Кремниевый диод: Диод — Википедия – Полупроводниковый диод: применение, принцип работы, типы

Содержание

Полупроводниковые диоды, классификация и их краткая характеристика.

Полупроводниковым диодом называют полупроводниковый прибор с одним pnпереходом и двумя выводами, в котором используются свойства перехода.

Классификация и условные графические обозначения полупроводниковых диодов приведены на рис.1.

В точечном диоде используется пластинка германия или кремния с электропроводностью nтипа толщиной 0,1-0,6 мм и площадью 0,5-1,5 мм2; с пластинкой соприкасается заостренная стальная проволочка. На заключительной стадии изготовления в диоде создают большой ток (несколько ампер), стальную проволочку вплавляют в полупроводник n-типа, образуя область с электропроводностью p-типа. Из-за малой площади контакта прямой ток таких диодов сравнительно невелик. По той же причине у них мала и межэлектродная область, что позволяет применять эти диоды в области очень высоких частот(СВЧ-диоды). Точеные диоды используют в основном для выпрямления.

В плоскостных диодах pnпереход образуется двумя полупроводниками с различными типами электропроводности, причём площадь перехода у полупроводников различных типов лежит в пределах от сотых долей квадратного микрометра (микроплоскостные) диоды до нескольких квадратных сантиметров(силовые диоды).

Электрические характеристики плоскостного диода определяются характеристиками pnперехода.

Рассмотрим более подробно характеристики различных групп плоскостных диодов.

Выпрямительный полупроводниковый диод − полупроводниковый диод, предназначенный для выпрямления переменного тока.

Вольтамперная характеристика (ВАХ) выпрямительного диода, его условное графическое изображение и буквенное обозначение даны на рис.2. Основные параметры выпрямительного диода: предельно допустимый постоянный ток диода Iпр.max и максимально допустимое обратное напряжение Uобр.max.

Для сохранения работоспособности германиевого диода его температура не должна превышать 85С. Кремниевые диоды могут работать при температуре до 150С. Для уменьшения разогрева мощных диодов прямым током принимают специальные меры для их охлаждения: монтаж на радиаторах, обдув и т. д.

Для получения более высокого обратного напряжения диоды можно включать последовательно. Для последовательного включения подходящими являются диоды с идентичными характеристиками. В настоящее время выпускаются так называемые диодные столбы, в которых соединены последовательно от 5 до 50 диодов. Обратное напряжение Uобр таких столбов лежит в пределах 2–40 кВ.

Более сложные соединения диодов имеют место в силовых диодных сборках. В них для увеличения прямого тока диоды соединяют параллельно, для увеличения обратного напряжения – последовательно и часто осуществляют соединения, облегчающие применение диодов в конкретных выпрямительных устройствах.

Полупроводниковый стабилитрон – полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который служит для стабилизации напряжения. Он представляет собой кремниевый диод, который нормально работает при электрическом пробое np-перехода. При этом напряжение на диоде незначительно зависит от протекающего тока. Электрический пробой не вызывает разрушения перехода, если ограничить ток до допустимой величины.

Основные параметры стабилитрона: напряжение стабилизации Uст.ном, минимальный Icт.min и максимальный Iст.max токи стабилизации, максимальная мощность Pст.max. Важным параметром стабилитрона является температурный коэффициент напряжения ТКU , который показывает, на сколько процентов изменится напряжение стабилизации при изменении температуры полупроводника на 1С.

Стабилизацию постоянного напряжения можно получить с помощью диода, включенного в прямом направлении. Кремниевые диоды, предназначенные для этой цели, называют стабисторами.

Туннельный диод — полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперных характеристиках при прямом напряжении участка с отрицательной дифференциальной электрической проводимостью. Материалом для туннельных диодов служит сильнолегированный германий или арсенид галлия. Основными параметрами туннельного диода я вляются ток пика Iп и отношение тока пика к току впадины Iп/ Iв. Для выпускаемых диодов Iп=0.1¸1000 мА и Iп/ Iв=5¸20.

Туннельные диоды являются быстродействующими полупроводниковыми приборами и применяются в генераторах высокочастотных колебаний и импульсных переключателях.

Обращённый диод –– диод на основе полупроводника с критической концентрацией примесей, в котором электрическая проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.

Обращённые диоды представляют собой разновидность туннельных диодов, у которых ток пика Iпр=0. Если к обращённому диоду приложить прямое напряжение Uпр≤0,3 В, то ток диода Iпр≈0. В то время даже при небольшом обратном напряжении (порядка десятков милливольт) обратный ток достигает нескольких миллиампер. Таким образом, обращённые диоды обладают вентильными свойствами при малых напряжениях именно в той области, где выпрямительные диоды обычно вентильными свойствами не обладают. При этом направлением наибольшей проводимости является направление, соответствущее обратному току.

Варикап — полупроводниковый диод, в котором используется зависимость ёмкости pn-перехода от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой ёмкостью.

Основными параметрами варикапа являются общая ёмкость Св, которая фиксируется обычно при небольшом обратном напряжении

Uобр=2¸5 В, и коэффициент перекрытия по ёмкости Kc=Cmax/Cmin.Для большинства выпускаемых варикапов С=10¸500 пФ и Kc=5¸20.

Варикапы применяют в системах дистанционного управления и автоматической подстройки частоты и в параметрических усилителях с малым уровнем собственных шумов.

Фотодиоды, полупроводниковые фотоэлементы и светодиоды.

В этих трёх типах диодов используется эффект взаимодействия оптического излучения (видимого, инфракрасного или ультрафиолетового) с носителями заряда (электронами и дырками) в запирающем слое

pn-перехода возникает видимое или инфракрасное излучение.

Магнитодиод — полупроводниковый диод, в котором используется изменение вольт-амперной характеристики под действием магнитного поля.

В качестве магнитодиодов используют выпрямительные диоды на основе германия или кремния с увеличенной толщиной полупроводникового материала. Основным параметром магнитодиода является его чувствительность ,

где

и — приращение соответственно прямого напряжения и магнитной индукции. Диапазон значений γ=(10 ¸·50) ·103В/(Тл ·мА).

Тензодиод — полупроводниковый диод, в котором используется изменение вольт-амперной характеристики под действинм механических деформаций.

В качестве тензодиодов обычно применяют туннельные диоды, у которых отдельные участки вольт-амперной характеристики существенно зависят от деформации рабочего тела диода.

Кремниевый диод — Большая Энциклопедия Нефти и Газа, статья, страница 1

Кремниевый диод

Cтраница 1

Кремниевые диоды

Д202, Д205 предназначены для выпрямления переменного тока с частотой до 50 кгц и могут работать при температуре — 60 125 С. Они оформлены в металлическом герметичном корпусе с винтом для крепления на тешюотводящем шасси. При окружающей температуре 125 С и наличии шасси / max составляет 400 ма, без шасси 200 ма.  [1]

Кремниевые диоды выдерживают большие обратные напряжения, чем германиевые.  [3]

Кремниевые диоды могут быть применены не только для выпрямления, но и для стабилизации напряжения постоянного тока. В этом случав они называются кремниевыми стабилитронами. IX-10, точка А), После излома характеристика идет почти параллельно оси тока, подобно характеристике габового стабилитрона.  [5]

Кремниевые диоды по сравнению с германиевыми допускают работу при значительно более высоких температурах и дмеют большие обратные сопроти-вления, однако у германиевых диодов меньше прямое сопротивление, кроме того, они дешевле кремниевых.  [6]

Кремниевые диоды имеют во много раз меньшие обратные токи при одинаковом напряжении, чем германиевые. Это обусловлено тем, что при температурах выше 85 С резко увеличивается собственная проводимость германия, приводящая к недопустимому возрастанию обратного тока.  [7]

Кремниевые диоды применяют чаще германиевых, особенно когда недопустим обратный ток. Кроме того, они сохраняют работоспособность при температуре до 125 — 150 С, тогда как германиевые могут работать только при температуре до 70 С.  [8]

Кремниевые диоды даже при нагружении в направлении пропускания тока через них имеют сравнительно высокое омическое сопротивление, если противодействующее напряжение не превышает примерно 0 7 В.  [9]

Кремниевые диоды могут работать при температуре до 150 С.  [11]

Кремниевые диоды по принципу действия ничем не отличаются от германиевых. Кремниевый диод способен восстанавливаться после электрического пробоя.  [12]

Кремниевые диоды также как и германиевые бывают плоскостными и точечными. Точечные кремниевые диоды имеют очень малую величн — 1 ну междуэлектродной емкости ( порядка 0 5 пф) и применяются при частотах до тысяч мега — ее.  [13]

Кремниевые диоды допускают большие обратные напряжения, чем германиевые, они более устойчивы при высоких температурах, что позволяет получить большую плотность тока. Но у германиевых диодов прямое падение напряжения примерно в 1 5 — 2 раза меньше, чем у кремниевых.  [14]

Кремниевые диоды делятся на 25 классов: от 1 до 25, что соответствует обратным напряжениям от 100 В до 2500 В. В последние годы освоен диод В6 — 320 с U06 — 4600 В. Выпускают кремниевые диоды шести групп: А — до 0 5 В; Б — от 0 5 до 0 6 В; В — от С 6 до 0 7 В; Г — от 0 7 до 0 8 В; Д — от 0 8 до 0 9 В и Е — от 0 9 до 1 В.  [15]

Страницы:      1    2    3    4    5

Точечный диод — Википедия

Материал из Википедии — свободной энциклопедии

Точечный диод в стеклянном корпусе

То́чечный дио́д — полупроводниковый диод с очень малой площадью p-n перехода, который образуется в результате контакта тонкой металлической иглы с нанесенной на неё примесью и полупроводниковой пластинки с определенным типом проводимости. С целью стабилизации параметров и повышения надёжности точечные диоды могут проходить электроформовку, для этого при изготовлении через диод пропускается импульс тока в несколько ампер и острие иглы вплавляется в кристалл.

Благодаря малой площади p-n перехода, и как следствие маленькой ёмкости перехода, точечный диод обычно имеет предельную частоту около 300—600 МГц. При использовании более острой иглы без электроформовки получают точечные диоды с предельной частотой порядка десятков гигагерц. Недостатками точечного диода являются: большой разброс параметров, невысокая механическая прочность, невысокий максимальный ток и чувствительность к перегрузкам, обусловленные малой площадью p-n перехода, конструктивная невозможность микроминиатюризации.

Точечные диоды очень широко применялись в радиотехнике до конца XX века, В современной электронике точечные диоды не применяются, либо имеют ограниченное применение, в области СВЧ техники их вытесняют более технологичные диоды Шотки и pin-диоды выполненные по плоскостным технологиям.

Точечный диод был запатентован в 1906 г. Гринлифом Пиккардом как кристаллический детектор для радиосвязи. Первые точечные диоды были выполнены на природных кристаллах полупроводника и отличались нестабильными характеристиками. По мере освоения технологий и изучения физики полупроводников, стали использовать искусственно выращенные монокристаллы германия и кремния, а диоды стали выпускаться в виде компактных герметичных приборов. Значительный скачок технологий точечных диодов произошел во время Второй мировой войны, это было связано с бурным развитием радиолокации и СВЧ техники, где потребность в сверхвысокочастотных детекторных и смесительных приборах была очень высокой. Впоследствии, точечные диоды стали широко применяться в радиоприемниках и телевизорах, в импульсной и измерительной технике. С развитием микроэлектроники, в связи с низкой технологичностью и невозможностью миниатюризации, эра точечных диодов закончилась.

Первые точечные диоды стали широко применять с 1920-х годов в детекторных радиоприёмниках в качестве амплитудного детектора, они имели открытую конструкцию и оператор радиоприемника должен был при помощи специального держателя найти иглой «активную точку» на поверхности кристалла чтобы радиоприёмник заработал. В 1930-х годах было замечено уникальное свойство точечных диодов — их способность работать на очень высоких частотах, а развитие теории полупроводников позволило создать очищенные монокристаллы вещества и изготавливать диоды в герметичном корпусе с достаточно хорошей повторяемостью параметров. Подобные диоды применяют в радиолокационной технике в качестве детекторов и смесителей сигнала а также умножителей частоты. В послевоенное время был освоен массовый выпуск точечных германиевых диодов широкого применения которые устанавливались во все виды электронной техники, включая и первые ЭВМ. Типичными представителями этого класса приборов в СССР являлись диоды Д2[1] и Д9, их можно встретить почти в каждом транзисторном радиоприемнике того периода. В СВЧ технике обычно применяются точечные диоды в металлокерамических корпусах патронного типа, например ДК-В1 или ДГ-С1[2], которые выполняют как на кристаллах германия так и кремния. Особенностью СВЧ приборов этого класса является то, что размеры их p-n-переходов очень малы, это определяет низкие предельно допустимые параметры и сильную чувствительность к электрическим перегрузкам. Небольшой разряд статического электричества или прозвонка обычным тестером может ухудшить их параметры или полностью вывести из строя (при этом диодные свойства не всегда исчезают, а пропадает способность работать на высоких частотах или сильно возрастает уровень собственных шумов).

  • В 20-х годах XX века среди радиолюбителей было широко распространено конструирование детекторных радиоприёмников. При этом точечный диод изготавливался самостоятельно. Для этого нужно было заказать по почте полупроводниковый кристалл и заострённый электрод. Перемещая электрод по поверхности кристалла необходимо было найти оптимальную точку.
  • По точечной технологии производились не только диоды но и транзисторы. Первый транзистор, изобретенный 23 декабря 1947 года был точечной конструкции, однако, век таких транзисторов был недолог так как они в ещё большей степени были подвержены тем же недостаткам что и точечные диоды, при этом их частотный диапазон был гораздо ниже и уже через 10 лет транзисторы стали производить по более совершенным сплавным и диффузным технологиям.
  • Простейшим точечным диодом является конструкция из острия карандаша в соприкосновении с пластиной из нержавеющей стали (лезвие безопасной бритвы).

Селеновый выпрямитель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2019; проверки требует 1 правка.

Селе́новый выпрями́тель (селеновый вентиль) — полупроводниковый диод на основе селена.

Преимуществом селеновых выпрямителей является их способность выдерживать кратковременные перегрузки и быстро восстанавливать свои свойства после пробоя (так называемое, «самозалечивание»).

Селеновый выпрямитель состоит из алюминиевой или железной пластины, покрытой с одной стороны слоем кристаллического селена (50—60 мкм), являющимся одним из электродов с дырочной (p-тип) проводимостью. Для создания второго электрода на поверхность селена наносится сплав из олова, кадмия и висмута. При вступлении в реакцию (диффузия) селена и кадмия образуется тонкий слой селенида кадмия с электронной (n-тип) проводимостью. На границе между селеном селенидом кадмия образуется p-n-переход. Для улучшения свойств селеновые пластины подвергают электрической формовке путём длительного приложения постоянного напряжения в обратном направлении[1].

Пластины селеновых выпрямителей могут быть круглой и прямоугольной формы с центральным отверстием для сборки в столбы или без него.

По многим параметрам и свойствам селеновые выпрямители уступают кремниевым и германиевым диодам[1]. Однако, они намного превосходят их в радиационной стойкости, и обладают уникальной особенностью самовосстановления: при пробое, в месте пробоя слой селена выгорает и при этом не образуется короткое замыкание.

  • Максимальная допустимая плотность тока в прямом направлении не превышает для селеновых выпрямителей 100—200[2] мА/см². Для выпрямления больших токов применяется простое параллельное соединение пластин, допустимо параллельное соединение токоуравнивающих резисторов.
  • Допустимое обратное напряжение составляет 20—40 В, при обратном напряжении 60—80 В происходит пробой. По этой причине выпрямители соединяют последовательно в столбы для применения при более высоких напряжениях. В отличие от кремниевых и германиевых диодов, применение выравнивающих напряжение резисторов не нужно.
  • Максимальная рабочая температура селеновых выпрямителей находится в пределах от 75 до 125 °C.
  • Максимальное прямое напряжение на одной селеновой пластине составляет 0,45—0,75 В.

Для выпрямления более высокого напряжения селеновые выпрямители собирают в столбы. Например, выпрямитель 15ГЕ1440У-С состоит из 1440 селеновых пластин в одном корпусе и может работать при напряжении до 40 кВ.

Площадь пластин выпускаемых промышленностью выпрямителей составляет 0,1—400 см². Параллельное соединение пластин позволяет получить выпрямленный ток до 500 А (например, выпрямитель 140ГЖ24ЯУ).

Для селеновых выпрямителей характерна высокая барьерная ёмкость, что ограничивает их применение в высокочастотных устройствах.

Электрические параметры селеновых выпрямителей изменяются со временем. Длительное хранение приводит к увеличению обратного тока (расформовка). Этот процесс обратим — после подачи на выпрямитель обратного или переменного напряжения обратный ток принимает первоначальное значение в течение 2—3 минут[1].

Селеновые выпрямители подвержены необратимому возрастанию величины обратного тока, называемому старением. При хранении этот процесс проявляется незначительно, но ускоряется при эксплуатации. Интенсивность его возрастает при увеличении температуры, что определяет предельное значение максимальной рабочей температуры[1].

  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 145-148. — 479 с. — 50 000 экз.
  • Геллер И. Х. Селеновые выпрямители. — М.— Л.: Энергия, 1964. — 24 с. — (Массовая радиобиблиотека. Вып. 496). — 80 000 экз.
  • Бензарь В. К. Словарь-справочник по электротехнике, промышленной электронике и автоматике. — Мн.: Вышэйшая школа, 1985. — 176 с.
  • Буланин Н. П. Селеновые выпрямители. — М. — Л.: Госэнергоиздат, 1961. — 48 с. — (Библиотека электромонтёра. Вып. 42). — 30 000 экз.
  1. 1 2 3 4 Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 145—148
  2. Бензарь В. К. Словарь-справочник по электротехнике, промышленной электронике и автоматике. — Минск: Вышэйшая школа, 1985

Импульсный диод — Википедия

Материал из Википедии — свободной энциклопедии

И́мпульсный дио́д — диод, предназначенный для работы в высокочастотных импульсных схемах.

Обычно представляет собой полупроводниковый диод с p-n-переходом, оптимизированный по собственной ёмкости корпуса, барьерную ёмкости и имеет малое времени восстановления обратного сопротивления (рассасывания неосновных носителей накопленных в базе диода при прямом токе).

Для уменьшения собственной ёмкости при изготовлении умышленно уменьшают площадь p-n-перехода и для снижения времени жизни неосновных носителей применяют сильно легированные полупроводниковые материалы, например, кремний легируют золотом для снижения времени обратного восстановления, поэтому импульсные диоды имеют невысокие предельные импульсные токи (до сотен мА) и небольшие предельные обратные напряжения (до десятков вольт), а также увеличенные обратные токи.

Также выпускаются импульсные диоды с барьером Шоттки.

Типичная барьерная ёмкость импульсного диода менее единиц пикофарад и время восстановления обратного сопротивления обычно не более 4 нс.

Принцип действия импульсного диода не отличается от принципа действия обычного выпрямительного полупроводникового диода с p-n-переходом, при приложении прямого напряжения диод хорошо проводит электрический ток. При смене полярности приложенного напряжения диод запирается. Запирание происходит не сразу, сначала происходит резкое увеличение обратного тока, затем, после рассасывания неосновных носителей, восстанавливается высокое сопротивление p-n-перехода и диод запирается.

Импульсные диоды применяют в сверхбыстродействующих импульсных ключевых схемах, например, в логических схемах.

Также их применяют в формирователях субнаносекундных импульсов, например, при формировании строб-импульсов в стробоскопических осциллографах, так называемые диоды с быстрым обратным восстановлением (импульсные диоды с накоплением заряда). Принцип формирования субнаносекундных импульсов основан на том, что восстановление обратного сопротивления после рассасывания неосновных носителей происходит за очень короткое время, существенно короче чем длительность фронта смены полярности, таким образом, затянутый фронт укорачивается[1].

  1. Рябинин Ю. А. Стробоскопическое осциллографирования сигналов наносекундной длительности. Изд-во «Советское радио», М.: 1968, 200 стр.

Диод Ганна — Википедия

Диод Ганна в металлокерамическом корпусе производства СССР на фоне миллиметровой сетки Условное графическое обозначение в схемах. Диод Ганна на C-диапазон. Видна заводская упаковка с антистатическими свинцовыми капсулами.

Дио́д Га́нна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, в полупроводниковой структуре не имеет p-n-переходов и используется для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц.

В отличие от других типов диодов принцип действия диода Ганна основан не на процессах в p-n-переходе, то есть все его свойства определяются не эффектами, которые возникают в местах соединения двух различных полупроводников, а собственными нелинейными свойствами применяемого полупроводникового материала.

В отечественной литературе диоды Ганна называли приборами с объемной неустойчивостью или с междолинным переносом электронов, так как активные свойства диодов обусловлены переходом электронов из «центральной» энергетической долины (минимума энергии) в «боковую» долину, где они уже имеют малую подвижность и большую эффективную массу. В иностранной литературе диод Ганна называют TED (Transferred Electron Device — прибор с переносом электронов).

На основе эффекта Ганна созданы генераторные и усилительные диоды, применяемые в качестве генераторов накачки в параметрических усилителях, гетеродинов в супергетеродинных приемниках, генераторов в маломощных передатчиках и в измерительной технике.

Вольт-амперная характеристика диода Ганна

Диод Ганна традиционно представляет собой прямоугольную пластинку из арсенида галлия с омическими контактами с противоположных граней сторон. Активная часть диода Ганна — длина высокоомного слоя обычно имеет длину от 1 до 100 мкм с концентраций легирующих донорных примесей 1014—1016 см−3. В этом материале, в зоне проводимости, имеются два минимума энергии, которым соответствуют два состояния электронов — так называемые «тяжёлые» и «лёгкие» электроны. Поэтому с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, однородное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, так как менее подвижны, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения.

Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового напряжения.

В момент зарождения домена ток через диод максимален. По мере формирования домена ток уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна длине кристалла полупроводника, прямо пропорциональна скорости движения домена и называется пролётной частотой.

На ВАХ полупроводникового прибора наличие падающего участка является недостаточным условием для возникновения в нём СВЧ колебаний, но необходимым. Возникновение колебаний означает, что в кристалле полупроводника развивается неустойчивость. Характер этой неустойчивости зависит от параметров полупроводника (профиля легирования кристалла, его размеров, концентрации носителей и т. д.).

При размещении диода Ганна в резонаторе возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролётной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300 мВт.

Существенно влияние омических (невыпрямляющих) контактов к кристаллу. Для создания низкоомных омических контактов, необходимых для подвода тока для работы диодов Ганна существуют два подхода:

  • первый из них заключается в выборе приемлемой технологии нанесения таких контактов непосредственно на высокоомный кристалл арсенида галлия;
  • при втором подходе кристалл прибора выполняется многослойным. В диодах с такой структурой на слой высокоомного низколегированного арсенида галлия с электронным типом проводимости наращивают с обеих сторон эпитаксиальные слои низкоомного высоколегированного арсенида галлия с проводимостью n-типа. Эти высоколегированные слои служат переходными подложками от рабочей части кристалла к металлическим электродам.

Помимо арсенида галлия (GaAs) и фосфида индия (InP, используется на частотах до 170 ГГц) при изготовлении диодов используется эпитаксиальное наращивание, для изготовления диодов Ганна также применяется нитрид галлия (GaN). В диодах, изготовленных из этого материала была достигнута наиболее высокая частота колебаний — до 3 ТГц.

Генератор на диоде Ганна с коаксиальным резонатором. Подстройка частоты генерации производится перемещением закорачивающего поршня. Генератор на диоде Ганна с волноводным резонатором. Подстройка частоты генерации производится перемещением закорачивающего поршня, тонкая подстрока производится винтом. Конструкция гетеродина на диоде Ганна C-диапазона. Применён в МШУ «Обиход».

Диод Ганна может быть использован для создания генератора с частотами генерации от сотен килогерц до единиц терагерц. На частотах ниже 1 ГГц генераторы и усилители на диодах Ганна не имеют преимуществ по сравнению с традиционными генераторами выполненными на транзисторах и потому применяются редко. Частота генерации определяется в основном длиной пластинки полупроводника, но может быть перестроена в некотором диапазоне частот, обычно на 20—30 % от центральной частоты. Известны генераторы с диапазоном перестройки частоты 50 %[1].

На частотах использования диодов Ганна неэффективны традиционные колебательные контуры выполненные из катушек индуктивности и конденсаторах со сосредоточенными параметрами, поэтому резонаторы на этих частотах выполняют в виде коаксиальных конструкций, в виде отрезков волноводов или резонаторах на микрополосковых линиях.

Настройка частоты генерации и частоты усиления в таких системах производится как изменением геометрических размеров резонансных полостей, так и в небольших пределах электрически с помощью изменения питающего напряжения.

Диоды Ганна имеет низкий уровень амплитудного шума и низкое рабочее напряжение питания — от единиц до десятков вольт.

Срок службы генераторов Ганна относительно мал, что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев полупроводникового кристалла прибора выделяющейся в нём мощностью.

Режимы работы генераторов на диоде Ганна[править | править код]

Существуют несколько разных режимов использования генераторов на диоде Ганна в зависимости от питающего напряжения, температуры, характера нагрузки: доменный режим, гибридный режим, режим ограниченного накопления объемного заряда и режим отрицательной проводимости обеспечивающих генерацию в диапазоне частот 1—100 ГГц.

В непрерывном режиме генерации генераторы на диодах Ганна имеют КПД около 2—4 % и обеспечивают выходную мощность от единиц милливатт до единиц ватт. При использовании прибора в импульсном режиме с высокой скважностью КПД увеличивается в 2—3 раза. Специальные широкополосные резонансные системы позволяют добавить к мощности полезного выходного сигнала высшие гармоники колебаний и служат для увеличения КПД. Такой режим работы генератора называется релаксационным.

Наиболее часто используемым режимом является доменный режим при котором в течение большей части периода колебаний в кристалле существует домен. Доменный режим может быть реализован в трёх различных видах: пролётный, с задержкой образования доменов и с гашением доменов. Переход между этими видами происходит при изменении сопротивления нагрузки и питающего напряжения.

Для диодов Ганна был так же предложен и осуществлен режим ограничения и накопления объёмного заряда. Этот режим имеет место при больших амплитудах напряжения на диоде и на частотах, в несколько раз больших пролетной частоты и при средних постоянных напряжениях на диоде, которые в несколько раз превышают пороговое значение. Однако, существуют определённые требования для реализации этого режима: полупроводниковый материал диода должен быть с очень однородным профилем легирования. При этом однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде.

  1. Carlstrom J. E., Plambeck R. L. and Thornton D. D. A Continuously Tunable 65-115 GHz Gunn Oscillator, IEEE, 1985 [1]
  • Аваев Н. А., Шишкин Г. Г. Электронные приборы. Издательство МАИ, 1996.
  • Зи С. М. Физика полупроводниковых приборов (в 2 книгах). М., Мир, 1984, т. 2, с.226-269.
  • Лебедев А. И. Физика полупроводниковых приборов. М., Физматлит, 2008.
  • Кулешов В. Н., Удалов Н. Н., Богачев В. М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

Лазерный диод — Википедия

Лазерный диод — полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда.[1][2]

Лазерный диод Диодные лазеры различных длин волн

Когда на анод обычного диода подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом дырки из p-области инжектируются в n-область p-n перехода, а электроны из n-области инжектируются в p-область полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), то они могут рекомбинировать с выделением энергии в виде фотона определённой длины волны (в силу сохранения энергии) и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.

Однако, при определённых условиях, электрон и дырка перед рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.

В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка по сути является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.

Лазерные диоды могут быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым (англ. «multi-mode»). Применение таких лазеров возможно в тех случаях, когда от устройства требуется высокая мощность излучения, и не ставится условие хорошей сходимости луча (то есть допускается его значительная расходимость). Такими областями применений являются: печатающие устройства, химическая промышленность, накачка других лазеров. С другой стороны, если требуется хорошая фокусировка луча, ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в волоконной технике. Следует, однако, заметить, что такие лазеры не могут поддерживать несколько продольных режимов, то есть не могут излучать на разных длинах волн одновременно.

Длина волны излучения лазерного диода зависит от ширины запрещённой зоны между энергетическими уровнями p- и n-областей полупроводника.

В связи с тем, что излучающий элемент достаточно тонок, луч на выходе диода, вследствие дифракции, практически сразу расходится. Для компенсации этого эффекта и получения тонкого луча необходимо применять собирающие линзы. Для многомодовых широких лазеров наиболее часто применяются цилиндрические линзы. Для одномодовых лазеров, при использовании симметричных линз, сечение луча будет эллиптическим, так как расхождение в вертикальной плоскости превышает расхождение в горизонтальной. Нагляднее всего это видно на примере луча лазерной указки.

В простейшем устройстве, которое было описано выше, невозможно выделить отдельную длину волны, исключая значение, характерное для оптического резонатора. Однако в устройствах с несколькими продольными режимами и материалом, способным усиливать излучение в достаточно широком диапазоне частот, возможна работа на нескольких длинах волн. Во многих случаях, включая большинство лазеров с видимым излучением, они работают на единственной длине волны, которая, однако обладает сильной нестабильностью и зависит от множества факторов — изменения силы тока, внешней температуры и т. д. В последние годы описанная выше конструкция простейшего лазерного диода подвергалась многочисленным усовершенствованиям, чтобы устройства на их основе могли отвечать современным требованиям.

Конструкция лазерного диода, описанная выше, имеет название «Диод с n-p гомоструктурой», смысл которого станет понятен чуть позже. Такие диоды крайне неэффективны. Они требуют такой большой входной мощности, что могут работать только в импульсном режиме; в противном случае они быстро перегреваются. Несмотря на простоту конструкции и историческую значимость, на практике они не применяются.

Лазеры на двойной гетероструктуре[править | править код]

В этих устройствах, слой материала с более узкой запрещённой зоной располагается между двумя слоями материала с более широкой запрещённой зоной. Чаще всего для реализации лазера на основе двойной гетероструктуры используют арсенид галлия (GaAs) и арсенид алюминия-галлия (AlGaAs). Каждое соединение двух таких различных полупроводников называется гетероструктурой, а устройство — «диод с двойной гетероструктурой» (ДГС). В англоязычной литературе используются названия «double heterostructure laser» или «DH laser». Описанная в начале статьи конструкция называется «диод на гомопереходе» как раз для иллюстрации отличий от данного типа, который сегодня используется достаточно широко.

Преимущество лазеров с двойной гетероструктурой состоит в том, что область сосуществования электронов и дырок («активная область») заключена в тонком среднем слое. Это означает, что много больше электронно-дырочных пар будут давать вклад в усиление — не так много их останется на периферии в области с низким усилением. Дополнительно, свет будет отражаться от самих гетеропереходов, то есть излучение будет целиком заключено в области максимально эффективного усиления.

Диод с квантовыми ямами[править | править код]

Если средний слой диода ДГС сделать ещё тоньше, такой слой начнёт работать как квантовая яма. Это означает, что в вертикальном направлении энергия электронов начнёт квантоваться. Разница между энергетическими уровнями квантовых ям может использоваться для генерации излучения вместо потенциального барьера. Такой подход очень эффективен с точки зрения управления длиной волны излучения, которая будет зависеть от толщины среднего слоя. Эффективность такого лазера будет выше по сравнению с однослойным лазером благодаря тому, что зависимость плотности электронов и дырок, участвующих в процессе излучения, имеет более равномерное распределение.

Гетероструктурные лазеры с раздельным удержанием[править | править код]

Основная проблема гетероструктурных лазеров с тонким слоем — невозможность эффективного удержания света. Чтобы преодолеть её, с двух сторон кристалла добавляют ещё два слоя. Эти слои имеют меньший коэффициент преломления по сравнению с центральными слоями. Такая структура, напоминающая световод, более эффективно удерживает свет. Эти устройства называются гетероструктурами с раздельным удержанием («separate confinement heterostructure», SCH)

Большинство полупроводниковых лазеров, произведённых с 1990-го года, изготовлены по этой технологии.

Лазеры с распределённой обратной связью[править | править код]

Лазеры с распределённой обратной связью (РОС) чаще всего используются в системах многочастотной волоконно-оптической связи. Чтобы стабилизировать длину волны, в районе p-n перехода создаётся поперечная насечка, образующая дифракционную решётку. Благодаря этой насечке, излучение только с одной длиной волны возвращается обратно в резонатор и участвует в дальнейшем усилении. РОС-лазеры имеют стабильную длину волны излучения, которая определяется на этапе производства шагом насечки, но может незначительно меняться под влиянием температуры. Такие лазеры — основа современных оптических телекоммуникационных систем.

VCSEL[править | править код]

VCSEL — «Поверхностно-излучающий лазер с вертикальным резонатором» — полупроводниковый лазер, излучающий свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности.

VECSEL[править | править код]

VECSEL — «Поверхностно-излучающий лазер с вертикальным внешним резонатором». Аналогичен по своему устройству VCSEL, но имеющий внешний резонатор. Может исполняться как с токовой, так и с оптической накачкой.

Широкое распространение лазерных диодов привело к появлению большого разнообразия корпусов, специализированных для определенных применений. Официальных стандартов по данному вопросу не существует, однако иногда крупные производители заключают соглашения об унификации корпусов[3]. Кроме того существуют услуги по корпусированию излучателей по требованиям заказчика, поэтому перечислить всё разнообразие корпусов затруднительно (miniBUT, miniDIL и т.д.). Точно также и распиновка контактов в знакомом корпусе может оказаться уникальной, поэтому назначение пинов перед покупкой у нового производителя всегда следует перепроверять. Также не следует ассоциировать внешний вид с длиной волны излучения, т.к. на практике излучатель с практически любой (в рамках ряда) длиной волны может быть установлен в любой из корпусов. Основные элементы лазерного модуля:

  • излучатель
  • термистор
  • элемент Пельтье
  • фотодиод
  • коллимирующая линза
  • оптический изолятор

Ниже перечислены корпуса, наиболее распространенные среди производителей.

С открытым излучением на выходе[править | править код]

TO-CAN[править | править код]

Корпусы данного типа предназначены для малого и среднего диапазона мощности излучения (до 250 мВт), т.к. не обладают специализированными теплоотводными поверхностями. Размеры варьируются от 3,8 до 10 мм. Число ножек от 3 до 4, коммутированы они могут быть различным образом, приводя в 8 типам распиновок.

C-mount[править | править код]
D-mount[править | править код]

С волоконным выходом[править | править код]

DIL — Dual-In-Line[править | править код]
Лазерный диод в корпусе DIL и FC/APC коннектором Лазерный диод в корпусе DIL — вид снизу

Использование данного корпуса обосновано для мощностей более 10 мВт (для различных длин волн это значение заметно варьируется), когда площади поверхности полупроводника недостаточно для отведения тепла. Более эффективный отвод тепла достигается за счёт использования встроенного холодильника Пельтье, отводя тепло на противоположную по отношению к волоконному выходу грань алюминиевого корпуса. Пока температура корпуса при эксплуатации не изменяется, естественного воздушного охлаждения с поверхности достаточно. Для более мощных применений на основной теплоотводящей поверхности (противолежащей от волоконного выхода) устанавливают радиатор, для закрепления которого на корпусе предусмотрены ушки. Расположение ножек в 2 ряда с шагом 2,54 мм позволяет наряду с впаиванием использовать разъёмные электрические соединения — колодка для электронных компонентов в корпусах DIP и колодка нулевого усилия ZIF.

DBUT — Dual-Butterfly[править | править код]

Самый распространнёный корпус для лазерных диодов с мощностями от 10 мВт до 800 мВт и более. Основное отличие-преимущество перед DIL-корпусом — более эффективный теплоотвод за счет увеличенной площади контакта элемента Пельтье с корпусом лазерного модуля — основной теплоотводящей поверхностью является нижняя. Для этого электрические выводы были перенесены на боковые грани, что усложняет организацию разъёмного соединения лазерного модуля с платой управления.

SBUT — Single-Butterfly[править | править код]

Односторонний вариант полного BUTTERFLY корпуса. Из-за вдвое меньшего количества выводов, отсутствует возможность использовать внутренний фотодиод.

Лазерные диоды — важные электронные компоненты. Они находят широкое применение как управляемые источники света в волоконно-оптических линиях связи. Также они используются в различном измерительном оборудовании, например лазерных дальномерах. Другое распространённое применение — считывание штрих-кодов. Лазеры с видимым излучением, обычно красные и иногда зелёные — в лазерных указках, компьютерных мышах. Инфракрасные и красные лазеры — в проигрывателях CD и DVD. Фиолетовые лазеры — в устройствах HD DVD и Blu-Ray. Синие лазеры — в проекторах нового поколения в качестве источника синего света и зелёного (получаемого за счёт флюоресценции специального состава под воздействием синего света). Исследуются возможности применения полупроводниковых лазеров в быстрых и недорогих устройствах для спектроскопии.

До момента разработки надёжных полупроводниковых лазеров, в проигрывателях CD и считывателях штрих-кодов разработчики вынуждены были использовать небольшие гелий-неоновые лазеры.

С электронной точки зрения лазерный диод — это обычный диод, ВАХ которого широкоизвестна. Главной оптической характеристикой является зависимость выходной оптической мощности от тока, протекающего через p-n переход. Таким образом, необходимая часть абсолютно любого драйвера излучающего диода — источник тока. Функциональность источника тока (диапазон, стабильность, модуляция и прочее) напрямую задаёт функцию оптической мощности. Помимо поддержания нужного уровня средней мощности в лазерах с активным охлаждением драйвер должен обеспечивать управление охладителем. Структурно управление током диода и охлаждением может быть как одним устройством, так и двумя отдельными устройствами. Важным свойством драйвера является также тип корпуса лазерного диода, который он поддерживает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *