Лекция 14. Тиристоры, принцип работы, классификация и основные параметры
14.1. Устройство и принцип работы тиристора
Тиристором (от греч. thyra — дверь и резистор), называется полупроводниковый прибор, содержащий триp—nперехода и четыре слоя с чередующимися типами проводимости. Тиристоры обладают односторонней проводимостью от анода к катоду. Различают диодные тиристоры (динисторы) и триодные (управляемые) тиристоры. Условные графические обозначения динистора и тиристора, а также внешний вид некоторых типов тиристоров представлен на рис. 14.1.
динистор |
|
тиристор |
|
Рис. 14.1. Условное графическое обозначение и внешний вид динистора и тиристора
Электрические характеристики тиристоров близки к характеристикам идеального ключа. Они могут находиться только в двух состояниях:
— закрытом – сопротивление более 100 кОм;
— открытом – сопротивление 0,01…0,1 Ом.
Общим признаком, характерным для четырёхслойных полупроводниковых структур, является регенеративный процесс, происходящий при открывании (переходе из закрытого в открытое состояние). Регенеративный процесс возникает из-за внутренней положительной обратной связи.
Рассмотрим работу неуправляемого диодного тиристора – динистора. Структура динистора представлена на рис. 14.2.
Для удобства анализа работы такой p—n—p—nструктуры заменим её эквивалентной схемой из двух транзисторов с разным типом проводимостиp—n—pиn—p—n. Эквивалентная схема представлена на рис. 14.3.
Рис. 14.2. Структура динистора
| |
а) | б) |
Рис. 14.3. Эквивалентная схема замещения динистора:
а – с послойным представлением переходов; б – на транзисторах p—n—pиn—p—n
При приложении к динистору напряжения в полярности, указанной на рис. 14.2 (+ к аноду, к катоду), переходы П1 и П3 открыты, а П2 закрыт. Через динистор проходят два встречных потока зарядов:
— дырки из слоя p
— электроны из слоя n4черезp3вn2.
В базах n2иp3эти носители зарядов частично рекомбинируют, и в переход П2 входит лишь часть этих потоков, определяемая коэффициентами передачи токов1и2. Также через переход П2 проходит ток не основных носителей зарядов, представляющий собой обратный ток закрытого переходаIК.ОБР. Тогда суммарный ток через переход П2 составит
. (14.1)
Но по первому закону Кирхгофа ток в неразветвлённой цепи одинаков на любом её участке, следовательно
, (14.2)
где I– ток во внешней цепи.
Так как ,, тогда из выражений (14.1) и (14.2) можно записать, причём2>1.
Регенеративный процесс (из-за внутренней положительной обратной связи) учитывается коэффициентом лавинного умножения М. С учётом этого коэффициента получим
. (14.3)
Следовательно, ток закрытого динистора определяется обратным током перехода П2. В лекции 1 было отмечено, что с ростом обратного напряжения возрастает обратный ток закрытого p—nперехода, а в лекции 9 – что этот ток возрастает и с ростом температуры.
На рис. 6.3 была показана зависимость коэффициента передачи тока эмиттера транзистора от величины тока эмиттера. Из рисунка следует, что для малых значений тока 1. Но с увеличением токабыстро увеличивается.
Если увеличивать напряжение во внешней цепи динистора, начнёт увеличиваться обратный ток перехода П2. Увеличение этого тока вызовет рост коэффициентов передачи 1и2транзисторов. Когда напряжение во внешней цепи достигнет значения, при которомM(1+2) = 1 (напряжение включенияUвкл), ток, в соответствии с выражением (14.3), резко возрастёт, наступит насыщение общего коллекторного перехода П2, и динистор откроется. Это явление иллюстрирует вольтамперная характеристика динистора, представленная на рис. 14.4.
Рис. 14.4. Вольтамперная характеристика динистора
На вольтамперной характеристике можно выделить три участка: 1 – участок закрытого состояния, когда рост напряжения во внешней цепи вызывает постепенное увеличение обратного тока перехода П2; 2 – участок отрицательного сопротивления, когда начинается регенеративный процесс, и напряжение на динисторе резко уменьшается; 3 – участок открытого состояния, аналогичный прямой ветви вольтамперной характеристике полупроводникового диода.
При приложении к динистору обратного напряжения переходы П1 и П3 закрыты, и динистор остаётся закрытым до напряжения лавинного пробоя (напряжения Зенера
С ростом температуры напряжение включение будет уменьшаться, так как при нагреве возрастает обратный ток перехода П2, и регенеративный процесс включения начинается при меньшем напряжении.
Время переключения в открытое состояние составляет единицы микросекунд, так как регенеративный процесс нарастает очень быстро. Открывание динистора – процесс обратимый. Чтобы регенеративный процесс в переходе П2 не прекращался, через динистор должен проходить ток, поддерживающий этот процесс. Минимальная величина прямого тока, при котором существует регенеративный процесс, называется
Существенным недостатком динисторов является невозможность перевода их в открытое состояние при напряжениях во внешней цепи, меньше чем напряжение включения. Этот недостаток устранён в тиристоре.
Рассмотрим работу управляемого четырёхслойного полупроводникового прибора – тиристора. Структура тиристора представлена на рис. 14.5.
Рис. 14.5. Структура тиристора
Тиристор отличается от динистора наличием управляющего электрода УЭ, который подключён к слою р3, и на который подаётся положительное относительно катода напряжениеUупр.
Для тиристоров специально выбирают
режим внешней цепи ЕА<Uвкл,
чтобы тиристор был надёжно закрыт. Для
перевода тиристора в открытое состояние
подают импульс управляющего напряжения.
Из-за этого увеличивается ток перехода
П3, увеличивается коэффициент передачи
тока
После открывания тиристора управляющий электрод теряет свои управляющие свойства, поэтому закрыть не запираемый тиристор сигналом управляющего электрода нельзя. Закроется тиристор лишь тогда, когда ток во внешней цепи станет меньше тока удержания.
Рассмотрим влияние величины тока управления на напряжение открывания тиристора по вольтамперной характеристике, представленной на рис. 14.6.
Рис. 14.6. Вольтамперная характеристика тиристора
Если ток управления небольшой (IУПР1), то напряжение включение незначительно уменьшается относительноUВКЛдинисторного режима. С ростом величины тока управления (IУПР2>IУПР1) напряжение включения уменьшается. Если ток управления будет достаточно большим, то тиристор будет открываться при минимальном напряжении на аноде. Участок отрицательного сопротивления на вольтамперной характеристике исчезнет, то есть соединятся участки 1 и 3 (рис. 14.4). Такой управляющий ток называется током управления спрямления (IУПР.СПР).
5. Тиристоры Назначение и классификация
Тиристор представляет собой полупроводниковый прибор с двумя устойчивыми состояниями, который может переключаться из закрытого состояния в открытое и наоборот.
Это определило его название – “thyra” по гречески “дверь”. Тиристор подобно двери открывается, пропуская электрический ток, и закрывается, преграждая путь току. Тиристоры используются в цепях электропитания устройств связи и энергетики, в качестве регуляторов.
Применение тиристоров на электроподвижном составе и тяговых подстанциях позволило осуществлять плавное регулирование выпрямленного тока, инвертирование тока, а также выполнять ряд других функций.
Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор. К числу факторов, наиболее широко используемых для отпирания тиристоров, относится воздействие напряжением (током) или светом (фототиристоры).
По своей структуре тиристоры отличаются от биполярных транзисторов тем, что у них вместо трех – четыре (или более) полупроводниковых слоя, в которых проводимость последовательно чередуется.
Существует много разновидностей тиристоров (рис. 7.1).
Рис. 7.1. Классификация тиристоров
Основными типами являются диодные и триодные тиристоры.
Диодные и триодные тиристоры
В диодных тиристорах (динисторах) переход прибора из закрытого состояния в открытое связан с тем, что напряжение между анодом и катодом достигает некоторой граничной величины – напряжения включения (Uвкл), являющейся параметром прибора.
В триодных тиристорах (тринисторах) управление состоянием прибора производится по цепи третьего – управляющего электрода.
Устройство тиристора с управляющим электродом показано на рис. 7.2. Тиристор имеет структуру p1-n1-p2-n2 c тремя p-n-переходами (П1— П3).
Рис. 7.2. Устройство тиристора с управляющим электродом
Исходным материалом для изготовления тиристора является кремниевая пластина n-типа. Сначала путем диффузии акцепторной примеси с обеих сторон создают транзисторную структуру p1-n1-p2. Затем, после локальной обработки поверхности слоя p2, вносят донорную примесь в этот слой для получения четвертого n2-слоя.
Рассмотрим структурную схему тиристора при приложении напряжений обратной и прямой полярности и его ВАХ (рис. 7.3, 7.4).
Рассмотрим обратную ветвь вольт-амперной характеристики тиристора, которая снимается при токе управления Iу = 0. Обратному напряжению соответствует полярность, указанная на рис. 7.3 без скобок. При приложении обратного напряжения Uобр переходы П1 и П3 закрыты, П2 – открыт. Падение напряжения на переходе П2 мало, поэтому можно предположить, что обратное напряжение Uобр распределяется равномерно между переходами П1 и П3.
Рис. 7.3. Вольт-амперная характеристика тиристора
Рис. 7.4. Структурная схема тиристора при приложении напряжений
обратной и прямой полярности
При изготовлении тиристоров концентрация примесей в слоях p2 и n2 делается намного выше концентрации примесей в слоях p1 и n1, поэтому переход П3 получается узким. С приложением обратного напряжения переход П3 вступает в режим электрического пробоя при напряжении, меньшем рабочего напряжения тиристора, то есть обратное напряжение приложено по существу к переходу П1.
Обратная ветвь ВАХ тиристора представляет собой обратную ветвь ВАХ перехода П1 или диода (рис. 7.3). Именно на переходе П1 решается задача получения лавинной характеристики для защиты тиристора от перенапряжений (создание лавинного тиристора).
Рассмотрим прямую ветвь ВАХ. При приложении прямого напряжения переходы П1 и П3 открыты, переход П2 закрыт.
Рассмотрим работу тиристора при токе управления Iу = 0. Этот режим соответствует работе тиристора в режиме динистора.
Для рассмотрения принципа работы тиристора воспользуемся двухтранзисторной аналогией. На рис. 7.4 можно представить структуру p1-n1-p2 в виде транзистора VT1, а структуру n2-p2-n1 в виде транзистора VT2. При этом переходы П1 и П3 будут являться эмиттерными переходами двух транзисторов, а переход П2 будет являться общим коллекторным переходом для обоих транзисторов. Через эмиттерные переходы транзисторов VT1 и VT2 будут протекать токи Iэ1 и Iэ2, а коэффициенты передачи этих токов – α1 и α2.
Из-за большого сопротивления перехода П2 тиристор находится в закрытом состоянии.
Чтобы открыть тиристор необходимо сбалансировать потенциальный барьер на границе слоев n1 и p2. Под действием прямых напряжений через эмиттерные переходы (П1 и П3) происходит инжекция основных носителей заряда в соответствующие базы транзисторов n1 и p2. В транзисторе VT2 электроны из эмиттера (слой n2) переходят в базу (слой p2), где становятся неосновными носителями. Часть этих электронов рекомбинирует в базе, а остальные переходят на коллектор n1, где создается избыточный отрицательный заряд. Аналогично дырки создают в слое p2 избыточный положительный заряд.
Однако, за счет обратного напряжения на переходе П2 в области n1 имеется положительный заряд, а в области p2 – отрицательный, образующие потенциальный барьер. Избыточные электроны в слое n1 и дырки в слое p2, накапливаясь, создают свое электрическое поле, которое снижает потенциальный барьер. Чем больше напряжение Uпр, тем больше это поле, и в результате оно может полностью компенсировать потенциальный барьер, при этом Uпр достигнет значения напряжения включения Uвкл. Ток тиристора резко возрастет, тиристор откроется, его ВАХ будет идентична ВАХ диода. Сопротивление перехода П2 станет незначительным (как у переходов П1 и П3). На рис. 7.3 значение напряжения включения Uвкл соответствует значению в точке а.
Процесс скачкообразного переключения тиристора из закрытого состояния в открытое можно еще весьма просто объяснить математически.
Коллекторные токи транзисторов VT1 и VT2 определяются следующим образом:
Iк1 = 1Iэ1;
Iк2 = 2Iэ2. (7.1)
Через коллекторный переход течет еще обратный ток этого перехода – Iко – тепловой ток. Таким образом, результирующий ток коллекторного перехода будет равен:
Iкол = Iк1 + Iк2 + Iко = 1Iэ1 + 2Iэ2 + Iко. (7.2)
Все переходы в тиристоре соединены последовательно и тиристор имеет два силовых вывода, поэтому результирующий ток будет равен:
IА = Iк = Iэ1 = Iэ2. (7.3)
Из выражения (7.2) с учетом (7.3) можно определить ток анода:
. (7.4)
При малых токах 1 и 2 значительно меньше единицы и сумма их также меньше единицы. Тогда в соответствии с выражением (7.4) ток IА получается сравнительно небольшим. С увеличением тока 1 и 2 растут, и это приводит к возрастанию тока IА. При некотором токе, являющимся током включения Iвкл, сумма 1 + 2 становится равной единице и ток IА возрос бы до бесконечности, если бы его не ограничивало сопротивление нагрузки Rн (участок б-в на рис. 7.3). Именно такое стремление тока IА неограниченно возрастать указывает на скачкообразное нарастание тока, то есть на отпирание тиристора.
При отсутствии тока управления Iу тиристор будет всегда открываться при напряжении включения Uвкл (точка а на рис. 7.3), но он неуправляем, т.е. работает в режиме динистора.
В ряде случаев динистор используется в электрических цепях в качестве разрядника, например для защиты вентильных обмоток преобразовательных трансформаторов электроподвижного состава. Работа его заключается в следующем: при возникновении перенапряжения и соответствующем пробое динистора вентильная обмотка преобразовательного трансформатора закорачивается, но аварийное перенапряжение при этом не пропускается на нагрузку.
Недостатком динисторов является большое значение напряжения включения Uвкл при протекании больших токов.
Создав третий электрод можно управлять моментом открытия тиристора. Такой тиристор (трехэлектродный) называется тринистором.
С увеличением напряжения управления + Uупр возрастает значение тока управления Iу. Ток управления приводит к движению электронов из области n2 в область p2. Для области p2 электроны – неосновные носители заряда, для них поле перехода П2 действует втягивающее (экстракция). Эти электроны усиливают компенсацию объемного положительного заряда и тиристор открывается при значении прямого напряжения Uпр меньшем, чем значение напряжения включения Uвкл. У тиристора растет значение 2, сумма 1 + 2 стремится к единице при напряжении Uпр < Uвкл. Значения тока Iу – единицы миллиампер, при этом значения тока IА достигает десятков и сотен ампер. На рис. 7.3 точки г, д, е, ж соответствуют различным сочетаниям значений Uвкл и Iу (Uвкл1 и Iу1; Uвкл2 и Iу2 и т.д.). Существует значение тока управления, при котором тиристор открывается сразу – ток управления спрямления. При этом ВАХ тиристора вырождается в ВАХ диода.
Тиристор – частично управляемый вентиль, так как можно управлять только моментом его открытия, тиристор не может закрыться при уменьшении Iу, а закроется при условии, что ток анода IА будет меньше тока удержания Iуд.
Глава 1. Понятие о тиристоре. Виды тиристоров. Принцип действия
Содержание
Введение
1.1 Определение, виды тиристоров
1.2 Принцип действия
1.3 Параметры тиристоров
Глава 2. Применение тиристоров в регуляторах мощности
2.1 Общие сведения о различных регуляторах
2.2 Процесс управления напряжением при помощи тиристора
2.3 Управляемый выпрямитель на тиристоре
Глава 3. Практические разработки регуляторов мощности на тиристорах
3.1 Регулятор напряжения на тиристоре КУ201К
3.2 Мощный управляемый выпрямитель на тиристорах
Заключение
Литература
Введение
В данной работе рассмотрены несколько вариантов устройств, где используются элементы тиристоры в качестве регуляторов напряжения и в качестве выпрямителей. Приведены теоретическое и практическое описания принципа действия тиристоров и устройств, схемы этих устройств.
Управляемый выпрямитель на тиристорах — элементах, обладающих большим коэффициентом усиления по мощности, позволяет получать большие токи в нагрузке при незначительной мощности, затрачиваемой в цепи управления тиристора.
В данной работе рассмотрены два варианта таких выпрямителей, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 В и от 0,5 до 15 В и устройство для регулировки напряжения на нагрузке активного и индуктивного характера, питаемой от сети переменного тока напряжением 127 и 220 В с пределами регулировки от 0 до номинального напряжения сети.
Глава 1. Понятие о тиристоре. Виды тиристоров. Принцип действия
1.1 Определение, виды тиристоров
Тиристором называют полупроводниковый прибор, основу которого составляет четырехслойная структура, способная переключаться из закрытого состояния в открытое и наоборот. Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открыт — закрыт (управляемый диод).
Простейшим тиристором является динистор – неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рис. 1.1.2). Здесь, как и у других типов тиристоров, крайние n-p-n-переходы называются эмиттерными, а средний p-n-переход – коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью – анодом.
В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами (симисторы).
Рис. 1.1.1 Обозначения на схемах: а) симистора б) динистора в) тринистора.
Рис. 1.1.2 Структура динистора.
Рис. 1.1.3 Структура тринистора.
1.2 Принцип действия
При включении динистора по схеме, приведенной на рис. 1.2.1, коллекторный p-n-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на рис. 1.2.3).
Рис. 1.2.1. Схема включения в цепь неуправляемого тиристора (динистора).
Рис. 1.2.2. Схема включения в цепь управляемого тиристора (тринистора).
Рис.1.2.3. Вольтамперная характеристика динистора.
Рис.1.2.4. Вольтамперная характеристика тиристора.
Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рис. 1.2.3). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области — избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.
После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.
При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.
Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может быть снижено введением не основных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uупр). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. На практике при использовании термина «тиристор» подразумевается именно элемент. Схема включения такого тиристора показана на рис. 1.2.2. Возможность снижения напряжения U при росте тока управления, показывает семейство ВАХ (рис. 1.2.4).
Если к тиристору приложить напряжение питания, противоположной полярности (рис. 1.2.4), то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой тиристора.
Тиристор: принцип работы. Классификация тиристоров
Принцип работы тиристоров основывается на основе полупроводникового кристалла (электронного ключа) с тремя или более p-n переходами. Элемент имеет две устойчивых позиции: состояние низкой или высокой проводимости. Под воздействием контрольного сигнала прибор приводится в проводящее воздействие. Другими словами – он включает цепь. Для ее активации необходимо создать подходящие условия, обеспечивающие снижение основного тока до нулевой отметки.
Описание
На пальцах принцип работы тиристора можно объяснить следующим образом: ключи проводят ток исключительно в прямом направлении. А в закрытом положении он выдерживает также и обратное напряжение. Структура приспособления имеет четыре слоя и три вывода:
- А (анод).
- К (катод).
- У (управляющий электрод).
Мощные электронные ключи оснащены различными амперными и вольтажными параметрами, которые влияют на работоспособность и состояние элемента. Тиристоры способны функционировать при значениях до пяти тысяч вольт, 5000 А, если частота не превышает 1000 Гц.
Коммутация
Принцип работы тиристора позволяет работать ему в двух коммутирующих диапазонах:
- Естественной коммутации. Она возникает при работе прибора в схеме переменного тока. Происходит данный процесс, когда ток снижается до нулевой позиции.
- Принудительной коммутации. Этот процесс может осуществляться несколькими способами в зависимости от схемы, используемой разработчиком.
Стандартным видом принудительной коммутации является подключение заряженного конденсатора. В такой цепи при нагрузке происходят колебания тока.
Способы выключения и включения
Принцип работы тиристора позволяет использовать несколько способов принудительной коммутации. Среди них:
- Использование конденсатора с обратной полярностью. Он может активироваться в цепи при помощи вспомогательного элемента. Затем производится разряд на основной тиристор, в результате чего ток, направленный навстречу прямому напряжению, будет обеспечивать его снижение вплоть до нулевой позиции. Происходит выключение прибора, что обусловлено его характерными особенностями.
- Подключение LC-цепочек. Они разряжаются с колебаниями, обеспечивая встречу рабочего и разрядного тока. После их уравновешивания тиристор выключается. В итоговой фазе ток из колебательной цепи перемещается через тиристор в полупроводниковый диод. Во время этого процесса к прибору применяется определенное напряжение, равное по модулю аналогичному показателю на диоде.
Принцип работы тиристора в цепях постоянного тока
Стандартный прибор активируется посредством подачи тока на контрольный вывод. Он должен быть положительным по отношению к катоду. Течение переходных потоков зависит от вида нагрузки, ее амплитуды и скорости нагнетания импульсного тока. Кроме того, имеет значение температурный режим полупроводникового кристалла, а также приложенное напряжение в схемах тиристоров. Параметры схемы непосредственно зависят от типа используемого полупроводника.
В цепи размещения тиристора не допускается интенсивное нарастание скорости повышения напряжения. Достигается такое значение, которое обеспечивает самопроизвольную деактивацию прибора, даже без наличия сигнала в системе управления. При этом синхронно должен поддерживаться высокий показатель характеристики блока управления.
Переменная цепь: принцип действия тиристоров
Принцип работы элемента в этом случае позволяет осуществить следующие действия:
- Активировать или разорвать электрическую цепь с активной или резистивной нагрузкой.
- Корректировать рабочий и средний показатель тока, дающего нагрузку. Это возможно благодаря регулировке пика подачи управления.
- Поскольку тиристоры проводят ток в одном направлении, в переменных цепях потребуется использование встречно-параллельного включения. Рабочее и среднее значение напряжения может варьироваться по причине изменения сигнала подачи на прибор. В любом случае мощность элемента должна соответствовать предъявляемым параметрам.
Фазовая и широтно-импульсная модуляция
Способы включения тиристоров также предусматривают фазовое управление. При этом выполняется регулировка нагрузки путем корректировки фазовых углов. Искусственно коммутирование доступно произвести посредством применения специальных цепей либо полностью запираемых аналогов. Таким способом изготавливают преимущественно тиристоры на зарядные устройства с возможностью регулировки силы тока соответственно заряду аккумулятора.
Широтно-импульсная модуляция (ШИМ) работает следующим образом:
- При открытии тиристора подается сигнал контроля.
- При этом переходы находятся открытыми, а на нагрузочной части появляется определенное напряжение.
- В период закрытия элемента сигнал управления не транслируется, что обеспечивает остановку подачи тока через прибор.
Стоит отметить, что при фазовом контроле кривая тока не является синусоидальной, выполняется трансформация формы сигнала напряжения. При этом намечается нарушение функционирования потребляющих элементов, которые восприимчивы к помехам высоких частот. Изменить величину на требуемый показатель позволяет специальный регулятор.
Разновидности
Существует несколько типов тиристоров (принцип работы для «чайников» рассмотрен выше). Используются они в зарядных устройствах, переключателях, регуляторах уровня громкости. Выделяют следующие модификации:
- Оптотиристор. Использует в цепи полупроводник, особо чувствительный к свету. Управляется прибор путем подачи светового потока.
- Тиристор-диод. Оснащен активным параллельно подключенным диодом.
- Динистор. Может трансформироваться в режим полной проводимости (при превышении номинального показателя напряжения).
- Симистор. Состоит из пары тиристоров, имеющих встречное параллельное включение.
- Инверторный тиристор. Отличается высокой коммутативной скоростью до 50 мкс.
- Элементы с полевым транзистором. Работают по типу металло-оксидных полупроводников.
Характеристики
Рассмотрим параметры и принцип работы тиристора КУ202Н:
- Предельное напряжение – 400 В.
- Постоянный/повторяющийся импульсный ток – 30/10 А.
- Напряжение в открытом режиме – 1,5 В.
- Показатель рабочего постоянного тока – 4 мА.
- Отпирающий ток на контрольном блоке – 200 мА.
- Максимальная нарастающая скорость в закрытом положении – 5 В/мкс.
- Период включения/выключения – 10/100 мкс.
Работает прибор по стандартной схеме для запирающихся тиристоров. Его аналоги: 1Н4202, ВТХ32 С100, КУМ202М.
Конструкция
Четырехслойная конфигурация тиристоров отличает их от аналогов полной управляемостью элемента. Амперный и вольтажный показатель при прямом направлении тока схож с параметрами обычных тиристоров. Однако рассматриваемые приборы способны пропускать существенное напряжение. Опции блокировки обратных больших напряжений у запираемых элементов не предусмотрены. В связи с этим требуется его агрегация со встречным параллельным диодом-полупроводником.
Существенное падение прямых напряжений является основной отличительной особенностью запираемого тиристора. Для его отключения необходимо выполнить подачу мощного импульсного тока на управляющий вывод. При этом длительность импульса должна быть максимально низкой (от 10 до 100 мкс). Отрицательное соотношение с прямым током составляет пропорцию 1/5. Итоговая разница предельного напряжения рассматриваемого прибора на 25% меньше, чем у обычного аналога.
В заключение
Нами были рассмотрена классификация тиристоров и их особенности. Можно сделать следующий вывод: данные приспособления представляют собой приборы, относящиеся критично к скоростям нарастания прямого напряжения и силы тока. Для тиристоров характерно протекание обратных токов, позволяющих быстро понизить значение в цепи до нулевой отметки. Для защиты элементов следует применять различные схемы, дающие возможность предохранить блок от высоких напряжений в динамическом режиме.
Лекция 12 Тиристоры
Тиристор это полупроводниковый прибор, который состоит из трих или более электронно-дырочных переходов и может находиться в одном из двух состояний: высокой проводимости (тиристор открыт) и низкой проводимости (тиристор закрыт). В открытом состоянии тиристор эквивалентен замкнутому электрическому контакту, в закрытом состоянии – разомкнутому контакту. В иностранной литературе они называются Silicon Controlled Rectifier (SCR).
12.1 Классификация тиристоров
Существует несколько разновидностей тиристоров, отличающиеся способом управления. Их условные графические обозначения приведены на рисунке 12.1..
Диодный тиристор (динистор) (рисунок 12.1,а) имеет два вывода: анод и катод. Включение и выключение динистора производится по анодной цепи. Для включения динистора необходимо, чтобы анодное напряжение было больше некоторого напряжения переключения (), а выключение происходит при анодном напряжении меньшем или равным нулю ().
Рисунок 12.1 -Условные графические обозначения тиристоров.
а – диодный тиристор, b –триодный тиристор однооперационный,
с — триодный тиристор двухоперационный.
Триодный тиристор(тринистор) (рисунок 12.1,bиc) отличается от динистора наличием третьего вывода. Этот вывод называется управляющим электродом. Существует две разновидности тиристоров: однооперационные тиристоры (рисунок 12.1,b) и двухоперационные тиристоры (рисунок 12.1,c).
Однооперационные тринисторы открываются по управляющему электроду. Условия открытия тиристора: анодное напряжение положительное () и наличие короткого импульса, тока втекающего в управляющий электрод (). Закрывается однооперационный тиристор по аноду; выключение происходит при анодном напряжении меньшем или равным нулю ().
Двухоперационные тиристоры открываются и закрываются по управляющему электроду. Условия открытия тиристора: анодное напряжение положительное () и наличие короткого импульса тока втекающего в управляющий электрод (). Закрывается двухоперационный тиристор по управляющему электроду; выключение происходит коротким импульсом тока, вытекающего из управляющего электрода (). Выключение происходит также при анодном напряжении меньшем или равным нулю ().
Фототиристор. В отличие от обычного тиристора, фототиристор имеет в корпусе окно для прохождения света. Тиристор можно открывать, воздействуя импульсом светового потока. Существуют фотодинисторы (рисунок 12.2,а) и фототринисторы (рисунок 12.1,b), в последнем случае открытие тиристора возможно подачей электрического сигнала на управляющий электрод.
Рисунок 12.2 — Условно графические обозначения.
а– фотодинистор, b– фототринистор,с– симметричный динистор (диак).
d– Симметричный тринистор (триак),е– тиристорная оптопара с фототиристором,f – тиристорная оптопара с фотосимистором
Симистор. Симметричные тиристоры способны пропускать электрический ток в двух направлениях, предназначены для работы в цепях переменного тока. Симистор можно представить в виде двух обычных тиристоров, включенных встречно-параллельно. Симисторы могут быть диодными (рисунок 12.2,с) и триодными (рисунок 12.2,d). В зарубежной литературе они называются соответственнодиак итриак.
Тиристорная оптопара.Тиристорная оптопара состоит из излучателя, обычно это светодиод или светодинистор и приемника — это фототиристор (рисунок 12.2,е) или фотосимистор (рисунок 12.2,f). Управление посредством светового потока позволяет осуществить гальваническую развязку низковольтной цепи управления с высоковольтной коммутируемой цепью.
ЛЕКЦИЯ 15 ТИРИСТОРЫ. Классификация и условные графические обозначения тиристоров
) j 1 и j з — j 2 — j2 — j 2. V2. j2 —
ТИРИСТОРЫ ПЛАН 1. Общие сведения: классификация, маркировка, УГО. 2. Динистор: устройство, принцип работы, ВАХ, параметры и применение. 3. Тринистор. 4. Симистор. Тиристор — это полупроводниковый прибор
ПодробнееЛекция 3 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ
21 Лекция 3 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ План 1. Устройство и принцип действия биполярного транзистора 3. Вольт-амперные характеристики биполярных транзисторов 3. Мощные биполярные транзисторы 4. Выводы 1. Устройство
ПодробнееИССЛЕДОВАНИЕ ТИРИСТОРОВ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
ПодробнееЛекция 4 МОП-ТРАНЗИСТОРЫ
29 Лекция 4 МОП-ТРАНЗИСТОРЫ План 1. Классификация полевых транзисторов 2. МОП-транзисторы 4. Конструкция и характеристики мощных МОП-транзисторов 4. Биполярные транзисторы с изолированным затвором 5. Выводы
ПодробнееИЛТ1-1-12, ИЛТ модули управления тиристорами
ИЛТ, ИЛТ модули управления тиристорами Схемы преобразователей на тиристорах требуют управления мощным сигналом, изолированным от схемы управления. Модули ИЛТ и ИЛТ с выходом на высоковольтном транзисторе
Подробнее2.2. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ
2.2. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Средняя область транзистора называется базой, одна крайняя область эмиттером (Э), а другая коллектором (К). Обычно концентрация примесей в эмиттере больше, чем в коллекторе.
Подробнее10.2. ЭЛЕКТРОННЫЕ КЛЮЧИ
10.2. ЭЛЕКТРОННЫЕ КЛЮЧИ Общие сведения. Электронный ключ это устройство, которое может находиться в одном из двух устойчивых состояний: замкнутом или разомкнутом. Переход из одного состояния в другое в
ПодробнееЛекция 2 ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ
109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ
ПодробнееОдновибраторы на дискретных элементах.
11.3. ОДНОВИБРАТОРЫ Одновибраторы используются для получения прямоугольных импульсов напряжения большой длительности (от десятков микросекунд до сотен миллисекунд), в качестве устройств задержки, делителей
Подробнее1.1 Усилители мощности (выходные каскады)
Лекция 9 Тема 9 Выходные каскады 1.1 Усилители мощности (выходные каскады) Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается внешняя нагрузка, и предназначены
ПодробнееТИРИСТОРНЫЕ УСТРОЙСТВА
Я.С.КУБЛАНОВСКИЙ Научно-популярное издание ТИРИСТОРНЫЕ УСТРОЙСТВА Издательство «Радио и связь», 1987 Предисловие Тиристоры полупроводниковые приборы с четырехслойной р-n-р-n структурой обладают такими
ПодробнееТИРИСТОРЫ СИММЕТРИЧНЫЕ ( СИМИСТОРЫ ) ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС , ТС142-80
ТИРИСТОРЫ СИММЕТРИЧНЫЕ ( СИМИСТОРЫ ) ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80 Симметричные тиристоры (симисторы) изготовлены на основе пятислойной кремниевой
Подробнеек изучению дисциплины
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. С.Г.Камзолова ПОСОБИЕ к изучению дисциплины «Общая электротехника и электроника», раздел «Электронные приборы» Часть 1. для студентов
ПодробнееИЛТ Драйвер управления тиристором
ИЛТ Драйвер управления тиристором Схемы преобразователей на тиристорах требуют изолированного управления. Логические изоляторы потенциала типа ИЛТ совместно с диодным распределителем допускают простое
Подробнееварикапы, стабилитроны и др.
2.1. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Полупроводниковыми диодами называют полупроводниковые приборы с одним электрическим переходом и двумя выводами. Они применяются для выпрямления переменного тока, детектирования
ПодробнееНелинейные сопротивления «на ладони»
Нелинейные сопротивления «на ладони» Структурой, лежащей в основе функционирования большинства полупроводниковых электронных приборов, является т.н. «p-n переход». Он представляет собой границу между двумя
ПодробнееЭлементарнаябазаэлектронных устройств
Элементарнаябазаэлектронных устройств Диоды, стабилитроны, транзисторыи тиристоры Электронными называют устройства, в которых преобразование электроэнергии и сигналов реализуется с помощью электронных
ПодробнееВход Усилитель. Обратная связь
Лекция 5 Тема 5 Обратная связь в усилителях Обратной связью () называют передачу части энергии усиливаемого сигнала из выходной цепи усилителя во входную. На рисунке 4 показана структурная схема усилителя
Подробнее1. Назначение и устройство выпрямителей
Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,
ПодробнееЧто такое выпрямитель
Что такое выпрямитель Для чего нужны выпрямители Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители
ПодробнееU à, В
ЭЛЕКТРОННАЯ ТЕХНИКА Контрольные задания Вариант 4 1. Начертить схему включения лучевого тетрода и указать назначения всех элекродов. Каковы недостатки и достоинства лучевых тетродов по сравнению с триодами
Подробнее5.1. Физические основы полупроводников
5.1. Физические основы полупроводников Тонкий слой между двумя частями полупроводникового кристалла, в котором одна часть имеет электронную (N), а другая дырочную (Р) проводимость, называется электронно-дырочным
ПодробнееТИРИСТОРЫ СИММЕТРИЧНЫЕ ( СИМИСТОРЫ ) ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС , ТС142-80
модуль тиристорный Минск т.80447584780 www.fotorele.net www.tiristor.by радиодетали, электронные компоненты email [email protected] tel.+375 29 758 47 80 мтс каталог, описание, технические, характеристики,
ПодробнееЛекция 7 ВЫПРЯМИТЕЛИ
Лекция 7 ВЫПРЯМИТЕЛИ План 1. Источники вторичного электропитания 2. Однополупериодный выпрямитель 3. Двухполупериодные выпрямители 4. Трехфазные выпрямители 67 1. Источники вторичного электропитания Источники
ПодробнееЦифровые и импульсные устройства
Электроника и МПТ Цифровые и импульсные устройства Импульсные устройства устройства, предназначенные для генерирования, формирования, преобразования и неискаженной передачи импульсных сигналов (импульсов).
ПодробнееИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ
95 Лекция 0 ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ План. Введение. Понижающие импульсные регуляторы 3. Повышающие импульсные регуляторы 4. Инвертирующий импульсный регулятор 5. Потери и КПД импульсных регуляторов
ПодробнееТС106-10, TC112-10, TC112-16, ТС122-20, ТС122-25, TC132-40, TC132-50, TC142-63, TC142-80
модуль тиристорный Минск т.80447584780 www.fotorele.net www.tiristor.by радиодетали, электронные компоненты email [email protected] tel.+375 29 758 47 80 мтс каталог, описание, технические, характеристики,
ПодробнееУНИПОЛЯРНЫЕ (ПОЛЕВЫЕ) ТРАНЗИСТОРЫ
УНОЛЯРНЫЕ (ОЛЕВЫЕ) ТРАНЗСТОРЫ Униполярными называются транзисторы, в которых для создания тока используются носители заряда только одного знака. Эти транзисторы делятся на два основных класса: 1) Транзисторы
ПодробнееСоответствует рабочей программе
Федеральное агентство по образованию Федеральное государственное образовательное учреждение среднего профессионального образования Уральский радиотехнический колледж им. А. С. Попова ЭЛЕКТРОННАЯ ТЕХНИКА
ПодробнееГлава 5. Дифференциальные усилители
Глава 5. Дифференциальные усилители 5. Дифференциальные усилители Дифференциальный усилитель это симметричный усилитель с двумя входами и двумя выходами, использующийся для усиления разности напряжений
ПодробнееЛекция 6 ПОЛЕВЫЕ ТРАНЗИСТОРЫ
147 Лекция 6 ПОЛЕВЫЕ ТРАНЗИСТОРЫ План 1. Класфикация полевых трансторов. 2. Полевые трасторы с управляющим p n-переходом. 3. МОП-трасторы с индуцированным каналом. 4. МОП-трасторы с встроенным каналом.
ПодробнееТ и р и с т о р ы
Йошкар-Ола
2011
МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
КАФЕДРА ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
Т и р и с т о р ы
Методические указания к выполнению лабораторных работ по дисциплине «Электротехника, электроника и схемотехника»
модуль «Электроника»
по направлению подготовки 230100
«Информатика и вычислительная техника»
квалификация 230100.62
Йошкар-Ола
2011
УДК 621.317(076.5)
Тиристоры: Методические указания к выполнению лабораторных работ по дисциплине «Электротехника, электроника и схемотехника» (модуль «Электроника») для студентов по направлению подготовки 230100 «Информатика и вычислительная техника» /Сост. С. В. Старыгин. − Йошкар-Ола: МарГТУ, 2011.
Определены цели и задачи изучения тиристоров, приведены краткие теоретические сведения необходимые для понимания принципа действия тиристоров, методика проведения экспериментов по исследованию характеристик и определения параметров тиристоров.
© Марийский государственный технический университет, 2011
© Старыгин С.В., 2011, составление
Цель работы: изучение структуры и принципа действия тиристора, определение и анализ его вольт-амперных характеристик, определение параметров тиристора по ВАХ.
1. Тиристоры
Тиристор – это полупроводниковый электропреобразовательный прибор, включающий три и более p-n-переходов, который имеет два рабочих состояния − открытое и закрытое. Все тиристоры имеют два рабочих вывода, которые по аналогии с диодами называются анодом и катодом. Управляемые тиристоры имеют управляющий электрод.
1.1. Классификация тиристоров
В зависимости от количества p-n-переходов и выводов тиристоры подразделяют на диодные тиристоры − динисторы (рис.1,а), триодные тиристоры − тринисторы (рис. 1,б), симметричные тиристоры − симисторы (рис.1,в). Тринисторы подразделяются по методу подключения управляющего электрода: с управлением по аноду и с управлением по катоду.
с управлением с управлением
по аноду по катоду
а) б) в)
Рис. 1
1.2. Устройство и принцип действия динистора
Структура динистора состоит из четырех полупроводниковых областей с различным типом электропроводности (рис. 2).
Рис.2
Крайняя n-область называется катодом, крайняя p-область – анодом. Аналогично диодам на динистор может быть подано прямое или обратное напряжение. При прямом включении динистора к аноду подключают положительную клемму, а к катоду отрицательную клемму внешнего источника питания.
В этом случае крайние p-n-переходы П1 и П3 смещены в прямом направлении – их называют эмиттерными. Средний p-n-переход П2 смещен в обратном направлении – его называют коллекторным. Между эмиттерными и коллекторным переходами расположены базовые области p- и n-типа.
При малых прямых смещениях эмиттерные переходы открыты, а коллекторный – закрыт. Через переход П1 в p-базу инжектируются электроны, которые затем диффундируютрррh к коллекторному переходу П2. Полем обратно смещенного коллекторного перехода П2, электроны подхватываются и перебрасываются в n-базу. Дальнейшему движению электронов препятствует потенциальный барьер эмиттерного перехода П3. Поэтому в области n-базы накапливаются электроны. Аналогично процессы происходят с дырками, инжектированными через переход П3 в n-базу.
Противоположные по знаку заряды, накапливаюшиеся в p- и n-базах находятся в состоянии динамического равновесия – количество поступающих зарядов равно количеству рекомбинируемых зарядов.
При увеличении прямого смещения динамическое равновесие смещается в сторону увеличения зарядов. Накопленные в базах заряды создают электрическое поле, направленное противоположно контактному полю закрытого коллекторного перехода П2. Поэтому при некотором прямом смещенииUАКпереход П2 откроется. Данное напряжение называется напряжением включения динистора UВКЛ.
При этом все три перехода динистора оказываются открытыми, анодный ток динистора IА резко возрастаети напряженияUАК на динисторе падает – динистор открывается.
В открытом состоянии ток через динистор ограничивается только малыми омическими сопротивлениями p-n-p-n областей.
При обратных смещениях на динисторе эмиттерные переходы закрыты, а коллекторный – открыт. Инжекция носителей отсутствует. Ток через динистор не протекает — динистор закрыт.
Таким образом, при увеличении прямого смещения выше некоторого напряжения Uвкл. динистор переходит из закрытого состояния в открытое.