Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ β ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈΠ· ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΠΈ β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΉ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΠΈ
Π‘ΠΈΠ³Π½Π°Π» Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ D
Π‘ΠΊΠ²Π°ΜΠΆΠ½ΠΎΡΡΡ (Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅)Β β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ (ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ) ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. Π§Π°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (Π°Π½Π³Π».Β duty cycle).
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ:
- S=TΟ=1D,{\displaystyle S={\frac {T}{\tau }}={\frac {1}{D}},}
- D=ΟT=1S,{\displaystyle D={\frac {\tau }{T}}={\frac {1}{S}},}
Π³Π΄Π΅ S{\displaystyle S}Β β ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ, D{\displaystyle D}Β β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.
T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ, Π³Π΄Π΅ ΡΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠΈΠΊΠ° ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ) ΠΊ Π΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΠ°Π±ΠΎΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ.
ΠΠ·Π²Π΅ΡΡΠ½ΡΠΉ Π² ΡΠ°Π΄ΠΈΠΎΡΠ΅Ρ Π½ΠΈΠΊΠ΅ ΡΠΈΠ³Π½Π°Π» ΠΌΠ΅Π°Π½Π΄Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ 2 (ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ 0,5). Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΡΠ°Π½ΡΠΈΡΡ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ ΡΡΡΡΡ.
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ — ΡΡΠΎ… Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ?
3.15 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (fill ratio), Ο: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° ΠΏΠΎΠ΄ ΠΊΠΎΠΆΡΡ ΠΎΠΌ ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΠΎΠΆΡΡ Π°.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ — ΠΡΠ»ΠΈ ΡΠΎΡΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΡΠ°ΡΡΠ΅Ρ Π΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΡΠΈΠ½ΡΡΡ ΠΎΠ±ΡΠ΅ΠΌ ΠΎΠ³ΠΈΠ±Π°ΡΡΠ΅Π³ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠΏΠΎ ΠΠΠ‘Π’ 31275.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ — ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ ΠΎΠ±ΡΠ΅ΠΌ Π‘ΠΠ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠ΅Π·Π΅ΡΠ²ΡΠ°ΡΠ° (ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΡΠΈΠΊ ΡΠ΅Π·Π΅ΡΠ²ΡΠ°ΡΠ°).
3.13 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (fill ratio) Ο: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° ΠΏΠΎΠ΄ ΠΊΠΎΠΆΡΡ ΠΎΠΌ ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΠΎΠΆΡΡ Π°.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ — ΠΡΠ»ΠΈ ΡΠΎΡΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΡΠ°ΡΡΠ΅Ρ Π΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΡΠΈΠ½ΡΡΡ ΠΎΠ±ΡΠ΅ΠΌ ΠΎΠ³ΠΈΠ±Π°ΡΡΠ΅Π³ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠΏΠΎ ΠΠΠ‘Π’ 31275.
2.15 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΈΠΊΡΠ΅Π»Ρ, ΠΎΡΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π΄Π»Ρ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΈΠΊΡΠ΅Π»Ρ.
3.11 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΌΠ°ΡΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌΡ ΠΏΠΎΡΠ»Π΅ ΡΠ΄Π°Π²Π»ΠΈΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ Π½Π°Π±ΠΎΡΠ° (ΠΏΠ°ΠΊΠ΅ΡΠ°) Π»ΠΈΡΡΠΎΠ².
3.10 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΌΠ°ΡΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌΡ ΠΏΠΎΡΠ»Π΅ ΡΠ΄Π°Π²Π»ΠΈΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ Π½Π°Π±ΠΎΡΠ° (ΠΏΠ°ΠΊΠ΅ΡΠ°) Π»ΠΈΡΡΠΎΠ².
3.10 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (duty factor): ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ.
11. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°
Π‘ΠΌΠΎΡΡΠΈ ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ:
47. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π²ΠΈΡ ΡΠ΅ΡΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Ρ
Fill factor of encircling eddy current probe
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊ ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΠΈΠ· ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡΠΊΠ° ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΠΏΡΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΡ ΡΠ΅ΡΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Ρ
Π³Π΄Π΅ Β — ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡΠΊΠ° ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ;
Β — ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡΠΊΠ° ΠΎΠ±ΠΌΠΎΡΠΊΠΈ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ
57. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ
D. Belastungsfaktor
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
3.1.63 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ (ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ): ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
[ΠΠΠ‘Π’ 19431-84, ΠΏΡΠ½ΠΊΡ 57]
207. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΆΠΈΠ»Ρ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΠΏΡΠΎΠ²ΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΡΠΎΠΊΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ ΠΆΠΈΠ»Ρ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΌ ΠΎΠΊΠΎΠ»ΠΎ Π½Π΅Π΅ ΠΊΠΎΠ½ΡΡΡΠΎΠΌ
13.5.2. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ²
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ, ΡΡΠΎΠ±Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π»ΡΡ Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡ Π΄Π»ΠΈΠ½Ρ ΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ ΠΊΠ°Π½Π°Π»Π° ΠΈ Π³ΠΈΠ±ΠΊΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ². Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ, ΡΡΠΎΠ±Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»ΠΈ Π»Π΅Π³ΠΊΠΎ ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡ Π½Π° ΠΌΠ΅ΡΡΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π° ΠΈ ΠΊΠ°Π±Π΅Π»ΠΈ.
7.1.9. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΡΡΠ³Π°
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΊΡΡΠ³Π° Ρ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ, ΡΠ°Π²Π½ΡΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ ΡΡΠ΅ΡΠΆΠ½Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π½Π΅ Π²ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ
34. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π»Π΅ΡΠΎΡΠΏΠ»Π°Π²Π½ΠΎΠ³ΠΎ Ρ ΠΎΠ΄Π°
Π. Coefficient of floating route filling
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, Π·Π°Π½ΡΡΠΎΠΉ ΠΏΠ»ΡΠ²ΡΡΠΈΠΌΠΈ Π±ΡΠ΅Π²Π½Π°ΠΌΠΈ ΠΈΠ»ΠΈ ΡΠΏΠ»ΠΎΡΠΎΡΠ½ΡΠΌΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ°ΠΌΠΈ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π»Π΅ΡΠΎΡΠΏΠ»Π°Π²Π½ΠΎΠ³ΠΎ Ρ ΠΎΠ΄Π°, ΠΊ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ°
19. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π½Π΅ΡΡΡΠ΅Π³ΠΎ Π²ΠΈΠ½ΡΠ°
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ
Ο
ΠΠ΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΠ°Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ
7.1.15. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΎΠΊΠ½Π° ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»Π° Π²ΡΠ΅Ρ Π²ΠΈΡΠΊΠΎΠ² Π²ΡΠ΅Ρ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ Π² ΠΎΠΊΠ½Π΅ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΎΠΊΠ½Π°
68. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ ΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ ΠΊ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ
67. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ° ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ°
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ ΠΊ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠΎΡΠΎΡΠ°
7.1.10. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ (ΡΡΠΌΠ°)
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ (ΡΡΠΌΠ°) ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ
7.1.11. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΡΠ°Π»ΡΡ
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΊΡΡΠ³Π° Ρ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ, ΡΠ°Π²Π½ΡΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ ΡΡΠ΅ΡΠΆΠ½Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΡΠ°Π»ΡΡ ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΡΡΠ³Π° ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΆΠ½Ρ
Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. academic.ru. 2015.
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ
ΠΠ±ΡΠ΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π΅Π³ΠΎ ΠΎΡ ΡΠ½Π΅ΡΠ³ΠΎΡΠ΅ΡΠΈ, ΠΊΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Π²Π°ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΎ ΡΠ²Π»Π΅Π½ΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ β Π΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ Π²ΠΎ Π²ΡΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΡΡ ΡΠΎΠΊΠ°, ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ Π·Π°ΠΏΠ°ΡΠ°ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ, ΠΈΠ½Π°ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, ΠΈΠ½Π΅ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ .
Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ
ΠΡΠΈΠ½ΡΠΈΠΏ ΡΠΈΡΠΎΡΠ½ΠΎ-ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π° ΡΡΠΎΠΌ ΡΡΡΠ΅ΠΊΡΠ΅, ΠΎΠ½ Π½Π°ΡΡΠ» ΡΠ΅Π±Π΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠΈΡΠΎΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΈ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°ΠΌΠΈ ΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ, Π³Π΄Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠΎΠ΄Π°ΡΠ° ΡΠ½Π΅ΡΠ³ΠΈΠΈ. Π Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅ ΡΡΠΎΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΠ»ΡΡΠΈΠ» Π½Π°Π·Π²Π°Π½ΠΈΠ΅ β Pulse-Width Modulation.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π¨ΠΠ
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ? ΠΡΠΎ ΡΠ΅Π·ΠΊΠΈΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ Π²ΡΠΏΠ»Π΅ΡΠΊ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ ΠΊΠΎΠ½Π΅ΡΠ΅Π½, ΡΠΎ ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ Π½Π°ΡΠ°Π»ΠΎ, ΠΎΠ±ΡΡΠ½ΠΎ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠ΅ ΡΡΠΎΠ½ΡΠΎΠΌ, ΡΠΈΡΠΈΠ½Ρ ΠΈ ΡΠΏΠ°Π΄, Π΅Π³ΠΎ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅, ΠΏΠ΅ΡΠΈΠΎΠ΄.
Π’Π°ΠΊΠΈΠ΅ Π²ΡΠΏΠ»Π΅ΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ:
- ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ β ΡΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π΄ΠΎ ΡΡΠΎΠ½ΡΠ° ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ°, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»ΠΈΡΠ΅ΡΠΎΠΉ T;
- ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΊ ΡΠΈΡΠΈΠ½Π΅, ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½Π°Ρ ΠΈ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π² ΠΏΡΠΎΡΠ΅Π½ΡΠ°Ρ , Π½Π° ΡΡ Π΅ΠΌΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ ΡΡΠ°ΡΡΠΎΠΊ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΏΠ°Π΄ΠΎΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΈ ΡΡΠΎΠ½ΡΠΎΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»ΠΈΡΠ΅ΡΠΎΠΉ S;
- ΡΠ°ΡΡΠΎΡΠ° ΡΠΈΠ³Π½Π°Π»Π° β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΡΠΏΠ»Π΅ΡΠΊΠΎΠ² Π·Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
- ΡΠΈΡΠΈΠ½Π° ΠΈΠΌΠΏΡΠ»ΡΡΠ° β ΠΏΠ΅ΡΠΈΠΎΠ΄ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΅Π³ΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΡΠ°Π±ΠΈΠ»ΡΠ½Π°;
- ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ, ΠΎΠ±ΡΡΠ½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π² ΡΠΎΡΠΌΡΠ»Π°Ρ Π»ΠΈΡΠ΅ΡΠΎΠΉ t.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° β ΡΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅:
S = T/t.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΌΡ, ΡΠΈΡΠΎΡΠ½ΠΎ-ΠΈΠΌΠΏΡΠ»ΡΡΠ½Π°Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΡΠΈΠ³Π½Π°Π»Π°, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ.
Π‘Ρ Π΅ΠΌΠ°
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅
ΠΠ»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΌΠΈΠΊΡΠΎΡΡ Π΅ΠΌΠ° Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΈΠ»ΠΈ ΡΠΈΠΏ-ΠΊΠΎΠ½ΡΡΠΎΠ»Π»Π΅Ρ. Π‘Π°ΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π½Π°Π³ΡΡΠ·ΠΊΠΎΠΉ, ΠΈΠ΄ΡΡΠ΅ΠΉ ΠΎΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ°. ΠΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΡΡ Π΅ΠΌΡ Π½Π° ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅. ΠΠ»ΡΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΡ: Π»ΠΈΠ±ΠΎ ΠΎΠ½ Π²ΠΊΠ»ΡΡΡΠ½ Π² ΡΠ΅ΡΡ, Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΡΠΊΠ°Π΅Ρ Π΅Ρ.
ΠΡΡΠ±ΠΎ Π³ΠΎΠ²ΠΎΡΡ, Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π’Π°ΠΊ, Π΅ΡΠ»ΠΈ ΡΠ²Π΅ΡΠΈΠ»ΡΠ½ΠΈΠΊ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΡ Π΅ΠΌΡ, ΡΠΎ ΠΏΡΠΈ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π»Π°ΠΌΠΏΠ° Π±ΡΠ΄Π΅Ρ ΠΌΠΈΠ³Π°ΡΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡΡ, Π½ΠΎ ΠΏΡΠΈ ΠΏΡΠ΅Π²ΡΡΠ΅Π½ΠΈΠΈ Π΅Ρ ΡΠ²Π΅ΡΡ 50ΠΡ Π² ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΈΡ Π³Π»Π°Π·Π°Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ Π²ΡΠΏΠ»Π΅ΡΠΊΠΈ ΡΠ²Π΅ΡΠ° ΡΠΎΠ»ΡΡΡΡΡ Π² ΠΎΠ΄Π½ΠΎ ΡΠΎΠ²Π½ΠΎΠ΅ ΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³Π»Π°Π·Π°, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π΅ ΡΠ»Π°Π²Π»ΠΈΠ²Π°Π΅Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ²ΡΡΠ΅ ΡΡΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎ ΠΈ ΡΡΠΊΠΎΡΡΡ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ. Π§Π΅ΠΌ Π½ΠΈΠΆΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ Π΅ΠΌΡ, ΡΠ΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΡΠΊΠΎΡΡΡ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΈ Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΌ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΏΠΎΠ΄ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΠΎΡΠ½ΠΎ-ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ°. ΠΡΠΈ ΡΡΠΎΠΌ Π½ΠΈΠ·ΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠΈΠ²Π΅Π΄ΡΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ Π²ΡΡΠΎΠΊΠ°Ρ β ΠΊ Π΅Π³ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅. ΠΠ»Ρ Π΅Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΊΠ»ΡΡΠΈ-ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠ΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π±ΡΡΡΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π² ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ³Π½Π°Π»Π°.
ΠΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»Ρ ΡΡ Π΅ΠΌΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΡΡΡΠ΅Π΄Π½ΡΡΡ, Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠΈΠ»ΡΡΡΡ Π½ΠΈΠ·ΠΊΠΈΡ ΡΠ°ΡΡΠΎΡ, Π½ΠΎ ΠΏΡΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ΅ΠΉ ΠΈ Ρ ΠΎΡΠΎΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠ°ΠΌΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ.
Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΡΡΠΎΠ²Π½Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠΈΠ³Π½Π°Π»Π°, ΡΠ°ΡΡΠΎΡΠ° ΡΠ°ΠΊΠΈΡ ΡΡΡΡΠΎΠΉΡΡΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ Π΄ΡΠ±Π»ΠΈΡΡΡΡΠ΅Π³ΠΎ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ°, ΠΏΠΎΠ΄Π°ΡΡΠ΅Π³ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠΈΠ³Π½Π°Π».
ΠΠ΅Π½Π΅ΡΠ°ΡΠΎΡ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ
ΠΠΈΠ΄Π΅ΠΎ
ΠΡΠ΅Π½ΠΈΡΠ΅ ΡΡΠ°ΡΡΡ:ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
Π‘ΠΈΠ³Π½Π°Π» Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ D
Π‘ΠΊΠ²Π°ΜΠΆΠ½ΠΎΡΡΡ (Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅)Β β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ (ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ) ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. Π§Π°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ:
- S=TΟ=1D,{\displaystyle S={\frac {T}{\tau }}={\frac {1}{D}},}
- D=ΟT=1S,{\displaystyle D={\frac {\tau }{T}}={\frac {1}{S}},}
Π³Π΄Π΅ S{\displaystyle S}Β β ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ, D{\displaystyle D}Β β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.
T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΏΡΠΎΡΠ΅Π½ΡΠ°Ρ . ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π² ΡΡΠ΄Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π΅Π½, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 0 Π΄ΠΎ 1, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π΄ΠΎ 1.
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ, Π³Π΄Π΅ ΡΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠΈΠΊΠ° ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ) ΠΊ Π΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΠ°Π±ΠΎΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ.
ΠΠ·Π²Π΅ΡΡΠ½ΡΠΉ Π² ΡΠ°Π΄ΠΈΠΎΡΠ΅Ρ Π½ΠΈΠΊΠ΅ ΡΠΈΠ³Π½Π°Π» ΠΌΠ΅Π°Π½Π΄Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ 2 (ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ 0,5). Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΡΠ°Π½ΡΠΈΡΡ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ ΡΡΡΡΡ.
Π‘ΠΌ. ΡΠ°ΠΊΠΆΠ΅
Π‘ΡΡΠ»ΠΊΠΈ
ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ²
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ
Π ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΎΡΠ½ΠΎΡΡΡΡΡ:
- l Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΈΠΌΠΏΡΠ»ΡΡΠ° β Um,
- l Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° β tu,
- l Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠ°ΡΠ·Ρ β tn,
- l ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ T ΠΈΠ»ΠΈ ΡΠ°ΡΡΠΎΡΠ° f = 1/T ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΠ»ΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ tu Π²ΡΠ΅Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΡΠΎΡΡΠ°Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΈ Π²ΡΠ΅Ρ ΠΏΠ°ΡΠ· tn ΠΏΠΎΡΡΠΎΡΠ½Π½Π° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ.
ΠΠ°ΠΆΠ½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² S. Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°,Β ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ S ΠΏΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΏΡΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠΈΠ³Π½Π°Π»Π°. ΠΠ½ΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ D β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²Π΅ tu ΠΈ tn ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΡΠ°Π²Π½Π° 2, ΠΈ ΡΠΈΠ³Π½Π°Π» Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ΅Π°Π½Π΄ΡΠΎΠΌ. S ΠΈ D β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²ΡΠ΅ΠΌΡ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° Π²ΡΠ΅ΠΌΡ. Π ΡΠΈΡΡΠΎΠ²ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ. Π€ΠΎΡΠΌΠΎΠΉ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ° ΡΠΈΡ. Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΡΠΎΡΠΌΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ²:
- Π° β ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½Π°Ρ,
- Π± β ΡΡΠ°ΠΏΠ΅ΡΠ΅ΠΈΠ΄Π°Π»ΡΠ½Π°Ρ,
- Π² β ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ,
- Π³ β ΠΊΠΎΠ»ΠΎΠΊΠΎΠ»ΡΠ½Π°Ρ,
- Π΄ β ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΠ°Ρ,
- Π΅ β ΠΏΠΈΠ»ΠΎΠΎΠ±ΡΠ°Π·Π½Π°Ρ.
ΠΠΈΠ΄Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ²
Π’Π΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΠΎΡΠΌΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΈΠΌΠΏΡΠ»ΡΡΠ°, ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ³ΡΠ°ΡΡ ΡΠ°Π·Π½ΡΡ ΡΠΎΠ»Ρ ΠΏΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π½Π° ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ. ΠΠ° ΡΠΈΡ. Π²ΡΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ ΠΈΠ΄Π΅Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. ΠΠ·-Π·Π° ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ (ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ²) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅Π°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° (ΡΠΈΡ. Π½ΠΈΠΆΠ΅).
Π Π΅Π°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ°
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° β ΡΡΠΎ:
- l Π Π°Π·ΠΌΠ°Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ° β Um,
- l ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° β tΠΈ,
- l ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΡΠΎΠ½ΡΠ° β tΡ,
- l ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π·Π°Π΄Π½Π΅Π³ΠΎ ΡΡΠΎΠ½ΡΠ° β tΡΠΏ,
- l Π‘ΠΏΠ°Π΄ Π²Π΅ΡΡΠΈΠ½Ρ β ΞU,
- l Π Π°Π·ΠΌΠ°Ρ Π²ΡΠ±ΡΠΎΡΠ° Π·Π°Π΄Π½Π΅Π³ΠΎ ΡΡΠΎΠ½ΡΠ° β Um ΠΎΠ±Ρ,
- l ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΠ±ΡΠΎΡΠ° Π·Π°Π΄Π½Π΅Π³ΠΎ ΡΡΠΎΠ½ΡΠ° β tΠΈ ΠΎΠ±Ρ.
Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΠ²Π½ΡΠΌΠΈ 0.1 ΠΈ 0.9 ΠΎΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ Π² ΠΌΠΈΠΊΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°ΡΡΠΎΡΡ ΡΠΈΠ³Π½Π°Π»Π°. ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΡΠ΅ β Π² Π²ΠΎΠ»ΡΡΠ°Ρ .
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΎΡΡΠΈΠ»Π»ΠΎΠ³ΡΠ°ΡΠ°, ΡΠ°ΡΡΠΎΡΠΎΠΌΠ΅ΡΠ° ΠΈΠ»ΠΈ ΠΌΡΠ»ΡΡΠΈΠΌΠ΅ΡΡΠ°.
Π£ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡΡ
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΡΡΠΎΠ²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠΌΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΎΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΊΠΎΠ΄ΠΎΠΌ ΠΠΎΡΠ·Π΅. Π‘ΠΈΠ³Π½Π°Π» ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΡΡ ΠΊΠΎΡΠΎΡΠΊΠΈΠΌΠΈ ΠΈ Π΄Π»ΠΈΠ½Π½ΡΠΌΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ. ΠΠ°ΠΆΠ΄ΠΎΠΉ Π±ΡΠΊΠ²Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΠΉ Π½Π°Π±ΠΎΡ ΡΠΎΡΠ΅ΠΊ ΠΈ ΡΠΈΡΠ΅. Π‘Π΅Π³ΠΎΠ΄Π½Ρ ΡΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ Π¨ΠΠ-ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ.
ΠΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ D (ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ) ΠΎΡ 0 Π΄ΠΎ 1 Π΄ΠΎΠ±ΠΈΠ²Π°ΡΡΡΡ Π½ΡΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° Π²ΡΡ ΠΎΠ΄Π΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠΎΠΉΡΡΠ²Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΎΠ±ΠΎΡΠΎΡΠ°ΠΌΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, ΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΡΠΊΠΎΡΡΡΡ Π΄ΠΈΡΠΏΠ»Π΅Ρ ΠΈ Ρ.Π΄. ΠΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡ Π΅ΠΌΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, NE555, NL494, ΠΠ 1006ΠΠ1, IR2153, ΠΈ ΠΌΠΈΠΊΡΠΎΠΊΠΎΠ½ΡΡΠΎΠ»Π»Π΅ΡΡ: Arduino, AVR, SG2525A.
ΠΠ»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°Π΄ΡΠΆΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΡ ΡΡΡΡΠΎΠΉΡΡΠ² ΠΊΒ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΏΡΠ΅Π΄ΡΡΠ²Π»ΡΡΡΡΡ ΠΆΠ΅ΡΡΠΎΠΊΠΈΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΈΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΎ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠ³ΠΎ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ° ΠΈ Ρ ΠΎΡΠΎΡΠ΅ΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΡΡ Π΅ΠΌΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΡΠ°Π²Π»ΡΡΡΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ².
ΠΠΈΠ΄Π΅ΠΎ
ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠΠΠΠΠΠΠΠ― — ΡΡΠΎ… Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠΠΠΠΠΠΠΠ―?
ο»Ώ- ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠΠΠΠΠΠΠΠ―
- β ΡΠΈΡΠ»Π΅Π½Π½ΠΎΡΡΡ ΠΎΡΠΎΠ±Π΅ΠΉ Π½Π° ΠΏΡΠΎΠ±Π΅ ΠΈΠ»ΠΈ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ ΠΊΠ°ΠΊΠΈΠΌ-ΡΠΎ Π·Π°Π΄Π°Π½Π½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ.
Π‘Π»ΠΎΠ²Π°ΡΡ Π±ΠΎΡΠ°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ². β ΠΠΈΠ΅Π²: ΠΠ°ΡΠΊΠΎΠ²Π° ΠΡΠΌΠΊΠ°. ΠΠΎΠ΄ ΠΎΠ±ΡΠ΅ΠΉ ΡΠ΅Π΄Π°ΠΊΡΠΈΠ΅ΠΉ Π΄.Π±.Π½. Π.Π. ΠΡΠ΄ΠΊΠΈ. 1984.
- ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠΠ―ΠΠΠΠΠ―
- ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠ©ΠΠΠ‘Π’Π
Π‘ΠΌΠΎΡΡΠ΅ΡΡ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ «ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ ΠΠΠΠΠΠΠΠΠΠ―» Π² Π΄ΡΡΠ³ΠΈΡ ΡΠ»ΠΎΠ²Π°ΡΡΡ :
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π·Π½ΠΎΠΈΠΌΠ΅Π½Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² β [http://www.iks media.ru/glossary/index.html?glossid=2400324] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ²ΡΠ·Ρ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π·Π½ΠΎΠΈΠΌΠ΅Π½Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² EN mark space ratio β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β 3.15 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (fill ratio), Ο: ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° ΠΏΠΎΠ΄ ΠΊΠΎΠΆΡΡ ΠΎΠΌ ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΠΊΠΎΠΆΡΡ Π°. ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΡΠ»ΠΈ ΡΠΎΡΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΡΠΌΠ° Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΡΠ°ΡΡΠ΅Ρ Π΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΡΠΈΠ½ΡΡΡ ΠΎΠ±ΡΠ΅ΠΌ ΠΎΠ³ΠΈΠ±Π°ΡΡΠ΅Π³ΠΎ β¦ Β Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β ΠΠΠ‘Π’ Π 54480 2011 ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°, Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΌΠ°ΡΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌΡ ΠΏΠΎΡΠ»Π΅ ΡΠ΄Π°Π²Π»ΠΈΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ Π½Π°Π±ΠΎΡΠ° (ΠΏΠ°ΠΊΠ΅ΡΠ°) Π»ΠΈΡΡΠΎΠ².β¦ β¦ Β ΠΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡ. Π’Π΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΠΠ‘Π’
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β uΕΎpildos faktorius statusas T sritis fizika atitikmenys: angl. fill factor; filling factor vok. FΓΌllfaktor, m; FΓΌllungsgrad, m rus. ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, m pranc. facteur de remplissage, m β¦ Β Fizikos terminΕ³ ΕΎodynas
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β [coefficient of charge, lamination factor] 1. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΡΠ΅ΡΡ ΡΠΎΡΠΌΡ ΠΏΠΎΡΠΎΡΠΊΠΎΠΌ ΠΈ Π΅Π³ΠΎ ΡΡΠ°Π΄ΠΊΠΈ ΠΏΡΠΈ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΠΈ, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΡΡ Π·Π°ΡΡΠΏΠΊΠΈ ΡΠΈΡ ΡΡ ΠΊ Π²ΡΡΠΎΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅ΡΡΠΎΠ²ΠΊΠΈ. 2. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΠ°Π»ΠΈΠ±ΡΠ° ΠΏΡΠΈβ¦ β¦ Β ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΠΎΠ²Π°ΡΡ ΠΏΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΠΈ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΠΠ ΠΠΠ’ β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΠ ΠΠΠ’ ΠΊ ΡΠΈΠΊΠ»Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ. ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎΡΡ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π° Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅: KΠ· [ΠΠΠ‘Π’ 17655 89] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ ΡΠ°ΠΊΠ΅ΡΠ½ΡΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΡΠ΅ Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡβ¦ β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΆΠΈΠ»Ρ β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΠΏΡΠΎΠ²ΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΡΠΎΠΊΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ ΠΆΠΈΠ»Ρ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΌ ΠΎΠΊΠΎΠ»ΠΎ Π½Π΅Π΅ ΠΊΠΎΠ½ΡΡΡΠΎΠΌ. [ΠΠΠ‘Π’ 15845 80] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΊΠ°Π±Π΅Π»ΠΈ, ΠΏΡΠΎΠ²ΠΎΠ΄Π° … Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΈΠ·Π΄Π΅Π»ΠΈΡ ΠΈΠ· Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½ΡΡ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ΄ΠΎΠ² β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΌΠΌΡ ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ ΡΠΎΡΡΠΎΠ² ΡΠ΅ΡΠ΄ΡΠ΅Π²ΠΈΠ½ ΠΊ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΎΡΡΠ° ΠΈΠ·Π΄Π΅Π»ΠΈΡ ΠΈΠ· Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½ΡΡ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ΄ΠΎΠ². [ΠΠΠ‘Π’ 25462 82] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΡΠ²ΡΠ·ΠΈ Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ ΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ ΠΊ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΠΈΡΠ°ΡΠ΅Π»Ρ. [ΠΠΠ‘Π’ 15840 70] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»ΠΈ ΠΠ±ΠΎΠ±ΡΠ°ΡΡΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Π΅ΠΉ Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρβ¦ β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ° ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ° ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Ρ ΠΊ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠΎΡΠΎΡΠ°. [ΠΠΠ‘Π’ 15840 70] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»ΠΈ ΠΠ±ΠΎΠ±ΡΠ°ΡΡΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ½Π΅Π³ΠΎΠΎΡΠΈΡΡΠΈΡΠ΅Π»Π΅ΠΉ Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρβ¦ β¦ Β Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
Π‘ΠΈΠ³Π½Π°Π» Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ D
Π‘ΠΊΠ²Π°ΜΠΆΠ½ΠΎΡΡΡ (Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠ΅)Β β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ (ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ) ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΊ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. Π§Π°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ (Π°Π½Π³Π».Β duty cycle).
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ:
- S=TΟ=1D,{\displaystyle S={\frac {T}{\tau }}={\frac {1}{D}},}
- D=ΟT=1S,{\displaystyle D={\frac {\tau }{T}}={\frac {1}{S}},}
Π³Π΄Π΅ S{\displaystyle S}Β β ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ, D{\displaystyle D}Β β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.
T{\displaystyle T}Β β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Ο{\displaystyle \tau }Β β Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ β Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΏΡΠΎΡΠ΅Π½ΡΠ°Ρ . ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π² ΡΡΠ΄Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π΅Π½, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 0 Π΄ΠΎ 1, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π΄ΠΎ 1.
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ, Π³Π΄Π΅ ΡΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠΈΠΊΠ° ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ) ΠΊ Π΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΠ°Π±ΠΎΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ.
ΠΠ·Π²Π΅ΡΡΠ½ΡΠΉ Π² ΡΠ°Π΄ΠΈΠΎΡΠ΅Ρ Π½ΠΈΠΊΠ΅ ΡΠΈΠ³Π½Π°Π» ΠΌΠ΅Π°Π½Π΄Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ 2 (ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ 0,5). Π‘ΠΊΠ²Π°ΠΆΠ½ΠΎΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΡΠ°Π½ΡΠΈΡΡ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ ΡΡΡΡΡ.