Электродвигатель: история и классификация по типам: видео
Двигатель или электромотор является поистине уникальным изобретением и одним из самых глобальных достижений в области науки и техники со времен изобретения электричества. Двигатель – это не что иное, как электро-механическое устройство, которое преобразует электрическую энергию в механическую. Именно благодаря двигателям современная жизнь стала таковой в ХХІ веке. Без них мы до сих пор бы жили в эпоху сэра Томаса Эдисона, когда одной-единственной целью электричества были лампочки. В настоящее время, существуют различные типы двигателей, которые предназначены для конкретных целей.
По сути, мы можем назвать двигателем любое устройство, которое производит силу вращения. Главный принцип функционирования электродвигателя состоит в том, что сила направлена перпендикулярно магнитному полю и электрическому току, которые взаимодействуют друг с другом. Со времен изобретения двигателей, в области инженерного дела многое изменилось для современных инженеров. Что же, давайте обозначим основные электрические двигатели и их части, которые радуют нас всех на данном этапе прогресса цивилизации.
Классификация и история двигателя
Классификация электродвигателейВ 1821 году британский ученый Майкл Фарадей четко объяснил, как электрическая энергия способна преобразовываться в механическую путем размещения токоведущего проводника в магнитном поле, в результате чего происходит его вращение вследствие крутящего момента, производимого совместным действием электрического тока и магнитного поля. Основываясь на его принципах, были изобретены машины с постоянным током, и сделал это британский ученый Уильям Стеджен в 1832 году. Однако его модель была чрезмерно дорогой и не могла быть использована для практических целей. Позже, в 1886 году, был изобретен первый электрический двигатель (Франк Джулиан Спрэг), который вращался с постоянной скоростью и с различной нагрузкой.
Виды двигателей
- Двигатель постоянного тока (ДПТ).
- Синхронный двигатель.
- 3-фазный асинхронный электродвигатель.
- 1-фазный асинхронный электродвигатель.
- Специальные виды двигателя.
Видео: классификация электродвигателей
Среди основных типов двигателей, упомянутых выше, двигатель постоянного тока, как следует из самого названия, является единственным, который приводится в движение посредством постоянного тока. Пожалуй, речь идет о самом примитивном варианте электродвигателя, в котором вращающий момент образуется за счет протекания электрического тока через проводник в магнитном поле. Остальные виды электродвигателей приводятся в действие благодаря переменному току, например, синхронный двигатель, всегда работающий в режиме синхронной скорости. В данном случае, в качестве ротора выступает электромагнит, который заблокирован статором вращающегося магнитного поля и вращается вместе с ним. Скорость таких двигателей изменяться соответственно изменению частоты (f) и числу полюсов (Р), так как N
В других типах двигателей с переменным током вращающееся магнитное поле пересекает проводники ротора, и, следовательно, показатель циркулирующего тока уменьшается в проводниках ротора при коротком замыкании. Благодаря взаимодействию магнитного поля и этих циркулирующих потоков ротор начинает и продолжает свое вращение. В общем, такой двигатель также известен как асинхронный двигатель, работающий на меньшей скорости; а вращающий момент регулируется путем изменения скольжения, обеспечивающего разность между Ns синхронной скорости и ротором скорости Nr:
S=(Ns — N
Такой двигатель регулирует основные параметры ЭДС индукции благодаря различной плотности потока; отсюда и само название. Однофазный и трехфазный двигатель тоже работают по принципу ЭДС индукции, но с той лишь разницей, что сеть и способы ее запуска регулируются двумя хорошо известными теориями, а именно теорией двойных вращающихся полей и теорией поперечного поля.
Помимо основных типов двигателей, упомянутых выше, существует несколько видов так называемых специальных электродвигателей, например, линейный асинхронный электродвигатель (LIM), шаговый двигатель, серводвигатель и т.д., особенности которых были разработаны в соответствии с потребностями отрасли или для функционирования конкретных гаджетов, к примеру, при использовании гистерезиса двигателя в ручных часах ввиду его компактности.
Классификация электродвигателей
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающей момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатели постоянного тока:двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:
- коллекторные двигатели;
- бесколлекторные двигатели.
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом
По типу возбуждения коллекторные двигатели можно разделить на:
- двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
- двигатели с самовозбуждением .
Двигатели с самовозбуждением делятся на:
- Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
- Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
- Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)
Бесколлекторные двигатели
Двигатели переменного тока
Трехфазные асинхронные двигатели
Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора, а у асинхронных — всегда должна быть разница скоростей.
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше)[1]:28.
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
- однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
- двухфазные — в том числе конденсаторные;
- трёхфазные;
- многофазные;
Классификация электродвигателей
Электрический двигатель или электромеханический преобразователь – это машина вращательного типа, преобразующая электрическую энергию в механическую. Образование и выделение тепла – побочный эффект работы электродвигателя.
Вращающий момент в электродвигателе может создаваться при перемагничивании ротора вследствие гистерезиса, либо при взаимодействии магнитных полей статора и ротора, возникающих в них при подаче тока. Электродвигатели первой группы называют гистерезисными, применяют очень редко. Основная масса двигателей, используемых в промышленности, относится к группе магнитоэлектрических.
В зависимости от типа потребляемой энергии магнитоэлектрические двигатели подразделяются на двигатели постоянного и переменного тока. Существует также немногочисленная группа универсальных двигателей, которые питаются обоими видами тока.
Двигатели постоянного тока
По наличию щёточно-коллекторного узла двигатели постоянного тока делят на коллекторные и бесколлекторные. Щёточно-коллекторный узел предусмотрен для электрического соединения цепей статора и ротора. Этот узел электродвигателя является наиболее уязвимым, сложным в ремонте и обслуживании.
Внутри группы коллекторных двигателей существует деление на двигатели с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
В зависимости от особенностей взаимного подключения обмоток якоря и возбуждения внутри группы двигателей с самовозбуждением различают двигатели параллельного, последовательного и смешанного возбуждения.
Бесколлекторные или вентильные двигатели работают по тому же прицепу, что и синхронные двигатели постоянного тока. Представляют собой замкнутые системы, включающие силовой полупроводниковый преобразователь, преобразователь координат, датчик положения ротора.
Электродвигатели переменного тока
Двигатели переменного тока питаются от сетей переменного тока и подразделяются на синхронные и асинхронные.
В синхронных электродвигателях скорости вращения ротора и движения первой гармоники магнитодвижущей силы статора совпадают. Этот тип двигателей применяется при высоких мощностях.
К группе синхронных двигателей относят вентильные реактивные и шаговые электродвигатели. Питание обмоток вентильных реактивных двигателей формируется с помощью полупроводниковых элементов. Отличительная особенность шаговых электродвигателей – дискретное (шаговое) угловое перемещение ротора при работе. Последовательное перемещение ротора происходит при переключении напряжения питания с одних обмоток на другие.
Наибольшее распространение в современной промышленности получили асинхронные электродвигатели. Частоты вращающего магнитного поля, создаваемого напряжением питания и вращения ротора в двигателях асинхронного типа всегда разнятся.
Двигатели переменного тока различаются по количеству фаз. По этому признаку выделяют одно-, двух-, трех- и многофазные двигатели. Однофазные двигатели могут иметь фазосдвигающую цепь, либо пусковую обмотку, либо запускаться вручную.
В электроинструментах и бытовых приборах применяются коллекторные универсальные электродвигатели, которые могут работать от источников постоянного и переменного тока. Универсальные двигатели производятся только с последовательными обмотками возбуждения, которые при подаче постоянного тока включаются полностью, а при подаче переменного – частично.
Сравнение синхронных и асинхронных двигателей
Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.
Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.
Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.
Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.
Асинхронные двигатели дают возможность регулировать частоту вращения различными способами, рассмотренными в гл. 10. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.
Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда cos φ < 1.
Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.
Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.
Электропривод, выбор двигателя, аппаратура управления, электроснабжение, вопросы техники безопасности общие сведения об электроприводе
Электропривод определяется как электромеханическая система, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением. В отдельных случаях в этой системе могут отсутствовать преобразовательное и передаточное устройства. Благодаря преимуществам по сравнению с другими видами приводов он нашел наибольшее распространение в промышленности и является основным средством механизации и автоматизации производственных машин и процессов. Степень совершенства электропривода определяет в конечном счете производительность труда.
Теория электропривода охватывает многие вопросы, знание которых позволяет рассчитать и выбрать элементы электропривода, а также разработать схему автоматического управления как двигателем, так и всем производственным процессом в соответствии с технологическими требованиями.
К этим вопросам относятся:
а) механические характеристики электроприводов в двигательном и тормозных режимах;
б) регулирование частоты вращения электроприводов;
в) переходные процессы в электроприводах;
г) расчет пусковых тормозных и регулировочных резисторов;
д) определение мощности электродвигателя и выбор его по каталогу;
е) разработка схемы управления двигателем и всем производственным процессом;
ж) выбор электрической аппаратуры управления.
Вопросы, отмеченные в пп. а, б, г, были затронуты в достаточном для данного курса объеме в гл. 9—11 и здесь рассматриваться не будут.