Косинус фи чему равен – Как вычислить коэффициент реактивной мощности синус фи, если известен только коэффициент активной мощности cos фи?

Содержание

Увеличение косинуса фи

Шпаргалки по электротехнике и электронике — Коэффициент мощности и его экономическое значение

Sunday, 24 January 2016 04:20

administrator

Cмотрите так же…
Шпаргалки по электротехнике и электронике
Закон Ома для замкнутой цепи и для участка цепи
Законы Кирхгофа для цепи постоянного тока
Расчет простых цепей при различных схемах соединения потребителей
Понятие о сложной электрической цепи
Мощность, работа и потери КПД электрических цепей
Синусоидальный ток и его основные параметры
Способы представления синусоидального тока
Резисторное сопротивление в цепи синусоидального тока
Конденсатор в цепи синусоидального тока
Индуктивность в электрической цепи
Закон электромагнитной индукции
Индуктивность в цепи синусоидального тока
Взаимоиндуктивность в магнитосвязанных цепях
Законы Кирхгофа для цепей синусоидального тока
Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C
Понятие о резонансе напряжений
Резонанс напряжений и его признаки
Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C
Понятие о резонанс токов
Мгновенная мощь цепи синусоидального тока
Активная, реактивная и полная мощность цепей синусоидального тока
Коэффициент мощности и его экономическое значение
Получение трехфазной системы ЭДС и способы представления
Соединения обмоток трехфазных генераторов
Соединения приемников в трехфазных цепях
Мощность трехфазных цепей
Трансформаторы
Работа трансформаторов в различных режимах
Потери и КПД трансформаторов
Устройство, схемы и группы соединения обмоток трехфазных трансформаторов
Назначение, схема и работа автотрансформатора
Назначение, схема и работа импульсного трансформатора
Машины постоянного тока
Асинхронные электродвигатели
Синхронные электродвигатели
Пускорегулирующая аппаратура
Выбор типа и мощности электродвигателя
Провода и кабели, выбор сечения проводов
Защитное заземление
Электронно-дырочный переход
Диоды, тиристоры
Транзисторы
Основные логические операции и их реализация
Триггеры
Однофазные неуправляемые выпрямители
Трехфазные выпрямители: нулевой, мостовой
Фильтры(C, L, LC, RC), коэффициент пульсаций
Однофазные и трехфазные управляемые выпрямители
All Pages

Page 23 of 49

Коэффициент мощности и его экономическое значение

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазепеременный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка ~220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Last Updated on Sunday, 24 January 2016 04:34

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

Коэффициент мощности
— это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

Физическая сущность и основные методы определения

Математически cos φ
определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 — потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем. Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность . Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением . В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

1) снижение потерь электроэнергии;

2) рациональное использование цветных металлов на создание электропроводящей аппаратуры;

3) оптимальное использование установленной мощности трансформаторов , генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более. Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор .

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Коэффициент мощности, или косинус фи в электротехнике — это отношение активной мощности P (Вт) к полной S (ВА): cos(φ) = P/S. Он указывает на то, насколько эффективно данное устройство использует электрическую энергию.

КОСИНУС ФИ — это… Что такое КОСИНУС ФИ

КОСИНУС — (ново лат. cosinus, вместо complementi sinus дополнение синуса). Синус угла дополнения: в прямоугольном треугольнике косинус угла есть частное от деления прилежащего катета на гипотенузу. Словарь иностранных слов, вошедших в состав русского языка …   Словарь иностранных слов русского языка

КОСИНУС — (cosine) В прямоугольном треугольнике отношение катета и гипотенузы, образующих угол. Косинус угла х записывается как cos х. Если начертить окружность радиусом, равным единице, то при измерении величины угла против часовой стрелки, начиная с… …   Экономический словарь

КОСИНУС — КОСИНУС, в ТРИГОНОМЕТРИИ отношение длины стороны, прилежащей к острому углу, к длине ГИПОТЕНУЗЫ в прямоугольном треугольнике. Сокращенно косинус угла А обозначают как cos A …   Научно-технический энциклопедический словарь

КОСИНУС — (новолат. cosinus от complementi sinus синус дополнения), одна из тригонометрических функций …   Большой Энциклопедический словарь

КОСИНУС — КОСИНУС, косинуса, муж. (лат. cosinus) (мат.). Синус дополнительного угла, функция угла, выражаемая отношением прилегающего к углу катета к гипотенузе. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

КОСИНУС — КОСИНУС, а, муж. (спец.). Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению к гипотенузе катета, прилежащего к данному острому углу. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

КОСИНУС ФИ — (cos j), для синусоидального тока, то же, что коэффициент мощности (см. КОЭФФИЦИЕНТ МОЩНОСТИ) …   Энциклопедический словарь

косинус — сущ., кол во синонимов: 1 • функция (49) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

косинус — косинусоидальный косинусный — Тематики информационные технологии в целом Синонимы косинусоидальныйкосинусный EN cosine …   Справочник технического переводчика

косинус — синус дополнения лат.: cosinus, complementi sinus новолат. лат …   Словарь сокращений и аббревиатур

cos Советы электрика

Мне много приходит писем от моих читателей и посетителей сайта, спрашивают совета, интересуются как лучше поступить в том или ином случае когда возникают затруднения в электрике для дома.

Частенько задают вопросы и по теории электротехники. Я конечно не профессор и досконально всего не знаю по теории, но в свое время у меня были хорошие преподователи по ТОЭ и хорошо “вдолбили” мне базовые знания, да я особо и не сопротивлялся)))

Поэтому на несложные вопросы могу ответить что и делаю сейчас.

В одном из писем меня спрашивают: “Почему у ассинхронного двигателя на холостом ходу низкий косинус фи?”

Отвечаю:

Потому что вся энергия, которую двигатель забирает из сети расходуется на 99% на создание магнитного поля внутри движка- намагничивание статора, создание вращающегося магнитного поля, в роторе наводится ЭДС, происходит сцепление двух магнитных полей и т.д.

Это- реактивная энергия.

Вспомним формулу косинуса фи:

По сути косинус фи (cosφ) служит показателем потребления реактивной энергии.

Сosφ показывает соотношение активной мощности к полной.

Если активная энергия (Р) расходуется на создание полезной работы, например электродвигатель приводит в движение вал токарного станка, то реактивная энергия (Q) расходуется только на создание магнитного поля.

На холостом ходу значение полезной (активной) мощности близко к нулю, а следовательно и значение косинуса фи- минимальное.

В номинальном режиме работы электродвигателя, когда к его валу подключена соответствующая наргузка, его cosφ=0,75÷0,95.

На холостом ходу- cosφ=0,08÷0,15

Поэтому и выбирают электродвигатель так, что бы он соответствовал мощности нагрузки, иначе КПД у двигателя будет низким и cosφ тоже, что приводит к излишним тратам электроэнергии.

Приведу пример: никто не будет подключать на бытовой наждак трехфазный двигатель мощностью 30 кВт если можно обойтись движком на 1-1,5кВт.

Если это сделать то такой мощный двигатель будет работать вхолостую и потреблять при этом большой ток на создание электромагнитного поля. При этом он будет зря нагружать сеть питания реактивным током, что в свою очередь приводит к увеличению потерь в проводах линии ВЛ.

Поэтому cosφ у электродвигателя должен быть максимальным.

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Реактивная составляющая

Наиболее значимую часть потерь в сети создают реактивные элементы
по причине своей физической способности накапливать и возвращать неиспользованную энергию обратно в источник.
Реактивная составляющая тока нагрузок не осуществляет полезной работы,
но остаётся в виде падения напряжения на активном сопротивлении всех участков сети энергосистемы,
попросту разогревая провода ЛЭП, кабели и трансформаторы подстанций.

В этом случае, если не рассматривать другие потери,
коэффициент мощности будет равен косинусу угла сдвига фаз между током и напряжением в нагрузке.

PF = P/S = cosφ

PF — Power Factor — Коэффициент Мощности (КМ).P — Потребляемая (полезная, активная) мощность. P=UIcosφ.S — Полная мощность. S = UI. φ — Угол сдвига фаз между током и напряжением, созданный реактивными элементами нагрузок (обмотки электродвигателей,
трансформаторов, электромагнитов …)
Подробнее об этом на страничке реактивная мощность.

В целях устранения реактивных потерь на производственных предприятиях используют специальные конденсаторные установки,
компенсируя положительный сдвиг фаз, созданный индуктивными нагрузками.
На начальном этапе компенсация фазового сдвига, внесённого суммарно всеми потребителями сети, осуществляется на электростанциях путём контроля подмагничивания роторных обмоток генераторов.

Косинус Фи — новости АО ВИЛЕД

20.02.2017

Не все знакомы с электротехникой и понимают, что такое косинус фи, на который все обращают внимание. В общем сегодня про косинусе фи

Коротко и доступно о запаздывании тока от напряжения при постоянном и переменном токе, а также почему это вредно электрическим сетям и потребителям.
Приятного просмотра!

Допустим у нас есть 2 провода, в одном из них есть потенциал, пока не важно положительный он или отрицательный, на другом — потенциал равен нулю. Это и есть тот самый ноль, который есть в розетке

Численную разницу между двумя потенциалами называют напряжением.
Как только мы замыкаем эти провода между собой, например подключив лампу накаливания, через нее начинает течь ток. Он нарастает до нужной величины очень быстро, но все же не мгновенно. Это нарастание длится какое-то время, прежде чем ток достигнет определенного значения.
Если подключить последовательно с лампочкой катушку с проводом, она же катушка индуктивности, то она сильно замедлит процесс этого самого нарастания тока. Получается так, что напряжение на лампочке уже есть, но ток в ней нарастает медленно, причина этому — воздействие витков катушки друг на друга.
Когда напряжение постоянное, как в батарейке, ток в катушке замедленно, но все-таки нарастет и остановится на одной величине. Когда переменное — напряжение меняется от положительного, до отрицательного. Это изменение на графике выглядит как волна, ее называют синусоидой. В случае с катушкой в сети переменного напряжение, напряжение постоянно меняясь, не дает току вырасти до установившего значения. И тут говорят о запаздывании тока от напряжения. И чем больше витков в катушке, тем больше это запаздывание.
Так при чем же тут косинус фи. При том, что это запаздывание измеряется углом поворота, где полный цикл волны напряжения это 360 градусов. Угол запаздывания, он же сдвиг, обозначают буквой фи, а значение косинуса этого угла, это и есть наш косинус фи. Чем больше ток запаздывает, тем меньше величина косинуса угла фи.
В качестве справки для любопытных: Сдвиг тока относительно напряжения — это фазовый сдвиг или фазовые искажения. Если к фазовым искажениям прибавить «неидеальность синусоиды напряжения», которая выражается как коэффициент нелинейных искажений (КНИ), то получится коэффициент мощности. Для упрощения, когда говорят коэффициент мощности, подразумевают лишь косинус фи, но стоит помнить, что в коэффициент мощности, помимо косинуса фи входят и нелинейные искажения.
Большое запаздывание тока, или низкий косинус фи — вредное явление. На потребителе это сказывается как увеличенное потребление электроэнергии, т.к. в электрической катушке теряется ее часть, не выполняя полезной работы. На электростанциях это также, негативно сказывается излишне нагружая генераторы и трансформаторы. На потребителях, т.е. нас в вами это сказывается как увеличение энергопотребления без увеличения полезной выполненной работы. В общем, это никому не нужно, ни поставщикам электроэнергии, ни потребителям. Но убрать катушку нельзя, она нужна для работы схемы. Приходится компенсировать ее негативный эффект, используя дополнительные компоненты, но это уже другая история.
Если подвести небольшой итог, то у всех нагревательных приборов, в том числе и ламп накаливания, косинус фи почти равен 1. Почти, т.к. ее спираль имеет витки, и маленькая катушка все-таки получается, но этим пренебрегают и принимают за единицу.
Спасибо за просмотр и не забудьте подписаться на канал.

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

N=√Nа²+Nр²

Или вот так:

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Способы увеличения косинуса фи

Вышеперечисленные последствия низкого cos φ
с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ
. К мерам увеличения cos φ
относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) .

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ
двигателей.

Отрезок ос
, представляющий активную слагающую тока I
1 , равен:

ос
= I
1 × cos φ
1 = оа
× cos φ
1 .

На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности. И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше. Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Причины и последствия низкого коэффициента мощности

Основными потребителями электрической энергии на промышленных предприятиях являются асинхронные двигатели (АД), которые наряду с активной (полезной) потребляют и реактивную мощность, идущую на создание вращающихся магнитных полей.

Потребляемая асинхронными двигателями реактивная мощность может быть разделена на намагничивающую, не зависящую от нагрузки и идущую на создание основного магнитного потока, и реактивную мощность, пропорциональную квадрату нагрузки и обусловленную магнитными полями рассеивания в двигателе. Полная реактивная мощность, потребляемая асинхронным двигателем, может быть определена по формуле

где Q0 — намагничивающая мощность холостого хода двигателя; I — ток холостого хода, A; UH номинальное напряжение, В; к3 коэффициент загрузки;- приращение реактивной мощности при номинальной нагрузке, кВАр;- реактивная мощность двигателя при номинальной нагрузке, кВАр.

Полную реактивную мощность трансформатора определяют по формуле

»

где Qт— намагничивающая мощность трансформатора,

где- ток холостого хода трансформатора в процентах от номинального;- коэффициент загрузки трансформатора;- приращение реактивной мощности трансформатора.

В АД и трансформаторах основная доля реактивной мощности приходится на мощность Qq , идущую на создание основного магнитного потока, равную мощности холостого хода. Основными причинами сравнительно большого потребления реактивной мощности, а значит, снижения величины коэффициента мощности являются:

  • 1. Работа АД и трансформаторов при неполной загрузке. При этом уменьшается активная мощность электрической машины, тогда как реактивная остается почти без изменений, что ведет к снижению cos(р.
  • 2. Несовершенство конструкции АД и его некачественный ремонт (наличие большого воздушного зазора между статором и ротором). Магнитное сопротивление воздушного зазора составляет примерно 80 % от общего сопротивления.
  • 3. Повышение напряжения сети. С повышением напряжения у АД и трансформаторов возрастает магнитный поток, а следовательно, и потребляемая реактивная мощность, при этом коэффициент мощности снижается.
  • 4. Снижение скорости электрических машин. Тихоходные асинхронные двигатели имеют более сложную магнитную цепь и потребляют большую реактивную мощность, следовательно, имеют более низкий cos#>, чем быстроходные. Низкий cos^ промышленного предприятия приводит к увеличению мощности и размеров генераторов и трансформаторов.

Пример 6.5. На промышленном предприятии установлены асинхронные двигатели суммарной мощностью 12 000 кВт. Определить необходимую мощность трансформаторов для случаев работы двигателей с cosφ1 = 0,9 и cosφ2 = 0,75.

Определяем полную мощность трансформаторов для обоих случаев

Разница в 2667 кВА должна быть покрыта за счет установки более мощных трансформаторов, в то время как полезная мощность остается постоянной (12 000 кВт).

Потери мощности на нагревание проводов пропорциональны квадрату тока

где I — полный ток, протекающий по проводу, A; R — сопротивление линии, Ом.

Величина тока I обратно пропорциональна cosφ.

Пример 6.6. Определить потери электрической энергии в линии сопротивлением R = 4 Ом по данным примера 6.5 при напряжении 35 кВ и убытки при работе с заниженным cos φ.

Определяем полный ток для обоих случаев:

Определяем потери мощности для первого и второго случаев:

Разность потерь мощности составит:

Соответственно разность потерь энергии за год составит

где T — число часов работы линии в году, ч.

Убытки за счет низкого cosφ за один год составят (при стоимости электрической энергии С= 158,37 коп/кВт ч согласно тарифному меню на 2007 г.):

Пример 6.7. Определить активную мощность трансформатора мощность 360 кВ А при cosφ1 = 0,8 и cosφ2 = 0,6.

Определяем активную мощность для каждого случая:

Следовательно, чем ниже cos#?, тем хуже используется установленная мощность оборудования. Таким образом, каждое предприятие должно быть заинтересовано в повышении коэффициента мощности как отдельных погребителей, так и всего промышленного объекта.

Увеличение косинуса фи

Дата публикации: .
Категория: Электротехника.

Причины низкого «косинуса фи»

Недозагрузка электродвигателей переменного тока

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике.
По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:
а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;
bс = ос × tg φ .

Из диаграммы получаем:

ab = odacbc = ос × tg φ1ос × tg φ = oc × (tg φ1 – tg φ) .

Так как Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторови ab = IC , то

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Увеличение cos φ при помощи статических конденсаторов

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Косинус фи

Косинус фи или другими словами Коэффициент мощности обозначается как — cos ϕ. Он показывает как переменный ток, проходя через определенные нагрузки, изменяется по фазе в отличие от начального напряжения. Коэффициент мощности = cos данного сдвига. Другими словами можно сказать — это cos угла между фазами тока и напряжения.

Так если к розетке в 220 В, подключить ток, который больше или меньше требуемой нагрузки. Получим повышенную мощность на внутреннем сопротивлении. То есть при использовании нестабильного напряжения электростанции, нужно больше затрат энергии. Излишек энергии сопровождается нагревом проводов.

Нагрузка имеет активную и реактивную составляющие. Активная тратится на совершаемую работу. Полная мощность включает в себя реактивную и активную нагрузку. Она равняется квадратному корню от слагаемых активной и реактивной мощности. Измеряется в Вольт-амтерах.

При активной нагрузке фазы тока и напряжения равны, а между фазами равняется нулю. Нам известно что cos 0 = 1. Следовательно, косинус фи = 1 либо 100 процентам.
В математике косинус фи можно обозначить как cos-угла, находящегося между векторов напряжения и тока. Из-за этого в sin напряжении и токе, совпадает косинус фи и cos-угла, отстающих фаз.

При использовании второй составляющей, а именно реактивной, бывает в некоторых случаях, указываются характерные названия нагрузок. Они бывают индуктивно- активные, а так же активно — емкостные. А коэффициент мощности называется, либо отстающий либо опережающий.
Когда напряжение синусоидальное, а ток наоборот нет и если отсутствует реактивная составляющая, косинус фи равняется доле гармоники тока в полной мощности, который равняется искажению тока.

Данный коэффициент, следует брать во внимание при создании электросети. Если он будет ниже чем требуется, это приведет к дополнительным потерям энергии. Так же если данный коэффициент рассчитать не верно , это приведет к излишнему употреблению энергии. Для того что бы этого не происходило, нужно воспользоваться в расчетах следующими формулами:


На деле получается что при включении в сеть без нагрузки, асинхронный двигатель покажет, что и ток и напряжение есть, но работа совершаться не может. При увеличении нагрузки коэффициент мощности будет увеличиваться и активная составляющая тоже.
Минус реактивной составляющей состоит в том, что она создает пустую нагрузку, как следствие идут потери.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Коэффициент мощности — это… Что такое Коэффициент мощности?

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны — между ними нет фазового сдвига (, ) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой. \cos\varphi=1 Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг () — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается. \cos\varphi=0 Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг () — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного φ.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка ~220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой тока и напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

Математические расчёты

Треугольник мощностей

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

Здесь  — активная мощность,  — полная мощность,  — реактивная мощность.

Типовые оценки качества электропотребления

Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений. Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Значение коэффициента мощностиВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos φ0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ95…100 %80…95 %65…80 %50…65 %0…50 %

Например, большинство компактных люминесцентных («энергосберегающих») ламп, имеющих ЭПРА, характеризуются высоким его значением.

Нелинейные искажения тока

Потребители электроэнергии с нелинейной вольт­амперной характеристикой (с коэффициентом мощности, меньшим единицы) создают ток, который меняется непропорционально мгновенному напряжению в сети (как правило, форма тока при этом отличается от синусоидальной). Соответственно искажается форма напряжения на данном участке электросети, что приводит к ухудшению качества электроэнергии. В зависимости от характера нагрузки можно выделить следующие основные виды нелинейных искажений тока: это фазовый сдвиг, вызванный реактивной составляющей в нагрузке, и несинусоидальность формы тока. Несинусоидальные искажения, в частности, имеют место, когда нагрузка несимметрична в разных полуволнах сетевого напряжения.

Несинусоидальность

Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы и др.

Ссылки

Что такое cos фи (в электротехнике)

Электричество нам нужно не просто так, «шоб було», а для совершения какой-то полезной работы. лампочка чтоб горела, или, там, моторчики крутились. А работа — это ВСЕГДА активная нагрузка. При чисто реактивной нагрузке (cos φ — 0) работа не совершается — достаточно проинтегрировать cos φ*sin φ в интервале от 0 до 2пи. Ну вот. А активная мощность у нас равна как раз произведению амплитуды тока на амплитуду напряжения и на этот самый косинус фи. Напряжение — оно напряжение и есть. 220 вольт. Мощность — какая нагрузка, такая и мощность. Значит, ток, который при ДАННОМ напряжении для ДАННОЙ мощности должен течь в сети, однозначно определяется. И получается, что чем меньше косинус фи, тем выше нужен ток — для ТОЙ ЖЕ мощности. А выше ток — выше и потери в проводах. То есть косинус фи в первую очередь нужен не для повышения кпд конечной установки, а для снижения потерь в линиях электропередачи.

на реактивной нагрузке фаза тока отстаёт от фазы напряжения на какой-то угол. Так вот сосинус этого вот угла и есть сосинус фи. Чем ближе к единице, тем лучше. Используются ёмкости, электромоторы, что бы этот косинус увеличить.

Да, и cos фи активной нагрузки = 1.

просто маленькое уточнение не КПД-тот всё-таки зависит именно от потерь механических на нагрев проводов и пр. а это так и называется «коэффициент использования мощности или проще к-т мощности» а в формуле мощности перемножается так же как и КПД

Коэффициент мощности. Равен отношению активной мощности к полной.

да говорят угол между током и напряжением, правда как синусоидальный ток в прямой провод памищаится до сих пор ума ни приложу

Увожаемый Александр Грин спасибо вам за шутку, давно так не смеялся. Синусоидальный ток это не то, что вы представляете, а это это проще говоря графический вид характеристики тока и напряжения. На осцилограмме работали? Ой не могу щас опну от смеха.

КОСИНУС ФИ — это… Что такое КОСИНУС ФИ?

  • КОСИНУС — (ново лат. cosinus, вместо complementi sinus дополнение синуса). Синус угла дополнения: в прямоугольном треугольнике косинус угла есть частное от деления прилежащего катета на гипотенузу. Словарь иностранных слов, вошедших в состав русского языка …   Словарь иностранных слов русского языка

  • КОСИНУС — (cosine) В прямоугольном треугольнике отношение катета и гипотенузы, образующих угол. Косинус угла х записывается как cos х. Если начертить окружность радиусом, равным единице, то при измерении величины угла против часовой стрелки, начиная с… …   Экономический словарь

  • КОСИНУС — КОСИНУС, в ТРИГОНОМЕТРИИ отношение длины стороны, прилежащей к острому углу, к длине ГИПОТЕНУЗЫ в прямоугольном треугольнике. Сокращенно косинус угла А обозначают как cos A …   Научно-технический энциклопедический словарь

  • КОСИНУС — (новолат. cosinus от complementi sinus синус дополнения), одна из тригонометрических функций …   Большой Энциклопедический словарь

  • КОСИНУС ФИ — (cos ?) для синусоидального тока, то же, что коэффициент мощности …   Большой Энциклопедический словарь

  • КОСИНУС — КОСИНУС, косинуса, муж. (лат. cosinus) (мат.). Синус дополнительного угла, функция угла, выражаемая отношением прилегающего к углу катета к гипотенузе. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • КОСИНУС — КОСИНУС, а, муж. (спец.). Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению к гипотенузе катета, прилежащего к данному острому углу. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • косинус — сущ., кол во синонимов: 1 • функция (49) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • косинус — косинусоидальный косинусный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы косинусоидальныйкосинусный EN cosine …   Справочник технического переводчика

  • косинус — синус дополнения лат.: cosinus, complementi sinus новолат. лат …   Словарь сокращений и аббревиатур

  • Что такое sin фи в электротехнике?

    sin это синус. А фи это обычно разность фаз.

    Всегда был cosinus.

    <img src=»//otvet.imgsmail.ru/download/183870551_41c4686d428feddc66733e70d9cc3e47_800.png» data-lsrc=»//otvet.imgsmail.ru/download/183870551_41c4686d428feddc66733e70d9cc3e47_120x120.png» data-big=»1″>

    Применяется для расчета реактивной мощности переменного тока.

    Фи -это разность фаз между напряжением и током при синусоидальном токе.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *