Конструкция кабеля силового: Силовой кабель — Википедия – Конструкция и классификация силовых кабелей — МегаЛекции

Конструкция и классификация силовых кабелей — МегаЛекции

11. Силовые кабели имеют основные, общие для всех типов конструктивные элементы – токопроводящие жилы, изоляцию и оболочку. Кроме основных элементов в конструкцию кабеля могут входить защитные покровы, экраны, жилы защитного заземления, заполнители и др.

12.

13. Рисунок. Конструкция силового кабеля марки СБ: 1 – токопроводящая жила; 2 – изоляция жилы из пропитанной бумаги; 3 – поясная изоляция; 4 – свинцовая оболочка; 5 – подушка; 6 – броня; 7 – наружный покров.

14. Классифицируют, или другими словами различают, силовые кабели обычно по конструктивным особенностям: по материалу, из которого изготовлены токопроводящие жилы; по материалу, из которого изготовлена изоляция жил; по способу защиты от механических повреждений; по количеству жил и т.д. Кроме того, силовые кабели классифицируют по напряжению – до и выше 1000 В.+

15. Рассмотрим далее более подробно элементы конструкции силовых кабелей.

Элементы конструкции силовых кабелей и их назначение

Кабель представляет собой сложное электротехническое изделие, имеющее большое количество элементов (токопроводящие жилы, изоляцию, оболочку, экраны, защитные покровы покровы и т.д.). Рассмотрим их назначение.

Токопроводящие жилы

Токопроводящие жилы это основной элемент конструкции силового кабеля, предназначенный для прохождения электрического тока. Кабели имеют основные и вспомогательные жилы. К основным, т.е. предназначенным для выполнения основной функции кабельного изделия, относятся фазные токопроводящие жилы и нулевые жилы, к вспомогательным – жилы заземления.

Фазные жилы используются для передачи электрической энергии от источника к электроприемнику.

Нулевые жилы – предназначены для присоединения к нейтрали источника и прохождения разности токов фаз при неравномерной нагрузке по фазам. Нулевые жилы выполняют функцию нулевого рабочего проводника (N).

Жилы заземления – предназначены для соединения не находящихся под рабочим напряжением металлических частей электротехнического устройства, к которому подключен кабель, с контуром защитного заземления, с целью повышения уровня электробезопасности. Жилы заземления выполняют функцию нулевого защитного проводника (РЕ).



Нулевые жилы и жилы заземления могут изготавливаться меньшего сечения, чем фазные.

Таблица – Номинальные сечения жил многожильных кабелей с пластмассовой изоляцией (ГОСТ 31996-2012).

Тип жилы Номинальное сечение жилы, мм2
однопроволочная
многопроволочная

Токопроводящие жилы силовых кабелей изготавливают обычно из алюминия или меди, однопроволочными или многопроволочными, в соответствии с ГОСТ 22483-2012 [скачать/просмотреть]. По форме сечения жилы выполняют круглыми или фасонными (обычно секторными или сегментными, бывают также прямоугольные).

Рисунок. Сечение жил кабелей: а – круглого сечения; б – сегментное сечение; в – секторное сечение.

Для кабелей с бумажной (ГОСТ 18410-73 [скачать/просмотреть]) и пластмассовой (ГОСТ 31996-2012 [скачать/просмотреть], ГОСТ 16442-80 [скачать/просмотреть]) изоляцией круглая форма жил применяется у одножильных кабелей всех сечений, у многожильных кабелей сечением до 16 мм

2 включительно, а также у многожильных кабелей всех сечений, имеющих отдельные оболочки. Токопроводящие жилы многожильных кабелей с поясной бумажной или пластмассовой изоляцией сечением 25мм2и более изготавливаются секторной или сегментной формы.

Кабели с резиновой изоляцией изготавливаются только с круглой формой жил (ГОСТ 433-73 [скачать/просмотреть]).

Таблица – Область применения различных форм токопроводящих жил силовых кабелей до 1 кВ

Изоляция кабеля Тип жилы Номинальное сечение жилы, мм2
круглой формы фасонной формы
медной алюминиевой медной алюминиевой
бумажная однопроволочная 6-50 6-240 25-50 25-240
многопроволочная 25-800 70-800 25-400 70-240
пластмассовая однопроволочная 1,5-50 2,5-300 - 25-400
многопроволочная 16-1000 25-1000 25-400
резиновая однопроволочная 1-50 2,5-240 -
многопроволочная 16-240 70-400 -

От материала и конструкции жил кабеля зависят его многие важные характеристики. Медные токопроводящие жилы кабеля обладают меньшим электрическим сопротивлением, чем алюминиевые, следовательно, потери мощности в таких кабелях (при одинаковом сечении и значении тока) будут ниже, а пропускная способность по току выше (при одинаковом сечении). Кроме того, медные жилы обладают лучшими механическими свойствами по сравнению с алюминиевыми, тоже можно сказать и о многопроволочных жилах в сравнении с однопроволочными. Такие жилы (медные и многопроволочные) лучше воспринимают изгибающие и растягивающие усилия, воздействующие на кабель в процессе эксплуатации. Однако кабель с медными жилами дороже и имеет бόльшую массу, чем кабель с алюминиевыми жилами.

Таблица – Сравнение характеристик силовых кабелей с медными и алюминиевыми жилами*

Параметр Материал жил
медь алюминий
Сопротивление жилы сечением 150 мм2при t = 20°С, Ом/км 0,124 0,206
Допустимая токовая нагрузка кабеля сечением 150 мм2 при прокладке в земле
Масса трехжильного кабеля СБ/АСБ сечением 150 мм2, кг/км
Стоимость трехжильного кабеля СБ/АСБ сечением 150 мм2, руб/м** 1336,5 668,25

* — характеристики кабелей взяты из каталога ЗАО «Завод «Южкабель»;+

** — цены указаны ориентировочно по данным интернет-источников 2016 года.

Изоляция

Изоляция кабеля обеспечивает необходимую электрическую прочность токопроводящих жил по отношению друг к другу и к заземленной оболочке (земле). В кабелях применяется чаще всего бумажная, пластмассовая и резиновая изоляция.

Изоляция, наложенная на жилу кабеля, называется изоляцией жилы (иногда называют фазной изоляцией). Изоляция, наложенная поверх изолированных скрученных или параллельно уложенных жил многожильного кабеля, называется поясной.

Рисунок. Кабель марки АПвВГ с изоляцией жил из вулканизированного полиэтилена и поясной изоляцией из ПВХ пластиката: 1 – токопроводящая жила; 2 – изоляция жилы; 3 – поясная изоляция; 4 – наружная оболочка.

От типа изоляции кабеля зависят его многие эксплуатационные характеристики. Например, бумажная пропитанная изоляция имеет высокие изолирующие свойства, но уже при температуре ниже нуля теряет свою эластичность, становится хрупкой и может легко повредится при монтаже кабеля. Кроме того, у кабелей с бумажной изоляцией есть ограничения по разнице уровней на трассе прокладки, это связано с возможным стеканием пропиточного состава и осушением участков изоляции. Изоляция выполненная из сшитого полиэтилена обладает высокой стойкостью к тепловым нагрузкам, поэтому кабели с такой изоляцией имеют более высокую пропускную способность по току. Резиновая изоляция обладает хорошей эластичностью, поэтому она обычно применяется в гибких кабелях, для питания передвижных механизмов и переносного электроинструмента.

Таблица – Сравнение характеристик силовых кабелей с различными типами изоляции

Параметр Материал изоляции
пропитанная бумага резина ПВХ пластикат полиэтилен вулканизированный полиэтилен
Длительно допустимая температура нагрева жил, °С
Длительно допустимые токовые нагрузки при прокладке в воздухе, %
Минимальная температура при прокладке без предварительного прогрева, °С -15 -15 -15 -15
Сопротивление изоляции кабеля на напряжение 1 кВ при температуре 20 °С, не менее МОм•км

Оболочка

Кабельная оболочка – непрерывная металлическая или неметаллическая трубка, расположенная поверх сердечника (сердечник — совокупность изолированных жил, возможно, с поясной изоляцией и экраном) и предназначенная для защиты его от влаги и других внешних воздействий (кислот, газов и т. п.). Чаще всего у силовых кабелей оболочка изготавливается алюминиевой, свинцовой, пластмассовой или резиновой. Алюминиевая и свинцовая оболочки (ГОСТ 24641-81 [скачать/просмотреть]) встречаются чаще всего у кабелей с бумажной изоляцией (ГОСТ 18410-73 [скачать/просмотреть]), пластмассовые оболочки – у кабелей с пластмассовой изоляцией (ГОСТ 31996-2012 [скачать/просмотреть]), резиновые оболочки – у кабелей с резиновой изоляцией (ГОСТ 433-73 [скачать/просмотреть]).

Рисунок. Кабель марки ААШв алюминиевой оболочкой: 1 – токопроводящая жила; 2 – изоляция жилы; 3 – поясная изоляция; 4 –оболочка; 5 – защитный покров.

Алюминиевую оболочку силовых кабелей на напряжение до 1 кВ допускается использовать в качестве нулевой жилы в четырехпроводных сетях переменного тока с глухозаземленной нейтралью (за исключением установок со взрывоопасной средой и установок, в которых ток в нулевом проводе при нормальных условиях составляет более 75 % тока в фазной жиле). Свинцовые оболочки бронированных кабелей проложенных в земле используют в качестве естественных заземлителей. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.+

Алюминиевая оболочка по сравнению со свинцовой имеет более высокую допустимую механическую нагрузку, вибростойкость, однако более подвержена разрушению от коррозии.

Экраны

Экраны применяют в кабелях напряжением выше 1 кВ для защиты внешних цепей от влияния электромагнитных полей токов, проходящих по кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля. Чаще всего экраны выполняют из медных лент и медной проволоки.

Рисунок. Одножильный кабель марки АПвЭАкП с экраном из медных проволок и медной ленты: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – слой кабельной обмотки; 6 – экран; 7 – слой кабельной обмотки; 8 – подушка; 9 – броня; 10 – наружная оболочка.

У одножильных кабелей экран накладывают поверх изоляции жил, а у многожильных кабелей общий экран – поверх всех изолированных жил кабеля или свой экран – поверх каждой изолированной жилы в отдельности.

Рисунок. Кабель марки ПвЭоВ с общим медным экраном поверх всех жил: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – заполнитель; 6 – слой кабельной обмотки; 7 – экран; 8 – слой кабельной обмотки; 9 – наружная оболочка.

Рисунок. Кабель марки АПвЭП с экраном поверх каждой жилы в отдельности: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – слой кабельной обмотки; 6 – экран; 7 – заполнитель; 8 – наружная оболочка.
Заполнители

Заполнители необходимы для устранения свободных промежутков между конструктивными элементами кабеля с целью герметизации, придания необходимой формы и механической устойчивости конструкции кабеля. В качестве заполнителей применяют жгуты из бумажных лент или кабельной пряжи, из пластмассы или резины.

Рисунок. Кабель марки ПвЭоП с междужильным заполнителем из полиэтиленовых жгутов: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – заполнитель; 6 – слой кабельной обмотки; 7 – экран; 8 – слой кабельной обмотки; 9 – наружная оболочка.

Защитные покровы

Защитный кабельный покров – элемент, наложенный на изоляцию, оболочку или экран кабельного изделия и предназначенный для дополнительной защиты от внешних воздействий (коррозии, механических повреждений и т.п.).

К защитным покровам относятся следующие элементы конструкции кабеля: кабельная броня, кабельная подушка, наружный кабельный покров.

Подушка – внутренняя часть защитного покрова, наложенная под броней с целью предохранения находящегося под ней элемента (например, оболочки) от коррозии и механических повреждений лентами или проволоками брони. Подушка выполняется из слоев пропитанной кабельной пряжи, поливинилхлоридных, полиамидных и других равноценных лент, крепированной бумаги, битумного состава или битума.

Броня представляет собой часть защитного покрова (или защитный покров вцелом) в виде металлических лент или одного или нескольких повивов металлической проволоки. Она предназначена для защиты от внешних механических и электрических воздействий. Броня чаще всего изготавливается стальной, но применяют также и алюминиевую броню.

Рисунок. Кабель марки ПвЭБП с броней из двух стальных оцинкованных лент: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – слой кабельной обмотки; 6 – экран; 7 – подушка; 8 – броня; 9 – наружная оболочка.

Рисунок. Кабель марки ПвЭАкП с броней из алюминиевой проволоки: 1 – токопроводящая жила; 2 – полупроводящий слой; 3 – изоляция; 4 – полупроводящий слой; 5 – слой кабельной обмотки; 6 – экран; 7 – слой кабельной обмотки; 8 – подушка; 8 – броня; 10 – наружная оболочка.

Броня из плоских металлических лент защищает кабели только от механических повреждений. Броня из металлических проволок помимо этого воспринимает также и растягивающие усилия. Эти усилия возникают в кабелях: при их вертикальной прокладке на большую высоту или при прокладке по крутонаклонным трассам, при прокладке кабелей в насыпных, болотистых и пучинистых грунтах, а также в воде.

Наружный кабельный покров является внешней частью защитного кабельного покрова, который накладывается поверх брони для защиты её от коррозии и механических воздействий. Наружный покров изготавливают: из битума; из слоя кабельной или стеклянной пряжи, пропитанной битумным составом; а также из ПВХ пластиката или полиэтилена.

В некоторых конструкциях кабелей в качестве защитного покрова или его наружной части используется защитный шланг, который представляет собой выпрессованную трубку из пластмассы или резины, расположенную поверх металлической оболочки или брони кабельного изделия.

Рисунок. Кабель марки АВБбШв с защитным шлангом из ПВХ пластиката: 1 – токопроводящая жила; 2 – изоляция жилы; 3 – поясная изоляция; 4 – броня; 5 – слой битума; 6 – защитный шланг.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

Силовые кабели — классификация, конструкция и изоляция (100 фото)

Электричество обеспечивает современного человека множеством благ, но при всем том, оно представляет собой реальную и огромную силу, которая не прощает ошибок и может принести не только пользу, но и огромный вред. Во избежание непредвиденных ситуаций, обслуживание крупных энергетических объектов, лучше доверить специалистам https://energiatrend.ru/ispytanija-povyshennym-naprjazheniem.

Речь идет об электробезопасности, правила которой написаны кровью пострадавших.

В контексте безопасного использования электричества, особое место уделяется качеству и правильному выбору проводов и кабелей, именно они обеспечивают подвод тока к потребителю, защищая от контакта с токоведущей частью и внешнего окружения.

Однако, если для того, чтобы подключить обычный маломощный потребитель, достаточно простого, тонкого провода с двойной или одинарной изоляцией, то для обеспечения электроэнергией нагрузки с достаточно большой мощностью, например, здание или цех, требуется провод иного исполнения и качества – так называемый, силовой кабель.

Если просмотреть на сайтах посвященных электротехнике фото силового кабеля, можно отметить, что его конструкция может быть достаточно сложной, иметь несколько уровней изоляции, с проводами разной формы сечения и другими специфическими особенностями.

В чем предназначение силовых кабелей? Какие особенности в конструктивном исполнении они имеют? Какие характеристики показывают его технические особенности, определяющие сферу применения?

На все эти вопросы вы найдете, хоть и не подробные, но самые общие ответы в данном обзоре.

Немного теории

Прежде всего, давайте определимся, что необходимо понимать под силовым кабелем.

Можно часто встретить ошибочное толкование этого определения, бытующее даже среди специалистов-электриков.

Многие понимают под силовыми, любые, например, медный силовой кабель для подключения мощной нагрузки, например, трехфазного электродвигателя. Это неверно.

Силовой кабель – это специального рода электропроводящая система для передачи электроэнергии промышленной частоты от распределительных подстанций, электростанций и иного рода электрогенераторов к потребителю, в качестве которого может выступать система обеспечения электрическим током конечных или промежуточных потребителей.

С первого взгляда может показаться излишне запутанным и сложным, в действительности все не так страшно:

Под электропроводящей системой нужно понимать конструкцию из токопроводящих жил и, как правило, многослойной изоляции, а также в некоторых случаях – защиту от механического воздействия и повреждения кабеля.

Промышленная частота – это принятая в народном хозяйстве частота переменного тока. Например, в нашей стране – 50 Гц, но есть другие государства, с другими стандартами, так, в США – 60 Гц.

Система обеспечения электрическим током – это электропроводка в доме, электрораспределительная подстанция, производственный цех и т.п.

Конечный потребитель – устройство, использующее электроэнергию и преобразующее ее в полезную работу, например – электродвигатель.

Таким образом, силовой кабель является простым передатчиком электроэнергии от места ее производства и распределения к месту, где она будет перераспределяться и использоваться.


Устройство силовых кабелей

Любой силовой кабель, вне зависимости от сферы применения и его параметров, состоит из следующих основных элементов:

Токопроводящие проводники – так называемые, жилы.

Они несут основную функциональную нагрузку – пропускают через себя электрический ток. Форма профиля может быть различной, все зависит от типа кабеля и его параметров.

Сами жилы изготавливают их меди и алюминия. По своей цене силовой алюминиевый кабель дешевле, но медный выдерживает большие нагрузки при той же площади поперечного сечения жилы.

Изоляция между отдельными жилами кабеля. Главной ее задачей является защита от электрического пробоя внутри кабеля.

Внешней защитной оболочки объединяющей кабель в единую конструкцию и защищающую его от воздействия неблагоприятных факторов внешней среды: природных, механических и иных воздействия.

Экран. Конструктивно может быть выполнен как элемент внешней оболочки.

Главная задача – защита внешней среды от электромагнитного поля, возникающего при прохождении электрического тока по кабелю.

Защитная броня. Бронированные кабели используются в случае повышенного риска механических повреждений.

Между самой броней и кабелем имеется специальная демпферная подушка, ее цель — ограничение воздействия на кабель при деформации брони внешними факторами.

В контексте безопасности, особого внимания заслуживает изоляция силовых кабелей: от ее качества и материала зависит механическая и электрическая прочность.


Технические параметры силовых кабелей

К основным техническим параметрам силового кабеля необходимо отнести:

Количество жил в кабеле. Различают одножильные и многожильные (до пяти жил). Кроме того, в кабеле может иметься нулевая жила, сечение которой обычно меньше;

Материал жилы: имеется два варианта: медный или алюминиевый кабель.

Фундаментальный параметр — сечение силового кабеля. От данной характеристики зависит максимально допустимый ток, который кабель может долговременно выдержать, следовательно – мощность нагрузки, подключаемую через конкретный кабель.

Заметим, принимается во внимание сечение только одной жилы кабеля. Для определения соответствия тока и сечения существуют специальные методики расчета, а также готовые таблицы, все это можно найти в справочниках или интернете.

Тип изоляции. Различают бумажную, полиэтиленовую, резиновую и полимерную изоляцию. Конкретный вид во многом определяет условия, в которых кабель может эксплуатироваться, а также срок его безотказной, гарантированной работы.

К параметрам отдельных силовых кабелей можно отнести наличие брони и ее характеристики.


Маркировка силового кабеля

Существует целая система стандартов применяемых для маркировки силовой кабельной продукции, посредством нее можно легко определить основные технические и эксплуатационные характеристики силовых кабелей.

Маркировка ведется буквенными и цветовыми индексами. Ее подробные расшифровки и особенности мы не будем рассматривать в данной статье, при необходимости можно легко найти необходимую информацию в справочниках или на специальных интернет ресурсах.

Фото силовых кабелей

Также рекомендуем посетить:

Устройство электрических кабелей и кабельных линий

Силовые кабели применяются для реализации подземной или подводной передачи и распределения электрической энергии как в сетях до 1000 В, так и в сетях выше 1000 В. Также очень часто кабельные сети применяются внутри производстве зданий и на территории заводов и предприятий.

Одно из самых крупных преимуществ кабельных линий – это почти полная их независимость от атмосферных явлений и долговечность. Более того, совершенно нет необходимости загромождать территории предприятий или улицы городов электрическими опорами и проводами, необходимыми для сооружения воздушных электрических сетей.

Силовые кабели применяются для передачи электрической энергии с напряжением до 220 кВ, однако при напряжениях выше 35 кВ воздушные линии все же имеют больше преимуществ. Это связано с определенными конструктивными трудностями, которые возникают при изготовлении силовых кабелей высокого напряжения.

Силовые кабели любого напряжения состоят из защитных и изоляционных оболочек, а также токопроводящих жил.

Токоведущие жилы

Их изготавливают из алюминия или меди. По форме сечения они могут быть сегментными, круглыми или секторными. В зависимости от количества токоведущих жил силовые кабели делят на одно-, двух-, трех- и четырехжильные. Соответственно существуют и стандартные сечения токоведущих жил, для отечественной продукции: 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500 и 600 мм2. В зависимости от напряжения, силовые кабели имеют различные ряды сечений, например, кабели трехжильные на напряжение 6 кВ изготавливают с сечениями жил от 10 до 240 мм2, при 10 кВ – от 16 до 240 мм2, при 35 кВ – от 70 до 150 мм2. Четырехжильные кабели, которые предназначаются для эксплуатации только в сетях с напряжением до 1000 В, имеют сечение жил от 4 до 185 мм2. Четвертую жилу называют нулевой, и она имеет сечение равное приблизительно  от 1/3 (для крупных сечений силовых кабелей) до ½ сечения основных токоведущих жил.

Изолирующие оболочки

Их назначение – изоляция токоведущих жил друг от друга (межфазная изоляция) и от земли (поясная изоляция). Изолирующие оболочки могут изготавливаться из резины, бумаги, пропитанной маслоканифольным составом, пластика.

Защитные оболочки

Их назначение – защита изолирующих оболочек от разрушений при проникновении влаги и различного рода механических повреждений. Защитные оболочки образуют защитный герметичный слой вокруг изолирующих оболочек и выполняются из свинца, алюминия, пластмасс или других защитных материалов. Для защиты свинцовой оболочки от различных химических воздействий ее обматывают пропитанной в кабельной массе (канифоль, растворенная в минеральном масле) бумагой, а поверху накрывают оболочкой из джута. Защита от механических повреждений осуществляется с помощью брони, которая состоит из стальных проволок или лент. Защита брони от влияние различных веществ находящихся в почве осуществляют с помощью еще одной джутовой оболочки.

Ниже показано строение кабеля:

Устройство силового кабеля

Где: — 1) токоведущая жила, 2) межфазная изоляция (изолирующая оболочка), 3) защитная оболочка.

Кабели, в зависимости от их защитных оболочек и конструкций могут прокладываться в земляных траншеях, по потолкам и стенам, конструкциям внутри зданий и сооружений, в туннелях, блоках, каналах. Например, во внутренних помещениях и каналах, а также туннелях, прокладывают кабели с свинцовой, алюминиевой,  пластмассовой внешней оболочкой, бронированные или небронированные, но без внешней джутовой оболочки. В земляных траншеях прокладывают силовые кабели, которые защищаются броней и джутовой оболочкой, а также могут прокладываться некоторые виды кабелей имеющих пластмассовую оболочку.

Конструкция электрических кабелей

Силовые электрические кабели с пропитанной бумажной, пластмассовой и резиновой изоляциями предназначены для передачи и распределения электрической энергии в стационарных установках.
Основными элементами всех типов кабелей являются: токопроводящие жилы, изоляция, экраны, оболочка и наружные защитные покровы.

Токопроводящие жилы силовых кабелей изготавливаются из электротехнической меди марки МО и Ml или алюминия марок АО и АО1 и нормируются по сечению. По механическим свойствам медная проволока может быть твердой (неотожженной) марки МТ и мягкой (отожженной) марки ММ, а алюминиевая — твердой (неотожженной) марки AT, полутвердой (частично отожженной) марки АПТ и мягкой (отожженной) марки AM.
Все токоведущие жилы сечением 2,5—16 мм2 изготавливаются однопроволочными, а сечением 25 мм2 и выше — круглыми многопроволочными для одножильных кабелей, сегментными для двухжильных и секторными для трех- и четырехжильных. Допускаются однопроволочные алюминиевые жилы сечением 25—120 мм2 и медные 25; 35 мм2. Применение секторных и сегментных жил вместо круглых позволяет уменьшить диаметр кабеля на 20—25%, что также ведет к сокращению расхода материала на изоляцию, оболочку, защитные покровы и т. п.
По степени гибкости круглые жилы из меди делятся на четыре типа:

  1. — жилы нормальные для проводов и кабелей, предназначенных для неподвижной прокладки;
  2. — жилы гибкие для кабелей и проводов, предназначенных для неподвижной прокладки, где требуется повышенная гибкость при монтаже, и для переносных кабелей, работающих при больших радиусах изгиба;
  3. — жилы повышенной гибкости для переносных кабелей и проводов, работающих при малых радиусах изгиба;
  4. — жилы, особо гибкие для проводов и кабелей, работающих в условиях, где требуется особо повышенная гибкость жил.

разрез силового кабеля
Поперечный разрез силового кабеля: а — силовой кабель в броне из круглых проволок (марка СК) с пропитанной бумажной изоляцией; б — кабель силовой четырехжильный с бумажной изоляцией; в — кабель общепромышленного применения марки АВВГ с пластмассовой изоляцией; г — кабель силовой марки АПВ с пластмассовой изоляцией; д — кабель марки ВБГ с пластмассовой изоляцией для взрывоопасных сред; е — кабель марки СРГ одножильный с резиновой изоляцией

По степени гибкости жилы из алюминия делятся на три типа:

  1. — жилы нормальные для кабелей и проводов, предназначенных для неподвижной прокладки;
  2. — жилы гибкие для кабелей и проводов, предназначенных для неподвижной прокладки, где требуется повышенная гибкость при монтаже, и для переносных кабелей, работающих при больших радиусах изгиба;
  3. — жилы повышенной гибкости для переносных кабелей и проводов, работающих при малых радиусах изгиба.

Изоляция силовых кабелей может быть выполнена из пропитанной кабельной бумаги, полиэтилена, поливинилхлоридного пластиката, резины и т.п.
Пропитанная бумажная изоляция состоит из лент кабельной бумаги толщиной 80, 120 и 170 мкм (марок К-080, К-120 и К-170), наложенных на жилу методом обмотки и пропитки маслоканифолевым составом. Для пропитки кабелей на напряжение 1 —10 кВ применяют маслоканифолевый состав МП-1 (содержание канифоли 10,5—26%) или синтетическое масло октол, а для кабелей на напряжение 20—30 кВ — маслоканифолевый состав МП-2 (содержание канифоли 31,5—43,5%). Номинальная толщина пропитанной бумажной изоляции силовых кабелей приведена в табл.
Толщина пропитанной бумажной изоляции силовых кабелей

 

 

Номинальная толщина изоляции, мм

Номинальное напряжение кабелей, кВ

Сечение, мм2

одножильных и трехжильных в отдельных оболочках

многожильных с поясной изоляцией

 

изоляция жил

поясная изоляция

1

6-95

0,75

0,5

10-95

1,2

120-150

1,4

0,85

0,6

185, 240

1,6

0,95

0,6

300,400

1,8

500, 625

2,1

800

2,4

10-240

2

300-400

2,2

500-625

2,4

6

10-240

2

0,95

6 (с обедненной пропитанной изоляцией)

16-120

2,75

1,25

10

16-240

2,75

1,25

10 (с обедненной пропитанной изоляцией)

25, 35

7,5

 

Пропитанная бумажная изоляция, освобожденная от избытка пропиточного состава, называется обедненной. Она предназначена для кабелей вертикальных и наклонных трасс. Кабели с обедненной пропитанной изоляцией маркируются прописной буквой В в конце марки кабеля (например: СБВ).
Маслоканифолевые пропиточные составы с содержанием изобутилена и церезина или низкомолекулярного полиэтилена имеют повышенную вязкость при рабочих температурах. Поэтому бумажная изоляция, пропитанная этим составом, пригодна для кабелей вертикальных и крутонаклонных трасс. Кабели с нестекающим пропиточным составом маркируют буквой Ц, которую ставят перед обозначением кабеля (например: ЦСК).
Полиэтиленовая изоляция представляет собой различные композиции, получаемые на базе полиэтилена низкой и высокой плотности с различными добавками. Для кабельной промышленности выпускают композиции полиэтилена на основе базовых марок высшего и первого сорта полиэтилена низкой плотности 10203-003, 10702-020, 15303-003 и 17802-015 и рецептур добавок 0; 1; 02; 04; 05; 09 и 10. Композиции полиэтилена высокой плотности выпускают на основе базовых марок полиэтилена 20406-407, 20606-012 и рецептур добавок 07, 12, 19 и 21.
Композицию полиэтилена можно расшифровать следующим образом: материал полиэтилена, затем первые три цифры — базовая марка полиэтилена, далее номер рецептуры добавок и буква К, обозначающая применение композиции полиэтилена в кабельной промышленности.
При введении в полиэтилен органических перекисей (дикумила и др.) с последующей вулканизацией или под действием излучений образуются поперечные связи, способствующие переходу полиэтилена из термопластичного состояния в термореактивное. Введение в полиэтилен соединений фтора и хлора или добавок окиси сурьмы и сурьмаорганических соединений снижает его горючесть (самозатухающий полиэтилен).
Поливинилхлоридные пластикаты — это смеси поливинилхлорида с различными пластификаторами, стабилизаторами и другими добавками. Для кабельных пластификаторов применяют суспензионные смолы марок ПХВ-С1, ПХВ-С2 и ПХВ-С4. В качестве пластификаторов используют эфиры фталевой, фосфорной и себациновой кислот. При введении в пластикат антиоксидантов (дифенил- пропан) повышается их нагревостойкость. Стойкость против горения увеличивается при добавлении хлорированных парафинов; существенно повышают температуру разложения пластификатора стабилизаторы (углекислый свинец и соли стеариновой кислоты, кальций, кадмий барий, стронций, а также стеариты свинца в композиции с эпоксидными смолами).
Резиновая изоляция — смесь каучуков, вулканизирующих веществ, ускорителей вулканизации, наполнителей, мягчителей, средств против старения, красителей и других специальных материалов. Однако основой любой резины являются каучуки. Резиновые смеси на основе натурального каучука обладают высокой термопластичностью. Существует четыре типа изоляционных резин, отличающихся друг от друга содержанием в них каучука. Смеси резин, выполненных на основе кремнийорганического каучука, содержат наполнитель — аморфную кремневую кислоту. В качестве усиливающих наполнителей применяют двуокись титана, карбонат кальция, гидрат окиси алюминия, каолин, органические сажи. Кремнийорганические резины термостойки в пределах -60 до +200°С. Их применяют для изоляции нагревостойких проводов РКГМ, проводов для зарядки осветительной арматуры, монтажных кабелей и проводов.

Физико-механические и электроизоляционные свойства изоляционных резин

Характеристика резин

Тип резины

РТИ-0

РТИ-1

РТИ-2

РНИ

Содержание каучука, %

40

35

30

35

Пределы прочности при разрыве, кг/см2, не менее

60

50

35

35

Относительное удлинение при разрыве, %, не менее

350

300

250

300

Коэффициент старения

по пределу прочности, не менее

0,5

0,5

0,5

0,5

по относительному удлинению, не менее

0,5

0,5

0,5

0,5

Электрическая прочность, кВ/мм, не менее

20

20

15

10

Изоляцию из стекловолокна получают из стеклянного волокна в несколько слоев с подклейкой, покрытием глифталевым, полиэфирным или кремнийорганическим лаком. Провода с изоляцией из стекловолокна пригодны для эксплуатации при 155—180°С.
Оболочки кабелей служат для защиты изоляции жил от воздействий света, влаги, различных химических веществ и механических повреждений.
Лучшими герметичными материалами для оболочек кабелей являются металлы. Применение пластмасс и резины ограничивается из-за большого коэффициента влагопроницаемости. Наиболее распространены металлические оболочки из свинца, алюминия и стали. Свинцовые оболочки выполняют из свинца марки С-3. Основное преимущество свинцовых оболочек состоит в технологичности их наложения, влагостойкости, пластичности и устойчивости против действия различных агрессивных сред.
Алюминиевые оболочки герметичны, в 2—2,5 раза прочнее свинцовых и имеют повышенную стойкость к вибрационным нагрузкам. Для повышения гибкости кабелей сварные оболочки изготавливают из отожженной алюминиевой ленты, а кабели диаметром более 20 мм гофрируют.
Кабели в гофрированной оболочке маркируют строчной буквой «г», которую ставят после буквы, обозначающей тип оболочки (например: ААгВ).
Оболочки кабелей изготавливают из шлангового пластиката, отличавшегося от изоляционного соответствующим подбором пластификаторов и стабилизаторов, обеспечивающих большую стойкость против светового старения.
При нагревании поливинилхлоридного пластиката до 160—175°С происходит его размягчение, а при нагреве до температуры 220—250°С — разложение. При температурах 5000°С и выше поливинилхлоридный пластикат горит самостоятельно. Данные о толщине оболочек кабелей из поливинилхлоридного пластиката и резины приведены в табл.
Толщина пластмассовых и резиновых оболочек кабелей

 

Толщина оболочек, мм

Диаметр кабелей под оболочкой, мм

Полиэтилен, поливинилхлоридный пластикат

Резина

Для нормальных условий и защитных покровов

Для тяжелых условий

Для нормальных условий и защитных покровов

Для тяжелых условий

4-6

0,6

1,2

1,5

6,1-8

0,9

1,5

1,7

8,1-10

1,2

1,5

1,5

1,7

10,1-15

1,5

1,8

1,8

2

15,1-20

1,7

2,2

2

2,2

20,1-25

1,9

2,2

2,2

25,1-30

1,9

3

2,5

30,1-40

2,1

3

3

40,1-50

2,3

4

4

50,1-60

2,5

4,5

4,5

Свыше 60

3

4,5

Полиэтилен обладает высокими физико-механическими свойствами, поэтому его успешно применяют в качестве оболочки кабеля. Однако из-за резкого возрастания диффузионной константы с ростом температуры его нельзя использовать для оболочек кабелей с влагоемкой бумажной изоляцией без металлического экрана. В качестве экрана Применяют алюминиевую ленту толщиной 0,15—0,2 мм, которую наматывают поверх поясной изоляции из полиэтилена. На экран наносят битумный состав и накладывают оболочку из полиэтилена.
Резиновые оболочки обладают высокой механической прочностью к растягивающим усилиям, ударным и крутящим нагрузкам и другим воздействиям. Резины для оболочек обозначают: РШ-1 — резина для тяжелых условий; РШ-2 — резина теплостойкая для средних и легких условий; РШМ-2 — резина морозостойкая в средних и легких условиях; РШН-1 — маслостойкая резина, не распространяющая горение, для работы в тяжелых условиях; РШН-2 — маслостойкая резина, не распространяющая горение, для средних и легких условий.
Кабели с кремнийорганической изоляцией изготавливают из кремнийорганической резины, пригодной для работы при температурах до 200°С.
Защитный покров обеспечивает надежность и долговечность электрических кабелей при эксплуатации в различных условиях окружающей среды и при различных способах прокладки. Конструкция и обозначение защитных покровов приведены в табл.   Защитные покровы состоят из подушки и наружного покрова. Подушка — слой волокнистых материалов поверх оболочки под броней. Наружный покров — слой из волокнистых материалов поверх брони.
Для защиты алюминиевых и стальных оболочек от коррозии и от влияния блуждающих токов применяют защитные покровы из поливинилхлоридного пластиката, наличие которых обозначают в марках кабелей буквой В после буквы, указывающей алюминиевую оболочку или броню (ААВ, СБГВ и др.).
Защитные покровы из поливинилхлоридного пластиката поверх брони придают свойство силовым кабелям не распространять горение (только в случае одиночного кабеля).
Для защиты кабелей от незначительных механических воздействий, а также от воздействия света и нефтепродуктов используют хлопчатобумажную пряжу. В зависимости от условий эксплуатации оплетка хлопчатобумажной пряжи может быть пропитана атмосферостойкими или противогнилостными составами. В атмосферостойкие составы входят: нефтяные битумы, парафин; естественные асфальты, воски, смолы и др. Для защиты резиновой изоляции от действия масла, бензина и других растворителей применяют лаковые покрытия на основе эфиров целлюлозы.
В качестве легких защитных покровов применяют синтетические и искусственные волокна. Наибольшее распространение получил капрон, имеющий температуру плавления 210—215°С.
Лавсановое (полиэфирное) волокно имеет температуру плавления 250—265°С. Защитные покровы из лавсанового и капронового волокон с покровным лаком имеют рабочую температуру 125—140вС, хорошую стойкость к органическим растворителям и истиранию, но плохую влагостойкость и огнестойкость.
В качестве защитного покрова нагревостойких кабелей с фторлоновой и кремнийорганической изоляциями применяют крученое стекловолокно с последующим покрытием кремнийорганическим лаком (К-47). Такие кабели используют при температуре окружающей среды до 180—200°С, а при применении фторлоновой суспензии — до 275°С.
Защитные покровы с применением асбестовых нитей обладают огнестойкостью, малой теплопроводностью.

1. Конструкция силовых кабелей

1.1. Основные элементы

Силовые кабели состоят из следующих основных элементов: токопроводящих жил (ТПЖ), изоляции, оболочек и защитных покровов. Помимо основных элементов в конструкцию силовых кобелей могут входить экраны, нулевые жилы, жилы защитного заземления и заполнители.

Токопроводящие жилы предназначены для прохождения электрического тока, они бывают основными и нулевыми. Основные жилы применяются для выполнения основной функции кабеля – передачи по ним электроэнергии. Нулевые жилы предназначены для протекания разности токов фаз (полюсов) при неравномерной их нагрузке. Они присоединяются к нейтрали источника тока.

Жилы защитного заземления являются вспомогательными жилами кабеля и предназначены для соединения не находящихся под рабочим напряжением металлических частей электроустановки, к которой подключен кабель, с контуром защитного заземления источника тока.

Изоляция представляет собой слой диэлектрика (пропитанной бумаги, пластмассы, резины и т. д.), наложенный на токопроводящую жилу. Служит для обеспечения необходимой электрической прочности токопроводящих жил кабеля по отношению друг к другу и к заземленной оболочке (земле).

Экраны используются для защиты внешних цепей от влияния электромагнитных полей токов, протекающих по кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля.

Заполнители предназначены для устранения свободных промежутков между конструктивными элементами кабеля в целях герметизации, придания необходимой формы и механической устойчивости конструкции кабеля.

Оболочки защищают внутренние элементы кабеля от увлажнения и других внешних воздействий.

Защитные покровы предназначены для защиты оболочки кабеля от внешних воздействий. В зависимости от конструкции кабеля в защитные покровы входят подушка, бронепокров и наружный покров.

1.2. Классификация и маркировка силовых кабелей

Силовые кабели удобно классифицировать по номинальному напряжению, на которое они рассчитаны; классификационными признаками могут служить также вид изоляции и конструктивные особенности кабелей (см. рис. 1.1).

Все силовые кабели по номинальному рабочему напряжению можно условно разделить на две группы. В группу низкого напряжения кабелей включены кабели, предназначенные для работы в электрических сетях с изолированной нейтралью переменного напряжения 1, 3, 6, 10, 20 и 35 кВ частотой 50 Гц. Эти же кабели могут быть использованы в сетях переменного напряжения с заземленной нейтралью и в сетях постоянного напряжения. Такие кабели выпускаются в России с бумажной пропитанной, пластмассовой и резиновой изоляцией, причем наиболее перспективным видом изоляции является пластмассовая.

Рис. 1.1. Классификация силовых кабелей

Кабели с пластмассовой изоляцией более просты в изготовлении, удобны при монтаже и в эксплуатации. Производство силовых кабелей с пластмассовой изоляцией в настоящее время значительно расширяется. Силовые кабели с резиновой изоляцией выпускаются в ограниченном количестве. Кабели низкого напряжения в зависимости от назначения выпускаются в одножильном, двухжильном, трехжильном и четырехжильном исполнении (рис. 1.2–1.4).

а) б)

Рис. 1.2. Двухжильные кабели с круглыми (а) и сегментными (б) жилами

Одножильные и трехжильные кабели предназначены для работы в сетях напряжением 1–35 кВ, двух- и четырехжильные кабели используются в сетях напряжением до 1 кВ.

а) б)

Рис. 1.3. Трехжильные кабели с круглыми (а) и секторными (б) жилами

Четырехжильный кабель предназначен для четырехпроводных сетей переменного напряжения. Четвертая жила в нем является заземляющей или зануляющей, поэтому ее сечение, как правило, меньше сечения основных жил. Однако при прокладке кабелей во взрывоопасных помещениях и в некоторых других случаях сечение четвертой жилы выбирается равным сечению основных жил.

Рис. 1.4. Четырехжильные кабели

В группу кабелей высокого напряжения включены кабели, предназначенные для работы в сетях переменного напряжения 110, 220, 330, 380, 500, 750 кВ и выше, а также кабели постоянного напряжения кВ и выше. Основная масса кабелей высокого напряжения в России в настоящее время изготовляется с пропитанной маслом бумажной изоляцией – это маслонаполненные кабели низкого и высокого давления. Высокая электрическая прочность изоляции этих кабелей обеспечивается избыточным давлением масла в них. Однако за рубежом получили также распространение газонаполненные кабели, в которых используется газ, как в виде изолирующей среды, так и для создания избыточного давления в изоляции. Кабели высокого напряжения с пластмассовой изоляцией являются наиболее перспективными, однако проблема создания таких кабелей на напряжения 110 кВ и выше в настоящее время еще полностью не решена.

Маркировка силовых кабелей обычно включает буквы, указывающие на материал, из которого изготовлены жила, изоляция, оболочка, и тип защитного покрова. Маркировка кабелей высокого напряжения отражает также особенности его конструкции.

Медные токопроводящие жилы в маркировке кабелей не отмечаются специальной буквой, алюминиевая жила обозначается буквой А, стоящей в начале маркировки. Следующая буква марки кабеля указывает на материал изоляции, причем бумажная пропитанная изоляция не имеет буквенного обозначения, полиэтиленовая изоляция обозначается буквой П, поливинилхлоридная – буквой В, а резиновая изоляция – буквой Р. Далее следует буква, соответствующая типу защитной оболочки: А – алюминиевая, С – свинцовая, П – полиэтиленовый шланг, В – оболочка из поливинилхлорида, Р – резиновая оболочка. Последние буквы указывают на тип защитного покрова.

Например, кабель марки СГ имеет медную жилу, бумажную пропитанную изоляцию, свинцовую оболочку, защитные покровы отсутствуют. Кабель марки АПАШв имеет алюминиевую жилу, изоляцию из полиэтилена, алюминиевую оболочку и шланг из поливинилхлоридного пластиката. Маслонаполненные кабели в своем обозначении содержат букву М (в отличие от газонаполненных – буква Г), а также букву, указывающую на характеристику давления масла в кабеле и связанные с этим особенности конструкции. Например, кабель марки МНС – это кабель маслонаполненный, низкого давления, в свинцовой оболочке с упрочняющим и защитным покровом или кабель марки МВДТ – маслонаполненный кабель высокого давления в стальном трубопроводе.

Силовые кабели — виды, назначение и конструкция

Силовые кабели используют для передачи электрического тока от производителя к потребителям: промышленным предприятиям, в частные дома, торговые центры, спортивные сооружения и административные здания.

Силовые кабели используют для передачи электрического тока от производителя к потребителям: промышленным предприятиям, в частные дома, торговые центры, спортивные сооружения и административные здания.

Силовой кабель относится к электротехническим изделиям. Состоит из металлических жил, изоляционной оболочки, защитного покрова и экрана. Внутри оболочки находятся основные (фазные, нулевые) и вспомогательные провода.
Вспомогательными являются жилы заземления, которые предназначены для подключения корпусов приборов к общему контуру заземления.
Для улучшения параметров и защиты от повреждений, силовые кабели оснащают:

  • прокладкой из брони;
  • броневым покрытием;
  • экраном;
  • поясной изоляцией;
  • специальным составом, которым заполнена внутренняя полость.

Кабельные жилы выпускают из меди и алюминия – эти металлы обладают пластичностью и низким уровнем электрического сопротивления. Изоляцию делают из полиэтилена, металлической фольги со специальной пропиткой, резины и поливинилхлорида.
Проводка с изоляцией из металлической бумаги применяет на магистральных участках линий электропередач напряжением не более 760 кВ и частотой 50 герц.
Защитное покрытие из полиэтилена обладает устойчивостью к значительным колебаниям температуры и механическим повреждениям. Провода с полиэтиленовой изоляцией на продолжительный срок работы.
Медные жилы отличаются низким уровнем электрического сопротивления Благодаря этому, снижаются потери мощности и увеличивается пропускную способность линий электропередач. Выдерживают большие нагрузки на разрыв, изгиб и растяжение, которым подвержены в процессе эксплуатации.

Обозначают кабели по назначению, напряжению и марке. Маркировка содержит данные о материале проводов, оболочки и покрове.
Пример
Электрический кабель из четырех алюминиевых жил, оснащенный наружным покровом (в этом случае допускается укладка в траншею), с эксплуатационным напряжением 1 кВ, при суммарном сечении 185 мм2 обозначают ААБв (ож) 4*185-1.
Кабели с бумажной изоляцией и жилами из алюминия маркируют: ААБ, ААГ, ААП, АСБ, АСПГ и АСШв.
Международной Электротехнической Комиссией (МЭК) разработана цветовая маркировка кабелей. В ряде стран на сегодняшний день используют буквенные обозначения: первый символ – материал жил, второй — вид изоляции, следующий символ – тип оболочки. Броневое покрытие и вид экрана также имеют свои обозначения. Количество символов зависит от сложности конструкции конкретного вида кабеля.
Буквенная маркировка типов изоляции:

  • П – полиэтиленовая;
  • Р – резиновая;
  • В – поливинилхлоридная.

Бумажная изоляции с пропиткой не имеет маркировки.

В зависимости от вида изоляции провода окрашены в определенный цвет:

  1. Коричневым или черным цветом обозначают фазные жилы.
  2. Желто-зеленым с голубыми метками – дополнительная жила, которая подключается к контуру заземления.
  3. Изоляция нулевого проводника окрашена в голубой цвет.
  4. Жилы заземления имеют желто-зеленый цвет.

Буквенное обозначение кабеля ВВГНГ означает марку и его эксплуатационные характеристики. К наиболее распространенным и востребованным относятся модели с буквенными аббревиатурами:
ППВ – провод с трехжильной сердцевиной из меди с изоляцией ПВХ, предназначен для прокладки подземных коммуникаций уличного освещения;
АППВ – характеристики сходны с предыдущей моделью, но может иметь четыре жилы из алюминия;
ВВГ – сердцевина сделана из меди, имеет 1-4 жилы с оболочкой из поливинилхлорида, используют для монтажа осветительных линий в жилых и производственных помещениях; кабель устойчив к воздействию влаги и другим неблагоприятным факторам окружающей среды;
ПВС – сердцевина сделана из меди, имеет 2-5 провода; используют в бытовых приборах и осветительных системах;
ВБбШв – имеют 5 скрученных жил, что обусловлено спецификой эксплуатации; используют в силовых линиях электропередач, отличаются прочностью и устойчивы к механическим повреждениям;
НУМ – имеет четыре стержня, внутренняя полость заполнена металлическим наполнителем; используют для монтажа наземных и воздушных сетей;
КГ – конструкция кабеля состоит из медных многопроволочных жил, защитное покрытие сделано из прорезиненного материала; кабель обладает гибкостью, применяют для монтажа линий в труднодоступных местах и помещениях с высокой влажностью.
В списке представлены базовые модели кабелей. Подробную информацию о технических характеристиках конкретной марки предоставляют консультанты профильных компаний, которые занимаются реализацией данной продукции.

Конструкция и классификация силовых кабелей — Студопедия.Нет

Монтаж кабельных линий

Общие сведения

Одним из видов линий электропередачи являются кабельные линии. Наряду с воздушными линиями электропередачи, электрические сети, выполненные кабельными линиями, получили самое широкое применение.

Достоинства и недостатки.

Преимущества кабельных линий перед воздушными состоят в следующем.

1. Электрическая сеть, выполненная кабельной линией более компактна. Применение кабельных линий способствует сохранению окружающего ландшафта, более рационально используется поверхность земли.

2. Передача электрической энергии по кабельным линиям имеет более высокий уровень надежности. Кабельные линии гораздо меньше подвержены влиянию окружающей среды (сильные ветра, снеговые отложения на проводах, гололед, падение деревьев на провода и т.п.), реже повреждаются транспортом.

3. Кабельные линии имеют более низкий уровень электромагнитного излучения, чем воздушные и, следовательно, меньше оказывают влияние на окружающую среду.

4. Затраты на техническое обслуживание кабельных линий ниже, чем у воздушных линий электропередачи.

К недостаткам кабельных линий относят:

1. Сооружение кабельной линии дороже, чем воздушной, причем разница в стоимости сооружения увеличивается с ростом напряжения линии. КЛ напряжением 110 кВ в 4-5 раз дороже воздушной, а КЛ 500 кВ дороже воздушной линии 500 кВ уже в 18-20 раз.

2. Поиск и устранение повреждений на кабельных линиях осуществлять гораздо сложнее, чем на воздушных. Ремонтные работы на кабельных линиях более трудоемки и требуют больших затрат материалов, требуется больше времени для определения места повреждения. Время устранения аварии на ВЛ 110 кВ составляет в среднем 6 ч, а на кабельной линии – 72 ч.

3. Пропускная способность кабельных линий ниже, чем у воздушных линий того же сечения, так как хуже условия охлаждения.

Область применения.

В общем случае, кабельные линии применяют там, где по техническим или эстетическим соображениям применение воздушных линий невозможно. Основная область применения кабельных линий — это:

1. Внутренние электрические сети зданий и сооружений.

2. Электрические сети городов и поселков (на селитебной территории) напряжением до 20 кВ в районах застройки зданиями в 4 этажа и более, а также электрические сети напряжением 110кВ и выше мегаполисов и крупных городов.

3. Электрические сети внутреннего электроснабжения промышленных предприятий, территория которых насыщена зданиями и производственными помещениями.

4. Электрические сети, проходящие через парковые зоны, скверы, сады и т.п.

Основные определения.

Кабельной линией называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подплывающими аппаратами и системой сигнализации давления масла.

Кабельным сооружением называется сооружение, специально предназначенное для размещения в нем кабелей, кабельных муфт, а также маслоподпитывающих аппаратов и другого оборудования, предназначенного для обеспечения нормальной работы маслонаполненных кабельных линий. К кабельным сооружениям относятся: кабельные туннели, каналы, короба, блоки, шахты, этажи, двойные полы, кабельные эстакады, галереи, камеры, подпитывающие пункты.

Электрическим силовым кабелем, в соответствии с ГОСТ 15845-80 [скачать/просмотреть], называется электрическое изделие, предназначенное для передачи по нему электрической энергии токами промышленной частоты, содержащее одну или более изолированных жил, заключенных в оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров.

Рисунок. Силовой кабель


Маркировка кабельных линий.

Согласно ПУЭ каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д. Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт — номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

Рисунок. Форма бирок для маркировки кабелей

Бирки применяются стандартной формы: круглой — для силовых кабелей высокого напряжения; прямоугольной — для силовых кабелей до 1 кВ, треугольной — для контрольных кабелей.

 

В данной теме будут рассмотрены следующие вопросы.

1. Конструкция и классификация силовых кабелей.

2. Элементы конструкции силовых кабелей и их назначение.

3. Способы прокладки кабельных линий.

· Прокладка кабелей в траншеях.

· Прокладка кабелей в блоках.

· Прокладка кабелей в каналах.

· Прокладка кабелей в туннелях и коллекторах.

· Прокладка кабелей в галереях и эстакадах.

4. Прокладка кабельных линий при отрицательных температурах.

5. Разделка кабеля.

6. Соединение и присоединение силовых кабелей.

7. Защита металлических оболочек кабелей от коррозии.

8. Испытания высоковольтных кабелей.

9. Техника безопасности при монтаже кабелей.

Конструкция и классификация силовых кабелей

Силовые кабели имеют основные, общие для всех типов конструктивные элементы – токопроводящие жилы, изоляцию и оболочку. Кроме основных элементов в конструкцию кабеля могут входить защитные покровы, экраны, жилы защитного заземления, заполнители и др.

 

Рисунок. Конструкция силового кабеля марки СБ: 1 – токопроводящая жила; 2 – изоляция жилы из пропитанной бумаги; 3 – поясная изоляция; 4 – свинцовая оболочка; 5 – подушка; 6 – броня; 7 – наружный покров.

 

Классифицируют, или другими словами различают, силовые кабели обычно по конструктивным особенностям: по материалу, из которого изготовлены токопроводящие жилы; по материалу, из которого изготовлена изоляция жил; по способу защиты от механических повреждений; по количеству жил и т.д. Кроме того, силовые кабели классифицируют по напряжению – до и выше 1000 В.

Рассмотрим далее более подробно элементы конструкции силовых кабелей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *