Котел кавитационный – Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Содержание

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий

Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.

Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.

Принцип действия кавитационного преобразователя

ИллюстрацияОписание процесса
  1. В преобразователь трубного типа подается основной поток жидкой среды обычной температуры;
  2. Навстречу движению основного потока подаются дополнительные потоки жидкой среды;
  3. Разнонаправленные потоки, сталкиваясь, создают эффект кавитации, за счет чего жидкая среда на выходе из преобразователя нагревается.

Устройство и особенности функционирования

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта

В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

ИллюстрацияОписание сферы применения
Отопление. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.

Нагрев проточной воды для бытового использования. Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.
Смешивание несмешиваемых жидкостей. В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Схема внедрения вихревого теплогенератора в отопительную систему загородного дома или квартиры — кроме наличия насоса, особых отличий от монтажа обычного котла нет

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии
Экономичность. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.

Небольшая масса установки. За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении — в котельной, подвале и т.п

.

Простая конструкция. Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.

Нет необходимости в дополнительных доработках. Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.
Нет необходимости в водоподготовке. Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.

Работа оборудования не требует постоянного контроля. Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить.

Экологичность. Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

ИллюстрацииОбщее описание конструкций кавитационных теплогенераторов
Общий вид агрегата. На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме — это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами. На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.

Теплогенератор с встречными резонаторами. На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

ИллюстрацииОписание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе. На этой схеме можно видеть следующие детали:

1 — корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 — вал, на котором закреплен роторный диск;

3 — роторное кольцо;

4 — статор;

5 — технологические отверстия проделанная в статоре;

6 — излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.

Схема совмещения роторного кольца (3) и статора (4). На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу

.

Поворотное смещение роторного кольца и статора. На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Поделитесь с друзьями в соц.сетях

Facebook

Twitter

Google+

Telegram

Vkontakte

Кавитационный теплогенератор. Устройство и работа. Применение

Кавитационный теплогенератор – специальное устройство, в котором применяется эффект нагрева жидкости кавитационным способом. То есть это эффект, при котором образуются микроскопические пузырьки пара в областях локального уменьшения давления в воде. Это может наблюдаться во время вращения насосной крыльчатки или вследствие воздействия на воду звукового колебания. В результате этого жидкость нагревается, а это значит, что при помощи нее можно обогревать дом или квартиру.

На сегодняшний день кавитационный теплогенератор считается инновационным изобретением. Однако уже практически век тому назад ученые размышляли над тем, как можно использовать эффект кавитации. Впервые подобную установку собрал Джозеф Ранк в 1934 году. Именно он отметил, что входные и выходные температуры воздушных масс этой трубы отличаются. Советские ученые несколько усовершенствовали трубы Ранка, использовав для этой цели жидкость. Опыты показали, что установка позволяет быстро разогревать воду. Однако на тот период необходимость в такой установке была минимальна, ведь энергия стоила копейки. Сегодня же, вследствие удорожания электричества, нефти и газа, потребность в таких установках возрастает.

Виды
Кавитационный теплогенератор по своему устройству может быть роторным, трубчатым или ультразвуковым:
  • Роторные устройства представляют агрегаты, в которых используются центробежные насосы с измененной конструкцией. В качестве статора здесь применяется насосный корпус, куда устанавливается входная и выходная труба. Главным рабочим элементом здесь выступает камера, где размещается подвижный ротор, он работает по принципу колеса.

Роторная установка имеет сравнительно простую конструкцию, однако для эффективной ее работы необходим очень точный монтаж всех его элементов. В том числе здесь требуется точнейшее балансирование двигающегося цилиндра. Необходима плотная посадка роторного вала, а также тщательная выверка и замена пришедших в негодность материалов изоляции. КПД таких устройств не являются довольно большим. Они имеют не очень большой срок службы. К тому же такие агрегаты работают с выделением достаточно большого шума.

  • Трубчатые тепловые генераторы осуществляют кавитационное нагревание благодаря продольному расположению трубок. При помощи помпы нагнетается давление во входящую камеру. В результате жидкость направляется через указанные трубки. На входе вследствие этого появляются пузырьки. Во второй камере устанавливается высокое давление. Пузырьки, которые при попадании во вторую камеру разрушаются, вследствие чего они отдают свою тепловую энергию. Эта энергия вместе с паром направляется на обогрев дома. Коэффициент полезного действия подобных конструкций может достигать высоких показателей.
  • Ультразвуковые тепловые генераторы. Кавитация здесь образуется благодаря ультразвуковым волнам, которые создает установка. В результате такого принципа работы обеспечиваются минимальные потери энергии. Трения здесь практически нет, вследствие чего коэффициент полезного действия ультразвукового теплового генератора невероятно высок.
Устройство

Кавитационный теплогенератор имеет устройство в зависимости от принципа действия. Типичным и наиболее распространенным представителем роторных тепловых генераторов является центрифуга Григгса. В такой агрегат заливается вода, после чего запускается ось вращения при помощи электрического двигателя. Главным достоинством такой конструкции является то, что привод нагревает жидкость, а также выступает в качестве насоса. Поверхность цилиндра имеет огромное количество неглубоких круглых отверстий, которые позволяют создать эффект турбулентности. Нагревание жидкости обеспечивается благодаря силам трения и кавитации.

Число отверстий в установке зависит от используемой роторной частоты вращения. Статор в тепловом генераторе выполнен в виде цилиндра, который запаян с двух концов, где непосредственно вращается ротор. Существующий зазор между статором и ротором равняется примерно 1,5 мм. Отверстия в роторе необходимы для того, чтобы в жидкости, трущейся о поверхности цилиндра, появлялись завихрения с целью создания кавитационных полостей.

В указанном зазоре также наблюдается и нагревание жидкости. Чтобы тепловой генератор эффективно работал, поперечный размер ротора должен составлять минимум 30 см. В то же время скорость его вращения должна достигать 3000 оборотов в минуту.

В ультразвуковых устройствах для создания эффекта кавитации используется кварцевая пластина. Она под воздействием электрического тока создает колебания звука. Эти звуковые колебания направляются на вход, вследствие чего устройство производит вибрации. На обратной фазе волны создаются участки разряжения, вследствие чего можно наблюдать кавитационные процессы, которые создают пузырьки.

Чтобы обеспечить максимальный коэффициент полезного действия, рабочая камера теплового генератора выполняется в виде резонатора, который настроен на ультразвуковую частоту. Образованные пузырьки моментально переносятся потоком через узкие трубки. Это необходимо, чтобы получить разряжение, так как пузырьки в тепловом генераторе могут быстро смыкаться, отдавая свою энергию обратно.

Принцип работы

Кавитационный теплогенератор позволяет создать процесс, во время которого в жидкости создаются пузырьки. Если рассматривать этот процесс, то он сравним с закипанием воды. Однако при кавитации наблюдается локальное падение давления, что и приводит к появлению пузырьков. В тепловом генераторе формируются вихревые потоки, вследствие них происходит кавитационный разрыв пузырьков, что приводит к нагреванию жидкости. Нагревание приводит к резкому снижению давления жидкости. Полученная энергия получается довольно дешевой, она отлично подходит для отопления помещений. В качестве теплоносителя можно использовать антифриз.

Для подобных установок обычно нужно примерно в 1,5 раза меньше электрической энергии, чем это необходимо для радиаторных и иных систем. При этом нагревание жидкости осуществляется в замкнутой системе. Работают такие агрегаты посредством преобразования одной энергии в другую. В итоге она превращается в тепловую.

Применение

Кавитационный теплогенератор в большинстве случаев применяется для нагревания воды, а также смешивания жидкостей. Поэтому подобные установки в большинстве случаев используются для:
  • Отопления. Тепловой генератор преобразует механическую энергию движения воды в тепловую энергию, которую успешно можно использовать для обогрева зданий различного характера. Это могут быть небольшие частные постройки, в том числе крупные промышленные объекты. К примеру, на территории нашей страны на текущий момент можно насчитать минимум с десяток населенных пунктов, в которых централизованное отопление осуществляется не обычными котельными, а кавитационными установками.
  • Нагревания проточной воды, которая применяется в быту. Тепловой генератор, который включен в сеть, может довольно быстро нагревать воду. В результате подобное оборудование с успехом можно применять для разогревания воды в бассейнах, автономном водопроводе, саунах, прачечных и тому подобное.
  • Смешивания несмешиваемых жидкостей. Устройства кавитационного типа могут применяться в лабораториях, где имеется необходимость высококачественного смешивания жидкостей, имеющих разную плотность.
Как выбрать

Кавитационный теплогенератор может быть выполнен в нескольких исполнениях. Поэтому выбирать такое устройство для отопления своего дома нужно с учетом ряда параметров:

  • Подбирать тепловой генератор необходимо, исходя из того, для какой площади необходимо отопление. Также следует учесть, какая погода наблюдается в зимний период. Важной характеристикой будет и теплоизоляция стен. То есть нужно выбирать устройство, которое будет обеспечивать необходимое количество тепла.
  • Если Вы приобретаете стандартную установку, то желательно, чтобы она была оборудована приборами контроля выделяемой теплоты и датчиками защиты. Лучше сразу приобрести установку с автоматическим блоком контроля и управления. Поэтому кавитационную установку рекомендуется приобретать в комплексе с другим оборудованием с услугой установки под ключ. Специалисты сами подберут и выполнят расчеты по монтажу тепловой системы в вашем доме.
  • Если Вы решили сэкономить и приобрести оборудование по отдельности, то здесь важно определиться с особенностями всех элементов системы. Насос должен иметь возможность работы с жидкостями, которые нагреты до высокой температуры. В противном случае система быстро придет в негодность и ее придется ремонтировать. К тому же насос должен обеспечивать давление от 4 атмосфер.
  • Если Вы решили соорудить кавитационную установку самостоятельно, то здесь важно верно подобрать сечение канала камеры кавитации. Оно должно составлять порядка 8-15 мм. Перед созданием такой установки важно тщательно изучить действующие схемы подобных устройств. Кавитационный теплогенератор по своему виду будет напоминать насосную станцию, которой не нужна дымоотводная труба. При ее работе не выделяется угарный газ, грязь или копоть.
Похожие темы:

Кавитационный генератор своими руками чертежи устройство

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Критический взгляд на кавитационный теплогенератор

С позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недовериеС позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недоверие. Такова уж природа человека. По заявлениям изобретателей этот прибор выдает КПД в 300%. То есть агрегат, потребляя 1 кВт электрической энергии, выдает 3 кВт тепловой. Но так ли это на самом деле?

На уважаемых форумах нагрев воды кавитацией считают возможным, но эффективность этого процесса не превышает 60%. А по факту, это новшество всерьез никто не воспринимает. Да, на кавитационный теплогенератор есть патент, но это еще ничего не значит. Например, на краску-утеплитель тоже есть сертификаты и некоторые подрядчики даже пролоббировали возможность утеплять ею фасады многоэтажек в рамках государственной программы. Вот только после такого утепления люди оббили пороги судов, чтобы вернуть потраченные деньги, так как эффективность жидкой теплоизоляции не подтвердилась на практике.

Изобретатель может получить на свое детище патент, который в случае успешного внедрения будет приносить доход. Но это не дает гарантии, что прибор будет в будущем работать по заявленному алгоритму. Также нет гарантий, что его будут выпускать серийно.

При замере эффективности опытных образцов использовался какой-то хитрый способ вычисления КПД, понять который простому смертному не дано. Конкретики мало, сплошное замыливание глаз. Грубо говоря, все гладко только в теории. Если образец 100% рабочий, то почему ученым еще не присвоена Нобелевская премия?

На множественных форумах нам не удалось найти ни одного человека, который бы отапливал свой дом кавитационным генератором. Нет реальных доказательств его эффективности. В сети можно найти видео про этот прибор, но толкового объяснения, что и как работает – нет, все вокруг да около и крайне неубедительно. Мы считаем, что данный метод обогрева дома не стоит внимания.

Что такое кавитация

Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.

Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьерыДля утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.

 

Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.

Последствия кавитации:

  • эрозия металлов;
  • питтинговая коррозия;
  • появление вибраций.

Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.

Сделать своими руками?

Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:

Есть масса способов обогреть дом

Последствия кавитации.

Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.

Выбор материалов для утепления кровли изнутри минватой относительно невеликВыбор материалов для утепления кровли изнутри минватой относительно невелик.

 

По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.

Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?

Кавитационный теплогенератор: как сделать своими руками

Кавитационный теплогенератор пользуется популярностью в качестве экономичного отопительного оборудования. Кавитация – специфический эффект с образованием микропузырьков пара в зонах локального снижения давления рабочей жидкости. Процесс предусматривает воздействие насосного агрегата или звуковых колебаний.

Конструктивные особенности и принцип работы

На основе кавитационного теплогенератора механическая энергия движения воды (рабочей жидкости) преобразуется в тепло, которое используется для обогрева помещений любого назначения. Кавитация подразумевает образование пузырьков в жидкости, в результате разрушения которых вырабатывается тепловая энергия.

Принцип работы кавитатора:

  • рабочий поток перемещается по устройству, в котором обеспечивается давление при помощи насоса;
  • далее с повышением скорости происходит локальное снижение давления субстанции;
  • в жидкости образуются свободные места, заполняемые пузырьками.

Впоследствии в центре камеры потоки перемешиваются, и происходит процесс кавитации: пузырьки схлопываются, в результате механическая энергия преобразуется в тепловой потенциал. Это объясняется тем, что при формировании вихревого потока кавитационные разрывы приводят к нагреву жидкой среды.

Возможности применения

Приборы кавитационного действия востребованы в различных отраслях, при этом в основном их применяют в качестве альтернативного вида отопительных установок для дома. Также оборудование находит применение и в других сферах:

  • обогрев и очистка воды в бассейнах;
  • очистка отложений внутри теплообменников;
  • в промышленности.

В последнем случае, к примеру, при изготовлении бетона с высокими эксплуатационными характеристиками.

Отопление

Кавитационный прибор способствует преобразованию механической энергии перемещающейся воды в тепловой потенциал, который направляется на обогрев различных по назначению и масштабу зданий, включая частные домовладения и промышленные комплексы.

Кавитационный теплогенераторКавитационный теплогенератор может быть использован при отоплении

Автономное нагревание воды для бытовых нужд

Генератор кавитационного тепла способен в полной мере обеспечить хозяйство горячей водой, которая подается в кухню, санузел, баню. Также оборудование находит применение при подготовке воды в бассейнах, прачечных и саунах, используется в автономном водопроводе.

Применение кавитации тепла в производстве

Приборы актуальны при необходимости качественного смешивания субстанций с разными параметрами плотности и применяются в лабораториях, производственных цехах и других объектах промышленности.

Разновидности

Кавитационные устройства делятся на следующие виды:

  • роторные – вихревой кавитационный теплогенератор предусматривает видоизмененный центробежный насос, корпус которого представляет собой статор с входящей и выходящей трубой. Основной рабочий орган прибора – камера с подвижным ротором, который вращается по типу колеса;
  • статические – в приборе отсутствуют вращающиеся детали, для кавитации применяют конструкцию из сопел с мощным центробежным насосом;
  • трубчатые – в конструкции предусмотрены продольно расположенные трубки. КПД трубчатых теплогенераторов кавитации отличается высокими показателями;
  • ультразвуковые – эффект кавитации обеспечивается при помощи ультразвуковых волн.
Кавитационный теплогенераторКавитационный теплогенератор вихревой

КПД ультразвукового оборудования невероятно высок.

Принцип работы роторных генераторов

Пожалуй, к самым продуктивным моделям относится конструкция Григгса, в которой ротор в форме диска располагает поверхностью с многочисленными глухими отверстиями определенного диаметра и глубины. Статор представлен в виде цилиндра с запаянными концами, в котором вращается ротор. Между роторным диском и стенками статора есть зазор величиной около 1,5 мм. В ячейках устройства обеспечивается возникновение завихрений для образования кавитационных полостей. Количество ячеек определяется частотой вращения ротора.

Как отмечают специалисты, для эффективности работы прибора применяется ротор с поперечным размером от 30 см со скоростью вращения 3 000 оборотов/мин. При меньшем диаметре требуется увеличить параметры оборотов.

Особенности роторных теплогенераторов кавитационного действия:

  • присутствует значительный уровень шума;
  • КПД устройства не впечатляет;
  • непродолжительный срок службы;
  • показатели производительности на 25% выше, чем у статических моделей.

При эксплуатации роторной установки требуется отработка четкого действия всех элементов, в том числе и балансировка цилиндра. Также необходимо своевременно менять исчерпавшие свой потенциал изоляционные материалы для уплотнения вала.

Принцип работы статического теплогенератора

Кавитация предполагает высокую скорость перемещения рабочей жидкости при помощи мощного мотора центробежного типа. Так как dвыхода сопла значительно меньше, чем параметры противоположного конца, увеличивается скорость перемещения субстанции, и возникают кавитационные эффекты.

Статические кавитаторные приборы располагают массой преимуществ:

  • не требуется балансировка и точная подгонка деталей;
  • уплотнители изнашиваются меньше, чем в роторной модели, так как здесь отсутствуют подвижные детали;
  • продолжительность срока службы статического кавитатора около 5 лет, что значительно больше, чем у предыдущего варианта прибора.

При необходимости производится замена сопла, для чего понадобится относительно небольшой расход времени и сил, тогда как в случае с роторным прибором придется воссоздать его заново, если оборудование выйдет из строя.

Трубчатые тепловые генераторы: устройство и принцип работы

В этой модели кавитационное тепло вырабатывается благодаря продольному расположению трубок:

  • помпа способствует нагнетанию давления во входящую камеру, и рабочая субстанция направляется через трубки. При этом на входе образуются пузырьки;
  • при попадании во вторую камеру, где установлено высокое давление, пузырьки разрушаются, в процессе образуется тепловой потенциал.
Кавитационный теплогенераторТрубчатый тепловой генератор

Выработанная таким способом энергия направляется вместе с паром на отопление дома. Как утверждают производители трубчатых теплогенераторов кавитации, как и специалисты в сфере климатического оборудования, эта модель отличается высокими показателями КПД.

Особенности ультразвуковых генераторов кавитационного действия

В установке создаются ультразвуковые волны, благодаря которым образуется кавитационное тепло. Для этого применяется кварцевая пластина, на ее основе под воздействием электрического тока создаются звуковые колебания. Они направляются на вход, впоследствии чего образуется вибрация. На обратной фазе звуковых волн возникают участки разряжения и наблюдается эффект кавитации. Принцип работы ультразвукового кавитатора предполагает минимальные потери энергии и практическое отсутствие трения. Всем этим обуславливается исключительно высокий КПД ультразвукового оборудования.

Плюсы и минусы

Основным достоинством кавитационного теплогенератора считается экономичность работы отопительного устройства. Также среди плюсов отмечают следующие факторы:

  • высокий уровень производительности прибора;
  • возможность самостоятельного изготовления и монтажа;
  • оборудование можно установить без разрешительных документов.

Среди недостатков выделяют:

  • необходимо обустроить отдельное помещение под котельную;
  • достаточно высокий уровень шума при работе прибора.

Нельзя забывать, что оборудование занимает много места.

Критерии выбора

При выборе устройства кавитации учитывают следующие моменты:

  1. Важно подобрать конструкцию в соответствии с условиями эксплуатации. Следует учесть масштабы отапливаемого пространства, возможности теплоизоляции помещений, климатические особенности местности в межсезонье и зимой.
  2. Стоит решить вопросы комплектации при приобретении стандартного оборудования. В этом случае, желательно, чтобы изделие было укомплектовано датчиками защиты и приборами контроля тепла. Оптимальный вариант – приобретение техники с автоматическим блоком контроля и управления, также стоит заказать услугу «монтаж под ключ».
  3. В случае приобретения оборудования по отдельным элементам, необходимо четко знать все особенности каждого компонента системы.

Если планируется самостоятельное изготовление, важно тщательно изучить схемы и вооружиться рекомендациями специалистов, далее приступают к выбору модели.

Популярные модели

Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.

ВТГ-2.2

Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.

ВГТ-30

Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.

ИТПО

Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%. Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей.

Как изготовить кавитационные теплогенераторы своими руками?

Оборудование представляет собой простое устройство, что позволяет при необходимости самостоятельно изготовить конструкцию.

Необходимые инструменты и материалы:

  • манометры – для контроля давления на входе/выходе;
  • термометры – для измерения температуры рабочей жидкости при входе/выходе;
  • гильзы под термометры.

Также нужны патрубки с кранами – входные и для выхода.

Особенности выбора насоса

Параметры насоса должны соответствовать специфическим требованиям. Так, нужен агрегат с возможностью работы с высокотемпературными субстанциями. Также учитывается способность прибора создавать необходимое рабочее давление – при входе жидкости достаточно давления в 4 атмосферы, для увеличения скорости нагрева требуется показатель до 12 атмосфер.

Изготовление кавитационной камеры

В самодельных приборах кавитации чаще всего предусматривается вариант в виде сопла Лаваля. Выбирая размер сечения проходного канала, стоит учитывать, что требуется обеспечение максимального перепада давления рабочей субстанции. Для этого подбирают модель наименьшего диаметра, в результате получается достаточно активный процесс кавитации. Приемлемым считается d9-16 мм, при меньшем сечении уменьшается интенсивность водного потока, что приводит к смешиванию жидкости с холодными массами. Применение сопла с маленьким отверстием также чревато следующими последствиями:

  • увеличивается число воздушных пузырьков. В результате наблюдается усиление шума при работе оборудования;
  • есть риск образования пузырьков уже в камере насоса, что может стать причиной его быстрого выхода из строя.

В зависимости от параметров установки выбирают сопла цилиндрической формы, закругленного или конусного профиля. Главное – необходимо обеспечить образование вихревого процесса уже на начальном этапе входа рабочей субстанции в сопло.

Особенности изготовления водяного контура

При самостоятельном конструировании прибора предварительно выполняют схему: определяют протяженность контура, уточняют особенности модели и переносят все это мелом на пол.

Конструкция представляет собой изогнутую трубу, которая присоединяется к выходу камеры, далее рабочая среда снова подается на вход.Субстанцияв контур поступает по направлению против часовой стрелки. Контур снабжается двумя манометрами и парой гильз с термометрами. Модель дополняет вентиль для сбора воздуха. Для регулирования давления вентиль устанавливается между входом и выходом.

Испытание генератора

После установки оборудования и подключения радиаторов к системе отопления насосное устройство включают в сеть и запускают двигатель. При исправной работе конструкции подается необходимое количество воды. Показание манометров давления жидкой среды регулируют при помощи вентиля, учитывая, что требуется разница в диапазоне 8-12 атмосфер. После пуска рабочей жидкости наблюдают параметры температуры: корректным считается нагревание 3-5°C/10 минут. С учетом, что система и насос запитаны 15 л воды, за небольшой отрезок времени нагрев достигнет 60°C. Это хороший результат для эффективной работы отопительного оборудования.

Отопительное оборудование кавитационного типа – экономичный прибор, который способен обогреть помещение за короткий промежуток времени. Производители предлагают различные модели устройства, при необходимости несложно изготовить конструкции самостоятельно с учетом особенностей обустраиваемой площади.

Кавитационный теплогенератор: применение, механизм, конструкции

Кавитационный теплогенератор – это тепловой насос, гидродинамический преобразователь энергии движения жидкости в нагрев калориферов.

Кавитация

На первый взгляд, тема кавитационных теплогенераторов представляется фантастичной и вычеркнута из Википедии, но по детальному изучению оказалась любопытной. Тем интереснее становился вопрос, чем дальше авторы углублялись в изучение. Книга Фоминского о дармовых источниках энергии начинается с описания глобальной экологической катастрофы конца XX века. Среди общеизвестных фактов о вреде двигателей внутреннего сгорания, невероятных сведений о ценности кавитационных теплогенераторов выдвигаются гипотезы об изменении режима дыхания лесов планеты и… об остановке тёплого течения Гольфстрим. В 2003 году книжка читалась как сборник фантастики. Напомним, сейчас Европа обеспокоена остановкой Гольфстрима, становится ясным, что автор сумел предсказать будущее на 10 лет вперёд.

Это наталкивает на мысль, что идея кавитационных теплогенераторов не столь утопична, как пытаются представить средства массовой информации. Известно, что КПД термоэлектрических источников составлял доли процента в начале XX века, сегодня это направление считается перспективным. Эффективность первых термопар достигала 3%, что сопоставимо с успехами паровых двигателей начала XIX века. Уже сегодня инженеры (см. скрин) говорят, что КПД кавитационного теплогенератора допустим выше единицы.

Кавитационный теплогенератор – насос. Поток жидкости просто переносит энергию из места в место. Любой кондиционер и холодильник показывают КПД выше 100%, работают по принципу теплового насоса, перекачивая энергию из одной области пространства в другую. Сопоставим с поливом деревьев: энергия электричества не может напитать корни, но стоит к двигателю приделать гребной винт, как потоки воды устремляются, чтобы принести живительную влагу. Принцип действия кавитационного теплогенератора в точности аналогичен.

Тепловой насос считается дорогим типом оборудования. Обычно качает тепло Земных недр или речного потока. Температура в указанных источниках невысока, понижая давление фреона, удаётся добиться забора тепла и доставки в нужное место. Холодильник не вырабатывает мороз непосредственно. Он разряжает фреон, за счёт законов термодинамики тепло переходит на испаритель, оттуда доставляется к радиатору на задней стенке.

Аналогичным образом кавитационные пузырьки образуются в местах, где давление воды ниже точки перехода в иное агрегатное состояние (см. рис.). Как результат, поглощается большое количество энергии. На перевод вещества в иное агрегатное состояние приходится затратить тепло. Которое берётся из окружающей воды, а та – перекачивает с корпуса кавитационного теплогенератора, потом из помещения. На корпусе тепло образуется за счёт нагнетания давления помпой. КПД выше единицы объясняется отбором тепла у окружающей среды. Высок процент использования собственных потерь генератора на нагрев обмоток и трение.

Помощь кавитационного теплогенератора

Климат сегодня сильно меняется из-за работы двигателей внутреннего сгорания. 40% углекислого газа на планете вырабатывается транспортом, значительная часть выбрасывается частными домовладельцами, жгущими топливо для обогрева. Выделяется в атмосферу сонм вредных веществ, нарушаются условия существования жизни на планете. Следовательно, энергия ТЭС не предлагается в качестве альтернативы, приносящей пользу. В силу очевидных причин.

Кавитационные теплогенераторы позволяют решить часть сложностей очевидным способом: перекачивая энергию из части пространства в другую, получится решать насущные потребности человеческой жизнедеятельности. К примеру, генератор может давать тепло и забирать. Ключевое преимущество обогревателей в том, что энергия не исчезает бесследно. Она остаётся теплом на омическом сопротивлении проводов, преодолевает силы трения. Все происходит в районе силовой установки, в конечном итоге теряется паразитными эффектами, неиспользуемыми в силу разрозненности факторов. Кавитационный генератор позволит собрать потерянные крохи простым методом: примется откачивать тепло из очага его образования:

  1. Обмотки двигателя.
  2. Поверхности трения.

Уже за счёт фактора КПД установки повысится: тепловые потери греют место, откуда перекачивается тепло. Это безусловный плюс. Остальное возьмётся из воздуха. Стоит вдуматься:

  • Холодильник летом греет кухню, КПД падает.
  • Кондиционер забирает жару с мороза или выкачивает холод с подсолнечной стороны здания.

А кавитационный теплогенератор способен собственные потери утилизировать с пользой. Обязан быть признан перспективным. Сложность – как получить побольше пузырьков из механического движения. Этому уже сегодня посвящены десятки, если не сотни патентов, к примеру, RU 2313036. Несложно догадаться, что для перекачивания тепло нужно откуда-то взять. Это правильная постановка вопроса, из-за упущения смысла происходящего люди не хотят верить, что кавитационный генератор – реальность: «Как теплотехник, скажу – это бред. Энергия из ниоткуда не возникает. Затрачивать меньше электроэнергии и получать больше тепловой позволяет тепловой насос.» (форум okolotok.ru)

Если профессионалу непонятно, что речь идёт о своеобразном тепловом насосе, что знает широкая публика про кавитационный теплогенератор… Установим, кому окажется полезен кавитационный теплогенератор. Доведённую до совершенства конструкцию допустимо применять:

  1. Для отбора энергии сточных вод.
  2. Охлаждения цехов с одновременным обогревом рабочих мест.
  3. Обогрева помещений без использования нефти, газа, мазута, угля, дров и пр.

Механизм кавитации

Образование пузырьков возможно в движущемся потоке. Там, где резко снижено давление. К подобным местам относят гребные лопасти судов, переходники трубопроводов с разным диаметром (см. рис.). Собственно, конструкции кавитационных генераторов делят на роторные и трубчатые. Обе приводятся в движение электричеством, но принцип действия различается. Винт и труба показаны на скринах для иллюстрации сказанного.

Для объяснения происходящего нужно взглянуть на график агрегатных состояний. Там показаны твёрдое тело (solid), жидкость (liquid) и пар в виде областей для некой температуры (по горизонтали) и давления (по вертикали). Пунктирами обозначены линии:

  1. По горизонтали – нормальное атмосферное давление.
  2. По вертикали – точки таяния льда и кипения воды.

Видно, что в нормальных условиях пар образуется при температуре 100 градусов, при падении давления вполовину точка кипения смещается до нуля градусов Цельсия. Эффект хорошо знаком альпинистам, знающим – на высоте невозможно сварить мясо. Вода закипает уже при 70-80 градусах Цельсия.

Гребной винт судна образует пузырьки при нормальной температуре воды. Кавитация оказывает пагубное влияние. На рисунке видно, что уже через пару лет эксплуатации поверхность покрывается выщербинами. Кавитация затратна для гидравлических систем.

Образовавшийся пузырёк не лопается за счёт силы натяжения воды и двигается в область с большим давлением, уносясь потоком. Постепенно в передней части образуется вмятина, форма меняется с шаровидной, становясь похожей на эритроцит. Постепенно стенки смыкаются, получается тор (баранка). Образовавшиеся течения создают крутящий момент, фигура пытается вывернуться наизнанку. В результате колба лопается, остаётся некий сгусток турбулентностей (см. рис.). При переходе пара в иное агрегатное состояние выделяется поглощённая ранее энергия. На этом транспорт тепла заканчивается.

Разговор о вечных двигателях: научные небылицы

Виктор Шаубергер

Австрийский физик Виктор Шаубергер в бытность лесником разработал любопытную систему сплава брёвен. По внешнему виду напоминала изгибы натуральных рек, а не прямую линию. Двигаясь по столь своеобразной траектории, дерево быстрее достигало места назначения. Шаубергер пояснял это снижением сил гидравлического трения.

Ходят слухи, что Шаубергер заинтересовался вихревым движением жидкости. Австрийские любители пива на соревнованиях раскручивали бутылку, чтобы придать вращательное движение напитку. Пиво быстрее залетало в брюхо, хитрец выигрывал. Шаубергер самостоятельно повторил трюк и убедился в эффективности.

Не нужно путать описанный случай с вихрем сточной воды, всегда закручивающейся в одном направлении. Сила Кориолиса обусловлена вращением Земли и замечена, как считается, Джованни Баттиста Риччоли и Франческо Мариа Гримальди в 1651 году. Явление объяснено и описано в 1835 году Гаспаром-Густавом Кориолисом. В начальный момент времени за счёт случайного движения потока воды происходит отдаление от центра воронки, траектория закручивается по спирали. За счёт давления воды процесс набирает силу, образуется конусовидное углубление на поверхности.

Виктор Шаубергер ориентировочно 10 мая 1930 года получил патент Австрии за номером 117749 на турбину специфичной конструкции в виде заостряющегося бура. По словам учёного, в 1921 году на её основе сделан генератор, снабжавший энергией целую ферму. Шаубергер утверждал, что КПД устройства близок к 1000% (три нуля).

  1. Вода закручивалась по спирали на входе в патрубок.
  2. На входе стояла упомянутая турбина.
  3. Направляющие спирали совпадали с формой потока, в результате осуществлялась максимально эффективная передача энергии.

Все прочее о Викторе Шаубергере сводится к научной фантастике. Утверждали что он изобрёл двигатель Репульсион, приводивший в движение летающую тарелку, защищавшую Берлин в период Второй мировой войны. По окончании боевых действий комиссовался и отказался делиться собственными открытиями, способными принести большой вред миру на Земле. Его история, как две капли воды, напоминает случившееся с Николой Теслой.

Считается, что Шаубергер собрал первый кавитационный теплогенератор. Имеется фото, где он стоит рядом с этой «печью». В одном из последних писем утверждал, что открыл новые субстанции, делающие возможными невероятные вещи. К примеру, очистку воды. Одновременно утверждая, что его воззрения поколеблют основы религии и науки, предрекал победу «русским». Сегодня сложно судить, насколько оставался приближен к реалиям учёный за полгода до смерти.

Ричард Клем и вихревой двигатель

Ричард Клем (Richard Clem) по собственным словам на исходе 1972 года испытывал асфальтный насос. Его насторожило странное поведение машины после выключения. Начав эксперименты с горячим маслом, Ричард быстро пришёл к выводу, что налицо нечто вроде вечного двигателя. Специфичной формы ротор из конуса, прорезанного спиральными каналами, снабжён разбегающимися форсунками. Раскрученный до некоторый скорости, сохранял движение, успевая приводить в действие масляный насос.

Уроженец Далласа задумал пробный пробег в 600 миль (1000 км) до Эль Пасо, потом решился опубликовать изобретение, но доехал только до Абилена, свалив неудачу на слабый вал. В заметках по этому поводу говорится, что конус требовалось раскрутить до некоторой скорости, а масло нагреть до 150 градусов Цельсия, чтобы все заработало. Устройство демонстрировало среднюю мощность в 350 лошадиных сил при массе 200 фунтов (90 кг).

Насос работал на давление 300 – 500 фунтов на квадратный дюйм (20 – 30 атм.), и чем выше оказывалась плотность масла, тем резвее крутился конус. Ричард вскоре умер, а наработки изъяты. Патент под номером US3697190 на асфальтный насос легко найти в интернете, но Клем на него не ссылался. Нет гарантий, что «работоспособная» версия не изъята ранее из документации бюро. Энтузиасты и сегодня строят двигатели Клема и демонстрируют принцип действия на Ютубе.

 

Разумеется, это лишь подобие конструкции, изделие неспособно для себя создавать свободную энергию. Клем говорил, что первый двигатель ни на что не годился, пришлось обойти 15 компаний в поисках финансирования. Мотор работает на масле для жарки, температуры в 300 градусов не выдерживает автомобильное. По заявлениям репортёров, аккумулятор на 12 В считается единственным видимым со стороны источником питания устройства.

Двигатель занесли в кавитационные по простой причине: периодически уже горячее масло требовалось охлаждать через теплообменник. Следовательно, внутри нечто совершало работу. Подумав, исследователи отнесли это на эффект кавитации у входа в насос и внутри распределительной системы трубок. Подчеркнем: «Ни один двигатель Ричарда Клема, изготовленных сегодня, не работоспособен».

Несмотря на это, Российское Энергетическое Агентство в базе данных опубликовало информацию (energy.csti.yar.ru/documents/view/3720031515) с оговоркой, что конструкция двигателя (им) напоминает турбину Николы Теслы.

Конструкции кавитационных теплогенераторов

Ссылки на то, что разработки по кавитационным двигателям засекречены, не выдерживают критики. Многие устройства действуют с КПД выше 1, если речь о перекачке тепла. Следовательно, сверхсекретного в этом нет. Конструкторы изготавливают образцы вполне работоспособных кавитационных теплогенераторов. Нельзя сказать, что КПД высок, но определённый потенциал у конструкции присутствует.

Роторные

Центрифуга Григгса считается достойным примером роторных кавитационных теплогенераторов. В устройство закачивается вода, ось начинает вращаться, приводимая в движение электродвигателем. Безусловный плюс конструкции  – единственный привод служит насосом в системе отопления и нагревателем жидкой фазы. На поверхности рабочего цилиндра прорезано множество неглубоких отверстий круглой формы, где жидкость образует турбулентности. Нагрев происходит за счёт сил трения в приповерхностном слое и кавитации.

Трубчатые

На скрине из видео показана сборка кавитационного обогревателя с продольным расположением трубок. Конструкция описана в патенте RU 2313036. Помпой нагнетается давление во входной камере, жидкость устремляется сквозь конструкцию из трубок. На входе (см. рис.) образуются пузырьки за счет кавитации по описанной выше схеме. Выходя на той стороне, попадают во вторую камеру с высоким давлением, лопаются и отдают тепло.

На входе перед системой узких трубок давление жидкости повышается помпой, температура в этом месте увеличена. Указанная энергия и забирается образовавшимися пузырьками с паром для обогрева помещений. Как оговорено выше, такой тепловой насос способен на КПД более 100%, о чем заявляет автор конструкции. Каждый убедится самостоятельно, посмотрев видео на Ютуб (название канала – на скрине).

Ультразвуковые

В 2013 году опубликован патент WO2013102247 A1. После полугодового рассмотрения комиссия бюро отдала исключительные права на ультразвуковой кавитационный теплогенератор Иоэлю Дотте Эхарту Рубему. Смысл задумки в преобразовании электрического тока кварцевой пластиной. Колебания звуковой частоты подаются на вход, и устройство начинает создавать вибрации. В обратной фазе волны образуются участки разряжения, где за счёт кавитации образуются пузырьки.

Для достижения максимального эффекта рабочая камера кавитационного теплогенератора выполнена в виде резонатора на ультразвуковую частоту. Полученные пузырьки немедленно уносятся потоком через узкие трубки. Это нужно для получения разряжения, дабы пузырьки в кавитационном теплогенераторе не сомкнулись немедленно, тут же отдав энергию обратно.

Несложно догадаться, что потери минимальные, а трение отсутствует вовсе, поэтому КПД ультразвукового кавитационного теплогенератора шикарный. Учёный говорит, что перекачка тепла возможна с выигрышем в 2,5 раза. Это пока меньше полученного Виктором Шаубергером, но заставит задуматься. Устройство предположительно возможно использовать и для охлаждения помещений.

По ходу текста автор подробно объясняет механизм переотражения волны в кавитационном теплогенераторе, суть которого несущественна в рамках обзора.

Кавитационный теплогенератор. Водоснабжение, канализация и отопление загородного дома

Кавитационный теплогенератор

Относительно недавно появился еще один вариант отопительного оборудования: кавитационные теплогенераторы. Сам эффект кавитации известен более ста лет – образование «разрывов» в жидкости в результате местного (локального) понижения давления, то есть образование огромного количества воздушных пузырьков. Когда эти пузырьки «схлопываются», выделяется огромное количество энергии и жидкость нагревается.

Главным узлом кавитационного теплогенератора является кавитатор – именно там происходит образование пузырьков. Вода проходит через кавитатор, нагревается под воздействием кавитационных процессов, затем поступает в радиаторы, после прохождения воды через радиаторы температура снижается и цикл начинается заново (Рис. 3.21). КПД такого теплогенератора очень высок: от 90 до 400 %, при этом могут нагреваться большие объемы воды с?использованием минимальной мощности (именно кавитационные процессы создают сверхпроизводительность теплогенератора).

Рис. 3.21.Кавитационный теплогенератор: 1 – привод от электродвигателя; 2 – зона нагрева; 3 – вход теплоносителя; 4 – выход нагретого теплоносителя

С точки зрения продолжительности эксплуатации лучше, если кавитатор отделен от рабочей камеры устройства, создающего условия для возникновения кавитации. Например, в теплогенераторах роторного типа ротор непосредственно соприкасается с жидкостью (Рис. 3.22).

При этом процесс кавитации ведет к разрушению рабочей поверхности ротора, и несмотря на то, что теплогенераторы роторного типа эффективнее, срок их службы непродолжителен. Теплогенераторы, в которых процессы кавитации происходят в отдельной камере кавитатора, а насос является внешним устройством, обладают несколько меньшей эффективностью, зато гораздо более длительным сроком эксплуатации.

Рис. 3.22.Кавитатор роторного типа:1 – ротор; 2 – вал ротора; 3 – рабочая камера; 4 – входной патрубок рабочей камеры; 5 – выходной патрубок рабочей камеры; 6 – тормозное устройство

Кроме сверхпроизводительности, кавитационный теплогенератор имеет весьма существенный плюс: он не требует топлива как такового. Фактически топливом для него служит рабочая жидкость (чаще всего вода), которую «заставляет работать» тем или иным образом электродвигатель (это может быть создание вихревых закрученных потоков, повышение/понижение давления за счет изменения скорости протекания жидкости и т. д.).

Кавитационный теплогенератор очень просто монтируется в систему отопления (Рис. 3.23), его работа может быть полностью автоматизирована, он экологически безопасен, не требует наличия дымохода и дополнительной звукоизоляции помещения котельной. Кроме того, кавитационный генератор не слишком дорог.

К минусам кавитационного теплогенератора относятся электрозависимость (нет электричества – не работает электродвигатель, насос – и нет работы генератора), высокая стоимость электродвигателя, привода ротора или насоса, а также низкая ремонтопригодность – из-за недостатка специалистов, которые способны помочь в случае поломки оборудования. Правда, существуют кавитационные теплогенераторы, имеющие уникальную гарантию: 25–50 лет с момента запуска (для сравнения: газовые и твердотопливные котлы обычно имеют гарантию до 3 лет с момента запуска). Так что есть шанс, что до выработки теплогенератором гарантийного ресурса появятся и специалисты по данному оборудованию.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *