с другой стороны, занимаясь квантовой физикой и зонной теорией твердого тела. В самом начале 1945 года он создает схему твердотельного усилителя, очень похожего на устройство Шокли. В марте Велкер успевает его собрать и испытать, но ему повезло не больше, чем американцам. Устройство не работает.

В Париже Матаре и Велкеру поручают организовать промышленное производство полупроводниковых выпрямителей для французской телефонной сети. В конце 1947 года выпрямители запускаются в серию, и у Матаре с Велкером появляется время для возобновления исследований. Они приступают к дальнейшим экспериментам с дуодиодом. Вдвоем они изготавливают пластинки из гораздо более чистого германия и получают стабильный эффект усиления. Уже в начале июня 1948 года Матаре и Велкер создают стабильно работающий точечный транзистор. Европейский транзистор появляется на полгода позже, чем устройство Бардина и Браттейна, но абсолютно независимо от него. О работе американцев Матаре и Велкер не могли ничего знать. Первое упоминание в прессе о «новом радиотехническом устройстве», вышедшем из Bell Laboratories, появилось только 1 июля.

Дальнейшая судьба европейского изобретения сложилась печально. Матаре и Велкер в августе подготовили патентную заявку на изобретение, но французское бюро патентов очень долго изучало документы. Только в марте 1952 года они получают патент на изобретение транзитрона — такое название выбрали немецкие физики своему полупроводниковому усилителю. К тому времени парижский филиал Westinghouse уже начал серийное производство транзитронов. Основным заказчиком выступало Почтовое министерство. Во Франции строилось много новых телефонных линий. Тем не менее, век транзитронов был недолог. Несмотря на то, что они работали лучше и дольше своего американского «собрата» (за счет более тщательной сборки), завоевать мировой рынок транзитроны не смогли. Впоследствии французские власти вообще отказались субсидировать исследования в области полупроводниковой электроники, переключившись на более масштабные ядерные проекты. Лаборатория Матаре и Велкера приходит в упадок. Ученые принимают решение вернуться на родину. К тому времени в Германии начинается возрождение науки и высокотехнологичной промышленности. Велкер устраивается на работу в лабораторию концерна Siemens, которую впоследствии возглавит, а Матаре переезжает в Дюссельдорф и становится президентом небольшой компании Intermetall, выпускающей полупроводниковые приборы.

Послесловие

Если проследить судьбы американцев, то Джон Бардин ушел из Bell Telephone Labora-tories в 1951 году, занялся теорией сверхпроводимости и в 1972 году вместе с двумя своими учениками был удостоен Нобелевской премии «За разработку теории сверхпроводимости», став, таким образом, единственным в истории ученым, дважды нобелевским лауреатом.

Уолтер Браттейн проработал в Bell Telephone Laboratories до выхода на пенсию в 1967 году, а затем вернулся в свой родной город и занялся преподаванием физики в местном университете.

Судьба Уильяма Шокли сложилась следующим образом. Он покидает Bell Telephone Laboratories в 1955 году и, при финансовой помощи Арнольда Бекмана, основывает фирму по производству транзисторов — Shockly Transistor Corporation. На работу в новую компанию переходят многое талантливые ученые и инженеры, но через два года большинство из них уходят от Шокли. Заносчивость, высокомерие, нежелание прислушиваться к мнению коллег и навязчивая идея не повторить ошибку, которую он допустил в работе с Бардиным и Браттейном, делают свое дело. Компания разваливается.

Его бывшие сотрудники Гордон Мур и Роберт Нойс при поддержке того же Бекмана основывают фирму Fairchild Semiconductor, а затем, в 1968 году создают собственную компанию — Intel.

Мечта Шокли построить полупроводниковую бизнес-империю была претворена в жизнь другими (рис. 26), а ему опять досталась роль стороннего наблюдателя. Ирония судьбы заключается в том, что еще в 1952 году именно Шокли предложил конструкцию полевого транзистора на основе кремния. Тем не менее, компания Shockly Transistor Corporation не выпустила ни одного полевого транзистора. Сегодня это устройство является основой всей компьютерной индустрии.

Рис. 26. Эволюция транзистора

После неудачи в бизнесе Шокли становится преподавателем в Стэндфордском университете. Он читает блестящие лекции по физике, лично занимается с аспирантами, но ему не хватает былой славы — всего того, что американцы называют емким словом publicity. Шокли включается в общественную жизнь и начинает выступать с докладами по многим социальным и демографическим вопросам. Предлагая решения острых проблем, связанных с перенаселением азиатских стран и национальными различиями, он скатывается к евгенике и расовой нетерпимости. Пресса, телевидение, научные журналы обвиняют его в экстремизме и расизме. Шокли снова «знаменит» и, похоже, испытывает удовлетворение от всего происходящего. Его репутации и карьере ученого приходит конец. Он выходит на пенсию, перестает со всеми общаться, даже с собственными детьми, и доживает жизнь затворником.

Разные люди, разные судьбы, но всех их объединяет причастность к открытию, коренным образом изменившему наш мир.

Дату 19 декабря 1947 года можно по праву считать днем рождения новой эпохи. Начался отсчет нового времени. Мир шагнул в эру цифровых технологий.

Литература
  1. William F. Brinkman, Douglas E. Haggan, William W. Troutman. A History of the Invention of the Transistor and Where it will lead us // IEEE Journal of Solid-State Circuits. Vol.32, No.12. December 1997.
  2. Hugo Gernsback. A Sensational Radio Invention // Radio News. September 1924.
  3. Новиков М. А. Олег Владимирович Лосев — пионер полупроводниковой электроники // Физика твердого тела. 2004. Том 46, вып. 1.
  4. Остроумов Б., Шляхтер И. Изобретатель кристадина О. В. Лосев. // Радио. 1952. № 5.
  5. Жирнов В., Суэтин Н. Изобретение инженера Лосева // Эксперт. 2004. № 15.
  6. Lee T. H., A Nonlinear History of Radio. Cambridge University Press. 1998.
  7. Носов Ю. Парадоксы транзистора // Квант. 2006. № 1.
  8. Andrew Emmerson. Who really invented Transistor? www. radiobygones.com
  9. Michael Riordan. How Europe Missed the Transistor // IEEE Spectrum, Nov. 2005. www.spectrum.ieee.org

60 лет транзистору

Б. М. Малашевич

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника.

Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п. Но электронная лампа имеет неустранимые недостатки: большие габариты, высокое энергопотребление, большое время вхождения в рабочий режим, низкую надежность. В результате через 2-3 десятка лет существования ламповая электроника во многих применениях подошла к пределу своих возможностей. Электронной лампе требовалась более компактная, экономичная и надежная замена. И она нашлась в виде полупроводникового транзистора. Его создание справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия, коренным образом изменившим мир. Оно было отмечено Нобелевской премией по физике, присужденной в 1956 г. американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли. Но у нобелевской тройки в разных странах были предшественники .

И это понятно. Появление транзисторов – результат многолетней работы многих выдающихся ученых и специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Советские ученые внесли в это общее дело огромный вклад. Очень много было сделано школой физики полупроводников академика А.Ф. Иоффе – пионера мировых исследований по физике полупроводников. Еще в 1931 году он опубликовал статью с пророческим названием: «Полупроводники – новые материалы электроники». Немалую заслугу в исследование полупроводников внесли Б.В. Курчатов и В.П. Жузе. В своей работе – «К вопросу об электропроводности закиси меди» в 1932 году они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Советский физик Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать т еоретическую модель полупроводника, сформулировав при этом основы «зонной теории полупроводников». В 1938 г. Мотт в Англии, Б.Давыдов в СССР, Вальтер Шоттки в Германии независимо друг от друга предложили теорию выпрямляющего действия контакта металл-полупроводник. В 1939 году Б.Давыдов опубликовал работу «Диффузионная теория выпрямления в полупроводниках». В 1941 г. В. Е. Лашкарев опубликовал статью «Исследование запирающих слоев методом термозонда» и в соавторстве с К. М. Косоноговой – статью «Влияние примесей на вентильный фотоэффект в закиси меди». Он описал физику «запорного слоя» на границе раздела «медь – закись меди», впоследствии названного «p-n» переходом. В 1946 г. В. Лошкарев открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Им же был раскрыт механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы. Большой вклад в исследование свойств полупроводников внесли И.В.Курчатов, Ю.М.Кушнир, Л.Д.Ландау, В.М.Тучкевича, Ж.И.Алферов и др. Таким образом, к концу сороковых годов двадцатого века основы теоретической базы для создания транзисторов были проработаны достаточно глубоко, чтобы приступать к практическим работам.

Рис. Транзитрон Г.Матаре и Г.Велкера

Первой известной попыткой создания кристаллического усилителя в США предпринял немецкий физик Юлиус Лилиенфельд, запатентовавший в 1930, 1932 и 1933 гг. три варианта усилителя на основе сульфида меди. В 1935 г. немецкий у ченый Оскар Хейл получил британский патент на усилитель на основе пятиокиси ванадия. В 1938 г. немецкий физик Поль создал действующий образец кристаллического усилителя на нагретом кристалле бромида калия. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Эти усилители можно считать прообразом современных полевых транзисторов. Однако построить устойчиво работающие приборы не удавалось, т. к. в то время еще не было достаточно чистых материалов и технологий их обработки. В первой половине тридцатых годов точечные триоды изготовили двое радиолюбителей – канадец Ларри Кайзер и тринадцатилетний новозеландский школьник Роберт Адамс. В июне 1948 г. (до обнародования транзистора) изготовили свой вариант точечного германиевого триода, названный ими транзитроном, жившие тогда во Франции немецкие физики Роберт Поль и Рудольф Хилш. В начале 1949 г. было организовано производство транзитронов, применялись они в телефонном оборудовании, причем работали лучше и дольше американских транзисторов. В России в 20-х годах в Нижнем Новгороде О.В.Лосев наблюдал транзисторный эффект в системе из трех – четырех контактов на поверхности кремния и корборунда. В середине 1939 г. он писал: «…с полупроводниками может быть построена трехэлектродная система, аналогичная триоду», но увлекся открытым им светодиодным эффектом и не реализовал эту идею. К транзистору вело множество дорог.

Первый транзистор

Слава направо: Уильям Шокли,
Джон Бардин (сидит), Уолтер Бреттейн.
Фото из http://gete.ru/page_140.html

Выше описанные примеры проектов и образцов транзисторов были результатами локальных всплесков мысли талантливых или удачливых людей, не подкрепленные достаточной экономической и организационной поддержкой и не сыгравшие серьезной роли в развитии электроники. Дж. Бардин, У. Браттейн и У. Шокли оказались в лучших условиях. Они работали по единственной в мире целенаправленной долговременной (более 5 лет) программе с достаточным финансовым и материальным обеспечением в фирме Bell Telephone Laboratories, тогда одной из самых мощных и наукоемких в США. Их работы были начаты еще во второй половине тридцатых годов, работу возглавил Джозеф Бекер, который привлек к ней высококлассного теоретика У. Шокли и блестящего экспериментатора У. Браттейна. В 1939 г. Шокли выдвинул идею изменять проводимость тонкой пластины полупроводника (оксида меди), воздействуя на нее внешним электрическим полем. Это было нечто, напоминающее и патент Ю. Лилиенфельда, и позже сделанный и ставший массовым полевой транзистор. В 1940 г. Шокли и Браттейн приняли удачное решение ограничить исследования только простыми элементами – германием и кремнием. Однако все попытки построить твердотельный усилитель ни к чему не привели, и после Пирл-Харбора (практическое начало Второй мировой войны для США) были положены в долгий ящик. Шоккли и Браттейн были направлены в исследовательский центр, работавший над созданием радаров. В 1945 г. оба возвратились в Bell Labs. Там под руководством Шокли была создана сильная команда из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли У. Браттейн и физик-теоретик Дж. Бардин. Шокли сориентировал группу на реализацию своей довоенной идеи. Но устройство упорно отказывалось работать, и Шокли, поручив Бардину и Браттейну довести его до ума, сам практически устранился от этой темы.

Два года упорного труда принесли лишь отрицательные результаты. Бардин предположил, что избыточные электроны прочно оседали в приповерхностных областях и экранировали внешнее поле. Эта гипотеза подсказала дальнейшие действия. Плоский управляющий электрод заменили острием, пытаясь локально воздействовать на тонкий приповерхностный слой полупроводника.

Первый транзистор У. Браттейна и Дж. Бардина

Однажды Браттейн нечаянно почти вплотную сблизил два игольчатых электрода на поверхности германия, да еще перепутал полярность напряжений питания, и вдруг заметил влияние тока одного электрода на ток другого. Бардин мгновенно оценил ошибку. А 16 декабря 1947 г. у них заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен он был очень просто – на металлической подложке-электроде лежала пластинка германия, в которую упирались два близко расположенных (10-15 мкм) контакта. Оригинально были сделаны эти контакты. Треугольный пластмассовый нож, обернутый золотой фольгой, разрезанной надвое бритвой по вершине треугольника. Треугольник прижимался к германиевой пластинке специальной пружиной, изготовленной из изогнутой канцелярской скрепки. Через неделю, 23 декабря 1947 г. прибор был продемонстрирован руководству фирмы, этот день и считается датой рождения транзистора. Все были рады результатом, кроме Шокли: получилось, что он, раньше всех задумавший полупроводниковый усилитель, руководивший группой специалистов, читавший им лекции по квантовой теории полупроводников – не участвовал в его создании. Да и транзистор получился не такой, как Шокли задумывал: биполярный, а не полевой. Следовательно на соавторство в «звездном» патенте он претендовать не мог.

Прибор работал, но широкой публике эту внешне несуразную конструкцию показывать было нельзя. Изготовили несколько транзисторов в виде металлических цилиндриков диаметром около 13 мм. и собрали на них «безламповый» радиоприемник. 30 июня 1948 г. в Нью-Йорке состоялась официальная презентация нового прибора – транзистора (от англ. Transver Resistor – трансформатор сопротивлений). Но специалисты не сразу оценили его возможности. Эксперты из Пентагона «приговорили» транзистор к использованию лишь в слуховых аппаратах для старичков. Так близорукость военных спасла транзистор от засекречивания. Презентация осталась почти незамеченной, лишь пара абзацев о транзисторе появилась в «Нью-Йорк Тайме» на 46 странице в разделе «Новости радио». Таким было явление миру одного из величайших открытий XX века. Даже изготовители электронных ламп, вложившие многие миллионы в свои заводы, в появлении транзистора угрозы не увидели.

Позже, в июле 1948 года, информация об этом изобретении появилась в журнале «The Physical Review». Но т олько через некоторое в ремя специалисты поняли, что произошло грандиозное событие, определившее дальнейшее развитие прогресса в мире.

Bell Labs сразу оформила патент на это революционное изобретение, но с технологией было масса проблем. Первые транзисторы, поступившие в продажу в 1948 году, не внушали оптимизма – стоило их потрясти, и коэффициент усиления менялся в несколько раз, а при нагревании они и вовсе переставали работать. Но зато им не было равных в миниатюрности. Аппараты для людей с пониженным слухом можно было поместить в оправе очков! Поняв, что вряд ли она сама сможет справиться со всеми технологическими проблемами, Bell Labs решилась на необычный шаг. В начале 1952 года она объявила, что полностью передаст права на изготовление транзистора всем компаниям, готовым выложить довольно скромную сумму в 25 000 долларов вместо регулярных выплат за пользование патентом, и предложила обучающие курсы по транзисторной технологии, помогая распространению технологии по всему миру. Постепенно росла очевидность важности этого миниатюрного устройства. Транзистор оказался привлекательным по следующим причинам: был дешев, миниатюрен, прочен, потреблял мало мощности и мгновенно включался (лампы долго нагревались). В 1953 г. на рынке появилось первое коммерческое транзисторное изделие – слуховой аппарат (пионером в этом деле выступил Джон Килби из ф. Centralab , который через несколько лет сделает первую в мире полупроводниковую микросхему), а в октябре 1954 г. – первый транзисторный радиоприе мник Regency TR1, в нем использовалось всего четыре германиевых транзистора. Немедленно принялась осваивать новые приборы и индустрия вычислительной техники, первой была фирма IBM . Доступность технологии дала свои плоды – мир начал стремительно меняться.

Польза конструктивного честолюбия

У честолюбивого У.Шокли случившееся вызвало вулканический всплеск его творческой энергии. Хотя Дж. Бардин и У.Браттейн нечаянно получили не полевой транзистор, как планировал Шокли, а биполярный, он быстро разобрался в сделанном. Позднее Шокли вспоминал о своей «страстной неделе», в течение которой он создал теорию инжекции, а в новогоднюю ночь изобрел плоскостной биполярный транзистор без экзотических иголочек.

Что бы создать что-то новое, Шокли по-новому взглянул на давно известное – на точечный и плоскостный полупроводниковые диоды, на физику работы плоскостного «p — n» перехода, легко поддающуюся теоретическому анализу. Поскольку точечный транзистор представляет собой два очень сближенные диода, Шокли провел теоретическое исследования пары аналогично сближенных плоскостных диодов и создал основы теории плоскостного биполярного транзистора в кристалле полупроводника, со держащего два «p — n» перехода. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность и, главное, более высокие повторяемость параметров и надежность. Но, пожалуй, главным их преимуществом была легко автоматизируемая технология, исключающая сложные операции изготовления, установки и позиционирования подпружиненных иголочек, а также обеспечивавшая дальнейшую миниатюризацию приборов.

30 июня 1948 г. в нью-йоркском офисе Bell Labs изобретение было впервые продемонстрировано руководству компании. Но оказалось, что создать серийноспособный плоскостной транзистор гораздо труднее, чем точечный. Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек относительно чистого и вполне тогда доступного германия. А вот техника легирования полупроводников в конце сороковых годов, необходимая для изготовления плоскостного транзистора, еще находилась в младенчестве, поэтому изготовление серийноспособного транзистора «по Шокли» удалось только в 1951 г. В 1954 году Bell Labs разработала процессы окисления, фотолитографии, диффузии, которые на многие годы стали основой производства полупроводниковых приборов.

Первый кремниевый транзистор, 1950 г.

Точечный транзистор Бардина и Браттейна – безусловно огромный прогресс по сравнению с электронными лампами. Но не он стал основой микроэлектроники, век его оказался короток, около 10 лет. Шокли быстро понял сделанное коллегами и создал плоскостной вариант биполярного транзистора, который жив и сегодня и будет жить, пока существует микроэлектроника. Патент на него он получил в 1951 г. А в 1952 г. У. Шокли создал и поле вой транзистор, так же им запатентованный. Так что свое участие в Нобелевской премии он заработал честно.

Число производителей транзисторов росло как снежный ком. Bell Labs, Shockley Semiconductor, Fairchild Semiconductor, Western Electric, GSI (с декабря 1951 г. Texas Instruments), Motorola, Tokyo Cousin (С 1958 г. Sony), NEC и многие другие.

В 1950 г. фирма GSI разработала первый кремниевый транзистор, а с 1954 г., преобразившись в Texas Instruments , начала его серийное производство.

«Холодная война» и ее влияние на электронику

После окончания Второй мировой войны мир раскололся на два враждебных лагеря. В 1950-1953 гг. эта конфронтация вылилась в прямое военное столкновение – Корейскую войну. Фактически это была опосредованная война между США и СССР. В это же время США готовились к прямой войне с СССР. В 1949 г. в США был разработан опубликованный ныне план «Последний выстрел» (Operation Dropshot), фактически план Третье мировой войны, войны термоядерной. План предусматривал прямое нападение на СССР 1 января 1957 г . В течение месяца предполагалось сбросить на наши головы 300 50-килотонных атомных и 200 000 обычных бомб. Для этого план предусматривал разработку специальных баллистических ракет, подводных атомных лодок, авианосцев и многого другого. Так началась развязанная США беспрецедентная гонка вооружений, продолжавшаяся всю вторую половину прошлого века, продолжающаяся, не столь демонстративно, и сейчас.

В этих условиях перед нашей страной, выдержавшей беспрецедентную в моральном и экономическом отношении четырехлетнюю войну и добившейся победы ценой огромных усилий и жертв, возникли новые гигантские проблемы по обеспечению собственной и союзников безопасности. Пришлось срочно, отрывая ресурсы от измученного войной и голодного народа, создавать новейшие виды оружия, содержать в постоянной боеготовности огромную армию. Так были созданы атомные и водородные бомбы, межконтинентальные ракеты, система противоракетной обороны и многое другое. Наши успехи в области обеспечения обороноспособности страны и реальная возможность получения сокрушительного ответного удара вынудили США отказаться от реализации плана «Dropshot» и других ему подобных.

Одним из последствий «холодной войны» была почти полная экономическая и информационная изоляция противостоящих сторон. Экономические и научные связи были весьма слабы, а в области стратегически важных отраслей и новых технологий практически отсутствовали. Важные открытия, изобретения, новые разработки в любой области знаний, которые могли быть использованы в военной технике или способствовать экономическому развитию, засекречивались. Поставки прогрессивных технологий, оборудования, продукции запрещались. В результате советская полупроводниковая наука и промышленность, развивались в условиях почти полной изоляции, фактической блокады от всего того, что делалось в этой области в США, Западной Европе, а затем и Японии.

Следует также отметить, что советская наука и промышленность во многих направлениях тогда занимала лидирующее в мире положение. Наши истребители в корейской войне были лучше американских, наши ракеты были мощнее всех, в космосе в те годы мы были впереди планеты всей, первый в мире компьютер с производительностью выше 1 млн. оп/с был наш, водородную бомбу мы сделали раньше США, баллистическую ракету первой сбила наша система ПРО и т.п. Отстать в электронике означало потянуть назад все остальные отрасли науки и техники.

Значение полупроводниковой техники в СССР понимали прекрасно, но пути и методы ее развития были иными, чем в США. Руководство страны сознавало, что противостояние в холодной войне можно обеспечить путем развития оборонных систем, управляемых надежной, малогабаритной электроникой. В 1959 году были основаны такие заводы полупроводниковых приборов, как Александровский, Брянский, Воронежский, Рижский и др. В январе 1961 г. было принято Постановление ЦК КПСС и СМ СССР «О развитии полупроводниковой промышленности», в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах. Причем базой для создания первых предприятий полупроводниковой промышленности стали совершенно не приспособленные для этих целей помещения (здания коммерческого техникума в Риге, Совпартшколы в Новгороде, макаронная фабрика в Брянске, швейная фабрика в Воронеже, ателье в Запорожье и т.д.). Но вернемся к истокам.

Первые советские транзисторы

В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p — n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного — нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» — первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 — С4. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).

Первый советские промышленные транзистор:
точечный С1Г (слева) и плоскостный П1А (справа)

В мае 1953 г. был образован специализированный НИИ (НИИ-35, позже – НИИ «Пульсар»), учрежден Межведомственный Совет по полупроводникам. В 1955 г. началось промышленное производство транзисторов на заводе «Светлана» в Ленинграде, а при заводе создано ОКБ по разработке полупроводниковых приборов. В 1956 г. московский НИИ-311 с опытным заводом переименован в НИИ «Сапфир» с заводом «Оптрон» и переориентирован на разработку полупроводниковых диодов и тиристоров.

На протяжении 50-х годов в стране были разработаны ряд новых технологий изготовления плоскостных транзисторов: сплавная, сплавно-диффузионная, меза-диффузионная.

Полупроводниковая промышленность СССР развивалась достаточно быстро: в 1955 г. было выпущено 96 тысяч, в 1957 г. – 2,7 млн, а в 1966 г. – более 11 млн. транзисторов. И это было только начало.

Статья помещена в музей 6.01.2008

История транзисторов. Буревестники кремниевой революции::Журнал СА 1-2.2010

Рубрика: Карьера/Образование /  Ретроспектива

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

 ВЛАДИМИР ГАКОВ, журналист, писатель-фантаст, лектор. Окончил физфак МГУ. Работал в НИИ. С 1984 г. на творческой работе. В 1990-1991 гг. – Associate Professor, Central Michigan University. С 2003 г. преподает в Академии народного хозяйства. Автор 8 книг и более 1000 публикаций

История транзисторов
Буревестники кремниевой революции

Нелепая ошибка привела к открытию, которое принесло его авторам Нобелевскую премию

Более шестидесяти лет назад, 23 декабря 1947 года, три американских физика, Уильям Шокли, Джон Бардин, Уолтер Браттейн, продемонстрировали коллегам новый прибор – полупроводниковый усилитель, или транзистор. Он был миниатюрнее, дешевле, прочнее и долговечнее радиоламп, а кроме того, потреблял гораздо меньше энергии. Словом, открытие стало настоящим рождественским подарком трех «санта-клаусов» человечеству – именно с этого основного элемента интегральных схем началась Великая кремниевая революция, приведшая к появлению общепринятых сегодня «персоналок».

Уильям Шокли, Джон Бардин и Уолтер Браттейн

Все трое получили заслуженную Нобелевскую премию, а Бардин впоследствии ухитрился получить и вторую – в 1972-м, за создание микроскопической теории сверхпроводимости (вместе с Леоном Купером и Джоном Шриффером – о чем ниже). Судьба Уильяма Шокли вообще сложилась очень любопытно.

Усилитель технического прогресса

История изобретения полупроводниковых усилителей – транзисторов – вышла драматичной, несмотря на ее скоротечность. Вся она уместилась в два послевоенных десятилетия, но чего в ней только не было! Тут и поразительные «пролеты» конкурентов удачливой тройки: находясь в буквальном смысле в сантиметрах от открытия, они не разглядели его и прошли мимо, в том числе и мимо светившей им Нобелевской премии. Ученики настолько хорошо усвоили идеи учителя, что чуть было не оставили его самого без означенной «нобелевки», так что раздосадованному шефу пришлось за неделю совершить невозможное, чтобы нагнать свою чересчур шуструю команду. Да и сам транзистор появился на свет, как это часто случалось, в результате нелепой ошибки одного из героев этой истории, измученного затяжной полосой неудач. Ну и, наконец, не менее поразительная «слепота» масс-медиа, сообщивших об одном из главных технологических переворотов ХХ века… мелким шрифтом на последних полосах!

Драматична судьба двух участников исторического события. Потеряв интерес к открытой ими золотой жиле, оба переключились на иные направления. Но Бардин, как уже говорилось, получил вторую «нобелевку» (их вообще в этой истории хватало), а Шокли – общественное негодование и игнорирование всего научного сообщества. До этого он еще успел растерять и лучших сотрудников. Сбежав из его фирмы и создав собственную, они разбогатели и прославились как создатели первых интегральных схем.

Тут не статью – увлекательный роман писать впору!

Но все по порядку. Итак, к середине прошлого века на повестку дня встал вопрос о замене громоздких, капризных, энергоемких и недолговечных электровакуумных ламп на что-то более миниатюрное и эффективное. К решению этой задачи одновременно подбирались несколько ученых и целые исследовательские группы.

История развития транзисторов

Хотя все началось еще раньше – в 1833 году, когда англичанин Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. Спустя без малого век, в 1926-м, соотечественник Фарадея Джулиус Эдгар Лилиенфилд получил патент под названием «Метод и прибор для управления электрическими токами», фактически предвосхитив, но так и не построив транзистор. А по окончании Второй мировой войны изучением электропроводных свойств полупроводниковых материалов занялись специалисты исследовательской фирмы Bell Telephone Laboratories, чья штаб-квартира располагалась в Марри-Хиллз (штат Нью-Джерси).

Именно там под руководством видного теоретика Уильяма Шокли был создан один из первых «мозговых центров» в истории американской науки. Шокли еще до войны пытался решить задачу повышения проводимости полупроводников с помощью внешнего электрического поля. Эскиз прибора в рабочем журнале ученого за 1939 год весьма напоминал нынешний полевой транзистор, однако испытания тогда закончились неудачей.

К концу войны в полупроводники успели поверить многие коллеги Шокли и, что самое главное, потенциальные заказчики и инвесторы – большой бизнес и «оборонка». На них произвели впечатление созданные во время войны радары, в основе которых лежали полупроводниковые детекторы.

Первым делом Шокли пригласил в Марри-Хиллз бывшего однокашника – теоретика Джона Бардина, переманив его из университета простым способом: предложил в два раза больший оклад. Кроме них двоих, в состав группы входила еще пятерка специалистов: теоретик, два экспериментатора, физико-химик и инженер-электронщик. Капитан этой команды ученых поставил перед ними ту же задачу, над которой бился до войны.

Однако и вторая попытка привела к отрицательному результату: изменить электропроводность полупроводниковых кремниевых пластин не смогли даже сильные внешние поля. Правда, на сей раз Бардин, работавший в связке с экспериментатором Уолтером Браттейном, с которым успел подружиться еще в колледже (где их объединила не только работа, но и совместное увлечение – гольф), смог хотя бы объяснить причину неудачи.

Если не вдаваться в технические детали, то из созданной им теории так называемых поверхностных состояний следовало, что управляющие металлические пластины, с помощью которых ученые воздействовали на полупроводниковый образец, и не могли дать желанного эффекта. Для получения положительного результата их следовало заменить заостренными (игольчатыми) электродами.

Друзья-коллеги так и поступили, и снова ничего. Казалось, дело зашло в тупик, но тут законченный трудоголик Браттейн, про которого говорили, что он может крутить ручки осциллографа по 25 часов в сутки («лишь бы было с кем поболтать»), неожиданно сорвался и совершил непростительную для профессионала ошибку. Что он там замкнул не так и какие полюса перепутал, в состоянии понять и оценить по достоинству только специалист-физик, для остального человечества важен результат той досадной ошибки, ставшей поистине золотой. Подсоединив электрод не туда, куда надо, Браттейн с удивлением зафиксировал резкое усиление входного сигнала: полупроводник заработал!

Проваленная премьера

Первым, кто сразу же оценил всю прелесть совершенной ошибки, был Бардин. Вместе с Браттейном он продолжил движение в «неправильном» направлении, начав экспериментировать с кристаллом германия, обладавшим большим, чем у кремния, сопротивлением. И 16 декабря 1947 года друзья продемонстрировали остальным участникам группы первый полупроводниковый усилитель, названный позже точечным транзистором.

Это был уродливый на вид германиевый брусок с торчащими из него закрученными усиками-электродами. Как именно он действует, в ту пору понимал, очевидно, один только Бардин: выдвинутая им по горячим следам гипотеза об инжекции (испускании) зарядов одним электродом (эмиттером) и их собирании другим электродом (коллектором) была выслушана коллегами в недоуменном молчании. Специалистов можно было понять – подтверждения теоретической правоты Бардина пришлось ждать годы.

Официальная презентация нового прибора состоялась через неделю, в предрождественский вторник 23 декабря, и эта дата вошла в историю как день открытия транзисторного эффекта. Присутствовал весь топ-менеджмент Bell Telephone Laboratories, сразу оценивший, какие золотые горы сулит компании новое изобретение – особенно в радиосвязи и телефонии.

Современные транзисторы

В мрачном расположении духа пребывал лишь снедаемый ревностью руководитель группы. Шокли считал себя автором идеи транзистора, он первым преподал своим удачливым ученикам основы квантовой теории полупроводников – однако его непосредственного вклада в создание первого рабочего транзистора никакое патентное бюро при всем желании не разглядело бы и в лупу.

Вдвойне несправедливо было и то, что Шокли раньше других оценил совершенно фантастические перспективы, которые сулил транзистор в иной области – стремительно прогрессировавшей вычислительной технике. Тут уже определенно светила «нобелевка», и Шокли, обладавший честолюбием и болезненным самолюбием, совершил фантастический рывок, чтобы успеть на уходящий поезд. Буквально за неделю ученый создал теорию инжекции и более основательную, чем бардинская, теорию транзистора – так называемую теорию p-n-переходов. А в новогоднюю ночь, когда коллеги исследовали в основном оставшиеся с рождественских гуляний бутылки из-под шампанского, придумал еще один тип транзистора – плоскостной (его еще называют «бутербродный»).

Героические усилия честолюбивого Шокли не пропали даром – спустя восемь лет он вместе с Бардиным и Браттейном разделил заветную Нобелевскую премию. На торжествах в Стокгольме, кстати, вся тройка в последний раз собралась вместе и больше никогда в полном составе не встречалась.

Через полгода после удачной премьеры транзистора в нью-йоркском офисе фирмы состоялась презентация для прессы нового усилителя. Однако реакция СМИ вопреки ожиданиям оказалась более чем вялой. На одной из последних полос (46-й) газеты The New York Times от 1 июля 1948 года в разделе «Новости радио» появилась короткая заметка – и все. Сообщение явно не тянуло на мировую сенсацию – с конца июня все американские и мировые СМИ были заняты обсуждением другой новости – советской блокады Западного Берлина, начатой за неделю до презентации транзистора. Изобретение троих ученых померкло на фоне репортажей о «воздушном мосте», с помощью которого американцы доставляли в блокированный сектор Берлина продукты питания и прочие предметы первой необходимости.

Поначалу фирме Bell Telephone Laboratories пришлось раздавать лицензии на транзисторы всем желающим, не торгуясь. Спрос был невелик – в то время инвесторы по инерции еще вкладывали огромные деньги в обычные радиолампы, производство которых переживало бум. Однако нашлись одиночки, которые быстро распознали возможности новых полупроводниковых усилителей, прежде всего в неожиданной области – слуховых аппаратов.

Микроэлектроника и макроевгеника

Среди прочих на нью-йоркской презентации присутствовал еще один будущий нобелевский лауреат – в ту пору инженер небольшой фирмы Centralab Джек Сент-Клер Килби. Вдохновившись увиденным, он наладил в своей фирме производство первых в мире миниатюрных слуховых аппаратов на транзисторах. А в мае 1958 года Килби перебрался в Даллас и поступил на работу в компанию Texas Instruments, производившую транзисторы, конденсаторы, резисторы и прочие «кубики», из которых собираются электросхемы.

Когда летом большинство сотрудников отправились в отпуска, Килби «на новенького» оставили потеть в офисе. Кроме всего прочего, ему пришлось заниматься рутинной работой, связанной скорее с бизнесом, чем с физикой. Именно за анализом ценообразования полупроводникового производства ученого посетила гениальная идея, в основе своей чисто экономическая. Получалось, что для вывода производства полупроводников на уровень рентабельности компании следовало ограничиться выпуском их одних. А все прочие активные элементы схемы производить на основе того же полупроводника, причем уже соединенными в единую компактную конструкцию наподобие детской игры Lego! Килби как раз и придумал, как это сделать.

Руководство компании пришло в восторг от идеи сотрудника и тут же «нагрузило» его срочным заданием: построить опытную модель схемы, целиком сделанной из полупроводника. 28 августа 1958 года Килби продемонстрировал работавший макет триггера, после чего приступил к изготовлению первой монолитной интегральной микросхемы (генератора с фазовым сдвигом) на кристалле германия.

Первый в истории простейший микрочип размером со скрепку для бумаг заработал 12 сентября, и этот день также вошел в историю. Однако Нобелевской премии Джеку Килби пришлось ждать почти полвека – ученый получил ее в последний год ХХ столетия, разделив премию с соотечественником, выходцем из Германии Гербертом Кремером и российским коллегой Жоресом Алферовым.

Что касается личных и профессиональных судеб трех отцов транзистора, то они сложились по-разному. Бардин, которого ревнивый до паранойи Шокли начал откровенно «затирать», в 1951 году оставил Bell Telephone Laboratories и перешел на работу в Университет штата Иллинойс в Урбане. Дополнительным стимулом послужил редкий в те времена годовой оклад в $10 тыс. Спустя пять лет профессор Бардин, уже забывший о полупроводниках и переключившийся на квантовые системы, услышал по радио о присуждении ему Нобелевской премии. А в 1972-м, как уже говорилось, за созданную вместе с сотрудниками Леоном Купером и Джоном Шриффером микроскопическую теорию сверхпроводимости получил и вторую. Умер единственный в истории дважды лауреат Нобелевской премии (в одной и той же номинации!) в 1991 году в возрасте 82 лет.

Анди Гроув, Роберт Нойс и Гордон Мур

Для Уолтера Браттейна, скончавшегося за четыре года до того, точечный транзистор так и остался пиком научной карьеры.

Зато их руководитель Уильям Шокли и после полученной премии активно работал в различных областях, хотя транзисторы вскоре забросил. Любопытно, что с технологической и коммерческой точек зрения его плоскостной транзистор оказался более перспективным, чем точечный Бардина и Браттейна: последний продержался на рынке лишь до конца 1950-х, в то время как плоскостные выпускаются и поныне. И именно на их основе были созданы первые микросхемы.

Но более всего Шокли прославился в сфере, весьма далекой от физики. А по мнению многих, и от науки вообще. В середине 1960-х годов он неожиданно увлекся евгеникой, вызывающей у многих неприятные ассоциации с арийскими сверхчеловеками, низшими расами и тому подобными «приветами» из недавнего прошлого. Шокли разработал собственную модификацию евгеники – дисгенику. Эта теория говорит о неизбежной умственной деградации человечества, в котором с течением времени вымывается интеллектуальная элита (люди с высоким IQ), а их место занимают те, у кого недостаток интеллекта скомпенсирован избытком репродуктивной функции. Иными словами – более плодовитыми и более глупыми.

С идеей общего оглупления человечества трезвомыслящему человеку еще можно было бы согласиться – в принципе. Однако Шокли добавил в свои рассуждения расовый момент, записав в число более плодовитых и более глупых представителей черной и желтой рас, которые, по его мнению, от рождения обладают более низким IQ, чем белые. На том американский физик не остановился и в духе приснопамятных нацистских рецептов предложил свое окончательное решение – только не еврейского, а негритянского вопроса. Чтобы бурно размножающиеся и умственно неразвитые «черные» (а также «желтые» и слабоумные «белые») окончательно не вытеснили на обочину истории высокоинтеллектуальную белую элиту, последней следует побудить первых к добровольной стерилизации.

План Шокли, который он неоднократно представлял в американскую Академию наук и правительственные учреждения, предусматривал материальное стимулировение людей с низким IQ, согласившихся на добровольную стерилизацию.

Можно себе представить реакцию коллег Шокли на подобные откровения. В 1960-е годы о тотальной политкорректности в Америке говорить не приходилось, но и откровенный расизм был уже не в моде. А когда подобные идеи излагал профессор и нобелевский лауреат, результатом могли быть только шок и возмущение. Полная обструкция со стороны интеллектуальной элиты сопровождала Шокли до последних дней (он умер от рака в 1989 году).

Вундеркинды Кремниевой долины

Между тем история изобретения транзистора на том не закончилась. Круги от исторического события, произошедшего в декабре 1947 года, расходились еще долго, порой приводя к совершенно непредсказуемым результатам.

По справедливости к упомянутой тройке нобелевских лауреатов 2000 года – Килби, Кремеру и Алферову – должен был бы присоединиться и американец Роберт Нойс, создавший первую микросхему одновременно с Килби. И самое главное – независимо от него. Однако Нойсу не довелось дожить до конца века, а посмертно эту премию, как известно, не присуждают.

Но занятно, что первый толчок научной карьере Нойса дал тот же Шокли – еще до того, как окончательно «сдвинулся» на расовой почве. В 1955 году будущий нобелевский лауреат покинул компанию Bell Telephone Laboratories и основал собственную фирму Shockley Semiconductor Laboratories в южном пригороде Сан-Франциско – Пало-Альто, где прошло его детство. Так был заложен первый камень в основание легендарной Кремниевой (или Силиконовой) долины.

Сотрудников Шокли набрал из молодых, да ранних, не подумав ни об их амбициях, ни о пределах их терпения – характер у него был отвратительный, да и руководителем он себя показал никаким. Не прошло и двух лет, как психологический климат в фирме стал чреват взрывом, и восемь лучших сотрудников во главе с Нойсом и Гордоном Муром сбежали из нее, чтобы основать собственную компанию.

Гениальных идей у «восьмерки предателей» (как заклеймил их Шокли) было хоть отбавляй – чего не скажешь о стартовых капиталах. Друзья-компаньоны еще не рожденной компании начали хождение по банкам и инвесторам в поисках денег. И после нескольких отказов счастливо наткнулись на такого же молодого и амбициозного финансиста Артура Рока, чьим коньком было как раз привлечение инвестиций. Что именно «напели» инженеры-технари бизнесмену, истории неведомо, но, как бы то ни было, он сыграл поистине судьбоносную роль в их будущем бизнесе. А также в судьбе других фирм Кремниевой долины, у основателей которых на старте не было ни гроша за душой – одни гениальные идеи и проекты.

С помощью Рока местная компания Fairchild Camera & Instrument согласилась инвестировать в новое дело $1,5 млн, но с одним условием: у нее останется право в будущем выкупить компанию «восьмерки» за вдвое большую сумму – если у тех дела пойдут в гору. Так была создана компания Fairchild Semiconductor, название которой буквально переводится как «Полупроводник чудо-ребенка» (в немецком варианте – вундеркинда). И вундеркинды из Пало-Альто скоро заявили о себе.

Первый транзисторСовременный микрочипМикрочип

Нойс сам себя считал отменным лентяем. И главное изобретение жизни сделал, по его собственным словам, также из лени. Ему надоело наблюдать, как при изготовлении микромодулей пластины кремния сначала разрезали на отдельные транзисторы, а затем опять соединяли друг с другом в единую схему. Процесс был трудоемким (все соединения паялись вручную под микроскопом) и дорогостоящим. И в 1958 году Нойс наконец сообразил, как изолировать друг от друга отдельные транзисторы в кристалле. Так родились всем знакомые микросхемы – пластинки с графическим лабиринтом «дорожек» из алюминиевых напылений, отделенных друг от друга изолирующим материалом.

На первых порах микросхемы с трудом пробивали себе дорогу на рынок. Но в начале 1970-х все резко изменилось: после того как в 1969 году Fairchild Superconductor продала определенный тип микрочипов (предсказанных Бардиным еще во время работы в Bell Telephone Laboratories) на $15 млн. Спустя два года объем продаж той же продукции подскочил до $100 млн.

Однако успехи «вундеркиндов» омрачили обычные в таких случаях приоритетные дрязги. Дело в том, что Джек Килби подал заявку на патент микросхемы в феврале 1959 года, а Нойс сделал это только спустя пять месяцев. Тем не менее он получил патент первым – в апреле 1961-го, а Килби – только через три года. После этого между конкурентами развязалась десятилетняя «приоритетная война», закончившаяся мировым соглашением: Апелляционный суд США подтвердил претензии Нойса на первенство в технологии, но одновременно постановил считать Килби создателем первой работающей микросхемы.

Роберт Нойс не дожил до положенной ему по праву Нобелевской премии 2000 года ровно десять лет – в 63-летнем возрасте он скончался в своем рабочем кабинете от сердечного приступа.

Но до этого он основал вместе с Муром еще одну знаменитую компанию. Бросив в 1968 году налаженный бизнес в Fairchild Semiconductor, друзья решили назвать свое новое детище без затей: Moore Noyce. Однако по-английски это звучало более чем двусмысленно – почти как more noise («больше шума»), и компаньоны остановились на более официальном, зато содержательном названии: Integrated Electronics. Затем их компания неоднократно меняла имя, и сегодня каждый пользователь «персоналок» ежедневно лицезреет ее логотип с нынешним названием, коротким и звучным – Intel. Который «внутри».

Так спустя два десятилетия после открытия Бардина, Браттейна и Шокли завершилась Великая кремниевая революция.

Приложение

Нарушитель конвенции

В случае с Джоном Бардиным члены Шведской академии в первый и пока единственный раз в более чем вековой истории Нобелевских премий пошли на нарушение ее статута. Один из его пунктов запрещает присуждать премии дважды в одной номинации. Однако отметить успех сотрудников Бардина (очевидный для членов комитета и всего мирового научного сообщества) и при этом проигнорировать главного виновника торжества было бы просто неприлично, и американскому физику сделали исключение.

На сенсацию явно не тянуло…

«Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор», который в ряде случаев можно использовать в области радиотехники вместо электронных ламп. Прибор был применен в схеме радиоприемника, не содержащего обычных ламп, а также в телефонной системе и телевизионном устройстве. Во всех случаях прибор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны. Транзистор, имеющий форму маленького металлического цилиндра длиной около 13 миллиметров, совсем не похож на обычные лампы, в нем нет ни полости, из которой откачан воздух, ни сетки, ни анода, ни стеклянного корпуса. Транзистор включается практически мгновенно, не требуя разогрева, поскольку в нем отсутствует нить накала. Рабочими элементами прибора являются лишь две тонкие проволочки, подведенные к куску полупроводника величиной с булавочную головку, припаянному к металлическому основанию. Полупроводник усиливает ток, подводимый к нему по одной проволочке, а другая отводит усиленный ток».

The New York Times, 1 июля 1948 г.


Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

История за изобретение полевых транзисторов

Никто, конечно, можно представить любые электронные устройства без присутствия транзисторов. В этом случае Какова идея изобретения транзисторов? Кто были люди за свои изобретения и достижения? Какова реальная цель изобретения полевых транзисторов? И как она появиться? Каковы текущие приложения и достижений этих транзисторов? Вы когда-нибудь задумывались об этом? Если да, то этот пишут поможет вам узнать больше о интересный рассказ за изобретение транзисторов field-effect.

Перед входом в его изобретение часть, давайте проведем краткий взгляд на то, что полевые транзисторы. Полевые транзисторы униполярные, появившихся в основном от биполярных транзисторов. Он используется как транзистор, но его эффективность является, что он контролирует теплопроводность материала с помощью электрического поля.

Хотя есть слишком много людей, участвующих в этом изобретении, следует отметить несколько. Юлиус Эдгара Лилиенфельда, Oskar Хайль, Джон Бардин, Уолтер Хаузер Браттейн и Уильям Шокли внесли основной вклад в изобретение полевой транзистор.

Изобретение

До начала XX века, в самом деле, не было ни малейшего представления о том принципе, что привело к полевой транзистор.

Два человека запатентовали свои идеи на это изобретение.

Вклад Юлий Эдгар Lilienfield

Первый человек — Юлиус Эдгара Лилиенфельда, который был Австро-венгерский физик. Позже он переехал в США и стал гражданином США. В 1905 году он начал работать в Лейпцигском университете в кафедры физики.

Его работы интерес был в выполнении электрических частиц или электронов в вакууме. Его первый вклад в научное общество было сделано с идентификации поля электронной эмиссии.

Он был один, чтобы изобрести полевой транзистор или ФЕТ, как это широко известно. Его изобретения включают электролитический конденсатор, который был изобретен в тот же период 1920. Он утверждал патентов для различных работ, среди которых он был предоставлен патент для FET полевой транзистор на 28 января 1930 года.

Основываясь на одной из его открытий, которые был похож на рентгеновские трубки, любого оптического излучения, испускаемого попадания электронов на металлической поверхности был назван как Лилиенфельд излучения.

Хайль Оскар и его вклад

В отличие от Лилиенфельд Oskar Хайль был инженер-электрик. Он закончил свое обучение в университете Джорджа-Август. Докторскую степень была присуждена ему за его работу по молекулярной спектроскопии в 1933 году.

Основываясь на докладах различных патентов, выданных ему, Oskar Хайль считается одним из изобретателей полевых транзисторов. Другие изобретения, которые записываются по его являются трансформатор движения воздуха и Хайль трубки.

В год 1963 года, накопив большой опыт он инициировал его компании в Калифорнии, США.

Вклад Уильям Шокли

Хотя принцип полевых транзисторов была впервые запатентована Лилиенфельд и Хайль, практические полупроводникового устройства, такие как junction ворота полевой транзистор или JFET были разработаны лет спустя после транзистора эффект наблюдался, объяснил и продемонстрировал Уильям Шокли и его командой в Bell Labs в 1947 году.

Шокли усилия по коммерциализации транзистор был путь, преодолев вклад в научное общество. Во время второй мировой войны Шокли работал в исследовательских лабораториях радар в Нью-Джерси. Шокли был построен первый рабочий транзистор. Это был Германий точки транзистор серии.

Транзисторов, которые в настоящее время работают в электрических устройствах, все, полевые ТРАНЗИСТОРЫ. Полевые ТРАНЗИСТОРЫ, металло-оксидный полупроводник транзисторы field-effect. Они были впервые предложены Dawon Kahng в 1960 году и этот транзистор во многом заменил JFET и гораздо более глубокое воздействие на развитие электронной.

Как работает полевой транзистор

В полевой транзистор электрическое поле создается путем слабого электрического сигнала в нижней части транзистор, который также передается на другие части полевой транзистор.

В нижней части транзистор заполнено вверх с избытком электронов. В Центральной или базового региона, количество электронов является слишком мало когда по сравнению с нижней частью полу провода. Есть две стороны нашли, что известны как источник и сток. Исходный сторона является формой региона, где электроны ввести внутри, а так же на другой регион, слива, электроны стоки из. Обычно поток электронов производится от одной стороны к другой. Ток не отмечен рядом база региона. Ток способствует тонкий канал вдоль другого региона.

На базе полу провода электрода связан или прилагается. Тонкий слой окиси металла отделяет этот электрод от остальной части. Наиболее распространенные окиси тяжелых металлов используется это диоксид кремния. Электрод часто рассматривается как «ворота». Ворота это, где мы пройти слабый электрический сигнал в полу дирижер.

Благодаря отталкивающим действием электронов истощение зоны получает сформирована база региона. Проходя отрицательный заряд поможет полностью предотвратить прохождение электроэнергии через провод полу.

Хотя транзисторы имеют различные приложения, которые проще, они могут быть использованы в сложных местах тоже. Они также могут вести себя как усиления устройства.

Основываясь на заряд передается полу дирижер, тока, протекающего через другой регион может быть либо меньше или больше. Как еще один напряжения, подключенных к нему, есть возможные пути дальнейшего сделать его больше. Полевые транзисторы или ФЕТ часто используются в электрических устройствах, таких как микрофоны, микроволновые печи, телевизоры, радиоприемники и даже в автомобилях. Они имеют широкое применение в качестве несущей зарядов. Хотя есть много других полупроводники, кремния служит лучшим для использования в полевых транзисторов.

Дедушка транзистор Самый нужный электронный компонент отпраздновал юбилей: Наука и техника: Lenta.ru

Шестьдесят лет назад, 16 декабря 1947 года, исследователи Джон Бардин (John Bardeen), Уолтер Браттейн (Walter Brattain) и Уильям Шокли (William Shockley) при помощи скрепки для бумаг, некоторого количества германия и золотой фольги увеличили силу тока в сотню раз.
Через неделю они показали устройство, оказавшееся первым действующим транзистором, начальству. Спустя полгода, в июне 1948 года, в Нью-Йорке были продемонстрированы радиоприемник и телевизор с транзисторами вместо привычных электронных ламп.

В 1949 году лишь один транзистор из пяти выходил без брака, однако технология быстро развивалась — в 1953 году, объявленном журналом Fortune годом транзистора, вышел слуховой аппарат Sonotone 1010, в котором использовалась новинка. Это было первое коммерческое применение транзистора. Годом позже в продажу поступило и транзисторное радио — устройство Regency TR-1.

В 1956 году исследователи получили Нобелевскую премию по физике «за исследования полупроводников и открытие транзисторного эффекта». В 1958 году два транзистора уместили на кремниевой подложке — в мире появилась первая интегральная схема.

В 1960 году транзисторная технология позволила Sony выпустить первый портативный телеприемник. Двигатель транзисторной революции был запущен. В 1971 году появился первый карманный микрокалькулятор, а в 1983 году — первый коммерческий мобильный телефон.

Хитроумный прибор

Именно такое определение транзистора дается в одном из школьных учебников физики. В самом деле, компании Bell в конце сороковых понадобилось весьма необычное устройство.
Электронные лампы существовали уже четыре десятка лет, на их основе создали огромные электронно-вычислительные машины. Несмотря на то, что фантасты ежегодно в своих произведениях увеличивали размеры компьютеров, инженеры понимали — закат ламповых компьютеров не так далек, как кажется. Лампы требовали большой мощности, выделяли много тепла. На больших компьютерах их приходилось постоянно менять и перепроверять все контакты.

Инженерам Bell было дано задание придумать твердотельное устройство, которое обходилось бы без нити накала, движущихся частей и вакуума. Другими словами, упростить привычный вакуумный триод до крайности, чтобы (в случае Bell) начать производство мини-АТС, которые при использовании ламп были неоправданно дороги.

У полевого транзистора три электрода — исток (эмиттер), сток (коллектор) и затвор (база). Подавая напряжение на затвор, можно либо останавливать ток между истоком и стоком, либо возобновлять его. Эта способность, основанная на свойствах полупроводников, и делает из транзистора мгновенный переключатель.

Широко используются два вида транзисторов: биполярные и полевые, в частности, МОП-транзисторы. Первые использовались и в качестве усилителей и переключателей при изготовлении интегральных схем свыше трех десятков лет. Затем цифровая техника стала вотчиной МОП-транзисторов (их концепция была придумана еще в конце двадцатых годов прошлого века, но производить такие транзисторы стали гораздо позже биполярных).

Полезный триод

Если бы не изобрели транзистор, то современная нам медийная и IT-отрасли, скорее всего, не появились бы на свет. Миниатюризации бытовой техники либо не было бы, либо она шла бы очень медленно. ЭВМ создавали бы для решения одной, определенной задачи. Программисты были бы в первую очередь математиками и матоптимизаторами.

Там, где это возможно, аппаратура обходилась бы механическими способами передачи информации — например, при помощи перфокарт и перфолент. На столах вместо компьютеров, скорее всего, стояли бы калькуляторы и пишущие машинки. Жидкокристаллические мониторы и телевизоры, скорее всего, не были бы изобретены.

Как сказал однажды глава компании Microsoft Билл Гейтс, «персональный компьютер без изобретения транзистора вряд ли существовал бы в том виде, в котором мы его знаем».

Значительная часть достижений фундаментальной науки также оказалась бы недоступной, так как требует слишком больших вычислительных мощностей.

Цифровой век

Человечество постоянно занимается тем, что пытается уместить на полупроводниковых подложках как можно больше транзисторов — и по той же цене.

Свыше сорока лет соблюдается выведенный в 1965 году закон Гордона Мура о том, что число транзисторов на чипе каждые два года удваивается, а стоимость чипа падает на 50 процентов.
Как писала газета The Los Angeles Times, если бы автомобили дешевели так же быстро, то мы бы сейчас платили за машину меньше, чем за порцию пиццы.

Сегодня на одном чипе размещается до миллиарда столь необходимых переключателей. Ежесекундно в мире появляется полмиллиарда новых МОП-транзисторов. Ежегодно производятся миллиарды микросхем. Общее число транзисторов в них в 10 тысяч раз превышает число муравьев на Земле и в 10 миллионов раз — число звезд в Млечном Пути.

Впрочем, удивительно другое — то, что за шестьдесят лет еще никто не придумал такой же перспективной технологии, какой оказался транзистор в сравнении с лампами. Исследователи предсказывают, что потенциала транзистора хватит еще на 15-20 лет.

Страшно подумать, что тогда появится в лабораториях и насколько его хватит.

В каком году был изобретен транзистор

УВЕРЕННАЯ ПОСТУПЬ ТРАНЗИСТОРА

30 июня 1941 года ученые Уильям Шокли, Уолтер Браттейн и Джон Бардин объявили о создании транзистора, а 23 декабря 1947 года изобретение было официальное представлено публике. Именно эту дату принято считать днем изобретения транзистора. Но великий поход в «страну Полупроводников» начался еще в 1833, когда Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. И только через 125 лет в Америке на основе другого полупроводника, германия, была создана микросхема.

Новое изобретение

О первой демонстрации транзистора газета «New York Times» сообщила 1 июля 1948 года на предпоследней странице: «Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор», его в некоторых случаях можно использовать в области радиотехники вместо электронных ламп. Было также показано его использование в телефонной системе и телевизионном устройстве. В каждом из этих случаев транзистор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны».

Транзисторный магнитофон Комета МГ-209

Новость, по мнению редактора, не походила на сенсацию. Публика не проявила поначалу интереса к новому прибору, и Bell пыталась продвинуть новинку, раздавая лицензии на использование транзистора всем желающим. А инвесторы между тем делали миллионные вложения в радиолампы, которые после тридцати лет развития переживали бум, – конец ему положит именно новое изобретение.

Потесненная лампа

До середины ХХ века казалось, что электронная лампа навсегда заняла место в радиоэлектронике. Она работала везде: в радиоприемниках и телевизорах, магнитофонах и радарах. Радиоэлектронная лампа сильно потеснила кристаллический детектор Брауна, оставив ему место только в детекторных приемниках. Удалось ей также составить конкуренцию и кристадину Лосева, – это был прообраз будущих полупроводниковых транзисторов.

Копия первого в мире работающего транзистора

Но у лампы был большой недостаток – ограниченный срок службы. Необходимость создания нового элемента с неограниченным временем действия становилась в радиоэлектронике все острее. Но, как не парадоксально, разработка полупроводниковых приборов тормозилась, кроме объективных причин, еще и субъективными – инерцией мышления самих ученых. Достаточно сказать, что лабораторию американской компании «Bell telefon», где проводились исследования со сверхчистым германием, коллеги пренебрежительно называли «хижиной ненужных материалов».

Давние конкуренты

Эксперты, впервые увидев пластинку германия с присоединенными к ней проводниками, заявили: «Такой примитив никогда не сможет заменить лампу». И все же, не обращая внимания на все преграды, 30 июня 1948 года компания «Bell telefon» впервые публично продемонстрировала твердотельный усилитель – точечный транзистор. Его годом раньше разработали сотрудники Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли.

Транзисторный радиоприемник 1959 года

На вопрос журналиста: «Как вы этого достигли?», Уильям Шокли ответил: «Транзистор создан в результате соединения человеческих усилий, потребностей и обстоятельств».

Название «транзистор» происходит от английского слова TRANsferreSISTance, а окончание слова – «OR« соответствует раннее появившимся радиоэлементам – «термистор и варистор» и дал его Джон Пирс. В основе названия заложен тот факт, что прибором можно управлять путем изменения его сопротивления.

Бардин Шокли и Браттейн в лаборатории Bell, 1948 год

В 1956 году трем американским ученым за это открытие была присуждена Нобелевская премия в области физики. Интересно, что когда Джон Бардин опоздал на пресс-конференцию по поводу присуждения ему этой премии, то войдя в зал, в свое оправдание сказал: «Прошу извинить меня, но я не виноват, так как не мог попасть в гараж: отказал транзистор в электронном замке».

Транзисторы в музыке

Уильям Шокли не остановился на достигнутом и разработал еще несколько новых типов транзисторов. К этим трудам своего сотрудника эксперты компании проявили скепсис. Более дальновидными оказались специалисты японской фирмы «SONY», она приобрела лицензию на эти транзисторы.

Полностью вытеснить радиолампу транзистору пока еще не удалось. Можно, наверное, утверждать, что полупроводниковые приборы и электронные лампы будут сосуществовать еще долго, не заменяя друг друга, а дополняя, и занимать то место в радиоэлектронике, где они дают наибольший эффект.

Современный макет транзистора Бардина и Браттейна

Не составляет исключение и музыкальная индустрия, так как звучание транзисторов и ламп серьезно отличается друг от друга. Очевидно то, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то – транзистор.

При современном развитии электроники существует возможность сделать звук транзисторного прибора теплым, а лампового – достоверным. Такая техника существует, но стоит очень дорого.

Все же есть надежда, что в будущем лампа и транзистор станут жить дружно, дополняя друг друга и радуя потребителей. Отзывы же о комбинированной аппаратуре на сегодня очень обнадеживающие.

Транзисторы и его путь изобретения

Мы все знаем, что «транзистор» является неотъемлемой частью любой электронной цепи или устройства. О чень редко можно увидеть схемы, построенные по крайней мере без одного транзистора. Это полупроводниковый прибор используется для целей переключения или для целей усиления в электронных устройствах. Они бывают в отдельном корпусе или в сочетании с интегральными микросхемами. Транзисторы бывают двух типов PNP и NPN. Наиболее часто используются транзисторы NPN.

В этой статье позволяет искать глубоко в интересную историю изобретения транзистора. Также имеется статья по Истории изобретения соединения PN.

Родители транзисторов

22 октября 1925 Австрийск-Венгерский физик, Юлиуса Эдгара Лилиенфельда записал первый патент для транзисторов в Канаде. Но, как он не сделал каких-либо научных публикаций относительно изобретения транзистора, отрасли игнорировать его работу. Тем не менее он имел большую роль в изобретении полевой транзистор. После работ Джулиус, в 1934, немецкий физик, Оскар Хайль отмечен другой патент на полевой транзистор. Хотя не выводы были сделаны в то время, позже исследования показывают, что Юлий Лилиенфельд транзистор дал отличный результат и получить. Джон Бардин, Уильям Брэдфорд Шокли и Уолтер Браттейн сделал параллельных исследований с Германий.

Какова была необходимость?

Вы можете догадаться, что сделали эти люди работают так религиозно на транзисторы? Есть роль, которую играет кристаллах германий позади экрана! Конечная цель исследований было производить чистый Германий кристалл диода смеситель, который был использован в РЛС. Эти радары служил цели смеситель частоты.

Достижение с Германий

Университет Пердью доказал успех в производстве чистого и Германий стандарт качества полупроводниковых кристаллов. Как трубка на основе технологии не достаточно быстро, они пытались с полупроводниковые диоды. Узнать больше о этот диод, они пытались, оформляя триод; Однако они нашли этот процесс будет очень утомительным.

Достижений с триода

Джон Бардин развитые поверхности физика, которая является результатом исследований и странное поведение предыдущего исследования. Бардин и Браттейн удалось сделать работы устройства и затем Шокли попытался разработать устройство полупроводникового триода на основе.

Что является базой для изобретения?

Принцип изобретения транзистора лежит на понимание подвижность электронов. Если поток электронов от эмиттера к коллектору может контролироваться одним так или иначе, усилитель может быть построен диода! Это казалось очень сложно, но Браттейн сделал шаг. Когда команда работает на создание такого устройства, было много недостатков в исследованиях. Во времена работала система, и иногда он неожиданно перестал работать.

И какие могут быть решения?

Если есть проблема, должно быть решение. Когда не работает настройка был помещен на воде, к счастью, он начал работать! Из-за чистой обвинения будет двигаться электроны в любой одной части кристаллов. Как противоположными зарядами, более вероятно, чтобы привлечь, электроны в излучателей и отверстия в коллекторы, как правило, двигаться в направлении поверхности кристалла. Противоположный заряд был получен из воздуха или воды. Эти чистые расходы могут быть легко оттеснили от применения очень мало количество заряда от часть кристалла. Максимальная инъекции электронов, что было необходимо промыть обвинения тогда был заменен с минимальным запасом электронов. Таким образом понимание исследователи проложили путь для решения проблемы. Нет никакой необходимости двух отдельных или отдельных полупроводники; Вместо этого немного больше одной поверхности может использоваться в качестве замены.

Новая система

В новом изобретении эмиттер и коллектор были расположены в верхней части которой были близко друг к другу и свинца управления был сделан на базе кристалл. На применении текущего, электронов или дырок от эмиттеров и коллекторов были очищены, по всему полу дирижер и они были собраны в дальнем конце поверхности кристалла.

Первый когда-либо транзистор

Хотя есть множество эволюций транзистора, первый транзистор был сделан после многих неудач. BELL laboratories телефон пытался на этот процесс и сталкиваются с нет успех. Изобретение транзистора точки контакт-это еще одна интересная история. Было установлено, что, когда контакты были более тесно, системы или Настройка стала еще более хрупким. Золото катушки был вставлен в конце пластиковый клин. Затем он был сокращен с помощью бритвы на кончике. В результате два близко расположенных червонцев. Было установлено, что тока начали поступать когда напряжения был применен на другой стороне кристалла, после того, как пластик был толкаемых вниз поверхность этого кристалла. Таким образом был изобретен транзистор контактной точки.

Это было 16 декабря 1947 года, было сделано двойной точкой контакта транзистор, создавая контакт с поверхностью Германий. Этот Германий был ранее анодированного до 90 вольт и несколько золотых пятен были испарялась. При нажатии золотые пятна на голой поверхности, на золото был установлен связаться поверхности идеально. Вопросы были разделены на расстоянии около 4 X 10 -3 см. Среди две точки одна была использована как сетки и другой был использован как плита. Браттейн и Мур показал набор до несколько их коллег и изобретение транзистора было объявлено на 23 РД декабря 1947 года.

Уильям Брэдфорд Шокли, Джон Бардин и Уолтер Хаузер Браттейн были награждены Нобелевской премией в 1956 году для этого преобразования жизни исследования на полупроводниках и их открытия (вместо изобретения) транзистора.

Помимо Уильям Брэдфорд Шокли, Джон Бардин и Браттейн, Уолтер Хаузер двенадцать больше людей сказали принимать непосредственное участие в изобретении транзисторов.

Transistron

В 1948 году Герберт Matare и Генрих Уэлкер применяется для патента на прочной основе транзисторов, которые назывались transistrons. Поскольку там не было каких-либо объявление от Белл, было объявлено, что transistrons были разработаны независимо друг от друга. Эти transistrons были коммерчески изготовлено и был использован в французской телефонной компании.

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Рис. 1. Первый транзистор

Рис. 2. Джон Бардин, Уильям Шокли и Уолтер Браттейн. За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Рис. 3. Транзистор и электронная лампа

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» — огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радиолаборатории О.В. Лосев . Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода. Подробнее об этом смотрите здесь: История светодиодов. Свечение Лосева.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния (обычный песок на пляже) в природе безграничны, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого — в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Рис. 4. Эволюция транзисторов

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Рис. 5. История транзисторов

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

Что такое транзистор? | Основы электроники

Транзистор был изобретен в 1948 году в Bell Telephone Laboratories

.

Изобретение транзистора стало беспрецедентным достижением в электронной промышленности. Это ознаменовало начало нынешней эпохи в секторе электроники. После изобретения транзистора технический прогресс стал более частым, наиболее заметным из которых была компьютерная технология. Трое физиков, которые изобрели транзистор; Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии.Учитывая изобретения, которые открыли транзисторы, можно утверждать, что это было самое важное изобретение двадцатого века.

От германия к кремнию

Транзисторы изначально производились с использованием германия. Это было стандартом для первого десятилетия производства транзисторов. Транзисторы на основе кремния, которые мы привыкли видеть сегодня, были приняты, потому что германий разрушается при температуре 180 градусов F.

Функции транзистора

Функции транзистора заключаются в усилении и переключении.Возьмем для примера радио: сигналы, которые радио принимает из атмосферы, очень слабые. Радио усиливает эти сигналы через выход динамика. Это функция «усиления».

Для аналогового радио простое усиление сигнала заставит динамики воспроизводить звук. Однако для цифровых устройств форму входного сигнала необходимо изменить. Для цифрового устройства, такого как компьютер или MP3-плеер, транзистор должен переключать состояние сигнала на 0 или 1.Это «функция переключения»

Даже более сложные компоненты, такие как интегральные схемы, изготовленные из жидкого кремния, в основном представляют собой наборы транзисторов.

Резисторы и транзисторы на одном кристалле

Изначально дискретные резисторы и транзисторы устанавливались на одних и тех же печатных платах. Позже транзисторные микросхемы со встроенными резисторами были разработаны как цифровые транзисторы. Использование цифровых транзисторов в конструкциях имеет:
1.Им требуется меньше места для монтажа компонентов на печатной плате.
2. Им требуется меньше времени для монтажа компонентов на печатной плате.
3. Это уменьшает количество необходимых компонентов.

Цифровые транзисторы защищены одним из эксклюзивных патентов ROHM.

Первые транзисторы со встроенными резисторами были разработаны фирмой ROHM, получившей патентные права. Цифровые транзисторы также защищены одним из эксклюзивных патентов ROHM.

Как работает транзистор?

Одна аналогия, которая помогает объяснить, как работает транзистор, — это думать о нем как о водопроводном кране.В этом случае электрический ток работает как вода. Транзистор имеет три контакта: база, коллектор и эмиттер. Основание работает как ручка крана, коллектор подобен трубе, которая идет в кран, а эмиттер подобен отверстию, через которое льется вода. Поворачивая ручку крана с небольшим усилием, мы можем контролировать мощный поток воды. Эта вода течет по трубе и выходит из отверстия. Слегка повернув ручку крана, можно значительно увеличить скорость потока воды.Если закрыть полностью, вода не будет течь. Если открыть полностью, вода будет хлестать как можно быстрее!

Теперь мы можем погрузиться в правильное объяснение, используя диаграммы ниже. Транзистор имеет три контакта: эмиттер (E), коллектор (C) и базу (B). База контролирует ток от коллектора до эмиттера. Ток, протекающий от коллектора к эмиттеру, пропорционален току базы. IE = IB x hFE. Показанная схема использует коллекторный резистор (RL). Если через RL протекает ток Ic, на этом резисторе образуется напряжение, равное произведению IC x RL.Это означает, что напряжение на транзисторе равно: E2 — (RL x IC). IC приблизительно соответствует IE, поэтому, если IE = hFE x IB, то IC также равно hFE x IB. Следовательно, посредством подстановки напряжение на транзисторах E = E2 — (RL x lB x hFE).

(* 1) hfe: Коэффициент усиления постоянного тока транзистора.

Транзистор

Изобретение транзистора — CHM Revolution

Изобретение транзистора

Ученые 20-х годов прошлого века предложили строить усилители из полупроводников.Но они недостаточно хорошо разбирались в материалах, чтобы на самом деле это делать. В 1939 году Уильям Шокли из Bell Labs компании AT&T возродил идею замены электронных ламп.

Под руководством Шокли Джон Бардин и Уолтер Браттейн продемонстрировали в 1947 году первый полупроводниковый усилитель: точечный транзистор с двумя металлическими точками, контактирующими с полоской германия. В 1948 году Шокли изобрел более прочный переходной транзистор, построенный в 1951 году.

Эти трое разделили Нобелевскую премию по физике 1956 года за свои изобретения.

Как работал транзистор Бардина и Браттейна

Транзистор Бардина и Браттейна состоял из полоски германия с двумя близко расположенными золотыми точечными контактами, удерживаемыми пластиковым клином. Они выбрали германиевый материал, который был обработан так, чтобы содержать избыток электронов, названный N-типом. Когда они заставляли электрический ток протекать через один контакт (называемый эмиттером), он вызывал нехватку электронов в тонком слое (локально изменяя его на P-тип) около поверхности германия.Это изменило количество тока, который мог протекать через контакт коллектора. Небольшое изменение тока через эмиттер вызвало большее изменение тока коллектора. Они создали усилитель тока.

Транзисторы взлетают

Компания AT&T, которая изобрела транзистор, лицензировала технологию в 1952 году. Она надеялась извлечь выгоду из других усовершенствований.

Транзисторы быстро покинули лабораторию и вышли на рынок. Хотя они дороже электронных ламп, они были идеальными, когда важна портативность и работа от батарей.Слуховой аппарат Sonotone 1952 года стал первым в Америке потребительским товаром на транзисторах. AT&T также использовала транзисторные усилители в своей системе междугородной телефонной связи. Вскоре они появились как переключатели, начиная с экспериментального компьютера в Манчестерском университете в 1953 году.

По мере того, как цены падали, количество потребителей увеличивалось. К 1960 году большинство новых компьютеров были транзисторными.

Нобелевская премия по физике 1956 года — Джон Бардин, Уолтер Х. Браттейн и Уильям Шокли

Ученые Bell Labs Джон Бардин, Уолтер Браттейн и Уильям Шокли получили Нобелевскую премию по физике 1956 года за изобретение транзистора, небольшого полупроводникового устройства. это изменит мир.

Сегодня транзисторы есть везде, где можно найти электронные устройства, включая спутники и космические корабли. Транзистор — это рабочая лошадка электронной техники, устройство, ознаменовавшее начало цифровой эпохи. На его пути были созданы целые отрасли промышленности, основанные на полупроводниках. Действительно, телекоммуникации, какими мы их знаем, были бы невозможны, если бы не транзистор.

Изобретатели транзистора исследовали свойства полупроводников, чтобы увидеть, могут ли они найти приемлемую замену электронным лампам и электромеханическим реле, используемым в телефонных сетях того времени.Электромеханические реле сделали полностью автоматический набор номера телефона и коммутацию реальностью, но реле имели низкую скорость. В то время в электронной промышленности в качестве диодов и триодов широко использовались вакуумные лампы. Они тоже сделали многое возможным в телефонии, но на них нельзя было положиться.

Под руководством Мервина Келли, директора по исследованиям Bell Labs в то время, группа физиков приступила к изучению полупроводников, чтобы увидеть, смогут ли они создать прочную альтернативу, которая могла бы в конечном итоге заменить комбинацию реле и трубки в телефонных сетях.Это окажется одной из самых замечательных технических одиссей в истории науки и техники.

Первый транзистор, когда-либо собранный. Он был назван точечным транзистором, потому что усиление происходило, когда два заостренных металлических контакта прижимались к поверхности полупроводникового материала.

Полупроводники обычно представляют собой искусственные изделия, изготовленные из таких элементов, как германий или кремний, хотя природные, такие как сульфид свинца, известны давно. В отличие от проводников, таких как металлы, которые имеют множество свободных электронов, переносящих электрический ток, кремний и германий имеют очень мало носителей заряда.Однако добавление небольших количеств определенных примесей — процесс, называемый легированием — может изменить количество носителей заряда. Например, когда в кремний добавляется крошечный кусочек фосфора, получается хороший полупроводник с электронами, отданными фосфором, действующим в качестве носителей заряда. Полупроводники, полученные таким образом, называются полупроводниками n-типа, поскольку заряд носителей отрицательный.

Более замечательный тип полупроводников образуется, когда, например, небольшое количество бора легируется кремнием.Бор обеспечивает положительно заряженный носитель, отнимая электрон у кремния. Вместо электрона остается дырка, и эта дырка может перемещаться внутри полупроводника, действуя как носитель положительного заряда. Эти полупроводники называются полупроводниками р-типа .

В лабораторной записной книжке Уолтера Браттейна записаны события 23 декабря 1947 года, когда был открыт эффект транзистора.

Полупроводник может содержать как дырки, так и электроны, размещенные в таких пропорциях, что преобладает носитель одного или противоположного типа.Техническое значение полупроводников во многом связано с взаимодействием дырок и электронов.

Бардин, Браттейн и Шокли протестировали различные комбинации полупроводников p-типа и n-типа в различных условиях. Они надеялись найти конфигурацию, которая позволила бы тонкому слою полупроводника регулировать большой ток между двумя электродами.

16 декабря 1947 года Бардин, Браттейн и Шокли сумели создать первый рабочий транзистор, теперь известный как транзистор с точечным контактом.В канун Рождества, во время демонстрации, когда физики говорили в микрофон, подключенный к цепи с их транзистором, входной сигнал был усилен примерно в восемнадцать раз. Наступила новая эра в электронике, и изобретение транзистора стало основой электронной эры.

Уильям Шокли и изобретение транзистора

Уильям Брэдфорд Шокли (1910-1989) — вместе с Джоном Бардином (1908-1991) и Уолтером Браттейном (1902-1987) — был отцом транзистора, изобретения, которое, вероятно, является величайшей бесшумной революцией двадцатого века, которая в 2017 году исполняется 70 лет.Работа подавляющего большинства оборудования, которое мы используем ежедневно (включая телевизоры, мобильные телефоны и компьютеры), основана на свойствах транзисторов, из которых они построены. Часто говорят, что транзистор для двадцатого века олицетворяет то, что паровая машина значила для девятнадцатого века.

Шокли родился в Лондоне в 1910 году и был родом из США. У него было не очень счастливое детство, в значительной степени мотивированное плохими отношениями между его родителями, которые были нестабильными людьми, неспособными к социальному взаимодействию со своим окружением.Они передали это своему сыну, и это сформировало его угрюмый и нелюдимый нрав. После того, как его родители вернулись в Соединенные Штаты, он поступил в Калифорнийский технологический институт (Калифорнийский технологический институт) в 1928, , где изучал физику, получив высшее образование в 1932 году. Впоследствии он получил докторскую степень в Массачусетском технологическом институте ( Массачусетский технологический институт) и получил звание доктора в 1936 году. В том же году он начал работать в Bell Telephone Laboratories в Нью-Йорке, принадлежащем А.T.&T., Телекоммуникационный гигант США.

В 1945 году директор лаборатории Мервин Дж. Келли поручил Шокли руководить группой по исследованию полупроводников с идеей разработки усилителя на основе этих материалов. A.T.&T очень интересовалась созданием усилителя на полупроводниках, так как у них были серьезные проблемы с дальней связью. В телефонном разговоре голос становится электрическим сигналом, сигналом, который затем проходит по медным проводам.Если сигнал проходит несколько километров, он беспрепятственно достигает приемного устройства; но в США связь между берегами должна длиться от 6000 до 8000 км; , электрический сигнал теряет интенсивность, и на определенном расстоянии он должен быть снова увеличен, операция, которая называется усилением, а устройство, которое это делает, называется усилителем . Достаточно иметь на всей линии достаточное количество усилителей, чтобы сделать ее желаемой длины. В те годы усилением были вакуумные клапаны, хрупкие устройства, которые потребляли много энергии и выделяли много тепла.Келли пришел к выводу, что им необходимо иметь более надежное усилительное устройство для эффективной связи на таком большом расстоянии, и предположил, что отклик следует искать в полупроводниках , свойства которых они начинали выяснять в то время.

Гонка на транзисторе

В течение 1946 года и в начале 1947 года результаты, полученные группой под руководством Шокли, были отнюдь не обнадеживающими, но с весны 1947 года два самых блестящих члена группы, Джон Бардин и Уолтер Браттейн, работали над поиском решений. проблема без Шокли, поскольку, несмотря на то, что он был лидером группы, он проводил большую часть своего времени дома, развивая свои собственные идеи.Летом и осенью того же года Бардин и Браттейн лихорадочно работали без участия Шокли. 16 декабря 1947 года они наконец смогли управлять усилителем на транзисторе, сделанном из германия, а 23-го, за день до Рождества, они показали свои результаты директорам лаборатории. В начале января 1948 года они подали патент (2 524 035 долларов США) на производство первого в истории транзистора с точечным контактом, изобретателем которого не был Шокли.

Когда Шокли узнал об успехе, достигнутом Бардином и Браттейном в его отсутствие, он пришел в ярость, так как его раздражало то, что он не участвовал в открытии.Анализируя разработанное ими устройство, Шокли почувствовал, что его будет трудно производить в больших количествах с достаточной надежностью, поскольку оно было физически слабым. Шокли снова заперся в своем доме, он придумал транзистор, который отличался от транзистора с точечным контактом, назвал переходным транзистором и подал еще один патент (2569347 долларов США) 23 января следующего года (1948), девять дней. после даты, когда Бардин и Браттейн представили свои.

Одна из официальных фотографий, на которой Bell Labs объявила об изобретении транзистора: Бардин (слева), Шокли (в центре) и Браттейн (справа).Хотя кажется, что между ними царит гармония, это было ничем иным, как далеко от истины / Изображение: Стиль MLA: «Уильям Б. Шокли — Фотогалерея». Nobelprize.org. Nobel Media AB 2014.

Эта неловкая ситуация поставила директоров Bell Labs перед дилеммой. С одной стороны, Бардин и Браттейн построили первый транзистор самостоятельно, без участия Шокли. С другой стороны, Шокли был руководителем группы, и было неуместно не упоминать его имя, тем более что несколько дней спустя он смог придумать устройство даже лучше оригинала.Поэтому директора лаборатории решили, что на любой фотографии изобретателей транзистора должен быть изображен Шокли, который также будет выступать в качестве официального представителя; Бардин и Браттейн, которые уже испытывали сильную неприязнь к Шокли, неохотно приняли это решение, в то время как Шокли согласился с этим решением. Научный и особенно личный конфликт между Шокли, с одной стороны, и Бардином и Браттейном, с другой, в конечном итоге привел к роспуску группы.

В 1955 году Шокли покинул Bell Labs и основал Shockley Semiconductors , — первую фабрику по производству полупроводников в Силиконовой долине , но это была неудача из-за того, что для его сотрудников было невозможно общаться с ним.В 1956 году он получил известие о присуждении Нобелевской премии по физике вместе со своими бывшими подчиненными в Bell Labs , Бардином и Браттейном.

Шокли (первый справа, сидит) празднует получение Нобелевской премии вместе с некоторыми сотрудниками своей компании / Изображение: Ник Райт

После краха своей компании Шокли посвятил себя академическому миру и в 1963 году был назначен Стэнфордским университетом. он был профессором инженерных наук, и он оставался в этом учреждении до выхода на пенсию в 1975 году.Он умер в 1989 году в возрасте 79 лет. Его дети и немногочисленные друзья узнали об этом из прессы.

Игнасио Мартиль.

Профессор электроники в Университете Комплутенсе, Мадрид и член Королевского физического общества Испании

23 декабря 1947: Транзистор открывает дверь в цифровое будущее

1947: Джон Бардин и Уолтер Браттейн при поддержке коллеги Уильяма Шокли демонстрируют транзистор в Bell Laboratories в Мюррей-Хилл, Нью-Джерси.

Его называют самым важным изобретением ХХ века. Транзистор, также известный как транзистор с точечным контактом, представляет собой полупроводниковое устройство, которое может усиливать или переключать электрические сигналы. Он был разработан для замены электронных ламп.

Электронные лампы были громоздкими, ненадежными и потребляли слишком много энергии. Поэтому исследовательское подразделение компании AT&T, Bell Labs, начало проект по поиску альтернативы.

Почти за десять лет до того, как был разработан первый транзистор, Шокли, физик из Bell Labs, работал над теорией такого устройства.Но Шокли не смог построить работающую модель. Его первый полупроводниковый усилитель имел «небольшой цилиндр, тонко покрытый кремнием, установленный рядом с небольшой металлической пластиной».

Итак, Шокли попросил своих коллег, Бардина и Браттейна, вмешаться. Одной из проблем, которые они заметили при первой попытке Шокли, была конденсация на кремнии. Они погрузили его в воду и предположили, что у первоначального прототипа есть металлический наконечник, «который будет вставлен в кремний, окруженный дистиллированной водой.«Наконец-то было усиление — но, к сожалению, на тривиальном уровне.

После нескольких экспериментов германий заменил кремний, что увеличило усиление примерно в 300 раз. Это привело к лучшей способности модулировать усиление на всех частотах

Окончательная конструкция точечного транзистора имела два золотых контакта, слегка соприкасающихся с кристаллом германия, который находился на металлической пластине, подключенной к источнику напряжения.Также известный как «маленький пластиковый треугольник», он стал первым работающим твердотельным усилителем.

Бардин и Браттейн продемонстрировали транзистор должностным лицам Bell Lab 23 декабря 1947 года. Сообщается, что Шокли назвал его «великолепным рождественским подарком». Но сам Шокли не присутствовал, когда это произошло, и, как говорят, он был огорчен поражением в тот день.

Но он отомстил. Шокли продолжал работать над идеей и дорабатывать ее. В начале 1948 года он придумал биполярный или переходной транзистор, превосходное устройство, пришедшее на смену точечному типу.

Bell Labs публично анонсировала первый транзистор на пресс-конференции в Нью-Йорке 30 июня 1948 года.

Транзистор пришел на смену громоздким электронным лампам и механическим реле. Это изобретение произвело революцию в мире электроники и стало основным строительным блоком, на котором зиждутся все современные компьютерные технологии.

Шокли, Бардин и Браттейн разделили Нобелевскую премию по физике 1956 года за транзистор, но трио никогда не работало вместе после первых нескольких месяцев их первоначального создания транзистора.

Шокли покинул Bell Labs и основал Shockley Semiconductor в Маунтин-Вью, Калифорния, — одну из первых высокотехнологичных компаний в том, что позже станет Силиконовой долиной.

Браттейн остался сотрудником Bell Labs. Бардин стал профессором Университета Иллинойса в 1951 году и получил вторую Нобелевскую премию по физике в 1972 году за первое успешное объяснение сверхпроводимости.

Источник: Различный

Фото: Уильям Шокли, Джон Бардин и Уолтер Браттейн работают в Bell Labs в конце 1940-х годов.
Предоставлено Alcatel-Lucent / Bell Labs

См. Также:

  • 21 февраля 1947 г .: «Take a Polaroid» входит в английский язык
  • 16 апреля 1947 г .: взрыв корабля вызывает трехдневный огненный дождь и смерть
  • 28 апреля 1947 года: Кон-Тики отправляется в плавание из Перу в Полинезию
  • 17 июня 1947 года: Pan Am запускает кругосветную службу
  • 24 июня 1947 года: они прибыли из … космического пространства ?
  • 6 июля 1947 г .: АК-47, универсальный убийца
  • 8 июля 1947 г .: инцидент в Розуэлле вызывает споры об НЛО
  • авг.18, 1947: Рождение Крутого (То есть Компания)
  • 15 сентября 1947: Жужжание Ассоциации вычислительной техники
  • 24 сентября 1947: MJ-12 — Мы не одни … или мы ?
  • 3 октября 1947 г .: рождение «гигантского глаза» Паломара
  • 14 октября 1947 г .: звуковой барьер Йегера Махса
  • 2 ноября 1947 г .: еловый гусь … или дорогая индейка?
  • 23 декабря 1970 г .: Всемирный торговый центр выходит на первое место

Транзистор — изобретение, опередившее свое время

Многие изобретения задуманы одновременно несколькими разными людьми, потому что время «подходящее», а это означает, что существует техническая и научная основа, а также есть спрос и деловой потенциал для изобретения.

Однако транзистор — это изобретение, которое было задумано задолго до того, как пришло время. Он был изобретен в 1947 году, и даже несколько лет спустя научная конференция сочла это настолько странным достижением, что не было включено в документацию. Сами изобретатели считали, что транзистор может быть использован в каких-то специальных приборах и, возможно, в военной радиоаппаратуре. Тем не менее, транзистор является основой всех современных технологий, включая телекоммуникации, передачу данных, авиацию, а также аудио- и видеоаппаратуру.

Три человека, Уолтер Браттейн, Джон Бардин и Уильям Шокли, разделили Нобелевскую премию по физике за прорыв, достигнутый ими 23 декабря 1947 года. В некоторых отношениях четвертый человек был ответственен за открытие транзистора в то время. Марвин Келли, который в то время возглавлял Bell Laboratories, собрал трио. Келли считал, что работа с такой неизвестной группой материалов, как полупроводники, требует сочетания различных специальностей: блестящего теоретика Браттейна, опытного эксперта по материалам Бардина и очень опытного экспериментатора Шокли, который также был сильным теоретиком.Цели проекта были очень общими.

Bell Laboratories в США входила в состав одной из ведущих телефонных компаний мира AT&T. Компания поняла, что транзистор может использоваться для приложений, далеких от телекоммуникаций в самом строгом смысле, и решила, возможно, чтобы избежать обвинений в использовании монопольного положения на своем внутреннем рынке, предложить лицензии на разумных условиях всем компаниям, которые хотели бы подать заявку. . Взамен этим компаниям было предложено внести свои собственные патенты в общий патентный пул.

В компьютерах, а также в радио и телевизионном оборудовании использовались электронные лампы, которые были относительно громоздкими и потребляли значительное количество энергии. Однако дизайнеры знали, как сделать их меньше, а фабрики знали, как изготавливать их надежно и с низкими затратами. С другой стороны, новые транзисторы были хрупкими, не выдерживали высоких температур и требовали гораздо более сложных уравнений при проектировании. Телефонные станции даже не использовали трубки. Это были чрезвычайно надежные чудеса машиностроения, основанные на реле и шатунах.

Незадолго до того, как Бриттен, Бардин и Шокли были удостоены Нобелевской премии, появилось первое крупное применение транзистора. Это была небольшая портативная радиостанция, которую даже назвали транзистором по названию компонента, который сделал это возможным. Texas Instruments, которая была первой компанией, представившей радио такого типа, в конечном итоге добилась известности в новой полупроводниковой промышленности. Второй компанией, которая станет гигантом индустрии бытовой электроники, была японская.Эта компания, основанная после Второй мировой войны, имела международные амбиции и поэтому выбрала английское название Sony.

Уильяма Шокли не было в тот день, когда транзистор заработал впервые. В своем гневе, по крайней мере, согласно легендам, он затем сел и изобрел несколько различных разновидностей транзисторов. Они были основаны на том, как были созданы три контакта транзистора? пайкой, диффузией под действием тепла и т. д. Все эти варианты основаны на методе, используемом для создания различных слоев, через которые ток контролируется сигналом к ​​электроду в середине из трех.Менее чем через десять лет был разработан другой принцип, названный эффектом поля, в котором регулируется размер канала, через который протекает ток. Швед по имени Дж. Торкель Уоллмарк, который в то время работал в RCA в США, сыграл ключевую роль в этом изобретении.

Автор: Bengt-Arne Vedin

Кто изобрел транзистор?

В середине 1940-х группа ученых работала в Bell Telephone Labs в Мюррее. Хилл, штат Нью-Джерси, работал над поиском устройства, которое заменит существовавший тогда технология вакуумных трубок.Вакуумные лампы были единственной технологией, доступной на время для усиления сигналов или использования в качестве переключающих устройств в электронике. Эта проблема было то, что они были дорогими, потребляли много энергии, выделяли слишком много тепла и были ненадежными, что требовало значительного технического обслуживания.
Учеными, ответственными за изобретение транзистора в 1947 году, были: Джон Бардин, Уолтер Браттейн и Уильям Шокли. Бардин, доктор философии. в математики и физики из Принстонского университета, был специалистом в области электронов. проводящие свойства полупроводников.Браттейн, доктор философии, был экспертом в природа атомной структуры твердых тел на уровне их поверхности и твердого тела физика. Шокли, доктор философии, был директором по исследованиям транзисторов в Bell Labs.

Их первоначальное патентное название транзистора было: «Полупроводниковый усилитель; Трехэлектродный элемент схемы из полупроводниковых материалов ». В 1956 г. группа была удостоена Нобелевской премии по физике за изобретение транзистора. В 1977 году Джон Бардин был награжден Президентской медалью свободы.

Ссылки:


Ответил: Стивен Портц, учитель технологий, средняя школа космического побережья, Флорида

Магазин Научный интернет-магазин

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *