Между простой переключающей схемой и линейным усилителем на транзисторе имеется очевидное различие. В нормально работающем линейном усилителе коллекторный ток всегда прямо пропорционален базовому току. В переключающей схеме, такой как на рис. 1., коллекторный ток определяется, главным образом, напряжением питания VCC и сопротивлением нагрузки RL. Режим насыщения транзистора является достаточно важным и заслуживает подробного обсуждения. Рис. 1. Иллюстрация режима насыщения. Транзистор действует как ключ для включения лампы. Рассмотрим, что происходит с коллекторным током в схеме на рис. 1, если базовый ток постепенно увеличивается, начиная от нуля. Когда ключ S1 разомкнут, базовый ток не течет и ток коллектора ничтожно мал. Замыкание S1 приводит к появлению тока базы IB = VCC/RB, где мы пренебрегли разностью потенциалов на переходе база-эмиттер. Ток коллектора, протекающий по нагрузке R IC=100×10/5000 А=20 мА Падение напряжения на RL определяется произведением RLIC и в нашем случае равно 50 х 0,02 = 1 В. Транзистор при этом находится в линейном режиме; уменьшение RB приводит к увеличению тока базы, увеличению тока коллектора и, следовательно, к увеличению падения напряжения на RL. В этих условиях схема могла бы быть использована как усилитель напряжения. Теперь рассмотрим случай, когда RB=hFERL и ток базы равен IB=VCC/RB=VCC/(hFERL) Следовательно, коллекторный ток равен IC=(hFEVCC)/(hFERL)=VCC/RL С точки зрения нагрузки транзистор ведет себя как пара контактов ключа. Из закона Ома следует, что ток нагрузки в этой ситуации не может превышать величины VCC/RL. Поэтому дальнейшее увеличение тока базы не может увеличить ток коллектора, который определяется теперь только сопротивлением нагрузки и напряжением питания. Грубо говоря, глубокое насыщение (малое значение V IC/IB < hFE/5 Для схемы типа той, какая показана на рис. 1, когда ток базы задается просто подключением резистора к источнику питания, мы выбираем RB/RL < hFE/5 Следовательно, для схемы на рис. 1, принимая типичное для транзистора 2N3053 (аналог КТ630Б — см. аналоги отечественных и зарубежных транзисторов) значение коэффициента усиления тока hFE = 150, имеем RB/RL < 150/5 = 30. Следовательно, при RL = 50 Ом мы выбираем R Итак, если в качестве нагрузки используется лампа с сопротивлением 50 Ом, то для ее эффективного включения нам следует выбрать сопротивление базового резистора меньше 1,5 кОм. Если это невозможно, когда, например, в качестве RB используется фоторезистор с минимальным сопротивлением 10 кОм, то следует воспользоваться схемой Дарлингтона, чтобы увеличить коэффициент усиления тока. Если биполярный транзистор работает с током коллектора, близким к максимальному, и нужно поддержать напряжение VCE(sat) на уровне долей вольта, то из-за уменьшения hFE может понадобиться базовый ток больше, чем Iс/10. В режиме переключений транзистор работает либо с фактически нулевым током коллектора (транзистор выключен) или с фактически нулевым напряжением на коллекторе (транзистор включен). В обоих случаях мощность, рассеиваемая на транзисторе, очень мала. Значительная мощность рассеивается только в то время, когда происходит переключение: в это время и напряжение коллектор-эмиттер и ток коллектора имеют конечные значения. Маломощный транзистор, такой как 2N3053, с максимально допустимой рассеиваемой мощностью менее одного ватта, может переключать мощность в нагрузке в несколько ватт. Следует обратить внимание на то, что максимальные значения коллекторного напряжения и тока не должны выходить за допустимые пределы; кроме того, желательно осуществлять переключения возможно быстрее, чтобы избежать рассеяния чрезмерно большой мощности. |
Коэффициент насыщения биполярного транзистора — это… Что такое Коэффициент насыщения биполярного транзистора?
- Коэффициент насыщения биполярного транзистора
33. Коэффициент насыщения биполярного транзистора
Ндп. Степень насыщения
E. Saturation coefficient
F. Coefficient de saturation
Кнас
Отношение тока базы в режиме насыщения к току базы на границе насыщения
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- коэффициент направленности
- коэффициент насыщения движением
Смотреть что такое «Коэффициент насыщения биполярного транзистора» в других словарях:
коэффициент насыщения биполярного транзистора — Ндп. степень насыщения Отношение тока базы в режиме насыщения к току базы на границе насыщения. Обозначение Kнас Ksat [ГОСТ 20003 74] Недопустимые, нерекомендуемые степень насыщения Тематики полупроводниковые приборы EN saturation coefficient FR… … Справочник технического переводчика
ГОСТ 20003-74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров
Биполярный транзистор — Обозначение биполярных транзисторов на схемах Простейшая наглядная схема устройства транзистора Биполярный транзистор трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно… … Википедия
время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник … Словарь-справочник терминов нормативно-технической документации
Биполярные транзисторы — Обозначение биполярных транзисторов на схемах Простейшая наглядная схема устройства транзистора Биполярный транзистор трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным… … Википедия
максимальная — максимальная: Максимально возможная длина ЗО, в пределах которой выполняются требования настоящего стандарта и технических условий (ТУ) на извещатели конкретных типов, Источник: ГОСТ Р 52651 2006: И … Словарь-справочник терминов нормативно-технической документации
Принцип транслинейности — (англ. translinear principle, от англ. transconductance проводимость, крутизна передаточной характеристики) в анализе и проектировании аналоговых интегральных схем правило (уравнение), определяющее соотношения токов,… … Википедия
ТРАНЗИСТОР — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не… … Энциклопедия Кольера
4.3. Ключи на биполярных транзисторах
Простейшая схема ключа состоит из транзистора Т и резистора RК (рис. 4.7). Ключ управляется от источника EГ, RГ. В зависимости от значения ЕГ (низкий уровень Е0Г или высокий Е1Г) транзистор должен быть в закрытом (режим отсечки) или насыщенном статическом состоянии. В первом случае напряжение на выходе ключа близко к ЕК, во втором − к нулю. Таким образом, ключ представляет собой простейший логический элемент НЕ − инвертор. Условия, при которых обеспечиваются статические состояния, рассмотрим с помощью аппроксимированных входных и выходных характеристик транзистора (рис. 4.8). Здесь предполагается, что обратные токи переходов равны нулю, а в режиме насыщения (IБ > IБ.КР) напряжение на базе не зависит от тока базы (рис. 4.8, а).
Рисунок 4.7 − Схема ключа на биполярных транзисторах
Из входной характеристики следует, что условием запирания транзистора является
. (4.13)
Рисунок 4.8 − Аппроксимированные входные и
выходные характеристики транзистора
Для транзисторов ИС UБЭО = 0,6…0,7 В.
Если в качестве источника управляющего сигнала используется подобный ключ (на рис. 4.9 это ТГ и RК), то низкий уровень UБЭ = UКЭН не превышает 0,2 В и обеспечивает надежное запирание транзистора Т.
Рисунок 4.9 – Транзисторный ключ в качестве
источника управляющего сигнала
В области насыщения оба перехода транзистора смещены в прямом направлении. При этом UБЭ = UБЭН; UБК = UБКН и они близки друг к другу (около 0,7…0,8 В). Поэтому UКЭ = UБЭ − UБК = UКЭН очень мало (в ряде случаев полагают равным нулю). Ток коллектора (рис. 4.8, б, точка А)
.
(4.14)
Он соответствует так называемому критическому току базы IБ.КР, при котором транзистор находится на границе активного и насыщенного режимов и ещё справедливы известные соотношения между токами в транзисторе, работающем в активном режиме. В частности,
,
(4.15)
где β − статический коэффициент передачи тока транзистора. Дальнейшее увеличение тока базы практически уже не приводит к росту коллекторного тока. Таким образом, условием насыщения транзистора ключа является неравенство
.
(4.16)
Для схемы рис. 4.7 условие насыщения, выраженное через параметры элементов ключа, имеет вид
.
(4.17)
Для схемы рис. 4.9 обычно ЕК >> UБЭН, поэтому условие насыщения упрощается: RК>>RКГ. Степень насыщения транзистора характеризует коэффициент
.
(4.18)
На границе насыщения IБ = IБ.КР, SН = 1. С увеличением SН увеличивается нагрузочная способность ключа (условие насыщения удовлетворяется при большем значении тока IКН), уменьшается влияние различных дестабилизирующих факторов на состояние ключа, но, как будет показано ниже, ухудшается его быстродействие. Поэтому степень насыщения во всех случаях выбирают из компромиссных соображений, исходя из условий конкретной задачи. При этом в связи со значительным технологическим разбросом параметра β, а также зависимостью его от температуры условие насыщения транзистора должно быть выполнено при минимальном .
Быстродействие ключа определяется суммарным временем перехода из закрытого (выключенного) состояния в открытое (включенное) и обратно.
Для упрощения оценки длительности переходных процессов (рис. 4.10) при переключениях примем следующие допущения: управляющий сигнал представляет собой идеальный прямоугольный импульс с низким уровнем Е0Г = 0, ключ не напружен (СН = 0, RН = ∞) и RГ = RК.
Рисунок 4.10 – Длительность переходных процессов
В
исходном состоянии, на интервале времени
0 – t1, ЕГ = Е0Г = 0,
поэтому UБЭ = 0
, транзистор
закрыт и UКЭ = ЕК. Включение
ключа. При
поступлении в момент времени t1 перепада ЕГ = Е1Г напряжение на базе транзистора нарастает
по экспоненциальному закону с постоянной
времени τЗ ≈ (СЭ + СК)RГ (СЭ и СК барьерные емкости переходов транзистора)
и стремится к уровню Е1Г.
При
достижении значения UБЭО ≈ UБЭН эмиттерный
переход открывается, его сопротивление
резко уменьшается и дальнейший заряд
емкостей прекращается. В течение времени
подготовки к включению tП транзистор
продолжает оставаться в закрытом
состоянии. Эту задержку можно определить,
воспользовавшись известным правилом,
согласно которому длительность любого
начального участка экспоненциального
процесса (рис. 4.11)
,
(4.19)
где τ − постоянная времени процесса, U(∞) − U(tН) − полный размах экспоненты, U(∞) − U(tK) − оставшаяся после tK часть экспоненты. Таким образом,
.
(4.20)
В момент времени t2 транзистор переходит в активный режим. Его коллекторный ток нарастает с постоянной времени τ’В ≈ τВ (при СН = 0), стремясь к уровню
.
(4.21)
При достижении значения IКН транзистор переходит в режим насыщения и рост тока коллектора прекращается. Так как емкость нагрузки СН = 0, то напряжение на коллекторе изменяется аналогично току IК и в момент времени t2 достигает уровня UКЭН.
В соответствии с выражением (4.20) длительность фронта включения
.
(4.22)
Для уменьшения времени задержки включения t1,0ЗД = tП + tФ.ВКЛ необходимо увеличить включающий ток I1Б и повышать степень насыщения транзистора (увеличивать Е1Г уменьшать RГ).Для типовых транзисторов и источников сигнала управления в ИС время включения ключа составляет единицы наносекунд.
По истечении времени t1,0ЗД транзистор находится в режиме насыщения, его токи практически не меняются, а заряд избыточных носителей в базе продолжает нарастать до уровня τH I1Б с постоянной времени накопления τH обычно τH ≈ τВ. За время tИ = (2…3) τHпроцесс накопления зарядов практически завершается и транзистор переходит в стационарный режим насыщения.
Выключение ключа. В момент времени t4 управляющий сигнал ЕГ = Е0Г = 0. За счет накопленных неосновных носителей в области базы переходы транзистора остаются открытыми и на них поддерживается напряжение, близкое к UБЭН. В базовой цепи протекает обратный (выключающий) ток (объемное сопротивление тела базы не учтено):
. (4.23)
Наряду с рекомбинационным процессом этот ток, протекая в обратном направлении, уменьшает накопленный заряд Q с постоянной времени τH . Процесс стремится к асимптотическому уровню – I0Б τH. Пока заряд не достиг критического значения IБ.КРτH (этот интервал называют временем рассасывания), коллекторный ток и напряжение UКЭ не меняются. В соответствии с (4.21) время рассасывания
.
(4.24)
Последняя форма записи выражений (4.21) позволяет иллюстрировать процесс накопления и рассасывания заряда с помощью временной диаграммы для кажущегося коллекторного тока IК = βIБ (на рис. 4.10 этот ток показан пунктирной линией).
Итак, для уменьшения времени рассасывания необходимо уменьшать степень насыщения транзистора (при SН = 1 время tР = 0) и увеличивать выключающий ток I0Б. В момент времени t5 транзистор вновь переходит в активный режим. Коллекторный ток уменьшается с постоянной времени τ’B, стремясь к уровню –β I0Б. При достижении нулевого уровня транзистор запирается. Формирование фронта выключения заканчивается:
.
(4.25)
Очевидно,
для уменьшения необходимо увеличивать выключающий
токI0Б.
Как
и при включении, наличие емкости нагрузки СН приводит к возрастанию
.
Это
увеличение не превосходит величины
2,2 СHRK,
соответствующей
при мгновенном запирании транзистора.
Задержка выключения ключа t0,1ЗД = tP + tФ.ВЫКЛ определяется главным образом временем tP и может составлять десятки наносекнуд.
Быстродействие ключа характеризуют максимальной частотой следования входных сигналов
, (4.26)
при которой успевают завершиться переходные процессы на всех этапах при включении и выключении. Часто для характеристики быстродействия используется среднее время задержки сигнала
. (4.27)
При конечной длительности фронта входного сигнала, что обычно и имеет место, задержки включения и выключения принято отсчитывать на заданных (чаще 50-процентных) уровнях входного и выходного сигналов и называть, соответственно, временем задержки распространения сигнала при включении и выключении.
Анализ переходных процессов в ключе показывает, что задержки включения и выключения зависят, соответственно, от включающего и выключающего токов базы. Чем больше токи, тем круче фронты и меньше время подготовки. Однако ток включения I1Б влияет не только на задержку включения, но и выключения. Так, желание уменьшить t1,0ЗД путем увеличения тока I1Б приводит к повышению степени насыщения SH и, следовательно, к росту времени рассасывания при выключении. Поэтому на практике в отношении тока I1Б принимается компромиссное решение. Что касается тока I0Б, то он влияет только на этапе выключения. Поэтому его стремятся сделать максимально возможным. Распространенным приемом в ИС является создание низкоомных цепей для выключающего тока с помощью диода Шотки, шунтирующего сопротивление RГ (рис. 4.12, а). Низкоомная цепь создается также в схеме рис. 4.12, где в роли R0Г выступает выходное сопротивление насыщенного транзистора ЕГ.
Рисунок 4.12 − Низкоомная цепь
Наиболее продолжительным этапом при переключениях является рассасывание. Поэтому быстродействие ключей повышается более существенно при использовании в них нелинейной обратной связи с помощью диодов Шотки (рис. 4.12, б), позволяющей практически исключить насыщение и, следовательно, этап рассасывания.
Когда транзистор закрыт или работает в активном режиме, напряжение на коллекторе достаточно высокое, диод закрыт и не влияет на работу ключа. При подходе транзистора к режиму насыщения, когда напряжение между базой и коллектором UБК = UБЭ − UКЭ достигает порога отпирания диода UДО, диод шунтирует коллекторный переход, фиксируя на нем напряжение на уровне, близком к UДО. Так как UДО = 0,3…0,4 В, т.е. меньше порога отпирания UБКО, коллекторный переход не отпирается и транзистор в режим насыщения не входит. Благодаря этому при выключении время tP = 0. Однако платой за повышение быстродействия здесь является некоторое повышение нижнего уровня напряжения на открытом ключе.
Биполярный транзистор — Википедия
Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.
Простейшая наглядная схема устройства транзистораБиполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.
Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).
Устройство
Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.
Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).
Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Принцип работы
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.
Режимы работы
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа n-p-n | Смещение перехода база-коллектор для типа n-p-n | Режим для типа n-p-n |
---|---|---|---|
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | прямое | обратное | нормальный активный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | прямое | прямое | режим насыщения |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | обратное | обратное | режим отсечки |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | обратное | прямое | инверсный активный режим |
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа p-n-p | Смещение перехода база-коллектор для типа p-n-p | Режим для типа p-n-p |
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | обратное | прямое | инверсный активный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | обратное | обратное | режим отсечки |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | прямое | прямое | режим насыщения |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | прямое | обратное | нормальный активный режим |
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):
- UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общей базой
Схема включения с общей базой.- Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
- Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.
Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.
- Достоинства
- Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
- Высокое допустимое коллекторное напряжение.
- Недостатки
- Малое усиление по току, равное α, так как α всегда немного менее 1
- Малое входное сопротивление
Схема включения с общим эмиттером
Схема включения с общим эмиттером.Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
- Достоинства
- Большой коэффициент усиления по току.
- Большой коэффициент усиления по напряжению.
- Наибольшее усиление мощности.
- Можно обойтись одним источником питания.
- Выходное переменное напряжение инвертируется относительно входного.
- Недостатки
- Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.
Схема с общим коллектором
Схема включения с общим коллектором.Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
- Достоинства
- Большое входное сопротивление.
- Малое выходное сопротивление.
- Недостатки
- Коэффициент усиления по напряжению немного меньше 1.
Схему с таким включением часто называют «эмиттерным повторителем».
Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Эквивалентная схема биполярного транзистора с использованием h-параметров.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};
h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};
h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};
h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].
Технологии изготовления транзисторов
Применение транзисторов
См. также
Примечания
- ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
- ↑ 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
- ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
- ↑ Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
- ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
- ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
- ↑ Кулешов, 2008, с. 284.
- ↑ Кулешов, 2008, с. 285.
- ↑ Кулешов, 2008, с. 286.
- ↑ 1 2 Кулешов, 2008, с. 292.
Ссылки
Литература
- Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
- Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.
Тема 4. Биполярные транзисторы
4.1. Биполярные транзисторы Конструкция. Режимы работы.
Транзистор – transfer resistor (дословно — переносить сопротивление).
Нобелевская премия 1956 г.:
— Дж. Бардин и В.Х Браттейн — точечный транзистор, 1948 г.
— В. Шокли — плоскостной транзистор, 1949 г.
Конструкции
транзисторов
Упрощенные структуры биполярных транзисторов:
В зависимости от полярности напряжения на переходах различают 4 режима:
1. Активный нормальный.
Эмиттерный переход – инжектирующий заряды.
Коллекторный
переход – собирающий заряды.Iэ=IБ+Iк
К
UКБ
+
2. Инверсный активный режим.
Коллекторный переход – инжектирующий заряды.
Эмиттерный переход – собирающий заряды.
Iк=IБ+ Iэ
3. Режим отсечки (оба перехода закрыты).
4. Режим насыщения : эмиттер и коллектор находятся под прямым напряжением. Оба перехода прямо смещены.
Обобщенная картина распределений неосновных зарядов в базе:
4.2 Зонные диаграммы биполярного транзистора.
1. равновесный режим
а
ктивный нормальный.
Транзистор – транзит зарядов из эмиттера в коллектор через базу.
3. активный инверсный.
4. режим отсечки.
5. режим насыщения.
4.3 Токи в транзисторе. Коэффициент передачи тока эмиттера. Коэффициент инжекции. Коэффициент переноса.
Структура токов в активном нормальном режиме
IЭ –ток эмиттера (полный).
IPЭ – дырочный ток.
Inэ – электронный ток.
Iэ=Iрэ+Inэ (4.1)
Коэффициент инжекции
(4.2)
для симметричного перехода γ=0,5
.
В транзисторе p-n-p типа полезная составляющая – дырочная, а в транзисторе n-p-n типа полезная составляющая электронная.
Кроме потери электронной составляющей InЭ, за счёт рекомбинации дырок в n – базе возникает потеря на рекомбинацию.
IБ рек – рекомбинационная составляющая дырочного тока эмиттера.
IРК – транзитная составляющая тока эмиттера.
(4.3)
Коэффициент переноса показывает, какая часть дырочного тока доходит до коллектора.
(4.4)
При LРБ=7w, по формуле (4.4) =0,99.
Пренебрегаем собственным обратным током коллекторного перехода Iкo.
Коэффициент передачи тока эмиттера.
(4.5)
==0,990,99=0,98, или = Iк/Iэ=980/1000=0,98.
Вобщем случаеIэ=Iрэ+Inэ,
Iк =Iрк+Iко, (4.6)
IБ = Inэ+IБрекIко.
Iк
=Iэ+Iко,
IБ = (1)Iэ Iко (4.7)
Iэ= IБ+Iк.
Коэффициент α – важнейший физический параметр биполярных транзисторов, определяется комплексом технологических параметров ( материал, концентрации примесей, площади переходов, диффузионная длина электронов и дырок и т.д.). Коэффициент α характеризует усилительные свойства транзисторов и его значения для современных транзисторов находятся в диапазоне 0,95 α<1.
Для увеличения α
необходимо увеличивать коэффициент
инжекции ,
т.е. выполнять условие — концентрация примеси в эмиттере на
несколько порядков больше, чем в базе
( база более высокоомная, чем эмиттер).
;1,
при ,
Кроме того, диффузионная длина инжектированных зарядов в базе должна быть больше, чем толщина базы w. В базе на границе с эмиттерным переходом неравновесная концентрация неосновных зарядов за счет инжекции больше равновесной: pnБ(0)>> pnБO. На границе с коллекторным переходом неравновесная концентрация неосновных зарядов за счет экстракции близка к нулю: больше равновесной: pnБ(w)0. При Lp<w инжектированные из эмиттера заряды рекомбинируют в базе и транзитный ток отсутствует. Ток коллектора равен обратному: Iк=Iко.
При условии Lp>w наоборот, основная часть инжектированных зарядов проходит базу и захватывается полем коллекторного перехода – образует транзитный ток. Зависимость тока обратносмещенного коллекторного перехода от тока прямосмещенного эмиттерного перехода и есть суть биполярного транзистора.
Увеличение коэффициента переноса за счет условие Lp>w обеспечивается, во-первых, уменьшением w, во- вторых, увеличением Lp, т.е. увеличением времени жизни инжектированных зарядов. Последнее требует уменьшения концентрации основных зарядов (примеси) в базе. Следовательно, высокое удельное сопротивление базы необходимо для увеличения обоих коэффициентов и .
Принцип действия биполярного транзистора кратко можно сформулировать как взаимодействие прямосмещенного эмиттерного p-n перехода и обратносмещенного коллекторного p-n перехода через слаболегированную тонкую базу, причем это взаимодействие проявляется в виде транзитного тока.
Биполярный транзистор — Википедия. Что такое Биполярный транзистор

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.
Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).
Устройство

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.
Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).
Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Принцип работы
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.
Режимы работы
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа n-p-n | Смещение перехода база-коллектор для типа n-p-n | Режим для типа n-p-n |
---|---|---|---|
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | прямое | обратное | нормальный активный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | прямое | прямое | режим насыщения |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | обратное | обратное | режим отсечки |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | обратное | прямое | инверсный активный режим |
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа p-n-p | Смещение перехода база-коллектор для типа p-n-p | Режим для типа p-n-p |
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | обратное | прямое | инверсный активный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | обратное | обратное | режим отсечки |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | прямое | прямое | режим насыщения |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | прямое | обратное | нормальный активный режим |
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):
- UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общей базой
Схема включения с общей базой.- Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
- Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.
Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.
- Достоинства
- Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
- Высокое допустимое коллекторное напряжение.
- Недостатки
- Малое усиление по току, равное α, так как α всегда немного менее 1
- Малое входное сопротивление
Схема включения с общим эмиттером
Схема включения с общим эмиттером.Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
- Достоинства
- Большой коэффициент усиления по току.
- Большой коэффициент усиления по напряжению.
- Наибольшее усиление мощности.
- Можно обойтись одним источником питания.
- Выходное переменное напряжение инвертируется относительно входного.
- Недостатки
- Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.
Схема с общим коллектором
Схема включения с общим коллектором.Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
- Достоинства
- Большое входное сопротивление.
- Малое выходное сопротивление.
- Недостатки
- Коэффициент усиления по напряжению немного меньше 1.
Схему с таким включением часто называют «эмиттерным повторителем».
Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};
h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};
h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};
h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].
Технологии изготовления транзисторов
Применение транзисторов
См. также
Примечания
- ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
- ↑ 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
- ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
- ↑ Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
- ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
- ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
- ↑ Кулешов, 2008, с. 284.
- ↑ Кулешов, 2008, с. 285.
- ↑ Кулешов, 2008, с. 286.
- ↑ 1 2 Кулешов, 2008, с. 292.
Ссылки
Литература
- Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
- Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.
Нагрузочная прямая — Википедия

Нагрузочная прямая, или динамическая прямая[1] в электронике и электротехнике — линия на графике вольт-амперной характеристики, отображающая зависимость выходного тока, протекающего через активный усилительный прибор (биполярный, полевой транзистор или вакуумную лампу), от напряжения на его выходных электродах (напряжения коллектор—эмиттер, сток—исток, анод—катод)[2]. Для линейных реактивных нагрузок зависимость приобретает форму замкнутого эллипса, для нелинейных нагрузок — форму нагрузочной кривой.
Исторически, основной целью применения нагрузочных прямых был графический расчёт каскадов, работающих при больших амплитудах выходного напряжения, когда нельзя пренебрегать нелинейностью передаточной характеристики, а средства малосигнального анализа не применимы[3]. Графический метод позволял достаточно точно рассчитывать выходные напряжения и мощности, вносимые каскадом искажения, и оптимизировать выбор рабочей точки[3].
Нагрузочная прямая постоянного тока[править | править код]
Метод нагрузочных прямых применяется для графического анализа усилительных каскадов на вакуумных лампах в режимах с общим катодом или с общей сеткой, на биполярных транзисторах в режимах с общим эмиттером или с общей базой, и на полевых транзисторах в режимах с общим истоком или с общим затвором. В таком каскаде, нагруженном на активное сопротивление RH{\displaystyle R_{H}} и питающемся от источника напряжения Ubb{\displaystyle U_{bb}}, напряжение между выходными электродами Ux{\displaystyle U_{x}} и протекающий между ними ток Ix{\displaystyle I_{x}} (ток анода, ток коллектора, ток стока[комм. 2]) связаны уравнением
- Ubb=Ux+IxRH{\displaystyle U_{bb}=U_{x}+I_{x}R_{H}}[4][2].
Возможные решения уравнения лежат на нагрузочной прямой, соединяющей точки (0,Ubb/RH){\displaystyle (0,U_{bb}/R_{H})} и (Ubb,0){\displaystyle (U_{bb},0)}. Первая из них соответствует короткому замыканию выходных электродов, вторая — режиму отсечки (усилительный прибор заперт)[1][2]. При увеличении RH{\displaystyle R_{H}} наклон нагрузочной прямой уменьшается (прямая сдвигается в область меньших токов), при уменьшении RH{\displaystyle R_{H}} наклон увеличивается[1]. В предельном случае RH=0{\displaystyle R_{H}=0} (сток, коллектор или анод коротко замкнуты на шину питания) нагрузочная прямая строго вертикальна[1]. В предельном случае RH=∞{\displaystyle R_{H}=\infty } нагрузочная прямая строго горизонтальна[1]. Если при этом нагрузкой служит активный источник стабильного тока, то прямая отстоит от горизонтальной оси на величину этого тока.
Ток и напряжение в точке пересечения нагрузочной прямой с вольт-амперной характеристикой транзистора или триода для заданного управляющего напряжения характеризуют режим покоя каскада, и называются соответственно током покоя и напряжением покоя[1]. Совместно эти значения образуют точку покоя (рабочую точку) для заданного напряжения смещения[1]. Ux{\displaystyle U_{x}}, Ix{\displaystyle I_{x}} и выделяемая на усилительном приборе мощность не должны превышать предельно допустимые для данного прибора значения Umax{\displaystyle U_{max}}, Imax{\displaystyle I_{max}} и Pmax{\displaystyle P_{max}}. Кроме того, рабочая точка не должна заходить в область низких выходных напряжений, в которой резко возрастают искажения формы сигнала[комм. 3]. Для приёмно-усилительных вакуумных ламп нежелателен заход в область положительных управляющих напряжений[комм. 4], для полевых транзисторов недопустимы управляющие напряжения, при которых открывается переход между затвором и каналом.
В малосигнальных каскадах выбор рабочей точки определяется компромиссом между затратами мощности и допустимой потерей усилительных свойств транзистора[5]. В дискретной схемотехнике ток коллектора маломощного биполярного транзистора обычно выбирается в окрестности 1 мА, ток стока полевого транзистора — от 1 до 10 мА[5]. В каскадах усиления больших сигналов, в которых амплитуды переменных напряжений и токов сопоставимы с напряжением и током покоя, оптимальное напряжение покоя (точка А) полевого транзистора выбирается на уровне примерно половины интервала между границей перехода из линейного режима в режим насыщения и напряжением питания[6]. Для биполярного транзистора оптимальное напряжение покоя равно половине напряжения питания[6].
Нагрузочная прямая переменного тока[править | править код]
Полезная нагрузка может соединяться с выходом усилительного прибора непосредственно, или через разделительный конденсатор, или через разделительный трансформатор. В первом случае сопротивления нагрузки переменному и постоянному току равны, и нагрузочная прямая переменного тока совпадает с нагрузочной прямой постоянному току. При связи через реактивный элемент сопротивление выходной цепи переменному току Z{\displaystyle Z} может быть и больше, и меньше сопротивления постоянному току RH{\displaystyle R_{H}}, поэтому нагрузочные прямые постоянного и переменного тока пересекаются в рабочей точке, но не совпадают[7]. Нагрузочная прямая переменного тока, учитывающая отличие Z{\displaystyle Z} от RH{\displaystyle R_{H}}, обычно строится для чисто активной нагрузки (RΠ{\displaystyle R_{\Pi }}) и для области частот, в которой можно пренебречь влиянием реактивности разделительного конденсатора или разделительного трансформатора[8].
При ёмкостной связи с нагрузкой Z<RH{\displaystyle Z<R_{H}}[7]. На достаточно высоких частотах, когда реактивное сопротивление конденсатора снижается до пренебрежимо малых значений,
- Z=RH||RΠ=RHRΠRH+RΠ{\displaystyle Z=R_{H}||R_{\Pi }={\frac {R_{H}R_{\Pi }}{R_{H}+R_{\Pi }}}}[7].
При трансформаторной связи с нагрузкой Z>>RH{\displaystyle Z>>R_{H}}[7]. В первом приближении можно считать, что активное сопротивление первичной обмотки RH=0{\displaystyle R_{H}=0}, и нагрузочная прямая по постоянному току проходит вертикально. На рабочих частотах трансформатора, когда можно пренебречь влиянием индуктивности его первичной обмотки и индуктивностью рассеяния, сопротивление переменному току возрастает до
- Z=RH+R2′+RΠ′=RH+R2+RΠK2{\displaystyle Z=R_{H}+R_{2′}+R_{\Pi ‘}=R_{H}+{\frac {R_{2}+R_{\Pi }}{K^{2}}}}, где R2{\displaystyle R_{2}} — активное сопротивление вторичной обмотки, K{\displaystyle K} — коэффициент трансформации[7].
Нагрузочные линии переменного тока для реактивной нагрузки[править | править код]

Если нагрузка имеет комплексный характер, то между протекающим через неё током и падающим на ней напряжением возникает сдвиг фаз[9]. Динамическая характеристика такого каскада имеет форму не прямой, но наклонного эллипса с центром в точке покоя; одна из осей эллипса совпадает с нагрузочной прямой для активной части комплексной нагрузки[10]. Если же нагрузка имеет чисто ёмкостный или чисто индуктивный характер, то оси эллипса параллельны координатным осям[10].
Графический анализ нагрузочных эллипсов не применялся из-за чрезмерной сложности[10]. Взамен, комплексная нагрузка замещалась чисто активным сопротивлением, величина которого равнялась модулю полного сопротивления комплексной нагрузки[10].
- ↑ Вольт-амперные характеристики биполярных транзисторов, тетродов и пентодов имеют качественно сходный характер, вольт-амперные характеристики вакуумных триодов отличаются относительно низким выходным сопротивлением.
- ↑ При допущении, что выходная цепь изолирована от входной, то есть ток сетки, затвора или базы равен нулю.
- ↑ Для биполярного транзистора нежелателен режим насыщения, для вакуумных ламп — упомянутый далее режим работы с сеточными токами, а для полевого транзистора — линейный (начальный) режим. Заход нагрузочной прямой в линейный режим полевого транзистора приводит к росту нелинейных искажений на границе линейного, нежелательного, режима и режима насыщения (в котором и должен работать усилитель на полевом транзисторе). Работа при обратной полярности (переполюсовке) выходных электродов исключается для приборов всех типов.
- ↑ Точнее, в область напряжений сетка-катод, при которых возникают заметные сеточные токи — что обычно происходит при напряжении сетка-катод около −1…-0,5 В и выше. Исключение составляют усилители мощности, специально спроектированные для работы с сеточными токами.
- ↑ 1 2 3 4 5 6 7 Цыкин, 1963, с. 62.
- ↑ 1 2 3 Попов и Николаев, 1972, с. 369.
- ↑ 1 2 Цыкин, 1963, с. 66.
- ↑ Цыкин, 1963, с. 61.
- ↑ 1 2 Гаврилов, 2016, с. 73.
- ↑ 1 2 Гаврилов, 2016, с. 75.
- ↑ 1 2 3 4 5 Цыкин, 1963, с. 64.
- ↑ Цыкин, 1963, с. 65.
- ↑ Цыкин, 1963, с. 67.
- ↑ 1 2 3 4 Цыкин, 1963, с. 68.
- Гаврилов С. А. Схемотехника. Мастер-класс. — СПБ. : Наука и Техника, 2016. — 384 с. — ISBN 9785943878695.
- Попов В. С., Николаев С. А. Общая электротехника с основами электроники. — М. : Энергия, 1972.
- Цыкин, Г. С. Электронные усилители. — 2-е изд. — М. : Связьиздат, 1963. — 512 с. — 21,000 экз.