Количество теплоты формула через сопротивление: Закон Джоуля-Ленца

Содержание

Закон Джоуля-Ленца



При прохождении электрического тока через металлический проводник электроны сталкиваются то с нейтральными молекулами, то с молекулами, потерявшими электроны.
Движущийся электрон либо отщепляет от нейтральной молекулы новый электрон, теряя свою кинетическую энергию и образуя новый положительный ион, либо соединяется с молекулой, потерявшей электрон (с положительным ионом), образуя нейтральную молекулу.
При столкновении электронов с молекулами расходуется энергия, которая превращается в тепло.
Любое движение, при котором преодолевается сопротивление, требует эатраты определенной энергии.

Так, например, для перемещения какого -либо тела преодолевается сопротивление трения, и работа, затраченная на это, превращается в тепло.
Электрическое сопротивление проводника играет ту же роль, что и сопротивление трения.

Таким образом, для проведения тока через проводник источник тока затрачивает некоторую энергию, которая превращается в тепло.

Переход электрической энергии в тепловую отражает закон Ленца — Джоуля
или закон теплового действия тока.

Русский ученый Ленц и английский физик Джоуль одновременно и независимо один от другого установили, что

при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.

Это положение называется законом Ленца — Джоуля.
Если обозначить количество теплоты, создаваемое током, буквой Q (Дж),  ток, протекающий по проводнику — I, сопротивление проводника — R

и время, в течение которого ток протекал по проводнику — t, то закону Ленца — Джоуля можно придать следующее выражение:
Q = I2Rt.
Так как I = U/R и R = U/I, то Q = (U2/R) t = UIt.

Значение мощности, при выделении определённого количества тепла

Скачать можно здесь


(Подробно и доходчиво в видеокурсе «В мир электричества — как в первый раз!»)

Закон Джоуля — Ленца — это… Что такое Закон Джоуля — Ленца?

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Открыт в 1840 году независимо Джеймса Джоуля и Эмилия Ленца.

В словесной формулировке звучит следующим образом[1]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма,  — плотность электрического тока,  — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах

[2]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи.

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно. Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод — нагрузка — провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

и для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина  является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

См. также

Примечания

Ссылки

Работа и мощность тока ❤️

1. Работа тока. Закон Джоуля-Ленца
Работа тока

Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U — разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде

A = UIt.

Закон Джоуля-Ленца

Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся

в проводнике, равно работе тока: Q = A. Поэтому

Q = IUt. (1)

? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами

Q = I2Rt, (2) Q = (U2/R)t. (3)

Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.

Мы вывели формулы (1) — (3), используя закон сохранения энергии, но исторически соотношение Q = I2Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии. Закон Джоуля — Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой

Q = I2Rt.

Применение закона Джоуля — Ленца к последовательно и параллельно соединенным проводникам

Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях — формулой (3).

Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом

Q1/Q2 = R1/R2.

Формулу Q = (U2/R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).

Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом

Q1/Q2 = R2/R1.

? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?

? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если: а) подключить только первый проводник? б) подключить только второй проводник? в) подключить оба проводника последовательно?

г) подключить оба проводника параллельно? д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?

Поставим опыт Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б).

Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном — другая.

? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.

? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.

? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?

2. Мощность тока

Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:

P = A/t. (4)

Единица мощности — ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).

? 7. Докажите, что мощность тока можно выразить формулами

P = IU, (5) P = I2R, (6) P = U2/R. (7)

Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.

? 8. Какой из формул (5) — (7) удобнее пользоваться при сравнении мощности тока: а) в последовательно соединенных проводниках? б) в параллельно соединенных проводниках?

? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников

P1/P2 = R1/R2,

А при параллельном

P1/P2 = R2/R1.

? 10. Сопротивление первого резистора 100 Ом, а второго — 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением: а) последовательно? б) параллельно?

в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В? г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?

Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника — примерно 2 кВт.

Обычно мощность прибора указывают на самом приборе.

Ниже приведены примерные значения мощности некоторых приборов. Лампа карманного фонарика: около 1 Вт Лампы осветительные энергосберегающие: 9-20 Вт

Лампы накаливания осветительные: 25-150 Вт Электронагреватель: 200-1000 Вт Электрочайник: до 2000 Вт

Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.

? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт. а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?

б) Чему равна при этом сила тока?

? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй — «100 Вт». Это — значения мощности ламп в рабочем режиме (при раскаленной нити накала).

а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В? б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?

? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно.

Напряжение в сети равно U. а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна? б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)?

Чему она при этом будет равна? в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?

Дополнительные вопросы и задания

14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь. а) На каком резисторе напряжение самое большое? самое маленькое? б) В каком резисторе сила тока самая большая? самая маленькая?

в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты? г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)? д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?

Урок физики 8 класс. Тема: «Закон Джоуля

Урок №_______ Дата________

Тема: Тепловое действие электрического тока. Закон Джоуля–Ленца.

Цели урока:

  • объяснить явление нагревания проводников электрическим током;

  • установить зависимость выделяющейся при этом тепловой энергии от параметров электрической цепи;

  • сформулировать закон Джоуля – Ленца;

  • формировать умение применять этот закон для решения качественных и количественных задач.

Тип урока: комбинированный.

Задачи урока.

Образовательные

    • опираясь на знания, полученные ранее, установить связь выделяющейся тепловой энергии на проводнике с силой тока и сопротивлением проводника;

    • опираясь на эксперимент, определить от каких величин зависит количество теплоты, выделяющейся на проводнике с током;

    • сформулировать закон Джоуля – Ленца;

    • формировать умение применять этот закон для решения задач.

Воспитательные:

    • содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира;

    • формировать умение работать в парах, уважительно относиться друг к другу, прислушиваться к мнению товарищей;

    • побуждать использовать полученные на уроках знания в повседневной жизни.

Развивающие:

    • показать учащимся различные пути и методы получения знаний об окружающем нас мире;

    • формировать умение обобщать и анализировать опытный материал,  самостоятельно делать выводы.

Оборудование:

компьютер, презентация к уроку, источник тока, амперметр, вольтметр, низковольтная лампа на подставке, ключ, соединительные провода.

Ход урока:

  1. Организационный момент.

Приветствие учителя.

II. Активизация знаний.

Вспомним некоторые вопросы, которые потребуются, чтобы изучить новую тему:

1.Что называют электрическим током? (Упорядоченное движение заряженных частиц)

2. Какие действия тока вам известны? (Тепловое, электрическое, магнитное, химическое)

3. Какие три величины связывают закон Ома? (I, U, R; сила тока, напряжение, сопротивление.).

4. Как формулируется закон Ома? (Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.)

Слайд 1

5. Какова зависимость силы тока от напряжения? ( Прямая зависимость. Во сколько раз увеличивается напряжение в цепи, во столько же раз увеличивается и сила тока)

6. Что представляет собой график этой зависимости? (прямая)

7. Какова зависимость силы тока от сопротивления? ( Обратная зависимость. Во сколько раз увеличивается сопротивление в цепи, во столько же раз уменьшается сила тока )

8. Что представляет собой график этой зависимости? (гипербола)

9. От каких величин зависит сопротивление? (длины проводника, площади поперечного сечения, рода вещества) Рассмотреть как зависит сопротивление от длины проводника, площади поперечного сечения

III. Новый материал.

ТБ

  1. Собрать цепь по схеме. (Источник тока, ключ, амперметр, реостат, лампочка).

Почему лампочка горит?

Почему это происходит?

(Основная часть лампы — спираль из тонкой вольфрамовой проволоки, она нагревается до 3000 0С, при такой температуре достигает белого накала и светится ярким светом)

Разомкнув ключ потрогать лампочку.

  • Что произошло с лампочкой? (Нагрелась)

  • Какое действие электрического тока вы наблюдаете? (Тепловое)

Попытаемся сформулировать тему урока….

Слайд 2 Итак, мы имеем дело с тепловым действием тока, следовательно,  тема сегодняшнего урока «Тепловое действие электрического тока» (Записать тему урока в тетрадь)

Каких целей мы должны достигнуть?

УЗ

  1. Причина нагревания проводника.

  2. От каких величин зависит нагревание проводника.

  3. Какому закону подчиняется.

  4. Практическое применение.

  1. Слайд 3. Какова причина нагревания проводника электрическим током?

  2. (Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою кинетическую энергию, следовательно увеличивается внутренняя энергия проводника, и следовательно его температура. А это и значит что, проводник нагревается)

Электрическая энергия превращается во внутреннюю по закону сохранения.

В неподвижных металлических проводниках вся работа электрического тока идёт на увеличение внутренней энергии.

  • Замкнуть цепь и изменить сопротивление, что наблюдаем?

  • Что произошло с силой тока?

  • Как накал лампы зависит от силы тока? (чем больше сила тока, тем ярче горит лампочка, а значит больше тепла она выделяет)

Но не только сила тока отвечает за то, что выделяется большое количество теплоты, посмотрим эксперимент. ДЕМОНСТРАЦИЯ

Сайт (Были взяты 3 проводника одинаковой длины и площади поперечного сечения, но из разного вещества. Все проводники соединены между собой последовательно. Следовательно, сила тока на всех участках цепи одинаковая. Но при включении в цепь все 3 проводника выделили разное количество теплоты.

ВЫВОД: количество теплоты зависит не только от силы тока, но и от того, из какого вещества изготовлен проводник. Точнее — от электрического сопротивления проводника (R)

ВЫВОД: Количество теплоты, которое выделяется при протекании электрического тока по проводнику, зависит от силы тока в этом проводнике и от его электрического сопротивления.

Слайд 4.

  1. Закон, определяющий тепловое действие тока – ЗАКОН ДЖОУЛЯ-ЛЕНЦА

Автобиографическая справка

Рассказать о английском физике Джеймсе Прескотте Джоулье (1818-1889 гг.)

и русском физике Ленц Эмилий Христианович (1804 – 1865)

Слайд 5

Записать закон Джоуля-Ленца

Q=I2Rt

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

Q – количество теплоты — [Дж]

I – сила тока – [A]

R – сопротивление – [Ом]

t – время – [c]

Используя закон Ома можно получить различные виды этого закона:

Q=I2Rt

Формулу, которую мы получили, в точности соответствует формуле, которую мы изучили ранее. Это формула работы электрического тока

ВЫВОД: Количество теплоты электрического тока равно работе электрического тока. Q=A

  1. Практическое применение

Ребята, скажите, а где используют явление нагревание проводника эл. током, в жизни. В каких бытовых приборах? (утюг, фен, эл. чайник, плойка для завивки волос, кипятильник, паяльник).

Самым важным применением теплового действия тока является электрическое освещение.

Короткое замыкание.

IV. Первичное закрепление.

№ 1450

№1453

№ 1456

  1. Итог работы

  1. Домашнее задание: § 53, 55, 56 вопр., выуч. опред., № 1413,1418

Вариант 1
  1. Чему равно количество теплоты, выделяемое неподвижным проводником, по которому протекает электрический ток?

  1. Внутренней энергии проводника

  2. Работе электрического тока

  3. Мощности электрического тока

с. Среди ответов нет верного

2. Какова формула закона Джоуля-Ленца?

  1. P=UI

  2. Q=cm(t2-t1)

  3. U=IR

Q=I2Rt

Отрезки одного и того же медного провода разной длины (1,5 м, 6 м, 3 м и 10 м) подключены к источнику тока последовательно. Какой из них выделяет наибольшее количество тепла? Какой наименьшее?

  1. Длиной 10 м; 3 м

  2. Длиной 10 м; 1,5 м

  3. Длиной 6 м; 3 м

Длиной 6 м; 1,5 м

Вариант 2

В цепь включены последовательно три проволоки одинакового сечения и длины: 1) медная, 2) железная, 3) никелиновая. Какая из них нагреется меньше других?

А. 1. Б. 2. В. 3. Г. Все проволоки нагреются одинаково.

№ 1832 (Лукашик)

Определите кол-во теплоты, выделяемое эл-м чайником за 15 мин, если он при включении в сеть с напряжением 220 В потребляет ток 2 А?

t = 15 мин = 900 с Q = I2Rt; R = U/I

U = 220 В Q = I2Ut/I = IUt

I = 2 А Q = 2 А ∙ 220 В ∙ 900 с = 396000 Дж = 396 кДж

Q — ?

6. № 1833 (Лукашик)

Сколько энергии выделит за 10 мин спираль сопротивлением 15 Ом питаемая током 2 А?

t = 10 мин = 600 с Q = I2Rt;

R = 15 Ом Q = (2 А)2 ∙ 15 Ом ∙ 600 с = 3600 Дж

I = 2 А 36000 Дж ∙ 0,24 ≈ 9000 кал ≈ 9 ккал

Q — ?

В конце урока собрать тетради.

Литература:

1. «Физика 6 -7 кл.» А. В. Перышкин. М. «Просвещение — 80»

2. А. В. Перышкин «Курс физики. Часть 3». «Просвещение» М – 70 г.

3. «Преподавание физики в 6 – 7 кл. средней школы». «Просвещение» М – 79 г.

4. В.И.Лукашик «Сборник вопросов и задач по физике». «Просвещение» М – 70 г.

Задание  для 3 ряда: (исследователи)

Карточки с заданием:эл. цепь, состоящая из нескольких последовательно соединенных проводников различным сопротивлением (медная, стальная, никелиновая).

 По формуле Q=I2Rt, если R= pL/S, сделать вывод как нагреваются проводники, если длина проводника Lи площадь поперечного сеченияSодинаковы. Вывод: чем больше удельное сопротивление проводника, тем сильнее он нагревается.

 

 

 

 

 

 

 

 

 

 

Как определить степень нагревания  в зависимости от p?

 

 

__________________________________________________________________

 

На доске вывешиваются на листах Аи с помощью магнитов  выводы каждых групп и показ слайдов Слайды 6,7 и 8.

 

 

Выводы:

  1. Q=I2Rt

  2. Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

  3. Нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводников, тем больше он нагревается.

 

К этому же выводу пришли, независимо друг от друга, анг. учен. Джеймс Джоуль и русский ученый Эмиль Христианович  Ленц. Поэтому закон называется Закон Джоуля – Ленца.  

 Оформить доску.

Устали? Давайте проведем физминутку.

 

Ребята встаньте возле своих парт, давайте потрем ладошки. Что мы чувствуем? Почему они нагреваются?

(Ребята рассуждают)

 

 

2) Закрепление изученного материала:(ребята работают по карточке, решение задачи)  используя закон – Джоуля – Ленца:

 

Определите количество теплоты выделяемое проводником, сопротивление которого 20 Ом, в течении 3 мин. Сила тока в проводнике 5А.

Формулой Q = I2Rt удобно

пользоваться при расчете количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же (I = I1 = I2). Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению. Т.е. чем больше R, тем больше Q и наоборот. Если соединить три проволоки одинаковых размеров медную, никелиновую и железную – последовательно, то наибольшее кол-во теплоты будет выд-ся в никелиновой, так как удельное сопротивление ее наибольшее, она сильнее и нагревается. Теперь рассмотрим параллельное соединение.

На основании закона Ома I = U/R, подставляя значение тока в закон Джоуля-Ленца Q = I2Rt, получим новое выражение для закона Джоуля-Ленца.

(*) Q = U2t/R, т. е.

Q = U2/RRt = tU2/R

При параллельном соединении проводников ток в них различен, но напряжение на концах цепи одно и то же. И поэтому расчет кол-ва теплоты при таком соединении удобнее вести по формуле (*). Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется кол-во теплоты, обратно пропорциональное сопротивлению, то есть чем больше R, тем меньше Q.

. Спираль эл-ой плитки укоротили. Изменится ли от этого и как накал плитки, если ее включить в сеть эл. тока? (накал будет больше)

2. Полюсы элемента соединены последовательно с двумя проволоками – медной и железной – одинаковой длины и одинакового сечения. Какая из проволок при замыкании цепи больше нагреется? (железная, т.к. ρж = 0,1 Ом∙мм2/м, а ρм = 0,017 Ом∙мм2/м, а 0,1 > 0,017, а при послед-ом соединении – чем больше R, тем больше Q)

3. В каком из трех сопротивлений при протекании тока выделяется большее кол-во теплоты?

Соединение параллельное. R1,2 = 30 Ом, а R3 = 60 Ом, значит в

в первом сопротивлении R1 выделяется большего всего кол-во

теплоты, так как чем больше R, тем меньше Q, а 10 < 20 и

10 < 60.

4. Как формулируется закон Джоуля-Ленца? (Q = I2Rt)

  1. Закрепление

(Слайд 10)

1) В чем проявляется тепловое действие тока?

(В нагревании проводника)

2) Как можно объяснить нагревание проводника с током?

(Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою энергию)

3) Какие превращения энергии происходят при протекании тока через проводник?

(Электрическая энергия превращается во внутреннюю)

4) Как по закону Джоуля – Ленца рассчитать количество теплоты, выделяемое в проводнике?

(Q=I²Rt)

(Слайд 11)

  1. Решение задач

(Слайд 12)

Определить количество теплоты, выделяемое проводником, сопротивление которого 35 Ом, в течении 5 минут. Сила тока в проводнике 5 А.

  1. Итог работы

  2. Домашнее задание

§53 вопр., выуч.опред., упр. 27(1),

Свободные электроны в металлах и ионы в электролитах, двигаясь под действием эл-го поля, взаимодействуют с молекулами и атомами вещ-ва проводника и передают им часть энергии, которую они приобрели в результате действия на них электрического поля. Так как средняя кинетическая энергия увеличивается, то увеличивается и внутренняя энергия проводника, от этого и происходит нагревание.

Мерой изменения внутренней энергии тела является количество выделяющейся теплоты. Значит, количество теплоты, выделяющейся в проводнике, равно работе тока. Мы знаем, что работу эл. тока рассчитывают по формуле: A = IUt, где……… Обозначим кол-во теплоты буквой Q. Следовательно Q = A или Q = UIt. Q в этой формуле выражается как и работа в Дж. Пользуясь законом Ома, можно выразить Q, выделяющееся на участке цепи при работе тока, через силу тока, сопротивление участка цепи и время. Для этого заменим в формуле Q = UIt напряжение U через силу тока I и сопротивление участка цепи R:

U = RI; Q = IRIt => Q = I2Rt

Количество теплоты, выделяющееся в проводнике, прямо пропорционально квадрату тока, проходящего по проводнику, сопротивлению проводника и времени в течении которого поддерживается постоянный ток в проводнике. Этот закон носит название закон Джоуля-Ленца, его еще можно выразить формулой: Q = kI2Rt, где k – тепловой эквивалент работы. Численное значение этой величины зависит от выбора единиц, в которых производится измерение остальных величин, входящих в формулу.

Если количество теплоты Q измеряется в калориях, ток в амперах, сопротивление в Омах, время в секундах, то k = 0,24. Это значит, что ток в 1 А выделяет в проводнике, имеющем сопротивление 10 м, за 1 секунду количество теплоты, равное 0,24 кал. Таким образом, количество теплоты в калориях, рассчитывается по формуле: Q = 0,24I2Rt. В системе единиц СИ количество теплоты как и работа измеряется в Джоулях. Поэтому коэффициент пропорциональности k = 1. В этой системе (которой мы будем пользоваться и дальше) формула закона Джоуля-Ленца имеет вид: Q = I2Rt.

На основании закона Джоуля-Ленца можно установить, что 1 кал = 4,2 Дж или 1 Дж = 0,24 кал. Для этого нужно количество теплоты, полученное водой при нагревании ее в калориметре эл-м током, измерить в калориях, а затраченную при этом энергию тока – в джоулях, и найденные результаты сравнить.

схему повесить на доске.

На этом рисунке показана схема установки, с

помощью которой можно на опыте проверить

закон Джоуля-Ленца. По проволочной спиральке

С, погруженной в жидкость, налитую в калори –

метр, пропускается некоторое время ток. Затем

подсчитывается количество теплоты, выделив –

шейся в калориметре. Сопротивление спиральки

известно заранее, ток измеряется амперметром,

время – секундомером. Меняя ток в цепи и беря

различные спиральки, можно проверить закон Джоуля-Ленца. Формулой Q = I2Rt удобно

пользоваться при расчете количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же (I = I1 = I2). Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению. Т.е. чем больше R, тем больше Q и наоборот. Если соединить три проволоки одинаковых размеров медную, никелиновую и железную – последовательно, то наибольшее кол-во теплоты будет выд-ся в никелиновой, так как удельное сопротивление ее наибольшее, она сильнее и нагревается. Теперь рассмотрим параллельное соединение.

На основании закона Ома I = U/R, подставляя значение тока в закон Джоуля-Ленца Q = I2Rt, получим новое выражение для закона Джоуля-Ленца.

(*) Q = U2t/R, т. е.

Q = U2/RRt = tU2/R

При параллельном соединении проводников ток в них различен, но напряжение на концах цепи одно и то же. И поэтому расчет кол-ва теплоты при таком соединении удобнее вести по формуле (*). Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется кол-во теплоты, обратно пропорциональное сопротивлению, то есть чем больше R, тем меньше Q.

Если соединить три одинаковой толщины проволоки – медную, железную и никелиновую – параллельно между собой и пропустить через них ток, то наибольшее кол-во теплоты выд-ся в медной проволоке, она и нагреется сильнее остальных.

4. Д/з § 53 вопросы после §-а.

5. Вопросы:

1. Спираль эл-ой плитки укоротили. Изменится ли от этого и как накал плитки, если ее включить в сеть эл. тока? (накал будет больше)

2. Полюсы элемента соединены последовательно с двумя проволоками – медной и железной – одинаковой длины и одинакового сечения. Какая из проволок при замыкании цепи больше нагреется? (железная, т.к. ρж = 0,1 Ом∙мм2/м, а ρм = 0,017 Ом∙мм2/м, а 0,1 > 0,017, а при послед-ом соединении – чем больше R, тем больше Q)

3. В каком из трех сопротивлений при протекании тока выделяется большее кол-во теплоты?

Соединение параллельное. R1,2 = 30 Ом, а R3 = 60 Ом, значит в

в первом сопротивлении R1 выделяется большего всего кол-во

теплоты, так как чем больше R, тем меньше Q, а 10 < 20 и

10 < 60.

4. Как формулируется закон Джоуля-Ленца? (Q = I2Rt)

5.

Электрическая энергия равна работе тока: A=IUT. Проводник неподвижен (механическая энергия не совершается), поэтому вся работа тока идет на увеличение внутренней энергии проводника.

Итак, при протекании тока в неподвижном проводнике выполняется закон сохранения и превращения энергии, и вся работа тока идет на увеличение внутренней энергии проводника. Проводник нагревается из-за взаимодействия свободных электронов с ионами вещества проводника.

2. Закон Джоуля – Ленца.

Нагретый проводник отдает тепло окружающим телам. Количество теплоты, выделяемое в проводнике с током, равно изменению его внутренней энергии, а изменение внутренней энергии равно работе тока.

Можем записать Q = A

Q – количество теплоты, выделяемое в проводнике с током, измеряется в Джоулях.

Q=UIt

Из закона Ома U=IR Q=IRIt

Q=I²Rt

* Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

К этому выводу, но на основании опытов, впервые независимо друг от друга пришли английский ученый Джеймс Джоуль и русский ученый-электротехник Эмилий Христианович Ленц. Поэтому данный вывод носит название закона Джоуля – Ленца.

На основании законов Ома и Джоуля – Ленца получим формулу

Q=U²t/R

Итак, в неподвижном проводнике количество теплоты, выделившееся в проводнике, равно расходу электрической энергии.

IV. Закрепление.

1) В чем проявляется тепловое действие тока?

(В нагревании проводника)

2) Как можно объяснить нагревание проводника с током?

(Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою энергию)

3) Какие превращения энергии происходят при протекании тока через проводник?

(Электрическая энергия превращается во внутреннюю)

4) Как по закону Джоуля – Ленца рассчитать количество теплоты, выделяемое в проводнике?

(Q=I²Rt)

V. Решение задач.

Задача № 1

Известно, что безопасным для человека является постоянный ток 100 мкА. Какое количество теплоты выделится за 1 мин в теле человека при прохождении тока от конца одной руки до конца другой руки (при сухой коже), если сопротивление этого участка равно 15000 Ом?

Дано: СИ: Решение:

I = 100 мкА 0,0001 А Q=I²Rt

t = 1 мин 60 с Q=(0,0001 А)² 15000 Ом 60 с=0,0009 Дж

R = 15000 Ом

Q- ? Ответ: Q =0,0009 Дж

Протекание через тело человека тока большой силы вызывает нагрев и ожог участков тела, разложение крови, непроизвольное сокращение мышц, смерть.

Задача № 2 Ученик к доске

Чему будет равен расход электроэнергии за 10 мин в проволочной спирали сопротивлением 2,5 кОм, если сила тока в ней 2 А?

Дано: СИ: Решение:

I = 2 А W=Q=I²Rt

t = 10 мин 600 с W=(2А)² 2500 Ом 600 с=6000000Дж

R = 2,5 кОм 2500 А

W — ? Ответ: W=6 МДж

VI. Обучающая проверочная работа по уровневым карточкам.

Учащиеся самостоятельно выбирают уровень.

Начальный уровень +

Средний уровень «3»

Достаточный уровень «4»

Высокий уровень «5»

I вариант

Начальный уровень

1. В чем проявляется тепловое действие тока?

2* Какое количество теплоты выделиться в электрической лампе в течение t=10 с, если лампа сопротивлением R=3 Ом потребляет ток силой I=1 А ?

Средний уровень

3. Определите количество теплоты, выделяемое в проводнике сопротивлением 50 Ом при силе тока в нем 0,5 А, за время 20 с?

4*.В течение 1 мин в проводнике выделяется количество теплоты 500 Дж при силе тока 2 А. Чему равно сопротивление проводника?

Достаточный уровень

5. Два резистора сопротивлением 6 Ом и 4 Ом включены в цепь последовательно. Сколько электроэнергии будет израсходовано в этой цепи за 2 мин, если сила тока в ней 2 А.

*6. Сколько энергии израсходует электрическая лампа мощностью 50 Вт за месяц (30 дней), если она горит 8 ч в сутки?

Высокий уровень

7. Определите количество теплоты, выделяемое в константановом проводнике длиной 1 м и площадью поперечного сечения 0,2 мм², за 0,5 ч при силе тока 0,2 А.

Сколько времени будут нагреваться 1,5 л воды от 20 до 100 ºC в электрическом чайнике мощностью 600 Вт, если КПД его 80%.

II вариант

Начальный уровень

1. Как можно объяснить нагревание проводника электрическим током?

2* Какое количество теплоты выделяет за время t=5 с проводник с сопротивлением R=25 Ом, если сила тока I=2 А?

Средний уровень

3. Определите количество теплоты, выделяемое в проводнике сопротивлением 25 Ом с током при силе тока в нем 0,2 А, за время 40 с?

4*. За 1 ч в проводнике выделяется 7200 Дж теплоты. Сопротивление проводника равно 4 Ом. Определите силу тока в проводнике.

Достаточный уровень

5. Участок цепи состоит из двух резисторов сопротивлением 8 Ом каждый, соединенных параллельно. Сила тока в цепи 0,3 А.Какое количество теплоты выделится в участке за 1 мин?

* 6. Сколько электроэнергии потребляет электрический утюг за 4 ч работы, если он включен в сеть напряжением 220 В при силе тока 4,55 А?

Высокий уровень

7. Определите количество теплоты, выделяемое в никелиновом проводнике длиной 2 м и площадью поперечного сечения 0,5 мм², за 1,5 ч при силе тока 0,25 А.

8*. Башенный кран равномерно поднимает груз массой 0,6 т со скоростью 20 м/мин. Мощность, развиваемая двигателем, равна 7,22 кВт. Определите КПД крана.

VII. Итак, подведем итоги.

Мы знаем, что тепловое действие тока объясняется взаимодействием свободных частиц, с ионами или атомами вещества.

В неподвижном проводнике работа тока равна количеству теплоты, выделяемому в проводнике с током.

Мы вывели закон Ома, который позволяет рассчитать количество теплоты и научились применять закон Ома при решении задач.

VIII. Домашнее задание.

§ 53 прочитать, ответить на вопросы, выучить формулы и закон Джоуля – Ленца.

Упражнение 27 (№ 1, № 2 — устно), № 3 – по желанию устно.

Оценки за урок будут выставлены на следующем уроке, причем только положительные и удовлетворительные.

Закон джоуля ленца. Закон джоуля-ленца Количество теплоты через сопротивление и напряжение

Содержание:

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I — , R — сопротивление проводника, t — период времени. Величина «к» представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока — , сопротивление — в Омах, а время — в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина «к», применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах — одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля — Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Задача по теме «Законы постоянного тока». Задача может быть интересна учащимся 10-х классов и выпускникам для подготовки к ЕГЭ. Кстати, подобного рода задача была на ЕГЭ в части 1 с несколько иным вопросом (необходимо было найти отношение количеств теплоты, выделяющихся на резисторах).

На каком из резисторов выделится наибольшее (наименьшее) количество теплоты? R1 = R4 = 4 Ом, R2 = 3 Ом, R3 = 2Ом. Дать решение. Чтобы ответить на вопрос задачи, необходимо сравнить количество теплоты, выделяющееся на каждом их резисторов. Для этого воспользуемся формулой закона Джоуля — Ленца. То есть основной задачей будет являться определение силы тока (или сравнение), протекающей через каждый резистор.

Согласно законам последовательного соединения, сила тока, протекающая через резисторы R1 и R2, и R3 и R4, одинаковая.Чтобы определить силу тока в верхней и в нижней ветвях, воспользуемся законом параллельного соединения, согласно которому, напряжение на этих ветвях одинаковое.Расписывая напряжение на нижней и верхней ветвях по закону Ома для участка цепи, имеем: Подставляя численные значения сопротивлений резисторов, получаем:То есть получаем соотношение между токами, протекающими в верхней и в нижней ветви:Определив силу тока через каждый из этих резисторов, определяем количество теплоты, выделяющееся на каждом из резисторов.Сравнивая числовые коэффициенты, приходим к выводу, что максимальное количество теплоты выделится на четвёртом резисторе, а минимальное количество теплоты — на втором.

Вы можете оставить комментарий, или поставить трэкбек со своего сайта.

Написать комментарий

fizika-doma.ru

Тепловая мощность — формула расчета

С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.

Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.

Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.

Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь — это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Для чего нужен тепловой расчет?

Как умудрялись обходиться без тепловых расчётов строители прошлого?

Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены — потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше — ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.

Полный расчет теплого водяного пола приведен в этом примере.

Знаете ли вы, что количество секций радиаторов отопления не берется «с потолка»? Слишком малое их количество приведет к тому, что в доме будет холодно, а чрезмерно больше создаст жару и приведет к чрезмерной сухости воздуха. По ссылке http://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/kolichestva-sekcij-radiatorov.html приведены примеры правильного расчета радиаторов.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» — разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» — коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.
Примерные величины коэффициента рассеивания для упрощенного расчёта
  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Более точный расчет можно произвести, высчитывая точные размеры отличающихся по свойствам поверхностей дома в м2 (окна, двери и т. д.), производя расчёт для них отдельно и складывая получившиеся показатели.

Пример расчета тепловой мощности

Возьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.

Формула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 — стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

Отопительную систему частного дома нужно устраивать с учетом экономии средств на энергоносители. Расчет системы отопления частного дома, а также рекомендации по выбору котлов и радиаторов — читайте внимательно.

Чем и как утеплить деревянный дом изнутри, вы узнаете, прочитав эту информацию. Выбор утеплителя и технология утепления.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич — 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.
Подставляем данные в формулу (R= H/ К.Т.):
  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.
Можно обратить внимание, насколько большая разница получилась в первом и втором случае, хотя объём домов и температура за окном в первом и втором случае были совершенно одинаковыми.

Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна).

Заключение

Приведённые формулы и примеры показываю, что при теплотехнических расчётах очень важно учитывать как можно больше факторов, влияющих на теплопотери. Сюда входит и вентиляция, и площадь окон, степень их утомлённости и т. д.

А подход, когда на 10 м2 дома берётся 1 кВт мощности котла – слишком приблизительный, чтобы всерьёз опираться на него.

Видео на тему

microklimat.pro

13 Тепловой расчет

10. Тепловой расчет.

Конструкция ИМС должна быть такой, чтобы теплота, выделяющаяся при ее функционировании, не приводила в наиболее неблагоприятных условиях эксплуатации к отказам элементов в результате перегрева. К основным тепловыделяющим элементам следует отнести, прежде всего, резисторы, активные элементы и компоненты. Мощности, рассеиваемые конденсаторами и индуктивностями, невелики. Пленочная коммутация ИМС, благодаря малому электрическому сопротивлению и высокой теплопроводности металлических пленок, способствует отводу теплоты от наиболее нагретых элементов и выравниванию температуры платы ГИС и кристалла полупроводниковой ИМС.

Рис. 10.1. Вариант крепления платы на корпус.

Тепловой расчёт резисторов.

Тепловое сопротивление резистора вычислим по формуле (10.1)

п = 0.03 [Вт/см °С] — коэффициент теплопроводности материала подложки;

δп = 0.06 см – толщина платы.

RT=0.06/0.03=2 см2∙°С/Вт

Рассчитаем температуру пленочных резисторов по формуле

PR – мощность, выделяемая на резисторе;

SR – площадь, занимаемая резистором на плате;

P0 – суммарная мощность, выделяемая всеми компонентами микросхемы;

Sп – площадь платы.

PR = 0.43 мВт – мощность выделяемая на резисторе;

SR = 0.426мм2 – площадь занимаемая резистором;

Sn = 80 мм2 – площадь платы;

RT = 2 см2∙°С/Вт – тепловое сопротивление резистора;

Токр.ср = 40С – максимальная температура окружающей среды;

T = 125С = максимально допустимая температура пленочных резисторов.

TR=(0.43∙10-3∙200)/0.426+(24.82∙10-3∙200)/80+40=40.26 С

Температура остальных резисторов рассчитывается аналогично с помощью программы MathCad. Результаты расчётов представлены в Таблице10.1

Таблица. 10.1

Из таблицы видно, что для всех пленочных резисторов заданный тепловой режим соблюдается.

Тепловой расчет для навесного элемента.

Тепловое сопротивление будет вычисляться по формуле:

k = 0.003 [Вт/см °С] — коэффициент теплопроводности клея;

δк1 = 0.01 см – толщина клея.

Rт=(0.06/0.03)+(0.01/0.003)=5.33 см2∙°С/Вт

Рассчитаем температуру навесного элемента по формуле:

Расчет транзистор КТ202А, VT14

Pнэ = 2,6 мВт – мощность выделяемая на транзисторе;

Sнэ = 0,49 мм2 – площадь занимаемая транзистором;

P0 = 24.82 мВт – мощность выделяемая всеми компонентами платы;

Sn = 80 мм2 – площадь платы;

Т0С = 40С – максимальная температура окружающей среды;

T = 85С = максимально допустимая температура транзистора.

Tнэ=(2.6∙10-3∙533)/0.49+(24.82∙10-3∙533)/80+40=42.99С

Следовательно заданный тепловой режим соблюдается.

Температура остальных транзисторов рассчитывается аналогично с помощью программы MathCad. Результаты расчётов представлены в Таблице10.2

Таблица 10.2

Из таблицы видно, что для всех транзисторов заданный тепловой режим соблюдается. Следовательно и тепловые условия для всей схемы выполняются.

studfiles.net

Тепловая мощность электрического тока и ее практическое применение

Причина нагревания проводника кроется в том, что энергия движущихся в нем электронов (иными словами, энергия тока) при последовательном столкновении частиц с ионами молекулярной решётки металлического элемента преобразуется в тёплый тип энергии, или Q, так образуется понятие «тепловая мощность».

Работу тока измеряют с помощью международной системы единиц СИ, применяя к ней джоули (Дж), мощность тока определяют как «ватт» (Вт). Отступая от системы на практике, могут применять в том числе и внесистемные единицы, измеряющие работу тока. Среди них ватт-час (Вт × ч), киловатт-час (сокращённо кВт × ч). Например, 1 Вт × ч обозначает работу тока с удельной мощностью 1 ватт и длительностью времени на один час.

Если электроны движутся по неподвижному проводнику из металла, в этом случае вся полезная работа вырабатываемого тока распределяется на нагревание металлической конструкции, и, исходя из положений закона сохранения энергии, это можно описать формулой Q=A=IUt=I2Rt=(U2/R)*t. Такие соотношения с точностью выражают известный закон Джоуля-Ленца. Исторически он впервые был определён опытным путём учёным Д. Джоулем в середине 19-го века, и в то же время независимо от него ещё одним учёным — Э.Ленцем. Практическое применение тепловая мощность нашла в техническом исполнении с изобретения в 1873 году русским инженером А. Ладыгиным обыкновенной лампы накаливании.

Тепловая мощность тока задействуется в целом ряде электрических приборов и промышленных установок, а именно, в тепловых измерительных приборах, нагревательного типа электрических печках, электросварочной и инвенторной аппаратуре, очень распространены бытовые приборы на электрическом нагревательном эффекте – кипятильники, паяльники, чайники, утюги.

Находит себя тепловой эффект и в пищевой промышленности. С высокой долей использования применяется возможность электроконтактного нагрева, что гарантирует тепловая мощность. Он обуславливается тем, что ток и его тепловая мощность, оказывая влияние на пищевой продукт, который обладает определённой степенью сопротивления, вызывает в нем равномерное разогревание. Можно привести в пример то, как производятся колбасные изделия: через специальный дозатор мясной фарш поступает в металлические формы, стенки которых одновременно служат электродами. Здесь обеспечивается постоянная равномерность нагрева по всей площади и объёму продукта, поддерживается заданная температура, сохраняется оптимальная биологическая ценность пищевого продукта, вместе с этими факторами длительность технологических работ и расход энергии остаются наименьшими.

Удельная тепловая мощность электрического тока (ω), иными словами — количество теплоты, что выделяется в единице объёма за определённую единицу времени, рассчитывается следующим образом. Элементарный цилиндрический объём проводника (dV), с поперечным проводниковым сечением dS, длиной dl, параллельной направлению тока, и сопротивлением составляют уравнения R=p(dl/dS), dV=dSdl.

Согласно определениям закона Джоуля-Ленца, за отведённое время (dt) во взятом нами объёме выделится уровень теплоты, равный dQ=I2Rdt=p(dl/dS)(jdS)2dt=pj2dVdt. В таком случае ω=(dQ)/(dVdt)=pj2 и, применяя здесь закон Ома для установления плотности тока j=γE и соотношение p=1/γ, мы сразу получаем выражение ω=jE= γE2. Оно в дифференциальной форме даёт понятие о законе Джоуля-Ленца.

fb.ru

Страничка эмбеддера » Тепловые расчеты

Все электронные компоненты выделяют тепло, поэтому умение рассчитывать радиаторы так, чтобы не пролетать в прикидках на пару порядков очень полезно любому электронщику.

Тепловые расчеты очень просты и имеют очень много общего с расчетами электронных схем. Вот, посмотрите на обычную задачу теплового расчета, с которой я только что столкнулся

Задача

Нужно выбрать радиатор для 5-вольтового линейного стабилизатора, который питается от 12вольт максимум и выдает 0.5А. Максимальная выделяемая мощность получается (12-5)*0.5 = 3.5Вт

Погружение в теорию

Для того, чтобы не плодить сущностей, люди почесали тыковку и поняли, что тепло очень похоже на электрической ток, и для тепловых расчетов можно использовать обычный закон Ома, только

    Напряжение (U) заменяется температурой (T)

    Ток (I) заменяется мощностью (P)

    Сопротивление заменяется тепловым сопротивлением. Обычное сопротивление имеет размерность Вольт/Ампер, а тепловое – °C/Ватт

В итоге, закон Ома заменяется на свой тепловой аналог:

Небольшой замечание – для того, чтобы обозначить, что имеется ввиду тепловое (а не электрическое) сопротивление, к букве R, дописывают букву тэта:на клавиатуре у меня такой буквы нет, а копировать из таблицы символов лень, поэтому я буду пользоваться просто буквой R.

Продолжаем

Тепло выделяется в кристалле стабилизатора, а наша цель – не допустить его перегрева (не допустить перегрева именно кристалла, а не корпуса, это важно!).

До какой температуры можно нагревать кристалл, написано в даташите:

Обычно, предельную температуру кристалла называют Tj (j = junction = переход – термочувствительные внутренности микросхем в основном состоят из pn переходов. Можно считать, что температура переходов равна температуре кристалла)

Без радиатора

Тепловая схема выглядит очень просто:

Специально для случаев использования корпуса без радиатора, в даташитах пишут тепловое сопротивление кристалл-атмосфера (Rj-a) (что такое j вы уже в курсе, a = ambient = окружающая среда)

Заметьте, что температура “земли” не нулевая, а равняется температуре окружающего воздуха (Ta). Температура воздуха зависит от того, в каких условиях находится радиатор Если стоит на открытом воздухе, то можно положить Ta = 40 °C, а вот, если в закрытой коробке, то температура может быть значительно выше!

Записываем тепловой закон Ома: Tj = P*Rj-a + Ta. Подставляем P = 3.5, Rj-a = 65, получаем Tj = 227.5 + 40 = 267.5 °C. Многовато, однако!

Цепляем радиатор

Тепловая схема нашего примера со стабилизатором на радиаторе становится вот такой:

  • Rj-c – сопротивление от кристалла до теплоотвода корпуса (c = case = корпус). Дается в даташите. В нашем случае – 5 °C/Вт – из даташита
  • Rc-r – сопротивление корпус-радиатор. Тут не все так просто. Это сопротивление зависит от того, что находится между корпусом и радиатором. К примеру, силиконовая прокладка имеет коэффициент теплопроводности 1-2 Вт/(м*°C), а паста КПТ-8 – 0.75Вт/(м*°C). Тепловое сопротивление можно получить из коэффициента теплопроводности по формуле:

    R = толщина прокладки/(коэффициент теплопроводности * площадь одной стороны прокладки)

    Часто Rc-r вообще можно игнорировать. К примеру, в нашем случае (используем корпус TO220, с пастой КПТ-8, средняя глубина пасты, взятая с потолка – 0.05мм). Итого, Rc-r = 0.5 °C/Вт. При мощности 3.5вт, разница температур корпуса стабилизатора и радиатора — 1.75градуса. Это – не много. Для нашего примера, возьмем Rc-r = 2 °C/Вт

  • Rr-a – тепловое сопротивление между радиатором и атмосферой. Определяется геометрией радиатора, наличием обдува, и кучей других факторов. Этот параметр намного проще измерить, чем посчитать (см в конце статьи). Для примера — Rr-c = 12.5 °C/Вт

    Ta = 40°C – тут мы прикинули, что атмосферная температура редко выше, можно взять и 50 градусов, чтобы уж точно было.

Подставляем все эти данные в закон Ома, и получаем Tj = 3.5*(5+2+12.5) + 40 = 108.25 °C

Это значительно меньше, чем предельные 150 °C. Такой радиатор можно использовать. При этом, корпус радиатора будет греться до Tc = 3.5*12.5 + 40 = 83.75 °C. Такая температура уже способна размягчить некоторые пластики, поэтому нужно быть осторожным.

Измерение сопротивления радиатор-атмосфера.

Скорее-всего, у вас уже валяется куча радиаторов, которые можно задействовать. Тепловое сопротивление измеряется очень легко. Это этого нужно сопротивление и источник питания.

Лепим сопротивление на радиатор, используя термопасту:

Подключаем источник питания, и выставляем напряжение так, чтобы на сопротивлении выделялась некая мощность. Лучше, конечно, нагревать радиатор той мощностью, которую он будет рассеивать в конечном устройстве (и в том положении, в котором он будет находиться, это важно!). Я обычно оставляю такую конструкцию на пол часа, чтобы она хорошо прогрелась.

После того, как измерили температуру, можно рассчитать тепловое сопротивление

Rr-a = (T-Ta)/P. К примеру, у меня радиатор нагрелся до 81 градуса, а температура воздуха – 31 градус. таким образом, Rr-a = 50/4 = 12.5 °C/Вт.

Прикидка площади радиатора

В древнем справочнике радиолюбителя приводился график, по которому можно прикинуть площадь радиатора. Вот он:

Работать с ним очень просто. Выбираем перегрев, который хочется получить и смотрим, какая площадь соответствует необходимой мощности при таком перегреве.

К примеру, при мощности 4вт и перегреве 20 градусов, понадобится 250см^2 радиатора. Этот график дает завышенную оценку площади, и не учитывает кучу факторов как то принудительный обдув, геометрия ребер, итп.

bsvi.ru


Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

— Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

В формуле мы использовали:

Количество теплоты

Работа тока

Напряжение в проводнике

Сила тока в проводнике

Промежуток времени

Джеймс Прескотт Джоуль (слева) и Эмилий Христианович Ленц (справа)

Электрические нагреватели всевозможных типов используются человечеством уже столетия, благодаря свойству электрического тока выделять тепло при прохождении через проводник. У этого явления есть и негативный фактор – перегретая электропроводка из-за слишком большого тока часто становилась причиной короткого замыкания и возникновения пожаров. Выделение тепла от работы электрического тока изучалось в школьном курсе физики, но многие позабыли эти знания.

Впервые зависимость выделения теплоты от силы электрического тока была сформулирована и математически определена Джеймсом Джоулем в 1841 году, и чуть позже, в 1842 г., независимо от него, Эмилем Ленцем. В честь этих физиков и был назван закон Джоуля-Ленца, по которому рассчитывают мощность электронагревателей и потери на тепловыделение в линиях электропередач.

Определение закона Джоуля – Ленца

В словесном определении, согласно исследований Джоуля и Ленца закон звучит так:

Количество теплоты, выделяемой в определенном объеме проводника при протекании электрического тока прямо пропорционально умножению плотности электрического тока и величины напряженности электрического поля

В виде формулы данный закон выглядит следующим образом:


Выражение закона Джоуля — Ленца

Поскольку описанные выше параметры редко применяются в обыденной жизни, и, учитывая, что почти все бытовые расчеты выделения теплоты от работы электрического тока касаются тонких проводников (кабели, провода, нити накаливания, шнуры питания, токопроводящие дорожки на плате и т. п.), используют закон Джоуля Ленца с формулой, представленной в интегральном виде:


Интегральная форма закона

В словесном определении закон Джоуля Ленца звучит так:


Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:


Эквивалентные выражения теплоты согласно закона Ома

Применение и практическое значение закона Джоуля – Ленца

Исследования Джоуля и Ленца в области тепловыделения от работы электрического тока существенно продвинули научное понимание физических процессов, а выведенные основные формулы не претерпели изменений и используются по сей день в различных отраслях науки и техники. В сфере электротехники можно выделить несколько технических задач, где количество выделяемой при протекании тока теплоты имеет критически важное значение при расчете таких параметров:

  • теплопотери в линиях электропередач;
  • характеристики проводов сетей электропроводки;
  • тепловая мощность (количество теплоты) электронагревателей;
  • температура срабатывания автоматических выключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение различных электротехнических аппаратов и элементов радиотехники.

Электроприборы, в которых используется тепловая работа тока

Тепловое действие электрического тока в проводах линий электропередач (ЛЭП) является нежелательным из-за существенных потерь электроэнергии на тепловыделение.

По различным данным в линиях электропередач теряется до 40% всей производимой электрической энергии в мире. Для уменьшения потерь при передаче электроэнергии на большие расстояния, поднимают напряжение в ЛЭП, производя расчеты по производным формулам закона Джоуля – Ленца.


Диаграмма всевозможных потерь электроэнергии, среди которых теплопотери на воздушных линиях составляют львиную долю (64%)

Очень упрощенно тепловую работу тока можно описать следующим образом: двигаются электроны между молекулами, и время от времени сталкиваются с ними, отчего их тепловые колебания становятся более интенсивными. Наглядная демонстрация тепловой работы тока и ассоциативные пояснения процессов показаны на видео ниже:

Расчеты потерь электроэнергии в линиях электропередач

В качестве примера можно взять гипотетический участок линии электропередач от электростанции до трансформаторной подстанции. Поскольку провода ЛЭП и потребитель электроэнергии (трансформаторная подстанция) соединены последовательно , то через них течет один и тот же ток I. Согласно рассматриваемому тут закону Джоуля – Ленца количество выделяемой на проводах теплоты Q w (теплопотерь) рассчитывается по формуле:

Производимая электрическим током мощность (Q c) в нагрузке рассчитывается согласно закону Ома:

Таким образом, при равенстве токов, в первую формулу можно вставить вместо I выражение Q c /U c , поскольку I = Q c /U c:

Если проигнорировать зависимость сопротивления проводников от изменения температуры, то можно считать R w неизменным (константой). Таким образом, при стабильном энергопотреблении потребителя (трансформаторной подстанции), тепловыделение в проводах ЛЭП будет обратно пропорционально квадрату напряжения в конечной точке линии. Другими словами, чем больше напряжение электропередачи, тем меньше потери электроэнергии.


Для передачи электроэнергии высокого напряжения требуются большие опоры ЛЭП

Работа закона Джоуля – Ленца в быту

Данные расчеты справедливы также и в быту при передаче электроэнергии на малые расстояния – например, от ветрогенератора до инвертора. При автономном энергоснабжении ценится каждый Ватт выработанной низковольтным ветряком энергии, и возможно, будет выгодней поднять напряжение трансформатором прямо у ветрогенератора, чем тратиться на большое сечение кабеля, чтобы уменьшить потери электроэнергии при передаче.


При значительном удалении низковольтного ветрогенератора переменного тока для уменьшения потерь электроэнергии будет выгодней подключение через повышающий трансформатор

В бытовых сетях электропроводки расстояния крайне малы, чтобы уменьшения тепловых потерь поднимать напряжение, поэтому при расчете проводки учитывается тепловая работа тока, согласно закону Джоуля – Ленца при выборе поперечного сечения проводов, чтобы их тепловой нагрев не привел к оплавлению и возгоранию изоляции и окружающих материалов. Выбор кабеля по мощности и электропроводки проводятся согласно таблиц и нормативных документов ПУЭ, и подробно описаны на других страницах данного ресурса.


Соотношения силы тока и поперечного сечения проводников

При расчете температуры нагрева радиотехнических элементов, биметаллической пластины автоматического выключателя или плавкого предохранителя используется закон Джоуля – Ленца в интегральной форме, так как при росте температуры изменяется сопротивление данных материалов. При данных сложных расчетах также учитываются теплоотдача, нагрев от других источников тепла, собственная теплоемкость и множество других факторов.


Программное моделирование тепловыделения полупроводникового прибора

Полезная тепловая работа электрического тока

Тепловыделяющая работа электрического тока широко применяется в электронагревателях, в которых используется последовательное соединение проводников с различным сопротивлением. Данный принцип работает следующим образом: в соединенных последовательно проводниках течет одинаковый ток, значит, согласно закону Джоуля – Ленца, тепла выделится больше у материала проводника с большим сопротивлением.


Спираль с повышенным сопротивлением накаляется, но питающие провода остаются холодными

Таким образом, шнур питания и подводящие провода электроплитки остаются относительно холодными, в то время как нагревательный элемент нагревается до температуры красного свечения. В качестве материала для проводников нагревательных элементов используются сплавы с повышенным (относительно меди и алюминия электропроводки) удельным сопротивлением — нихром, константан, вольфрам и другие.


Нить лампы накаливания изготовляют из тугоплавких вольфрамовых сплавов

При параллельном соединении проводников тепловыделение будет больше на нагревательном элементе с меньшим сопротивлением, так как при его уменьшении возрастает ток относительного соседнего компонента цепи. В качестве примера можно привести очевидный пример свечения двух лампочек накаливания различной мощности – у более мощной лампы тепловыделение и световой поток больше.

Если прозвонить омметром лампочки, то окажется, что у более мощной лампы сопротивление меньше. На видео ниже автор демонстрирует последовательное и параллельное подключение, но к сожалению, он ошибся в комментарии — будет ярче светить лампа с большим сопротивлением, а не наоборот.

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него , пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

ω = j E = ϭ E²,

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием . Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Математически эта формулировка выражается следующим образом:

Q = ∫ k I² R t,

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

Теплота Количество, выделяемое электрическим током

Контактная сварка. Этот процесс применяют только для сварки металлов и основным источником энергии в нем служит теплота, выделяемая электрическим током в зоне контакта соединяемых деталей, электрическое сопротивление которой выше сопротивления основного металла. Некоторое количество теплоты при контактной сварке может выделяться и в объеме свариваемых деталей вследствие работы электрического тока при прохождении через внутренний объем деталей, имеющих некоторое электрическое сопротивление.  [c.132]
Количество выделяющейся в неравномерно нагретом проводнике теплоты при прохождении электрического тока изменяется по сравнению с тем количеством теплоты, которое выделяется при отсутствии тока (эффект Томсона), В единице объема проводника за единицу времени выделяется количество теплоты Q, равное —div q. Взяв дивергенцию от обеих частей уравнения (2.122), учитывая,  [c.172]

Количество теплоты, выделяемой электрическим током в зоне сварки, определяют по формуле Ленца—Джоуля  [c.332]

При электрошлаковой сварке основной и электродный металлы расплавляются теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну. Процесс электрошлаковой сварки (рис. 5.13) начинается с образования шлаковой ванны 3 в пространстве между кромками основного металла 6 и формирующими устройствами (ползунами) 7, охлаждаемыми водой, подаваемой по трубам I, путем расплавления флюса электрической дугой, возбуждаемой между сварочной проволокой 4 и вводной планкой 9. После накопления определенного количества жидкого шлака дуга шунтируется шлаком и гаснет, а подача проволоки и подвод тока продолжаются. При прохождении тока через расплавленный шлак, являющийся электропроводящим электролитом, в нем выделяется теплота, достаточная для поддержания высокой температуру шлака (до 2000 °С) и расплавления кромок основного металла и электродной проволоки. Проволока вводится в зазор и подается в шлаковую ванну с помощью мундштука 5. Проволока служит для подвода тока и пополнения сварочной ванны 2 расплавленным металлом. Как  [c.200]

Место соединения при контактной сварке разогревается проходящим по металлу электрическим током (рис. 63). Количество выделяемой теплоты О, (Дж) определяется законом Джоуля — Ленца где 1 — сва-  [c.106]

Первый член правой части представляет собой выделяющуюся за единицу времени в единице массы проводника теплоту, обусловленную теплопроводностью третий член — джоулеву теплоту. Второй член характеризует теплоту Томсона Qp — дополнительное количество теплоты, выделяющееся при прохождении электрического тока по термически неоднородному проводнику. Теплота Томсона обусловлена совместным действием теплопроводности и электропроводности и определяется по формуле  [c.359]

При электрошлаковой сварке основной и электродный металлы расплавляются теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну. Процесс электрошлаковой сварки (рис. 5.13) начинается с образования шлаковой ванны 3 в пространстве между кромками основного металла б и формирующими устройствами (ползунами) 7, охлаждаемыми водой, подаваемой по трубам I, путем расплавления флюса электрической дугой, возбуждаемой между сварочной проволокой 4 и вводной планкой 9. После накопления определенного количества жидкого шлака дуга шунтируется шлаком и гаснет, а подача проволоки и подвод тока продолжаются.  [c.241]


Место соединения разогревается проходящим по металлу электрическим током, причем максимальное количество теплоты выделяется в месте сварочного контакта (рис. 5.24). Количество выделяемой теплоты определяется законом Джоуля-Ленца  [c.256]

Контактная сварка, или сварка сопротивлением, основана на использовании тепла, выделяющегося при прохождении электрического тока через зону сварки, где детали находятся в контакте. В месте контакта сопротивление больше, чем на других участках электрической цепи, и это место быстро нагревается до сварочного жара. Затем свариваемые части сдавливают так, чтобы они соединились. Количество теплоты, выделяющееся в месте сварки при прохождении тока, определяется по следующей формуле  [c.321]

Образцы нагревали методом прямого пропускания электрического тока. Это позволяло их быстро прогреть до температуры испытания. Количество теплоты, выделяемого в образце через определенное время нагрева, определяли по формуле  [c.79]

Действительно, если в одном из сосудов (блоков) двойного калориметра протекает изучаемый экзотермический процесс, второй сосуд можно нагревать электрическим током, регулируя силу его таким образом, чтобы равенство температур обоих сосудов не нарушалось. Если этого удалось достичь, можно считать, что мощность тока во втором сосуде в каждый момент опыта является мерой тепловой мощности (количество теплоты, выделяемой в единицу времени) процесса, протекающего в первом сосуде. Интегрируя мощность тока по всему времени опыта, можно вычислить количество  [c.210]

Известны несколько работ, в которых энтальпии гидрогенизации непредельных соединений проводились в растворе. Подлежащее гидрогенизации вещество помещалось в калориметр в тонкой стеклянной эвакуированной ампуле, которая разбивалась в начале главного периода опыта. В качестве катализатора использовалась платина, восстанавливаемая из окисла водородом в ходе самого эксперимента. Катализатор также помещался в калориметр в ампуле. Калориметрической жидкостью являлась уксусная кислота или спирт. Так как реакция протекала при температурах, близких к комнатной, и завершалась относительно быстро, каких-либо калориметрических трудностей при проведении этих работ не возникало. Тепловое значение калориметрической системы определялось при помощи электрического тока. Энтальпию гидрогенизации находили как разность общего количества теплоты, измеренной в опыте, и количества теплоты, выделяющейся при восстановлении катализатора. Последнюю находили в специально проводимых опытах  [c.95]

При электролизе с поддержанием постоянной плотности тока по мере увеличения толщины пленки возрастают напряжение на ванне, мощность затрачиваемого тока и, как следствие этого,— количество выделяемой джоулевой теплоты. Уменьшить последнее можно, ведя электролиз в режиме постоянной или падающей мощности. Оксидирование по режиму постоянной мощности начинают при высокой плотности тока и поддерживают стабильное значение мощности, контролируя ее по ваттметру. Плотность тока при этом довольно быстро снижается, а напряжение возрастает. При использовании режима падающей мощности начальную плотность тока также устанавливают весьма высокой, после чего допускают самопроизвольное изменение всех электрических параметров — силы тока, напряжения, мощности. В обоих указанных случаях электролиз проходит с меньшим выделением джоулевой теплоты по сравнению с обычным режимом и, как следствие этого,— с меньшим нагреванием электролита и анода. Благоприятное влияние режимов постоянной и падающей мощности на тепловой баланс процесса оксидирования делает возможным формирование оксидных пленок большой толщины без глубокого охлаждения электролита. Так, при температуре сернокислого электролита 10—20 °С, интенсивном перемешивании, начальной плотности тока 12—18 А/дм , постоянной мощности 250—400 Вт/дм получены покрытия толщиною 70—100 мкм. Их микротвердость достигала 4000—4500 МПа, пробивное напряжение — 700—800 В. При использовании режима падающей мощности устанавливали начальную плотность тока 15—18 А/дм , напряжение на ванне за 30—40 мин повышалось до 50—60 В. В этих условиях можно получить оксидные покрытия толщиною от 50 до 100 мкм, в зависимости от состава обрабатываемого сплава их микротвердость составляла 3000—4500 МПа.  [c.243]


Электрошлаковая сварка является принципиально новым процессом соединения металлов, при котором расплавление основного и электродного металлов осуществляется теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну. Схема процесса электрошлаковой сварки показана на рис. 204. Процесс начинается с образования шлаковой ванны 6 в пространстве между кромками основного металла 3 и приспособлениями (ползунами) 2, охлаждаемыми по трубам 8 водой путем расплавления флюса электрической дугой. После накопления некоторого количества жидкого шлака дуга гаснет, а подача проволоки 5 и подвод тока продолжаются. При прохождении тока через шлако-  [c.315]

Эффект Пельтье состоит в явлении поглощения или выделения теплоты в местах контакта двух различных проводников 1 ц 2 при протекании через них электрического тока /. Количество теплоты, выделяемое или поглощаемое при этом, выражается формулой  [c.360]

Образцовые вещества в калориметрии по назначению можно разделить на три группы. Образцовые вещества первой группы, являясь мерой количества теплоты, применяют для градуировки (определения теплового эквивалента) калориметров. Надежно аттестованные образцовые вещества применяют для точных измерений в тех лабораториях, где не производится абсолютная градуировка калориметров по тепловой энергии, выделяющейся на сопротивлении прп прохождении по нему электрического тока.  [c.161]

Электрошлаковая сварка. Выделение теплоты при электрошлаковом процессе происходит в результате прохождения электрического тока через расплавленный шлак. Выделяемое в шлаковой ванне в единицу времени количество теплоты пропорционально тепловому эквиваленту подводимой электрической энергии. Другие источники теплоты столь невелики, что ими можно пренебречь. Эффективная мощность источника теплоты при электрошлаковой сварке всегда меньше так как она не включает часть теплоты, теряемой шлаковой ванной на теплоотдачу в окружающую среду и в формирующее устройство (рис. 2-15). Теплота поступает в из-  [c.57]

Все способы контактной сварки основаны на нагреве металла теплотой, выделяющейся при протекании по деталям электрического тока. Количество теплоты в основном зависит от силы тока, длительности его протекания и сопротивления металла зоны сварки.  [c.3]

Сущность этого способа нагрева заготовок состоит в использовании теплоты, выделяемой при протекании электрического тока непосредственно по заготовке. Это количество теплоты Q (Дж) согласно закону Джоуля— Ленца, прямо пропорционально квадрату силы тока I, сопротивлению к металла и времени  [c.47]

Прямой импедансный подогрев. Из систем прямого подогрева наибольшее распространение получил прямой подогрев трубопроводов, называемый импедансным. При этом способе ток с переменным напряжением подается к концам обогреваемого участка трубы. Название импедансный связано с тем, что количество теплоты, выделяемое в стальных трубопроводах при прохождении через них электрического тока, определяется электромагнитными свойствами стали. Нагрев вызывается некоторым эквивалентным или импедансным сопротивлением трубопровода переменному току [153].  [c.319]

Контактная сварка относится к сварке с применением давления (см. гл. I), при которой нагрев металла осуществляется электрическим током, протекающим через находящиеся в контакте соединяемые части. Количество теплоты, выделяемое при этом электрическим током, можно определить, пользуясь формулой (закон Джоуля — Ленца)  [c.169]

Количество теплоты (Дж), выделяющейся при прохождении электрического тока через находящиеся в контакте детали, может быть определено по формуле Q = I Rt, где / — ток. А У — сопротивление участка цепи в месте контакта деталей, Ом  [c.111]

Из формулы видно, что количество теплоты зависит от тока в сварочной цепи. Поэтому для быстрого нагрева свариваемых кромок применяют большие токи, достигающие нескольких десятков тысяч ампер. Так как электрическое сопротивление прохождению тока в месте контакта свариваемых деталей велико, то на этом очень малом участке выделяется большое количество теплоты, которое вызывает быстрый нагрев металла. С повышением температуры металла в зоне контакта его сопротивление возрастает, следовательно, еще более возрастает количество выделяющейся теплоты и ускоряется процесс нагрева металла. Таким образом, применение больших сварочных токов позволяет осуществить быстрый нагрев металла и выполнить сварку за десятые и даже сотые доли секунды.  [c.111]

Из формулы видно, что количество теплоты зависит от тока в сварочной цепи. Поэтому для быстрого нагрева свариваемых кромок применяют большие токи, достигающие нескольких десятков тысяч ампер. Так как электрическое сопротивление прохождению тока в месте контакта свариваемых деталей велико, то на этом малом участке выделяется большое количество теплоты, которое вызывает быстрый нагрев металла. С повышением температуры металла в зоне контакта его сопротивление возрастает, следовательно, еще более возрастает количество выделяющейся  [c.254]

Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника. Сплавами для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.  [c.79]


При расчете теплового баланса электролитических ванн необходимо учитывать количество теплоты, выделяющейся при электролизе и зависящей от типа электролита и от объемной плотности тока. Приведем упрощенный расчет электрического нагрева ванны.  [c.198]

При использовании электрической дуги как источника теплоты важным является вопрос о ее тепловой мощности. Полную тепловую мощность дуги, т. е. количество теплоты, выделяемое дугой в единицу времен , приближенно считают равной электрической мощности, определяемой как произведение силы тока / на напряжение U .  [c.376]

Наиболее важным свойством для сварки являются тепловые свойства дуги. Температура сварочной дуги очень высокая — около 5500 °С и зависит от диаметра электрода, плотности тока, материала электродов и состава газовой среды. На катоде она более низкая, чем на аноде, и максимального значения достигает в столбе дуги. При ручной сварке на постоянном токе разница температур на катоде и аноде используется для увеличения расплавления электрода или изделия. Тепловые возможности сварочной дуги измеряются ее тец-ловой мощностью. Полная тепловая мощность дуги 6 , количество теплоты в Дж/с, выделяемое дугой в единицу времени, может быть выражена как эквивалент электрических характеристик произведением сварочного тока 7 на напряжение дуги 7д  [c.38]

Количество теплоты, выделяющееся в проводнике, по которому протекает ток плотностью J при напряженности электрического поля Е, выражается формулой. Вт/м ,  [c.355]

Энергия мощных потоков заряженных частиц, бомбардирующих катод и анод, превращается в тепловую энергию электрической дуги. Суммарное количество теплоты 2 (Дж), выделяемое дугой на катоде, аноде и столбе дуги, определяется по формуле Q = Шг, где I — сварочный ток. А и — напряжение дуги. В / — время горения дуги, с.  [c.54]

Явление Томсона относится к отдельному проводнику, между двумя точками которого поддерживается постоянная разность температур АТ. При пропускании электрического тока между этими точками выделяется или поглощается теплота 0.х — ТдАТ—ЫхАТ, где Е — коэффициент Томсона Q — выделяющаяся теплота д — количество электричества 1 — электрический ток т — время.  [c.299]

Свариваемые заготовки I зажимают в электродах 2 (3 — токоподводящие провода). Затем заготовки сближают, сдавливают с усилием Р и пропускают через них сварочный ток. Количество выделяющейся теплоты по закону Джоуля — Ленца Q=0,24PRt, где Q — количество теплоты, выделяющейся в зоне сварки, кал / — сила тока А Я — полное электрическое сопротивление, Ом t — время протекания тока, с.  [c.644]

Теплота, выделяющаяся при пропускании электрического тока через проводник (эффект Джоуля), впервые бьша использована для компенсации определяемого теплового эффекта реакции Штайнвером [6] и Бренстедом [7]. На рис. 1.3 схематически изображен прибор, примененный Бренстедом для измерения теплоты эндотермического процесса растворения соли в воде. С помощью электрического нагревателя при постоянном перемешивании к сосуду Дьюара, содержащему воду, подводили такое количество теплоты, чтобы температура образующегося раствора оставалась постоянной. Электрически генерируемая компенсирующая теплота равна  [c.11]

Контактной называется сварка с применением давления, при которой нагрев производится теплотой, выделяющейся при прохождении электрического тока через находящиеся в контакте соединяемые части. Количество выделяющейся теплоты (Дж) может быть определено по формуле Р = 0,24ШС, где I — ток (А) К — сопротивление участка цепи в месте контакта деталей (Ом) I — продолжительность действия тока, секунды.  [c.254]

Полную тепловую мощность сварочной дуги, т. е. количество теплоты, выделяемое дугой в единицу времени, приближенно считают равной тепловому эквиваленту ее электрической мощности д=Шд, где / — величина сварочного тока. А 11д — падение напряжения на дуге, В — тепловой эквивалент электрической мощности сварочной дугй, Дж/с.  [c.11]


Нагревание проводников электрическим током. Закон Джоуля–Ленца

Задачи урока: осмыслить применение изученных физических величин и связывающих их величин.

Цели урока:

  • Учащиеся должны усвоить, что количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени Q=I?Rt;
  • Учащиеся должны научиться решать задачи на нахождение количества теплоты в конкретных ситуациях;
  • Закрепление у учащихся навыков решения задач расчётных, качественных
  • и экспериментальных;
  • Формирование у учащихся добросовестного отношения к труду, положительного
  • отношения к знаниям, воспитание дисциплинированности, эстетических взглядов.

Ход урока

Актуализация знаний. Опрос фронтальный.

Опрос.

1. Какие три величины связывает закон Ома?

I, U, R; сила тока, напряжение, сопротивление.

2. Как формулируется закон Ома?

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

3. Как записывается формула закона Ома?

I=U/R.

4. Единицы измерения физических величин, входящих в закон Ома.

Ампер, Вольт, Ом.

5. Как выразить работу тока за некоторое время?

A=U*I*t.

6. Что называют мощностью?

Чтобы найти среднюю мощность электрического тока, надо его работу разделить на время P=A/t.

7. Как рассчитать мощность?

P=U*I.

8. Что принимают за единицу мощности?

За единицу измерения мощности принят 1 Вт, равный 1 Дж/с, 1 Вт=1Дж/с.

9. Какое соединение проводников называют последовательным?

10. Какая величина одинакова для всех проводников, соединённых последовательно?

Сила тока, I=I1=I2=In

11. Как найти общее сопротивление цепи, зная сопротивление отдельных проводников, при последовательном соединении?

R=R1+R2+:+Rn.

12. Как найти напряжение участка цепи, состоящего из последовательно соединённых проводников, зная напряжение на каждом из них?

U=U1+U2+:+Un.

13. Какое соединение проводников называют параллельным?

14. Какая величина одинакова для всех проводников, соединённых параллельно?

Напряжение, U=U1=U2=Un.

15. Как найти общее сопротивление цепи, зная сопротивление отдельных проводников, при параллельном соединении?

R=R1*R2*Rn/ (R1+R2+Rn).

16. Как найти силу тока на участке цепи при параллельном соединении?

I=I1+I2+In.

17. Электрическим током называется:

упорядоченное движение свободных электронов.

18. Формула для расчёта сопротивления проводника?

R=?*l/s.

19. Амперметр включается в цепь :

последовательно.

20. Все потребители находятся под одним и тем же напряжением при :

параллельном соединении.

21. Отгадайте загадку.

Очень строгий контролёр со стены глядит в упор,
Смотрит, не моргает. Стоит только свет зажечь,
Или включить в розетку печь —
Всё на ус мотает. (Электросчётчик).

А что мотает на «ус» электросчётчик?

Расход электрической энергии.

Демонстрация эксперимента.

Определение мощности электрической лампочки.

P=U*I.

A=U*I*t=2,6В*1,4А*240с=873,6 Дж.

Q=c*m*(t2-t1) =4200Дж/ (кг*0С)*0,1кг*20С=840 Дж.

Упражнение 27(2) из [1].

Вопрос: С какой целью провода в местах соединения не просто скручивают, но ещё и спаивают? Ответ обоснуйте.

Сила тока в обоих проводах одинакова, так как проводники соединены последовательно.

Если место контакта двух проводников не будет спаяно, то его сопротивление будет достаточно большое по сравнению с сопротивлением самих проводников. Тогда в месте будет выделяться наибольшее количество теплоты. Это приведёт к расплавлению места контакта двух проводников и размыканию электрической цепи.

Формулировка закона Джоуля — Ленца.

Q=I2*R*t

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

Организация самостоятельной деятельности учащихся.

Тест.

I вариант.

1. Как изменится количество теплоты, выделяемое проводником с током, если силу тока в проводнике увеличить в 2 раза?

А. Увеличится в 2 раза. Б. Уменьшится в 2 раза. В. Увеличится в 4 раза.

Ответ. По закону Джоуля — Ленца Q=I2*R*t, следовательно увеличится в 4 раза.

В. Увеличится в 4 раз.

2. Какое количество теплоты выделит за 30 минут проволочная спираль сопротивлением 20 Ом, если сила тока в цепи 2А?

А. 144000 Дж. Б. 28800 Дж. В. 1440 Дж.

Дано:

R=20 Ом

I=2 A

t=30 мин=1800 с

Решение:

По закону Джоуля - Ленца

Q=I2*R*t

Вычисление:

Q=42*20*1800=144000 Дж.

Q-?

Ответ. А. 144000Дж.

3. Медная и нихромовая проволоки, имеющие одинаковые размеры, соединены параллельно и подключены к источнику тока. Какая из них выделит при этом большее количество теплоты?

А. Нихромовая. Б. Медная. В. Одинаково.

Ответ. Б. Медная.

II вариант.

1. Как изменится количество теплоты, выделяемое проводником с током, если силу тока уменьшить в 4 раза?

А. Уменьшится в 2 раза. Б. Уменьшится в 16 раз. В. Увеличится в 4 раза.

Ответ. По закону Джоуля — Ленца Q=I2*R*t, следовательно уменьшится в 16 раз.

Б. Уменьшится в 16 раз.

2. В электрической печи при напряжении 220 В сила тока 30 А. какое количество теплоты выделит печь за 10 минут?

А. 40000 Дж. Б. 39600 Дж. В. 3960000 Дж.

Дано:

U=220 В

I=30 А

t=10 мин=600 с

Решение:

Q=I2*R*t

Q=U*I*t

Вычисление:

Q=302*220*600=3960000 Дж.

Q-?

Ответ. 3960000 Дж.

3. Никелиновая и стальная проволоки, имеющие одинаковые размеры, соединены последовательно и подключены к источнику тока. Какая из них выделит при этом большее количество теплоты.

А. Никелиновая. Б. Стальная. В. Одинаково.

Ответ. Никелиновая.

Дополнительное задание.

Задачи из [2].

№ 1449

Дано:

t=5 c

I=2 А

R=25 Ом

Решение:

Q=I2*R*t

Вычисление:

Q=42*25*5=500 Дж.

Q-?

Ответ. 500 Дж.

№1451

Дано:

R=55 Ом

U=127 В

t1=60 c

t2=1800 c

Решение:

Q=(U2/R)*t

Вычисление:

Q1= (1629/55)*60=17595 Дж.

Q2=(1629/55)*1800=55313 Дж.

Q1-?

Q2-?

Домашнее задание.

Параграф 53, упр.27 (1, 3) из [1].

Список литературы:

  1. Учебник «Физика», 8 класс. А.В. Пёрышкин.
  2. «Сборник задач по физике». В.И. Лукашик.

Теплопередача, удельная теплоемкость и калориметрия — University Physics Volume 2

Цели обучения

К концу этого раздела вы сможете:

  • Объяснение явлений, связанных с теплом как формой передачи энергии
  • Решение проблем, связанных с теплопередачей

В предыдущих главах мы видели, что энергия — одно из фундаментальных понятий физики. Тепло — это тип передачи энергии, который вызывается разницей температур и может изменять температуру объекта.Как мы узнали ранее в этой главе, теплопередача — это движение энергии от одного места или материала к другому в результате разницы температур. Теплообмен является основой таких повседневных действий, как отопление и приготовление пищи, а также многих производственных процессов. Он также составляет основу тем, которые будут рассмотрены в оставшейся части этой главы.

Мы также вводим понятие внутренней энергии, которая может быть увеличена или уменьшена за счет теплопередачи. Мы обсуждаем другой способ изменить внутреннюю энергию системы, а именно выполнение работы над ней.Таким образом, мы начинаем изучение взаимосвязи тепла и работы, которая лежит в основе двигателей и холодильников и является центральной темой (и источником названия) термодинамики.

Внутренняя энергия и тепло

Тепловая система имеет внутреннюю энергию (также называемую тепловой энергией ) , которая является суммой механических энергий ее молекул. Внутренняя энергия системы пропорциональна ее температуре. Как мы видели ранее в этой главе, если два объекта с разной температурой приводят в контакт друг с другом, энергия передается от более горячего объекта к более холодному, пока тела не достигнут теплового равновесия (то есть они имеют одинаковую температуру).Ни один из объектов не совершает никакой работы, потому что никакая сила не действует на расстоянии (как мы обсуждали в разделе Работа и кинетическая энергия). Эти наблюдения показывают, что тепло — это энергия, спонтанно передаваемая из-за разницы температур. (Рисунок) показывает пример теплопередачи.

(а) Здесь безалкогольный напиток имеет более высокую температуру, чем лед, поэтому они не находятся в тепловом равновесии. (b) Когда безалкогольный напиток и лед могут взаимодействовать, тепло передается от напитка ко льду из-за разницы температур до тех пор, пока они не достигнут одинаковой температуры, что приводит к достижению равновесия.Фактически, поскольку безалкогольный напиток и лед контактируют с окружающим воздухом и скамейкой, конечная равновесная температура будет такой же, как и температура окружающей среды.

Значение слова «тепло» в физике отличается от его обычного значения. Например, в разговоре мы можем сказать, что «жара была невыносимой», но в физике мы бы сказали, что температура была высокой. Тепло — это форма потока энергии, а температура — нет. Между прочим, люди чувствительны к тепловому потоку , а не к температуре.

Поскольку тепло — это форма энергии, в системе СИ единицей измерения является джоуль (Дж). Другой распространенной единицей энергии, часто используемой для получения тепла, является калория (кал), определяемая как энергия, необходимая для изменения температуры 1,00 г воды, в частности, между и, поскольку существует небольшая температурная зависимость. Также обычно используется килокалория (ккал), которая представляет собой энергию, необходимую для изменения температуры 1,00 кг воды на. Так как масса чаще всего указывается в килограммах, то килокалория удобна.Как ни странно, пищевые калории (иногда называемые «большими калориями», сокращенно Cal) на самом деле являются килокалориями, что нелегко определить по маркировке упаковки.

Механический эквивалент тепла

Также можно изменять температуру вещества, выполняя работу, которая передает энергию в систему или из нее. Это понимание помогло установить, что тепло — это форма энергии. Джеймс Прескотт Джоуль (1818–1889) провел множество экспериментов, чтобы установить механический эквивалент тепла — работу, необходимую для получения тех же эффектов, что и теплопередача .В единицах, используемых для этих двух величин, эквивалентность равна

.

Мы считаем, что это уравнение представляет преобразование между двумя единицами энергии. (Другие числа, которые вы можете увидеть, относятся к калориям, определенным для температурных диапазонов, отличных от до.)

(рисунок) показывает одну из самых известных экспериментальных установок Джоуля для демонстрации того, что работа и тепло могут производить одни и те же эффекты, и измерения механического эквивалента тепла. Это помогло установить принцип сохранения энергии.Гравитационная потенциальная энергия ( U ) была преобразована в кинетическую энергию ( K ), а затем рандомизирована по вязкости и турбулентности в увеличенную среднюю кинетическую энергию атомов и молекул в системе, что привело к увеличению температуры. Вклад Джоуля в термодинамику был настолько значительным, что в его честь была названа единица энергии в системе СИ.

Эксперимент Джоуля установил эквивалентность тепла и работы. По мере того, как массы спускались вниз, они заставляли весла работать на воде.Результатом стало повышение температуры, измеренное термометром. Джоуль обнаружил, что он пропорционален W и, таким образом, определил механический эквивалент тепла.

Увеличение внутренней энергии за счет теплопередачи дает тот же результат, что и увеличение ее за счет выполнения работы. Следовательно, хотя система имеет четко определенную внутреннюю энергию, мы не можем сказать, что она имеет определенное «теплосодержание» или «рабочее содержание». Четко определенная величина, которая зависит только от текущего состояния системы, а не от истории этой системы, называется переменной состояния .Температура и внутренняя энергия являются переменными состояния. Подводя итог этому абзацу, теплота и работа не являются переменными состояния .

Между прочим, увеличение внутренней энергии системы не обязательно увеличивает ее температуру. Как мы увидим в следующем разделе, температура не меняется, когда вещество переходит из одной фазы в другую. Примером может служить таяние льда, которое может быть достигнуто путем добавления тепла или выполнения работы трения, например, когда кубик льда трется о шероховатую поверхность.

Изменение температуры и теплоемкость

Мы отметили, что теплопередача часто вызывает изменение температуры. Эксперименты показывают, что без фазового перехода и без какой-либо работы с системой или с ее помощью передаваемое тепло обычно прямо пропорционально изменению температуры и массы системы в хорошем приближении. (Ниже мы покажем, как действовать в ситуациях, когда приближение неверно.) Константа пропорциональности зависит от вещества и его фазы, которая может быть газом, жидкостью или твердым телом.Мы опускаем обсуждение четвертой фазы, плазмы, потому что, хотя это наиболее распространенная фаза во Вселенной, она редка и недолговечна на Земле.

Мы можем понять экспериментальные факты, заметив, что передаваемое тепло — это изменение внутренней энергии, которая представляет собой полную энергию молекул. В типичных условиях полная кинетическая энергия молекул составляет постоянную долю внутренней энергии (по причинам и за исключениями, которые мы увидим в следующей главе).Средняя кинетическая энергия молекулы пропорциональна абсолютной температуре. Следовательно, изменение внутренней энергии системы обычно пропорционально изменению температуры и количеству молекул, N . Математически зависимость от вещества в значительной степени обусловлена ​​разной массой атомов и молекул. Мы рассматриваем его теплоемкость с точки зрения его массы, но, как мы увидим в следующей главе, в некоторых случаях теплоемкость на молекулу одинакова для разных веществ.Зависимость от вещества и фазы также является результатом различий в потенциальной энергии, связанной с взаимодействиями между атомами и молекулами.

Значения удельной теплоемкости обычно необходимо измерять, потому что нет простого способа их точно рассчитать. (Рисунок) показывает типичные значения теплоемкости для различных веществ. Из этой таблицы видно, что удельная теплоемкость воды в пять раз больше, чем у стекла и в 10 раз больше, чем у железа, что означает, что для повышения температуры воды на определенное количество тепла требуется в пять раз больше тепла, чем у стекла, и в 10 раз больше. столько, сколько по железу.Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.

Удельная теплота газов зависит от того, что поддерживается постоянным во время нагрева — обычно от объема или давления. В таблице первое значение удельной теплоемкости для каждого газа измерено при постоянном объеме, а второе (в скобках) измерено при постоянном давлении. Мы вернемся к этой теме в главе, посвященной кинетической теории газов.

Обычно удельная теплоемкость также зависит от температуры.Таким образом, точное определение c для вещества должно быть дано в терминах бесконечно малого изменения температуры. Для этого отметим это и заменим на d :

За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая при нормальных температурах. Поэтому мы обычно принимаем удельную теплоемкость постоянными и равными значениям, указанным в таблице.

(рисунок) иллюстрирует повышение температуры, вызванное работой.(Результат такой же, как если бы такое же количество энергии было добавлено с помощью паяльной лампы, а не механически.)

Расчет повышения температуры в результате работы, проделанной на грузовике с веществом. Тормоза, используемые для контроля скорости на спуске, выполняют свою работу, преобразуя гравитационную потенциальную энергию в повышенную внутреннюю энергию (более высокую температуру) тормозного материала ((рисунок)). Это преобразование предотвращает преобразование гравитационной потенциальной энергии в кинетическую энергию грузовика.Поскольку масса грузовика намного больше, чем масса тормозного материала, поглощающего энергию, повышение температуры может происходить слишком быстро, чтобы тепло от тормозов передавалось в окружающую среду; Другими словами, тормоза могут перегреться.

Дымящиеся тормоза тормозной тележки — видимое свидетельство механического эквивалента тепла.

Рассчитайте повышение температуры 10 кг тормозного материала со средней удельной теплоемкостью, если материал удерживает 10% энергии от спускающегося грузовика массой 10 000 кг 75.0 м (при вертикальном перемещении) с постоянной скоростью.

Стратегия

Мы вычисляем гравитационную потенциальную энергию ( Mgh ), которую весь грузовик теряет при спуске, приравниваем ее к увеличению внутренней энергии тормозов, а затем находим повышение температуры, возникающее только в тормозном материале.

Решение Сначала мы вычисляем изменение гравитационной потенциальной энергии при спуске грузовика с горы:

Поскольку кинетическая энергия грузовика не меняется, закон сохранения энергии говорит нам, что потерянная потенциальная энергия рассеивается, и мы предполагаем, что 10% ее передается внутренней энергии тормозов, так что возьмите.Затем мы рассчитываем изменение температуры от переданного тепла, используя

, где м — масса тормозного материала. Вставьте указанные значения, чтобы найти

Значение Если бы грузовик ехал какое-то время, то непосредственно перед спуском температура тормозов, вероятно, была бы выше температуры окружающей среды. Повышение температуры при спуске, вероятно, приведет к очень сильному повышению температуры тормозного материала, поэтому этот метод непрактичен.Вместо этого грузовик использовал бы технику торможения двигателем. Другая идея лежит в основе новейшей технологии гибридных и электрических автомобилей, в которой механическая энергия (кинетическая и гравитационная потенциальная энергия) преобразуется тормозами в электрическую энергию в аккумуляторе. Этот процесс называется рекуперативным торможением.

В задачах общего типа объекты с разными температурами контактируют друг с другом, но изолированы от всего остального, и им позволяют прийти в равновесие.Контейнер, который предотвращает передачу тепла внутрь или наружу, называется калориметром, а использование калориметра для измерения (обычно теплоемкости или удельной теплоемкости) называется калориметрией.

Мы будем использовать термин «проблема калориметрии» для обозначения любой проблемы, в которой рассматриваемые объекты термически изолированы от своего окружения. Важная идея при решении задач калориметрии состоит в том, что во время теплообмена между объектами, изолированными от их окружения, тепло, полученное более холодным объектом, должно равняться теплу, теряемому более горячим объектом, из-за сохранения энергии:

Мы выражаем эту идею, записывая, что сумма тепла равна нулю, потому что полученное тепло обычно считается положительным; тепло потеряно, отрицательное.

Расчет конечной температуры в калориметрии. Предположим, вы наливаете 0,250 кг воды (примерно чашку) в алюминиевую кастрюлю весом 0,500 кг, стоящую на плите, с температурой 0 ° C. Предположим, что теплопередача не происходит ни к чему другому: кастрюля кладется на изолирующую подкладку, и передача тепла воздуху игнорируется в течение короткого времени, необходимого для достижения равновесия. Таким образом, это проблема калориметрии, даже если изолирующий контейнер не указан. Также предположим, что выкипает незначительное количество воды.Какова температура, при которой вода и поддон достигают теплового равновесия?

Стратегия Изначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода. Теплопередача восстанавливает тепловое равновесие при соприкосновении воды и поддона; она останавливается, когда достигается тепловое равновесие между поддоном и водой. Тепло, теряемое кастрюлей, равно теплу, полученному водой — это основной принцип калориметрии.

Решение

  1. Используйте уравнение теплопередачи, чтобы выразить тепло, теряемое алюминиевой сковородой, через массу сковороды, удельную теплоемкость алюминия, начальную температуру сковороды и конечную температуру:
  2. Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру:
  3. Обратите внимание, что и и что, как указано выше, они должны быть в сумме равными нулю:
  4. Поместите все термины с левой стороны, а все остальные термины с правой стороны.Решение для


    и введите числовые значения:

Значение Почему конечная температура намного ближе к, чем к? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, следовательно, претерпевает меньшее изменение температуры при данной теплопередаче. Большой водоем, например озеро, требует большого количества тепла для значительного повышения температуры. Это объясняет, почему температура в озере остается относительно постоянной в течение дня, даже когда изменение температуры воздуха велико.Однако температура воды действительно меняется в течение длительного времени (например, с лета на зиму).

Проверьте свое понимание Если для повышения температуры породы необходимо 25 кДж, от какого количества тепла необходимо нагреть камень?

В хорошем приближении теплопередача зависит только от разницы температур. Поскольку разница температур в обоих случаях одинакова, во втором случае необходимы те же 25 кДж. (Как мы увидим в следующем разделе, ответ был бы другим, если бы объект был сделан из некоторого вещества, которое меняет фазу где-то между и.)

Температурно-зависимая теплоемкость При низких температурах удельная теплоемкость твердых тел обычно пропорциональна. Первое понимание этого поведения было связано с голландским физиком Питером Дебаем, который в 1912 году рассмотрел атомные колебания с помощью квантовой теории, которую Макс Планк недавно использовал для излучения. Например, хорошее приближение для удельной теплоемкости соли NaCl: Константа 321 K называется температурой Дебая NaCl, и формула хорошо работает, когда Используя эту формулу, сколько тепла требуется для повышения температуры 24.0 г NaCl от 5 К до 15 К?

Решение Поскольку теплоемкость зависит от температуры, нам нужно использовать уравнение

Мы решаем это уравнение для Q путем интегрирования обеих частей:

Затем подставляем данные значения и вычисляем интеграл:

Значение Если бы мы использовали уравнение и удельную теплоемкость соли при комнатной температуре, мы получили бы совсем другое значение.

1.4 Теплопередача, удельная теплоемкость и калориметрия — University Physics Volume 2

Задачи обучения

К концу этого раздела вы сможете:

  • Объяснять явления, связанные с теплом как формой передачи энергии
  • Решение проблем, связанных с теплопередачей

В предыдущих главах мы видели, что энергия — одно из фундаментальных понятий физики. Тепло — это тип передачи энергии, который вызывается разницей температур и может изменять температуру объекта. Как мы узнали ранее в этой главе, теплопередача — это движение энергии от одного места или материала к другому в результате разницы температур. Теплообмен является основой таких повседневных действий, как отопление и приготовление пищи, а также многих производственных процессов. Он также составляет основу тем, которые будут рассмотрены в оставшейся части этой главы.

Мы также вводим понятие внутренней энергии, которая может быть увеличена или уменьшена за счет теплопередачи.Мы обсуждаем другой способ изменить внутреннюю энергию системы, а именно выполнение работы над ней. Таким образом, мы начинаем изучение взаимосвязи тепла и работы, которая лежит в основе двигателей и холодильников и является центральной темой (и источником названия) термодинамики.

Внутренняя энергия и тепло

Тепловая система имеет внутреннюю энергию (также называемую тепловой энергией ) , которая является суммой механических энергий ее молекул. Внутренняя энергия системы пропорциональна ее температуре.Как мы видели ранее в этой главе, если два объекта с разной температурой приводят в контакт друг с другом, энергия передается от более горячего объекта к более холодному, пока тела не достигнут теплового равновесия (то есть они имеют одинаковую температуру). Ни один из объектов не совершает никакой работы, потому что никакая сила не действует на расстоянии (как мы обсуждали в разделе Работа и кинетическая энергия). Эти наблюдения показывают, что тепло — это энергия, спонтанно передаваемая из-за разницы температур. На рисунке 1.9 показан пример теплопередачи.

Фигура 1.9 (а) Здесь безалкогольный напиток имеет более высокую температуру, чем лед, поэтому они не находятся в тепловом равновесии. (b) Когда безалкогольный напиток и лед могут взаимодействовать, тепло передается от напитка ко льду из-за разницы температур, пока они не достигнут одинаковой температуры, T′T ′, достигая равновесия. Фактически, поскольку безалкогольный напиток и лед контактируют с окружающим воздухом и скамейкой, конечная равновесная температура будет такой же, как и температура окружающей среды.

Значение слова «тепло» в физике отличается от его обычного значения. Например, в разговоре мы можем сказать, что «жара была невыносимой», но в физике мы бы сказали, что температура была высокой. Тепло — это форма потока энергии, а температура — нет. Между прочим, люди чувствительны к тепловому потоку , а не к температуре.

Поскольку тепло — это форма энергии, в системе СИ единицей измерения является джоуль (Дж). Другой распространенной единицей энергии, часто используемой для тепла, является калория (кал), определяемая как энергия, необходимая для изменения температуры на единицу.00 г воды на 1,00 ° С1,00 ° С, а именно от 14,5 ° С14,5 ° С до 15,5 ° С15,5 ° С, поскольку существует небольшая температурная зависимость. Также обычно используется килокалория (ккал), которая представляет собой энергию, необходимую для изменения температуры 1,00 кг воды на 1,00 ° С1,00 ° C. Так как масса чаще всего указывается в килограммах, то килокалория удобна. Как ни странно, пищевые калории (иногда называемые «большими калориями», сокращенно Cal) на самом деле являются килокалориями, что нелегко определить по маркировке упаковки.

Механический эквивалент тепла

Также можно изменять температуру вещества, выполняя работу, которая передает энергию в систему или из нее. Это понимание помогло установить, что тепло — это форма энергии. Джеймс Прескотт Джоуль (1818–1889) провел множество экспериментов, чтобы установить механический эквивалент тепла — работу, необходимую для получения тех же эффектов, что и теплопередача . В единицах, используемых для этих двух величин, эквивалентность равна

. 1.000 ккал = 4186Дж. 1.000 ккал = 4186Дж.

Мы считаем, что это уравнение представляет преобразование между двумя единицами энергии. (Другие числа, которые вы можете увидеть, относятся к калориям, определенным для температурных диапазонов, отличных от 14,5 ° C от 14,5 ° C до 15,5 ° C 15,5 ° C.)

На рис. 1.10 показана одна из самых известных экспериментальных установок Джоуля для демонстрации того, что работа и тепло могут производить одни и те же эффекты, и измерения механического эквивалента тепла. Это помогло установить принцип сохранения энергии. Гравитационная потенциальная энергия ( U ) была преобразована в кинетическую энергию ( K ), а затем рандомизирована по вязкости и турбулентности в увеличенную среднюю кинетическую энергию атомов и молекул в системе, что привело к увеличению температуры.Вклад Джоуля в термодинамику был настолько значительным, что в его честь была названа единица энергии в системе СИ.

Фигура 1,10 Эксперимент Джоуля установил эквивалентность тепла и работы. По мере того, как массы спускались, они заставляли лопасти работать, W = mghW = mgh, на воде. Результатом было повышение температуры ΔTΔT, измеренное термометром. Джоуль обнаружил, что ΔTΔT был пропорционален Вт и, таким образом, определил механический эквивалент тепла.

Увеличение внутренней энергии за счет теплопередачи дает тот же результат, что и увеличение ее за счет выполнения работы.Следовательно, хотя система имеет четко определенную внутреннюю энергию, мы не можем сказать, что она имеет определенное «теплосодержание» или «рабочее содержание». Четко определенная величина, которая зависит только от текущего состояния системы, а не от истории этой системы, называется переменной состояния . Температура и внутренняя энергия являются переменными состояния. Подводя итог этому абзацу, теплота и работа не являются переменными состояния .

Между прочим, увеличение внутренней энергии системы не обязательно увеличивает ее температуру.Как мы увидим в следующем разделе, температура не меняется, когда вещество переходит из одной фазы в другую. Примером может служить таяние льда, которое может быть достигнуто путем добавления тепла или выполнения работы трения, например, когда кубик льда трется о шероховатую поверхность.

Изменение температуры и теплоемкость

Мы отметили, что теплопередача часто вызывает изменение температуры. Эксперименты показывают, что без фазового перехода и без какой-либо работы с системой или с ее помощью передаваемое тепло обычно прямо пропорционально изменению температуры и массы системы в хорошем приближении.(Ниже мы покажем, как действовать в ситуациях, когда приближение неверно.) Константа пропорциональности зависит от вещества и его фазы, которая может быть газом, жидкостью или твердым телом. Мы опускаем обсуждение четвертой фазы, плазмы, потому что, хотя это наиболее распространенная фаза во Вселенной, она редка и недолговечна на Земле.

Мы можем понять экспериментальные факты, заметив, что передаваемое тепло — это изменение внутренней энергии, которая представляет собой полную энергию молекул.В типичных условиях полная кинетическая энергия молекул KtotalKtotal является постоянной долей внутренней энергии (по причинам и с исключениями, которые мы увидим в следующей главе). Средняя кинетическая энергия молекулы KaveKave пропорциональна абсолютной температуре. Следовательно, изменение внутренней энергии системы обычно пропорционально изменению температуры и количеству молекул, N . Математически ΔU∝ΔKtotal = NKave∝NΔTΔU∝ΔKtotal = NKave∝NΔT Зависимость от вещества в значительной степени является результатом различных масс атомов и молекул.Мы рассматриваем его теплоемкость с точки зрения его массы, но, как мы увидим в следующей главе, в некоторых случаях теплоемкость на молекулу одинакова для разных веществ. Зависимость от вещества и фазы также является результатом различий в потенциальной энергии, связанной с взаимодействиями между атомами и молекулами.

Теплопередача и изменение температуры

Практическое приближение взаимосвязи между теплопередачей и изменением температуры:

, где Q — это обозначение теплопередачи («количество тепла»), м, — масса вещества, а ΔTΔT — изменение температуры.Обозначение c обозначает удельную теплоемкость (также называемую « удельная теплоемкость ») и зависит от материала и фазы. Удельная теплоемкость численно равна количеству тепла, необходимому для изменения температуры 1,001,00 кг массы на 1,00 ° С1,00 ° С. Единица измерения удельной теплоемкости в системе СИ — Дж / (кг × К) Дж / (кг × К) или Дж / (кг × ° C) Дж / (кг × ° C). (Напомним, что изменение температуры ΔTΔT одинаково в кельвинах и градусах Цельсия.)

Значения удельной теплоемкости обычно необходимо измерять, потому что нет простого способа их точно рассчитать.В таблице 1.3 приведены типичные значения удельной теплоемкости для различных веществ. Из этой таблицы видно, что удельная теплоемкость воды в пять раз больше, чем у стекла и в 10 раз больше, чем у железа, что означает, что для повышения температуры воды на определенное количество тепла требуется в пять раз больше тепла, чем у стекла, и в 10 раз больше. столько, сколько по железу. Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.

Удельная теплота газов зависит от того, что поддерживается постоянным во время нагрева — обычно от объема или давления.В таблице первое значение удельной теплоемкости для каждого газа измерено при постоянном объеме, а второе (в скобках) измерено при постоянном давлении. Мы вернемся к этой теме в главе, посвященной кинетической теории газов.

Вещества
Удельная теплоемкость ( c )
Твердые вещества Дж / (кг · ° C) Дж / (кг · ° C) ккал / (кг · ° C) [2] ккал / (кг · ° C) [2]
Алюминий 900 0.215
Асбест 800 0,19
Бетон, гранит (средний) 840 0,20
Медь 387 0,0924
Стекло 840 0,20
Золото 129 0,0308
Человеческое тело (в среднем при 37 ° C 37 ° C) 3500 0,83
Лед (в среднем, от −50 ° C до 0 ° C от −50 ° C до 0 ° C) 2090 0.50
Чугун, сталь 452 0,108
Свинец 128 0,0305
Серебристый 235 0,0562
Дерево 1700 0,40
Жидкости
Бензол 1740 0,415
Этанол 2450 0,586
Глицерин 2410 0.576
Меркурий 139 0,0333
Вода (15,0 ° C) (15,0 ° C) 4186 1.000
Газы [3]
Воздух (сухой) 721 (1015) 0,172 (0,242)
Аммиак 1670 (2190) 0,399 (0,523)
Двуокись углерода 638 (833) 0,152 (0.199)
Азот 739 (1040) 0,177 (0,248)
Кислород 651 (913) 0,156 (0,218)
Пар (100 ° C) (100 ° C) 1520 (2020) 0,363 (0,482)
Таблица 1.3 Удельная теплоемкость различных веществ [1] [1] Значения для твердых и жидких веществ даны при постоянном объеме и 25 ° C25 ° C, если не указано иное. [2] Эти значения идентичны в единицах кал / г · ° C.кал / г · ° C. [3] Удельная теплоемкость при постоянном объеме и при 20,0 ° C20,0 ° C, если не указано иное, и при давлении 1,00 атм. Значения в скобках представляют собой удельную теплоемкость при постоянном давлении 1,00 атм.

Обычно удельная теплоемкость также зависит от температуры. Таким образом, точное определение c для вещества должно быть дано в терминах бесконечно малого изменения температуры. Для этого отметим, что c = 1mΔQΔTc = 1mΔQΔT, и заменим ΔΔ на d :

За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая при нормальных температурах.Поэтому мы обычно принимаем удельную теплоемкость постоянными и равными значениям, указанным в таблице.

Пример 1.5

Расчет необходимого тепла
Алюминиевая кастрюля массой 0,500 кг на плите и 0,250 л воды в ней нагреваются с 20,0 ° C20,0 ° C до 80,0 ° C80,0 ° C. а) Сколько тепла требуется? Какой процент тепла используется для повышения температуры (б) сковороды и (в) воды?
Стратегия
Можно предположить, что кастрюля и вода всегда имеют одинаковую температуру.Когда вы ставите кастрюлю на плиту, температура воды и кастрюли повышается на одинаковую величину. Мы используем уравнение теплопередачи для данного изменения температуры и массы воды и алюминия. Значения удельной теплоемкости воды и алюминия приведены в таблице 1.3.
Решение
  1. Рассчитайте разницу температур: ΔT = Tf − Ti = 60,0 ° C. ΔT = Tf − Ti = 60,0 ° C.
  2. Рассчитайте массу воды. Поскольку плотность воды составляет 1000 кг / м3 и 31000 кг / м3, 1 л воды имеет массу 1 кг, а массу 0.250 л воды mw = 0,250 кг mw = 0,250 кг.
  3. Рассчитайте тепло, передаваемое воде. Используйте удельную теплоемкость воды в таблице 1.3: Qw = mwcwΔT = (0,250 кг) (4186Дж / кг ° C) (60,0 ° C) = 62,8 кДж. Qw = mwcwΔT = (0,250 кг) (4186Дж / кг ° C) (60,0 ° C) = 62,8 кДж.
  4. Рассчитайте тепло, передаваемое алюминию. Используйте удельную теплоемкость алюминия в таблице 1.3: QAl = mA1cA1ΔT = (0,500 кг) (900Дж / кг ° C) (60,0 ° C) = 27,0 кДж. QAl = mA1cA1ΔT = (0,500 кг) (900Дж / кг ° C) (60,0 ° C) = 27,0 кДж.
  5. Найдите общее переданное тепло: QTotal = QW + QAl = 89.8 кДж.QTotal = QW + QAl = 89,8 кДж.
Значение
В этом примере тепло, передаваемое воде, больше, чем в алюминиевой кастрюле. Хотя вес кастрюли в два раза больше, чем у воды, удельная теплоемкость воды в четыре раза больше, чем у алюминия. Следовательно, для достижения заданного изменения температуры воды требуется чуть более чем в два раза больше тепла, чем для алюминиевого поддона.

Пример 1.6 иллюстрирует повышение температуры, вызванное работой. (Результат такой же, как если бы такое же количество энергии было добавлено с помощью паяльной лампы, а не механически.)

Пример 1.6

Расчет повышения температуры в результате работы, проделанной с веществом
Тормоза грузовика, используемые для контроля скорости на спуске, работают, преобразуя гравитационную потенциальную энергию в повышенную внутреннюю энергию (более высокую температуру) тормозного материала (рисунок 1.11). Это преобразование предотвращает преобразование гравитационной потенциальной энергии в кинетическую энергию грузовика. Поскольку масса грузовика намного больше, чем масса тормозного материала, поглощающего энергию, повышение температуры может происходить слишком быстро, чтобы тепло от тормозов передавалось в окружающую среду; Другими словами, тормоза могут перегреться.

Фигура 1.11 Дымящиеся тормоза тормозного грузовика — видимое свидетельство механического эквивалента тепла.

Рассчитайте повышение температуры 10 кг тормозного материала со средней удельной теплоемкостью 800 Дж / кг · ° C 800 Дж / кг · ° C, если материал сохраняет 10% энергии от грузовика массой 10 000 кг, спускающегося на 75,0 м (при вертикальном перемещении ) с постоянной скоростью.

Стратегия
Мы вычисляем гравитационную потенциальную энергию ( Mgh ), которую весь грузовик теряет при спуске, приравниваем ее к увеличению внутренней энергии тормозов, а затем находим повышение температуры, возникающее только в тормозном материале.
Решение
Сначала мы рассчитаем изменение потенциальной энергии гравитации при спуске грузовика: Mgh = (10,000 кг) (9,80 м / с2) (75,0 м) = 7,35 × 106 Дж. Mgh = (10 000 кг) (9,80 м / с2) (75,0 м) = 7,35 × 106 Дж.

Поскольку кинетическая энергия грузовика не изменяется, закон сохранения энергии сообщает нам, что потерянная потенциальная энергия рассеивается, и мы предполагаем, что 10% ее передается внутренней энергии тормозов, поэтому принимаем Q = Mgh / 10Q = Mgh / 10. Затем мы рассчитываем изменение температуры от переданного тепла, используя

, где м — масса тормозного материала.Вставьте указанные значения, чтобы найти

ΔT = 7,35 × 105 Дж (10 кг) (800 Дж / кг ° C) = 92 ° C. ΔT = 7,35 × 105 Дж (10 кг) (800 Дж / кг ° C) = 92 ° C.
Значение
Если бы грузовик ехал какое-то время, то непосредственно перед спуском температура тормозов, вероятно, была бы выше температуры окружающей среды. Повышение температуры при спуске, вероятно, приведет к очень сильному повышению температуры тормозного материала, поэтому этот метод непрактичен. Вместо этого грузовик использовал бы технику торможения двигателем. Другая идея лежит в основе новейшей технологии гибридных и электрических автомобилей, в которой механическая энергия (кинетическая и гравитационная потенциальная энергия) преобразуется тормозами в электрическую энергию в аккумуляторе. Этот процесс называется рекуперативным торможением.

В задачах общего типа объекты с разными температурами контактируют друг с другом, но изолированы от всего остального, и им позволяют прийти в равновесие. Контейнер, который предотвращает передачу тепла внутрь или наружу, называется калориметром, а использование калориметра для измерения (обычно теплоемкости или удельной теплоемкости) называется калориметрией.

Мы будем использовать термин «проблема калориметрии» для обозначения любой проблемы, в которой рассматриваемые объекты термически изолированы от своего окружения.Важная идея при решении задач калориметрии состоит в том, что во время теплообмена между объектами, изолированными от их окружения, тепло, полученное более холодным объектом, должно равняться теплу, теряемому более горячим объектом, из-за сохранения энергии:

Qcold + Qhot = 0, Qcold + Qhot = 0.

1.6

Мы выражаем эту идею, записывая, что сумма тепла равна нулю, потому что полученное тепло обычно считается положительным; тепло потеряно, отрицательное.

Пример 1,7

Расчет конечной температуры в калориметрии
Допустим вы наливаете 0.250 кг воды 20,0–20,0 ° C (около чашки) в алюминиевую кастрюлю весом 0,500 кг, снятую с плиты, при температуре 150–150 ° C. Предположим, что теплопередача не происходит ни к чему другому: кастрюля кладется на изолирующую подкладку, и передача тепла воздуху игнорируется в течение короткого времени, необходимого для достижения равновесия. Таким образом, это проблема калориметрии, даже если изолирующий контейнер не указан. Также предположим, что выкипает незначительное количество воды. Какова температура, при которой вода и поддон достигают теплового равновесия?
Стратегия
Изначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода.Теплопередача восстанавливает тепловое равновесие при соприкосновении воды и поддона; она останавливается, когда достигается тепловое равновесие между поддоном и водой. Тепло, теряемое кастрюлей, равно теплу, полученному водой — это основной принцип калориметрии.
Решение
  1. Используйте уравнение теплопередачи Q = mcΔTQ = mcΔT, чтобы выразить тепло, потерянное алюминиевой сковородой, через массу сковороды, удельную теплоемкость алюминия, начальную температуру сковороды и конечную температуру: Qhot = mA1cA1 (Tf − 150 ° C).Qhot = mA1cA1 (Tf − 150 ° C).
  2. Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру: Qcold = mwcw (Tf — 20,0 ° C) .Qcold = mwcw (Tf — 20,0 ° C).
  3. Обратите внимание, что Qhot <0Qhot <0 и Qcold> 0Qcold> 0 и что, как указано выше, они должны в сумме равняться нулю: Qcold + Qhot = 0Qcold = −Qhotmwcw (Tf − 20,0 ° C) = — mA1cA1 (Tf − 150 ° C) .Qcold + Qhot = 0Qcold = −Qhotmwcw (Tf − 20,0 ° C) = — mA1cA1 (Tf − 150 ° C) ).
  4. Поместите все термины, содержащие TfTf, в левую часть, а все остальные термины — в правую.Решение для Tf, Tf,
    Tf = mA1cA1 (150 ° C) + mwcw (20,0 ° C) mA1cA1 + mwcw, Tf = mA1cA1 (150 ° C) + mwcw (20,0 ° C) mA1cA1 + mwcw, и вставьте числовые значения: Tf = (0,500 кг) (900 Дж / кг ° C) (150 ° C) + (0,250 кг) (4186 Дж / кг ° C) (20,0 ° C) (0,500 кг) (900 Дж / кг ° C) + (0,250 кг ) (4186Дж / кг ° C) = 59,1 ° C.Tf = (0,500 кг) (900Дж / кг ° C) (150 ° C) + (0,250 кг) (4186Дж / кг ° C) (20,0 ° C) (0,500 кг) (900 Дж / кг ° C) + (0,250 кг) (4186 Дж / кг ° C) = 59,1 ° C.
Значение
Почему конечная температура намного ближе к 20,0 ° C20,0 ° C, чем к 150 ° C150 ° C? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, следовательно, претерпевает меньшее изменение температуры при данной теплопередаче.Большой водоем, например озеро, требует большого количества тепла для значительного повышения температуры. Это объясняет, почему температура в озере остается относительно постоянной в течение дня, даже когда изменение температуры воздуха велико. Однако температура воды действительно меняется в течение длительного времени (например, с лета на зиму).

Проверьте свое понимание 1.3

Проверьте свое понимание Если 25 кДж необходимо для повышения температуры породы с 25 ° C до 30 ° C, с 25 ° C до 30 ° C, сколько тепла необходимо для нагрева породы с 45 ° C до 50 ° C, от 45 ° C до 50 ° C ?

Пример 1.8

Температурно-зависимая теплоемкость
При низких температурах удельная теплоемкость твердых тел обычно пропорциональна T3T3. Первое понимание этого поведения было связано с голландским физиком Питером Дебаем, который в 1912 году рассмотрел атомные колебания с помощью квантовой теории, которую Макс Планк недавно использовал для излучения. Например, хорошее приближение для удельной теплоемкости соли NaCl составляет c = 3,33 × 104 Дж / кг · K (T321K) 3.c = 3,33 × 104 Дж · кг · K (T321K) 3. Постоянная 321 K называется температурой Дебая NaCl, ΘD, ΘD, и формула хорошо работает, когда T <0.04ΘD.T <0,04ΘD. Используя эту формулу, сколько тепла необходимо, чтобы поднять температуру 24,0 г NaCl с 5 K до 15 K?
Решение
Поскольку теплоемкость зависит от температуры, нам нужно использовать уравнение

Мы решаем это уравнение для Q путем интегрирования обеих частей: Q = m∫T1T2cdT.Q = m∫T1T2cdT.

Затем подставляем данные значения и вычисляем интеграл:

Q = (0,024 кг) ∫T1T23,33 × 10–6Джкг · K (T321K) 3dT = (6,04 × 10−4JK4) T4 | 5K15K = 0,302J.Q = (0,024 кг) ∫T1T23.33 × 10–6Джкг · K (T321K) 3dT = (6,04 × 10–4JK4) T4 | 5K15K = 0,302Дж.
Значение
Если бы мы использовали уравнение Q = mcΔTQ = mcΔT и удельную теплоемкость соли при комнатной температуре, 880 Дж / кг · K, 880 Дж / кг · K, мы получили бы совсем другое значение.

11.2 Тепло, удельная теплоемкость и теплопередача

Проводимость, конвекция и излучение

Теплообмен происходит всякий раз, когда возникает разница температур. Передача тепла может происходить быстро, например, через сковороду, или медленно, например, через стенки изолированного холодильника.

Существует три различных метода теплопередачи: теплопроводность, конвекция и излучение. Иногда все три могут происходить одновременно. См. Рисунок 11.3.

Рис. 11.3 В камине передача тепла происходит всеми тремя способами: теплопроводностью, конвекцией и излучением. Излучение отвечает за большую часть тепла, передаваемого в комнату. Передача тепла также происходит через теплопроводность в комнату, но гораздо медленнее. Теплообмен за счет конвекции также происходит через холодный воздух, поступающий в комнату вокруг окон, и горячий воздух, покидающий комнату, поднимаясь вверх по дымоходу.

Проводимость — это передача тепла при прямом физическом контакте. Тепло, передаваемое между электрической горелкой плиты и дном сковороды, передается за счет теплопроводности. Иногда мы пытаемся контролировать отвод тепла, чтобы чувствовать себя более комфортно. Поскольку скорость теплопередачи у разных материалов разная, мы выбираем такие ткани, как толстый шерстяной свитер, которые зимой замедляют отвод тепла от нашего тела.

Когда вы идете босиком по ковру в гостиной, ваши ноги чувствуют себя относительно комфортно… пока вы не ступите на кафельный пол кухни.Поскольку ковер и кафельный пол имеют одинаковую температуру, почему один из них холоднее другого? Это объясняется разной скоростью теплопередачи: материал плитки отводит тепло от вашей кожи с большей скоростью, чем ковровое покрытие, что делает его более холодным.

Некоторые материалы просто проводят тепловую энергию быстрее, чем другие. В целом металлы (например, медь, алюминий, золото и серебро) являются хорошими проводниками тепла, тогда как такие материалы, как дерево, пластик и резина, плохо проводят тепло.

На рисунке 11.4 показаны частицы (атомы или молекулы) в двух телах при разных температурах. (Средняя) кинетическая энергия частицы в горячем теле выше, чем в более холодном теле. Если две частицы сталкиваются, энергия передается от частицы с большей кинетической энергией к частице с меньшей кинетической энергией. Когда два тела находятся в контакте, происходит множество столкновений частиц, что приводит к чистому потоку тепла от тела с более высокой температурой к телу с более низкой температурой. Тепловой поток зависит от разности температур ΔT = Thot-TcoldΔT = Thot-Tcold.Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана.

Рис. 11.4 Частицы в двух телах при разных температурах имеют разные средние кинетические энергии. Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке частица в области более низких температур (правая сторона) имеет низкую кинетическую энергию перед столкновением, но ее кинетическая энергия увеличивается после столкновения с контактной поверхностью.Напротив, частица в области более высоких температур (слева) имеет большую кинетическую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.

Конвекция — это передача тепла движением жидкости. Такой тип теплопередачи происходит, например, в котле, кипящем на плите, или во время грозы, когда горячий воздух поднимается к основанию облаков.

Советы для успеха

В обиходе термин жидкость обычно означает жидкость.Например, когда вы заболели и врач говорит вам «выпить жидкости», это означает только пить больше напитков, а не вдыхать больше воздуха. Однако в физике жидкость означает жидкость или газ . Жидкости движутся иначе, чем твердые тела, и даже имеют свой собственный раздел физики, известный как гидродинамика , который изучает их движение.

При повышении температуры жидкости они расширяются и становятся менее плотными. Например, на рис. 11.4 может быть изображена стенка воздушного шара с газами внутри шара разной температуры, чем снаружи в окружающей среде.Более горячие и, следовательно, быстро движущиеся частицы газа внутри воздушного шара ударяются о поверхность с большей силой, чем более холодный воздух снаружи, заставляя воздушный шар расширяться. Это уменьшение плотности по отношению к окружающей среде создает плавучесть (тенденцию к повышению). Конвекция обусловлена ​​плавучестью — горячий воздух поднимается вверх, потому что он менее плотен, чем окружающий воздух.

Иногда мы контролируем температуру в доме или в себе, контролируя движение воздуха. Герметизация дверей герметичной изоляцией защищает от холодного ветра зимой.Дом на рис. 11.5 и горшок с водой на плите на рис. 11.6 являются примерами конвекции и плавучести, созданными человеком. Океанские течения и крупномасштабная атмосферная циркуляция переносят энергию из одной части земного шара в другую и являются примерами естественной конвекции.

Рис. 11.5 Воздух, нагретый так называемой гравитационной печью, расширяется и поднимается, образуя конвективную петлю, которая передает энергию другим частям комнаты. По мере того, как воздух охлаждается у потолка и внешних стен, он сжимается, в конечном итоге становясь более плотным, чем воздух в помещении, и опускается на пол.Правильно спроектированная система отопления, подобная этой, в которой используется естественная конвекция, может быть достаточно эффективной для равномерного обогрева дома.

Рис. 11.6 Конвекция играет важную роль в теплопередаче внутри этого котла с водой. Попав внутрь жидкости, теплопередача к другим частям кастрюли происходит в основном за счет конвекции. Более горячая вода расширяется, уменьшается по плотности и поднимается, передавая тепло другим частям воды, в то время как более холодная вода опускается на дно. Этот процесс повторяется, пока в кастрюле есть вода.

Излучение — это форма передачи тепла, которая происходит при испускании или поглощении электромагнитного излучения. Электромагнитное излучение включает радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи, все из которых имеют разные длины волн и количество энергии (более короткие волны имеют более высокую частоту и больше энергии).

Вы можете почувствовать теплоотдачу от огня и солнца. Точно так же вы иногда можете сказать, что духовка горячая, не касаясь ее дверцы и не заглядывая внутрь — она ​​может просто согреть вас, когда вы пройдете мимо.Другой пример — тепловое излучение человеческого тела; люди постоянно излучают инфракрасное излучение, которое не видно человеческому глазу, но ощущается как тепло.

Излучение — единственный метод передачи тепла, при котором среда не требуется, а это означает, что тепло не должно вступать в прямой контакт с какими-либо предметами или переноситься ими. Пространство между Землей и Солнцем в значительной степени пусто, без какой-либо возможности теплопередачи за счет конвекции или теплопроводности. Вместо этого тепло передается за счет излучения, и Земля нагревается, поскольку она поглощает электромагнитное излучение, испускаемое Солнцем.

Рис. 11.7 Большая часть тепла от этого пожара передается наблюдателям через инфракрасное излучение. Видимый свет передает относительно небольшую тепловую энергию. Поскольку кожа очень чувствительна к инфракрасному излучению, вы можете почувствовать присутствие огня, даже не глядя на него. (Дэниел X. О’Нил)

Все объекты поглощают и излучают электромагнитное излучение (см. Рисунок 11.7). Скорость передачи тепла излучением в основном зависит от цвета объекта. Черный — наиболее эффективный поглотитель и радиатор, а белый — наименее эффективный.Например, люди, живущие в жарком климате, обычно избегают ношения черной одежды. Точно так же черный асфальт на стоянке будет горячее, чем прилегающие участки травы в летний день, потому что черный цвет поглощает лучше, чем зеленый. Верно и обратное: черный цвет излучает лучше, чем зеленый. Ясной летней ночью черный асфальт будет холоднее, чем зеленый участок травы, потому что черный излучает энергию быстрее, чем зеленый. Напротив, белый цвет — плохой поглотитель и плохой радиатор. Белый объект, как зеркало, отражает почти все излучение.

Виртуальная физика

Формы и изменения энергии

В этой анимации вы исследуете теплопередачу с различными материалами. Поэкспериментируйте с нагревом и охлаждением железа, кирпича и воды. Для этого нужно перетащить объект на пьедестал и затем удерживать рычаг в положении «Нагреть» или «Охлаждать». Перетащите термометр рядом с каждым объектом, чтобы измерить его температуру — вы можете в режиме реального времени наблюдать, как быстро он нагревается или охлаждается.

Теперь попробуем передать тепло между объектами.Нагрейте кирпич и поместите его в прохладную воду. Теперь снова нагрейте кирпич, но затем поместите его поверх утюга. Что ты заметил?

Выбор опции быстрой перемотки вперед позволяет ускорить передачу тепла и сэкономить время.

Проверка захвата

Сравните, насколько быстро различные материалы нагреваются или охлаждаются. Основываясь на этих результатах, какой материал, по вашему мнению, имеет наибольшую удельную теплоемкость? Почему? Какая из них имеет наименьшую удельную теплоемкость? Можете ли вы представить себе реальную ситуацию, в которой вы хотели бы использовать объект с большой удельной теплоемкостью?

  1. Вода занимает больше всего времени, а железу нужно меньше времени, чтобы нагреться и остыть.Для теплоизоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
  2. Вода занимает меньше всего времени, а железу нужно больше времени, чтобы нагреться и остыть. Для теплоизоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
  3. Кирпич занимает меньше всего времени, а железу нужно больше времени, чтобы нагреться и остыть.Для теплоизоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
  4. Вода занимает меньше всего времени, а кирпичу нужно больше времени, чтобы нагреться и остыть. Для теплоизоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.

6.1: Тепловой поток — Chemistry LibreTexts

Результаты обучения

  • Опишите, как химическая потенциальная энергия связана с теплом и работой.
  • Используйте уравнение теплоемкости для выполнения расчетов, которые связывают массу, удельную теплоемкость, изменение температуры и количество поглощенного или выделенного тепла.
  • Преобразование джоулей, калорий и калорий.
  • Определите эндотермический и экзотермический.
  • Объясните разницу между теплоемкостью и удельной теплоемкостью.

Химические реакции сопровождаются передачей энергии. Отслеживание теплового потока и потребности в энергии важно для полного понимания химических процессов.Энергия — это способность выполнять работу или отдавать тепло. Когда вы заправляете свою машину бензином, вы обеспечиваете ее потенциальной энергией. Химическая потенциальная энергия — это энергия, запасенная в химических связях вещества . Различные химические вещества в бензине содержат большое количество потенциальной химической энергии, которая высвобождается при контролируемом сжигании бензина в двигателе автомобиля. Высвобождение этой энергии делает две вещи. Часть потенциальной энергии преобразуется в работу, которая используется для движения автомобиля (см. Рисунок ниже).В то же время часть потенциальной энергии преобразуется в тепло, в результате чего двигатель автомобиля сильно нагревается. Изменения энергии в системе происходят либо в виде тепла, либо в виде работы, либо в виде комбинации того и другого.

Рисунок \ (\ PageIndex {1} \): При сгорании бензина образуется энергия, которая приводит в движение автомобиль и выделяет тепло.

Тепло — это энергия, которая передается от одного объекта или вещества к другому из-за разницы в температуре между ними. Тепло всегда течет от объекта с более высокой температурой к объекту с более низкой температурой (см. Рисунок ниже).Поток тепла будет продолжаться до тех пор, пока два объекта не достигнут одинаковой температуры.

Рисунок \ (\ PageIndex {2} \): (A) Объект A начинается с более высокой температуры, чем объект B. Тепловые потоки отсутствуют, когда объекты изолированы друг от друга. (В). При контакте тепло течет от A к B до тех пор, пока температуры двух объектов не станут одинаковыми.

Термохимия — это исследование изменений энергии, которые происходят во время химических реакций и при изменении состояния. Когда происходят химические реакции, некоторые химические связи разрываются, но образуются новые химические связи.В результате перегруппировки атомов полная химическая потенциальная энергия системы либо увеличивается, либо уменьшается.

Экзотермические и эндотермические процессы

Когда происходят физические или химические изменения, они обычно сопровождаются передачей энергии. Закон сохранения энергии гласит, что в любом физическом или химическом процессе энергия не создается и не разрушается . Другими словами, сохраняется вся энергия Вселенной.Чтобы лучше понять изменения энергии, происходящие во время реакции, нам нужно определить две части Вселенной, которые называются системой и окружающей средой. Система — это определенная часть материи в данном пространстве, которая изучается во время эксперимента или наблюдения. Окружение — это все во вселенной, не являющееся частью системы. С практической точки зрения для химика-лаборанта система, как правило, представляет собой исследуемую реакцию, в то время как окружающая среда включает в себя непосредственное окружение в пределах комнаты.Во время большинства процессов происходит обмен энергией между системой и окружающей средой. Если система теряет определенное количество энергии, то такое же количество энергии получает окружение. Если система получает определенное количество энергии, эта энергия поступает из окружающей среды.

При изучении термохимических процессов все рассматривается с точки зрения системы. Химическая реакция или физическое изменение — это эндотермический , если система поглощает тепло из окружающей среды. В ходе эндотермического процесса система получает тепло от окружающей среды, поэтому температура окружающей среды снижается. Количество тепла для процесса обозначается буквой \ (q \). Знак \ (q \) для эндотермического процесса положительный, потому что система нагревается. Химическая реакция или физическое изменение — это экзотермический , если тепло выделяется системой в окружающую среду. Поскольку окружающая среда получает тепло от системы, температура окружающей среды увеличивается.Знак \ (q \) для экзотермического процесса отрицательный, потому что система теряет тепло. Разница между эндотермической реакцией и экзотермической реакцией проиллюстрирована ниже (см. Рисунок ниже).

Рисунок \ (\ PageIndex {3} \): (A) При эндотермической реакции тепло течет из окружающей среды в систему, снижая температуру окружающей среды. (B) При экзотермической реакции тепло течет из системы в окружающую среду, повышая температуру окружающей среды.

единиц тепла

Тепловой поток измеряется в одной из двух общепринятых единиц: калории и джоуль.\ text {o} \ text {C} \) потребует \ (100 \ times 2 = 200 \: \ text {cal} \).

Калории, содержащиеся в пище, на самом деле являются килокалориями \ (\ left (\ text {kcal} \ right) \). Другими словами, если определенная закуска содержит 85 пищевых калорий, она фактически содержит \ (85 \: \ text {ккал} \) или \ (85,000 \: \ text {cal} \). Для отличия калорийность рациона пишется с заглавной буквы C.

\ [1 \: \ text {килокалория} = 1 \: \ text {Калория} = 1000 \: \ text {калории} \]

Сказать, что закуска «содержит» 85 калорий, означает, что когда эта закуска обрабатывается вашим телом, высвобождается \ (85 \: \ text {ккал} \) энергии.

Тепловые изменения в химических реакциях обычно измеряются в джоулях, а не в калориях. Преобразование джоуля в калорию показано ниже.

\ [1 \: \ text {J} = 0,2390 \: \ text {cal} \: \ text {или} \: 1 \: \ text {cal} = 4.184 \: \ text {J} \]

Пример \ (\ PageIndex {1} \)

Сколько джоулей энергии высвобождается при переваривании гамбургера на 400 калорий?

Решение

Используйте соотношение между калориями и калориями, которое составляет 1000 калорий \ (= \) 1 калория, и коэффициент преобразования джоулей в калории, чтобы найти значение в джоулях.\ text {o} \ text {C} \) . Теплоемкость объекта зависит как от его массы, так и от его химического состава. Из-за своей гораздо большей массы плавательный бассейн с водой имеет большую теплоемкость, чем ведро с водой.

Различные вещества по-разному реагируют на тепло. Если металлический стул стоит на ярком солнце в жаркий день, он может стать довольно горячим на ощупь. Одинаковая масса воды на одном и том же солнце не станет почти такой же горячей. Вода очень устойчива к перепадам температуры, в то время как металлы в целом — нет.\ text {o} \ text {C} \ right) \) Вода \ (\ влево (l \ вправо) \) 4,18 Вода \ (\ left (s \ right) \) 2,06 Вода \ (\ влево (г \ вправо) \) 1,87 Аммиак \ (\ влево (г \ вправо) \) 2,09 Этанол \ (\ влево (л \ вправо) \) 2.44 Алюминий \ (\ left (s \ right) \) 0,897 Углерод, графит \ (\ left (s \ right) \) 0,709 Медь \ (\ left (s \ right) \) 0,385 Золото \ (\ left (s \ right) \) 0,129 Утюг \ (\ left (s \ right) \) 0,449 Отведение \ (\ left (s \ right) \) 0.129 Меркурий \ (\ влево (л \ вправо) \) 0,140 Серебро \ (\ left (s \ right) \) 0,233

Обратите внимание, что вода имеет очень высокую удельную теплоемкость по сравнению с большинством других веществ. Вода обычно используется в качестве охлаждающей жидкости для оборудования, поскольку она способна поглощать большое количество тепла (см. Рисунок ниже). Прибрежный климат гораздо более умеренный, чем внутренний климат из-за наличия океана.Вода в озерах или океанах поглощает тепло из воздуха в жаркие дни и отдает его обратно в воздух в прохладные дни.

Рисунок \ (\ PageIndex {4} \): Эта электростанция в Западной Вирджинии, как и многие другие, расположена рядом с большим озером, поэтому воду из озера можно использовать в качестве охлаждающей жидкости. Прохладная вода из озера закачивается в растение, а теплая вода выкачивается из растения и обратно в озеро.

Расчет удельной теплоемкости

Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении.Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (C_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.

\ [q = m \ times C_p \ times \ Delta T \]

Поглощаемое или выделяемое тепло измеряется в джоулях. Масса измеряется в граммах. Изменение температуры определяется выражением \ (\ Delta T = T_f — T_i \), где \ (T_f \) — конечная температура, а \ (T_i \) — начальная температура.

Пример \ (\ PageIndex {2} \)

А \ (15.\ text {o} \ text {C} \]

Авторы и авторство

  • Фонд CK-12 Шэрон Бьюик, Ричард Парсонс, Тереза ​​Форсайт, Шонна Робинсон и Жан Дюпон.

  • Эллисон Султ, Ph.D. (Кафедра химии, Университет Кентукки)

Калькулятор правил смесей

30 ноября 2017 г.

Примечание: это сообщение в блоге, описывающее использование калькулятора правила смешивания.
Если вы хотите использовать калькулятор, нажмите кнопку ниже.

Используйте калькулятор

Калькулятор правил смесей , недавно выпущенный Thermtest Inc., является бесценным инструментом для оценки удельной теплоемкости смесей, содержащих любое количество материалов. Используя массу и удельную теплоемкость каждого компонента, калькулятор правила смешивания рассчитывает удельную теплоемкость всего образца. В дополнение к калькулятору правил смешения, на веб-сайте Thermtest можно найти базу данных материалов, которая включает удельную теплоемкость более 1000 материалов.В следующем посте рассказывается о теории, лежащей в основе калькулятора правила смешивания, о том, как его использовать, и представлены реальные примеры, демонстрирующие его полезность.

Содержание

  1. Как работает правило смесей?
  2. Увеличивает ли добавление соли в воду время кипячения?
  3. Зачем смешивать антифриз и воду?
  4. Почему трескается асфальт?
  5. Почему бетон трескается и деформируется?
  6. Последние мысли
  7. Список литературы

Масса каждого отдельного компонента эквивалентна общей массе смеси, которую теоретически можно разбить на отдельные части.

Как работает правило смесей?

Как указывалось ранее, калькулятор использует формулу правила смесей для оценки удельной теплоемкости раствора с несколькими компонентами. {\ circ} \ mathrm {C} \) — это единица измерения температура в градусах Цельсия.Следовательно, удельная теплоемкость — это количество энергии, необходимое для подъема одного килограмма материала на один градус. Другими словами, удельная теплоемкость представляет собой способность материала накапливать энергию. Далее, как мы можем использовать правило смесей для расчета удельной теплоемкости?

Нарушение правила смешения

Соответственно, первый шаг к определению удельной теплоемкости смеси — связать каждый компонент в смеси посредством первого закона термодинамики.Примечательно, что первый закон термодинамики гласит, что энергия не может быть создана или уничтожена. Примечательно, что этот принцип может быть связан со следующим уравнением баланса энергии, где « Q » относится к полной энергии смеси в единицах джоулей.

\ [Q_ {смесь} = Q_ {1} + Q_ {2} \]

Рис. 1. Простое представление уравнения баланса энергии применительно к смесям.

Где «\ (Q \)» равно:

\ [{Q} = {m} \ cdot {C} _ {p} \ cdot \ Delta {T} \]

Затем, чтобы вычислить полную энергию смеси (\ (Q \)), необходимо умножить удельную теплоемкость (\ (C_ {p} \)) на фактическую массу (\ (m \)) и разность температур. (\ (\ Delta {T} \)) каждого материала в растворе.Полная энергия смеси является продуктом этих материалов, если предположить, что энергия не теряется или не набирается в процессе смешивания. Более того, предполагается, что изменение температуры равномерное. Итак, «\ (\ Delta {T} \)» можно исключить из следующего уравнения, которое представляет собой комбинацию двух предыдущих уравнений энергии.

\ [m_ {смесь} \ cdot {C} _ {{p} \, смесь} \ cdot \ Delta {T} = \ cdots \]

Наконец, правило смесей для удельной теплоемкости можно вывести путем некоторой перестановки, чтобы получить окончательное уравнение:

\ [C_ {p \, смесь} = \ Big (\ frac {m_ {1}} {m_ {смесь}} \ Big) C_ {p \, 1} + \ Big (\ frac {m_ {2}}) {m_ {смесь}} \ Big) C_ {p \, 2} \]

Это уравнение может быть скорректировано для аппроксимации удельной теплоемкости смеси с бесконечным числом компонентов, если известны масса и удельная теплоемкость каждого материала, а также масса смеси.Поскольку каждый новый материал добавляется к уравнению баланса энергии, результирующее уравнение:

\ [C_ {p \, смесь} = \ Big (\ frac {m_ {1}} {m_ {смесь}} \ Big) C_ {p \, 1} + \ Big (\ frac {m_ {2}}) {m_ {смесь}} \ Big) C_ {p \, 2} + \ Big (\ frac {m_ {3}} {m_ {смесь}} \ Big) C_ {p \, 3} + \ Big (\ frac {m_ {4}} {m_ {смесь}} \ Big) C_ {p \, 4} \]

Калькулятор правила смесей использует приведенное выше уравнение для аппроксимации удельной теплоемкости смеси. Кроме того, массу каждого материала можно заменить объемом.

Как пользоваться калькулятором правила смешивания

Шаг 1
  1. Выберите количество материалов в смеси, которое вы хотите рассчитать.
  2. В раскрывающемся списке выберите « Mass » или « Volume ».
  3. Выберите единицы из второго раскрывающегося списка.
  4. Нажмите «Продолжить», чтобы перейти к следующему шагу.

Шаг 1 — Начальная установка для расчета удельной теплоемкости смеси.

Шаг 2
  1. Выберите материал из нашей базы данных материалов, нажав «Выбрать материал»
  2. Используйте поле поиска в правом верхнем углу, чтобы сузить выбор.
  3. Щелкните по названию материала, который хотите загрузить.
  4. Как вариант, вы можете ввести название материала и термическое сопротивление вручную.
  5. Введите значение массы или объема материала.
  6. Повторите действия для каждого материала.
  7. Выберите «Рассчитать», чтобы просмотреть результаты.

Шаг 2 — Введите название, термическое сопротивление и массу или объем каждого материала.

Чтобы использовать калькулятор, сначала выберите количество компонентов в смеси.Затем введите их соответствующие массы или объем и их удельную теплоемкость. После этого калькулятор произведет оценку удельной теплоемкости. Соответственно, удельная теплоемкость, используемая для расчета, может быть выбрана из базы данных материалов Thermtest , как упоминалось ранее. Помимо удельной теплоемкости, база данных материалов также включает значения теплопроводности, температуропроводности, термической эффузии и плотности материала.Следующие примеры демонстрируют приложения, в которых может быть полезен Калькулятор правила смешения.

Увеличивает ли добавление соли время кипячения?

Распространенный миф, который большинство людей считает правдой, — это добавление соли в воду в надежде сократить время кипения смеси. Калькулятор правила смесей можно использовать для демонстрации того, как добавление соли повлияет на удельную теплоемкость и, следовательно, температуру кипения раствора. Как упоминалось ранее, удельная теплоемкость определяет, насколько быстро материал будет нагреваться.Для целей этого примера представьте, что 0,1 кг NaCl добавляется к 0,9 кг воды. Когда эти значения вводятся в калькулятор, будет произведена оценка удельной теплоемкости раствора.

Результаты калькулятора правила смешения.

Результаты расчета показывают, что удельная теплоемкость солевой смеси будет примерно 3853 Дж / кг ° C. Для сравнения, согласно литературным данным, удельная теплоемкость такой смеси составляет 3700 Дж / кг ° C.Более того, вычислитель оценил удельную теплоемкость в пределах 4% от фактического значения, продемонстрировав его надежность и точность.

Как соль влияет на температуру кипения воды?

Следующее свойство, которое необходимо исследовать, — это температура кипения воды; ожидается уменьшение после добавления соли. Однако, как видно на Рисунке 2, соль естественным образом увеличивает температуру кипения раствора и, следовательно, замедляет время кипения раствора соли и воды.

Рис. 2. Изменение температуры кипения водно-солевого раствора при увеличении массы NaCl (Mas, 2016).

Зачем смешивать антифриз и воду?

Антифриз (этиленгликоль) — наиболее распространенная коммерческая охлаждающая жидкость, используемая в транспортных средствах. Антифриз снижает температуру замерзания жидкостей, чтобы предотвратить их замерзание при минусовых температурах (рис. 3). Несмотря на относительно высокую температуру замерзания, в антифриз обычно добавляют воду.

Рисунок 3. Температура замерзания воды при увеличении объемов антифриза (этиленгликоль-теплоноситель, 2017).

Согласно литературным данным, удельная теплоемкость воды составляет 4184 Дж / кг ° C, что вдвое превышает удельную теплоемкость антифриза. По этой причине вода способна накапливать вдвое больше энергии, чем антифриз, позволяя отводить энергию от двигателя быстрее, чем чистый антифриз.

Рис. 4. Удельная теплоемкость водного раствора антифриза при увеличении объема антифриза (Ethylene Glycol Heat-Transfer Fluid, 2017).

Как показано на Рисунке 4, удельная теплоемкость антифриза и водного раствора имеет тенденцию к снижению по мере увеличения объема антифриза. Следовательно, смешивание двух жидкостей объединяет низкую точку замерзания антифриза с высокой удельной теплоемкостью воды. Имея это в виду, к этому сценарию можно применить Калькулятор правила смешения, чтобы определить идеальное соотношение антифриза и воды для оптимизации удельной теплоемкости раствора. В следующем примере калькулятор можно использовать для предотвращения деформации асфальта.

Почему трескается асфальт?

Как понимание накопления энергии может помочь уменьшить деформацию асфальта? Деформации возникают, когда изменения температуры вызывают расширение и сжатие асфальта. Соответственно, эта проблема может быть решена путем повышения удельной теплоемкости асфальта, позволяя температуре асфальта оставаться постоянной, поскольку для ее изменения потребуется больше энергии.

Материалы с фазовым переходом улучшают структурную целостность асфальта

В статье Chen et al. (2012), материалы с фазовым переходом (PCM) были использованы для улучшения способности асфальта накапливать энергию. PCM хранят энергию в виде явного тепла и скрытого тепла. Скрытое тепло сохраняет большую часть энергии в виде фазового перехода, тогда как явное тепло сохраняет энергию за счет изменения температуры. В результате на эту энергию влияет удельная теплоемкость. В ходе этого исследования было обнаружено, что физическое накопление тепловой энергии увеличивалось, когда PCM смешивали с асфальтом. Когда композит ПКМ / асфальт был объединен с большим количеством энергии, накопленной за счет скрытой теплоты, асфальт оставался при более постоянной температуре.При этой постоянной температуре трещины и деформации уменьшатся.

Тип смеси Теплопроводность Температуропроводность Объемная теплоемкость
(Единицы) (Вт / м ∙ К) (мм2 / с) (МДж / м3 ∙ К)
Контрольные образцы 1.459 0.603 2,420
Образцы с PCM-L 1,543 0.690 2,236
Примеры с PCM-Z 1,371 0,553 2.478

Калькулятор правила смешения может использоваться для оценки количества PCM, которое необходимо объединить с асфальтом для достижения желаемой удельной теплоемкости. Для получения дополнительной информации о теплопроводности этого примера, TPS использовался для проведения измерений на асфальте, а результаты можно просмотреть на странице приложения .

До сих пор обсуждались только смеси с двумя компонентами. Точно так же следующий пример демонстрирует, как калькулятор правила смесей может быть применен к смесям, содержащим более двух материалов.

Почему бетон трескается и деформируется?

Хотя бетон является прочным и доступным строительным материалом, как и асфальт, он подвержен растрескиванию при образовании температурных градиентов. Под воздействием тепла бетон расширяется. Под воздействием более низких температур бетон будет сокращаться.Если это изменение происходит быстро, в бетоне образуются трещины. Кроме того, образование температурных градиентов вызывает напряжение в месте, где встречаются две температуры, что также вызывает трещины и деформации.

Предотвращение трещин в бетоне

В исследовании, проведенном Сюй и Чанг (2000), бетон с высокой удельной теплоемкостью и теплопроводностью был получен путем добавления силана и микрокремнезема (рис. 5).

Рисунок 5. Влияние увеличения концентрации силана (15 мас.% Микрокремнезема) на удельную теплоемкость бетона (Yunsheng Xu, 2000).

Температурные градиенты с меньшей вероятностью образуются в бетонах с высокой удельной теплоемкостью, поскольку они накапливают больше энергии на один градус. В результате эти бетоны способны быстро компенсировать температурные градиенты, поскольку энергия проходит через них с большей скоростью. Калькулятор «Правило смесей» поможет оценить количество силана, микрокремнезема, цементной пасты и воды, необходимых для получения образца бетона с идеальной удельной теплоемкостью.

Последние мысли

Калькулятор правила смесей может приблизительно определить удельную теплоемкость смеси с любым количеством единиц с учетом известных масс и удельных теплоемкостей. Кроме того, удельную теплоемкость можно выбрать из собственной базы данных Thermtest , которая включает тепловые свойства более 1000 различных материалов. Калькулятор правила смешивания полезен для множества приложений. Будь то поиск идеального соотношения антифриза и воды, приблизительное значение для сравнения или просто экспериментирование, калькулятор правил смесей быстро и эффективно оценивает удельную теплоемкость смесей.

Список литературы
  1. Чен М., Ван Л., Лин Дж. 2012. Влияние материалов с фазовым переходом на термические и механические свойства асфальтовых смесей. Журнал тестирования и оценки. 40 (5): 746-753.
  2. Хагер И. 2013. Поведение цементобетона при высоких температурах. Вестник Польской академии наук. 61 (1): 145-154.
  3. Val Mas C. 2016. Как моляльность водного раствора NaCl влияет на его температуру кипения?
  4. Сюй И, Чанг DDL.2000. Цемент с высокой удельной теплоемкостью и высокой теплопроводностью, полученный с использованием в качестве добавок силана и микрокремнезема. Исследования цемента и бетона . 30: 1175-1178.
  5. Температура замерзания, плотность, удельная теплоемкость и динамическая вязкость хлорида натрия и водяного хладагента
  6. Температура замерзания, вязкость, удельный вес и удельная теплоемкость теплоносителей на основе этиленгликоля или рассолов

Сколько тепла вам нужно

Большинство проблем с электрическим нагревом можно легко решить, определив количество тепла, необходимое для выполнения работы.Требуемое количество тепла необходимо преобразовать в электрическую энергию, после чего можно выбрать наиболее практичный обогреватель для работы. Независимо от того, является ли проблема нагревом твердых тел, жидкостей или газов, метод или подход к определению потребляемой мощности одинаков.

Ваша проблема с отоплением должна быть четко обозначена, уделяя особое внимание определению рабочих параметров. Прежде чем продолжить, убедитесь, что у вас есть следующая информация:

Тепловая система, которую вы проектируете, может не учитывать все возможные или непредвиденные требования к обогреву, поэтому помните о коэффициенте безопасности.Коэффициент безопасности увеличивает мощность нагревателя сверх расчетных требований.

Полная требуемая тепловая энергия (кВтч или британских тепловых единиц) представляет собой тепло, необходимое для запуска, или тепло, необходимое для поддержания заданной температуры. Это зависит от того, какой расчетный результат больше.

Требуемая мощность (кВт) — это величина тепловой энергии (кВтч), деленная на необходимое время запуска или рабочего цикла. Мощность обогревателя в кВт будет больше из этих значений плюс коэффициент безопасности.

Расчет требований к запуску и эксплуатации состоит из нескольких отдельных частей, которые лучше всего обрабатывать отдельно.Однако можно использовать краткий метод для быстрой оценки необходимой тепловой энергии.

Коэффициент безопасности обычно составляет от 10 до 35 процентов в зависимости от области применения.

A = Ватты, необходимые для повышения температуры материала и оборудования до рабочей точки в течение требуемого времени

B = Ватты, необходимые для повышения температуры материала во время рабочего цикла

Вес материала (фунты) ) x Удельная теплоемкость материала (° F) x повышение температуры (° F)

––––––––––––––––––––––––––––––– ––––––––––––––––––

Время запуска или цикла (часы) x 3.412

D = Ватты, необходимые для плавления или испарения материала во время рабочего цикла

Уравнение для C и D (поглощенные ватты при плавлении или испарении)

Вес материала (фунты) x теплота плавления или испарение (БТЕ / фунт)

–––––––––––––––––––––––––––––––––––––––– –––

Время запуска или цикла (часы) x 3.412

L = Потери ватт на поверхностях из-за использования теплопроводности, кривых тепловых потерь при использовании излучения или кривых тепловых потерь при использовании конвекции

Теплопроводность материала или изоляции (БТЕ x дюйм / фут 2 x ° F x час) x Площадь поверхности (футы 2 ) x Темп. дифференциал к температуре окружающей среды (° F)

–––––––––––––––––––––––––––––––––––––––– ––––––

Толщина материала или изоляции (дюйм.) х 3,412

Расчет мощности

Поглощенная энергия, тепло, необходимое для повышения температуры материала

Поскольку все вещества нагреваются по-разному, для изменения температуры требуется разное количество тепла. Удельная теплоемкость вещества — это количество тепла, необходимое для повышения температуры единицы вещества на один градус. Если обозначить количество добавленного тепла Q, которое вызовет изменение температуры ∆T на массу вещества W, при удельной теплоемкости материала Cp, тогда Q = w x Cp x ∆T.

Поскольку все вычисления производятся в ваттах, вводится дополнительное преобразование 3,412 британских тепловых единиц = 1 Вт-час.

Q A или Q B = w x Cp x ∆T

––––––––––

3,412

QA = тепло, необходимое для повышения температуры материалов во время нагрева (Втч)

QB = тепло, необходимое для повышения температуры обрабатываемых материалов в рабочем цикле (Вт · ч)

w = Вес материала (фунты)

Cp = удельная теплоемкость материала (БТЕ / фунт x ° F)

∆T = Повышение температуры материала (T Final — T Initial ) (° F)

Тепло, необходимое для плавления или испарения материала

Тепло, необходимое для плавления материала, называется скрытой теплотой плавления и обозначается H f .Другое изменение состояния связано с испарением и конденсацией. Скрытая теплота парообразования H v вещества — это энергия, необходимая для превращения вещества из жидкости в пар. Это же количество энергии выделяется, когда пар конденсируется обратно в жидкость.

Q C или Q D = ширина x высота f или v

–––––

3,412

Q C = Тепло, необходимое для плавления / испарения материалов во время нагрева (Втч)

Q D = Тепло, необходимое для плавления / испарения материалов, обрабатываемых в рабочем цикле (Вт-ч)

w = Вес материала (фунты)

H f = скрытая теплота плавления (БТЕ / фунт)

H v = скрытая теплота испарения (БТЕ / фунт)

Теплопроводность потерь

Теплопередача за счет теплопроводности — это контактный обмен теплом от одного тела с более высокой температурой к другому телу с более низкой температурой или между частями одного и того же тела при разных температурах.

Q L1 = k x A x ∆T x te [1]

––––––––––

3,412 x Д

Q L1 = теплопроводность потерь (Вт · ч)

k = теплопроводность (британские тепловые единицы x дюйм / фут 2 x ° F x час)

A = Площадь поверхности теплопередачи (футы 2 )

L = толщина материала (дюйм.)

∆T = разница температур в материале (T 2 -T 1 ) ° F

te = Время выдержки (час)

Конвекционные тепловые потери

Конвекция — это особый случай проводимости. Конвекция определяется как передача тепла из высокотемпературной области в газе или жидкости в результате движения масс жидкости.

Q L2 = A • F SL • C F

Q L2 = Конвекционные тепловые потери (Вт · ч)

A = Площадь поверхности (дюйм2)

F SL = Коэффициент потерь при вертикальной поверхностной конвекции (Вт / дюйм2), рассчитанный при температуре поверхности

C F = Фактор ориентации поверхности: нагретая поверхность обращена горизонтально вверх (1.29), вертикально (1,00), нагреваемая поверхность обращена горизонтально вниз (0,63)

Радиационные тепловые потери

Радиационные потери не зависят от ориентации поверхности. Коэффициент излучения используется для корректировки способности материала излучать тепловую энергию.

Q L3 = A x F SL x e

Q L3 = Потери тепла на излучение (Вт · ч)

A = Площадь поверхности (дюйм2)

F SL = Коэффициент потерь на излучение черного тела при температуре поверхности (Вт / дюйм2)

e = коэффициент поправки на излучательную способность поверхности материала

Комбинированные потери тепла конвекцией и излучением

Если требуется только конвекционная составляющая, тогда радиационная составляющая должна определяться отдельно и вычитаться из комбинированной кривой.

Q L4 = A x F SL

Q L4 = Потери тепла на поверхности в сочетании с конвекцией и излучением (Вт · ч)

A = Площадь поверхности (в 2 )

F SL = комбинированный коэффициент поверхностных потерь при температуре поверхности (Вт / дюйм 2 )

Общие тепловые потери

Суммарные потери тепла на теплопроводность, конвекцию и излучение суммируются, чтобы учесть все потери в уравнениях мощности.

Q L = Q L1 + Q L2 + Q L3 Если конвекционные и радиационные потери рассчитываются отдельно. (Поверхности изолированы неравномерно, и потери следует рассчитывать отдельно.)

ИЛИ

Q L = Q L1 + Q L4 Если используются комбинированные кривые излучения и конвекции. (Трубы, воздуховоды, равномерно изолированные тела.)

Оценка мощности

После расчета требований к пусковой и рабочей мощности необходимо провести сравнение и оценить различные варианты.

В ссылке 1 показаны пусковые и рабочие ватты в графическом формате, чтобы помочь вам увидеть, как складываются требования к мощности. С учетом этого графического средства возможны следующие оценки:

Сравните начальную мощность с рабочей мощностью.

Оцените влияние увеличения времени запуска таким образом, чтобы мощность запуска равнялась рабочим ваттам (используйте таймер для запуска системы перед сменой).

Признайте, что существует больше тепловой мощности, чем используется. (Требование короткого времени запуска требует большей мощности, чем процесс в ваттах.)

Определите, куда уходит большая часть энергии, и измените конструкцию или добавьте изоляцию, чтобы снизить требования к мощности.

После рассмотрения всей системы необходимо проанализировать время запуска, производственные мощности и методы изоляции. Как только у вас будет необходимое количество тепла, вы должны рассмотреть факторы применения вашего обогревателя.

Основы термического сопротивления | Celsia

Сегодняшний гостевой блог об основах термического сопротивления ведет доктор Джеймс Стивенс, профессор машиностроения из Университета Колорадо. Доктор Стивенс специализируется на численном и аналитическом анализе теплопередачи, охватывающем как установившиеся, так и переходные ситуации, с приложениями к тепловой истории, тепловому отклику, электронному охлаждению, температурным профилям, тепловому расчету и определению скорости теплового потока.

Аналогия теплового сопротивления

Термическое сопротивление — это удобный способ анализа некоторых проблем теплопередачи с использованием электрической аналогии, чтобы упростить визуализацию и анализ сложных систем. Он основан на аналогии с законом Ома:

В законе Ома для электричества «V» — это напряжение, управляющее током с величиной «I». Величина тока, протекающего при заданном напряжении, пропорциональна сопротивлению (R elec ). Для электрического проводника сопротивление зависит от свойств материала (например, медь имеет более низкое сопротивление, чем древесина) и физической конфигурации (толстые короткие провода имеют меньшее сопротивление, чем длинные тонкие провода).

Для одномерных стационарных задач теплопередачи без внутреннего тепловыделения тепловой поток пропорционален разнице температур в соответствии с этим уравнением:

где Q — тепловой поток, k — свойство материала теплопроводность, A — это площадь, перпендикулярная потоку тепла, Δx — расстояние, на котором течет тепло, а ΔT — разность температур, управляющая тепловым потоком.

Если мы проведем аналогию, сказав, что электрический ток течет подобно теплу, и заявив, что напряжение управляет электрическим током, как разница температур управляет тепловым потоком, мы можем записать уравнение теплового потока в форме, аналогичной закону Ома:

где R th — это тепловое сопротивление, определяемое как: Как и в случае с электрическим сопротивлением, тепловое сопротивление будет выше для небольшой площади поперечного сечения теплового потока (A) или на большом расстоянии (Δx).

Обоснование

Итак, зачем все это беспокоиться? Ответ заключается в том, что термическое сопротивление позволяет нам решать несколько сложные проблемы относительно простыми способами. Мы поговорим о различных способах его использования, но сначала давайте рассмотрим простой случай, чтобы проиллюстрировать преимущества.

Предположим, что мы хотим рассчитать тепловой поток через стену, состоящую из трех разных материалов, и нам известны поверхностные температуры на каждой внешней поверхности, T A и T B , а также свойства и геометрия материала.

Мы могли бы написать уравнение проводимости для каждого материала:

Теперь у нас есть три уравнения и три неизвестных: T 1 , T 2 и Q. не было бы слишком много работы, чтобы алгебраически решить эти три неизвестных, однако, если мы воспользуемся аналогией термического сопротивления, нам даже не придется проделывать столько работы:

, где

, и мы можем решить для Q в Единственный шаг.

Объединение тепловых сопротивлений

Этот простой пример показывает, как последовательно объединить несколько тепловых сопротивлений, что имеет ту же структуру, что и в электрическом аналоге:

Так же, как электрические сопротивления, тепловые сопротивления также могут быть объединены параллельно или в обоих последовательностях и параллельно:

Beyond Conduction

До сих пор мы говорили о тепловом сопротивлении, связанном с проводимостью через плоскую стенку.Для стационарных одномерных задач другие уравнения теплопередачи могут быть сформулированы в формате термического сопротивления. Например, рассмотрим закон охлаждения Ньютона для конвективной теплопередачи:

где Q — тепловой поток, h — коэффициент конвективной теплопередачи, A — площадь, на которой происходит теплопередача, T s — температура поверхности, на которой конвекция имеет место, а T inf — это температура жидкости в набегающем потоке. Как и в случае теплопроводности, существует разница температур, движущая потоком тепла.В этом случае тепловое сопротивление будет:

Аналогично, для теплопередачи от серого тела:

где Q — тепловой поток, ε — коэффициент излучения поверхности, σ — постоянная Стефана-Больцмана, T s — это температура поверхности излучающей поверхности, а T surr — температура окружающей среды. Разложив выражение для температуры на множители, можно записать тепловое сопротивление:

Преимущество: Простая установка задачи

Формулировки термического сопротивления могут сделать решение довольно сложной задачи довольно простым в установке.Представьте, например, что мы пытаемся рассчитать тепловой поток от потока жидкости известной температуры через композитную стенку к воздушному потоку с конвекцией и излучением, происходящим со стороны воздуха. Если свойства материала, коэффициенты теплопередачи и геометрия известны, то состав уравнения очевиден:

Теперь для решения этой конкретной проблемы может потребоваться итеративное решение, поскольку тепловое сопротивление излучения содержит температура поверхности внутри него, но установка проста и понятна.

Преимущество: Problem Insight

Формулировка термического сопротивления имеет дополнительное преимущество: очень ясно, какие части модели контролируют теплопередачу, а какие — неважны или, возможно, даже незначительны. В качестве конкретной иллюстрации предположим, что в последнем примере тепловое сопротивление на стороне жидкости составляло 20 К / Вт, что первый слой в композитной стене был пластиком толщиной 1 мм с тепловым сопротивлением 40 К / Вт, что второй слой состоял из стали толщиной 2 мм с термическим сопротивлением 0.5 К / Вт, и что тепловое сопротивление конвекции для воздуха было 200 К / Вт, а тепловое сопротивление излучению в окружающую среду было 2500 К / Вт, исходящему от поверхности с излучательной способностью 0,5.

Мы можем многое понять в проблеме, просто учитывая тепловое сопротивление. Например, поскольку сопротивление излучения параллельно гораздо меньшему сопротивлению конвекции, оно будет иметь небольшое влияние на общее тепловое сопротивление. Увеличение коэффициента излучения стены до единицы улучшило бы общее тепловое сопротивление только на 5%.Или полное игнорирование излучения приведет к ошибке всего в 6%. Точно так же термическое сопротивление стали является последовательным и крошечным по сравнению с другими сопротивлениями в системе, поэтому независимо от того, что сделано с металлическим слоем, это не окажет большого влияния. Например, переход со стали на чистую медь улучшит общее термическое сопротивление только на 0,2%. Наконец, очевидно, что тепловое сопротивление регулируется конвекцией со стороны воздуха. Если бы можно было удвоить коэффициент конвекции (скажем, увеличив скорость воздуха), только этот шаг уменьшил бы общее тепловое сопротивление на 36%.

Проводимость за пределами плоской стены

Тепловое сопротивление также можно использовать для других геометрий проводимости, если они могут быть проанализированы как одномерные. Тепловое сопротивление проводимости в цилиндрической геометрии составляет:

, где L — осевое расстояние вдоль цилиндра, а r 1 и r 2 такие, как показано на рисунке.

Термическое сопротивление для сферической геометрии составляет:

с r 1 и r 2 , как показано на рисунке.

Заключение

Термическое сопротивление — мощный и полезный инструмент для анализа проблем, которые могут быть аппроксимированы как одномерные, стационарные, и которые не имеют источников тепловыделения.


Пожалуйста, свяжитесь с Celsia для решения следующей задачи по тепловому расчету.

Добавить комментарий

Ваш адрес email не будет опубликован.