Клапан теслы – Клапан Теслы — Википедия. Что такое Клапан Теслы

Клапан Теслы — Википедия

Материал из Википедии — свободной энциклопедии

Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit)[1] — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году[2].

Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Продольный разрез клапана Теслы[2]

На рисунке схематически изображён клапан Теслы, на котором обозначены корпус 1, группа полостей 2, имеющих определённую форму, и расположенных друг напротив друга с определённым смещением, с помощью которых поток разворачивается на угол, близкий к 180°, группа втулок 3, предназначенных для разделения потока, а также входной и выходной штуцеры 4 и 5 соответственно.

Основная идея этого устройства состоит в разделении потока и перенаправлении одной его части навстречу другой. Значительный эффект клапан Теслы может обеспечить лишь в импульсном режиме работы. На рисунке пунктирными стрелками 7 показано, как проходит поток с разных сторон клапана. Очевидно, что когда поток проходит от штуцера 5 до штуцера 4, сопротивление его движению является минимальным. Поток отклоняется не более чем на 10…12°. Но если поток движется в обратном направлении, от штуцера 4 до штуцера 5, то сопротивление возрастает на несколько порядков за счёт внезапных изменений направления и скорости движения потока. Чем резче возрастает противодавление, тем значительнее клапанный эффект.

  • Nikola Tesla Patent #1,329,559 Valvular conduit. Priority date Feb 21, 1916; publication date Feb 3, 1920. (англ.)

Водный клапан Н.Тесла — EnergyScience.ru

Я предполагаю, что как только поток инициируется в одном направлении, будет создана серия тороидальных вихрей, которые должны облегчить поток в одном направлении, но серьезно препятствовать потоку в другом.

Я не знаю, как это будет работать, но это можно сделать, просто нагревая и обжимая некоторые пластиковые трубки.

Я также думаю, что это может даже уменьшить сопротивление или трение в нужном направлении, в отличие от прямой трубы или трубки из-за движения вихрей, которые когда-то вращались, действовали бы почти как маленькие воздушные шарикоподшипники.

Я рассуждаю так: это похоже на зазубренный нож, который режет лучше, чем прямое лезвие. Он также напоминает волны в океане и / или песчаные «волны» в пустыне, образованные ветром. По принципу, что все в природе следует по пути наименьшего сопротивления — можно предположить, что эта форма и круговые вихри образуются уменьшить сопротивление ветра на поверхности воды или песка.

Трубки такой формы могут просто уменьшить сопротивление потока жидкости через трубку в нужном направлении, препятствуя потоку в противоположном направлении.

Во всяком случае, из прочтения патента видно, что Тесла разработал этот «клапан» со своим «Самодействующим двигателем», поскольку он упоминает о его использовании в связи с одним из компонентов этого двигателя, который он разработал свой «механический генератор».

Он также утверждает, что этот клапан предназначен для использования там, где есть пульсирующий поток или потенциал для быстрых колебаний в потоке, что на самом деле имело бы место здесь — попеременное расширение и сжатие газа или воздуха в тепловом двигателе. Тесла утверждает, что его клапан идеально подходит для таких обстоятельствах.

Я думаю, что тороидальные вихри, созданные альтернативной конструкцией, создадут более длительные вихри или завихрения в форме пончиков, подобные кольцам дыма, которые в какой — то степени будут самоподдерживающимися.

В одном направлении воздух будет почти «вытягиваться» через Центр вихря в форме пончика, в то время как в другом направлении, как только вихрь будет установлен, будет противоположный поток, как попытка протиснуться через кольцо вращающихся шин.

В то время как в одном направлении вращение будет помогать в другом-прямым препятствием.

Клапан Теслы — Википедия

Материал из Википедии — свободной энциклопедии

Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit)[1] — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году

[2].

Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Продольный разрез клапана Теслы[2]

Конструкция

На рисунке схематически изображён клапан Теслы, на котором обозначены корпус 1, группа полостей 2, имеющих определённую форму, и расположенных друг напротив друга с определённым смещением, с помощью которых поток разворачивается на угол, близкий к 180°, группа втулок 3, предназначенных для разделения потока, а также входной и выходной штуцеры 4 и 5 соответственно.

Принцип действия

Основная идея этого устройства состоит в разделении потока и перенаправлении одной его части навстречу другой. Значительный эффект клапан Теслы может обеспечить лишь в импульсном режиме работы. На рисунке пунктирными стрелками 7 показано, как проходит поток с разных сторон клапана. Очевидно, что когда поток проходит от штуцера 5 до штуцера 4, сопротивление его движению является минимальным. Поток отклоняется не более чем на 10…12°. Но если поток движется в обратном направлении, от штуцера 4 до штуцера 5, то сопротивление возрастает на несколько порядков за счёт внезапных изменений направления и скорости движения потока. Чем резче возрастает противодавление, тем значительнее клапанный эффект.

См. также

Примечания

Источники

  • Nikola Tesla
    Patent #1,329,559 Valvular conduit. Priority date Feb 21, 1916; publication date Feb 3, 1920. (англ.)

Ссылки

Клапан Тесла Википедия

Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit)[1] — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году

[2].

Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Продольный разрез клапана Теслы[2]

Конструкция

На рисунке схематически изображён клапан Теслы, на котором обозначены корпус 1, группа полостей 2, имеющих определённую форму, и расположенных друг напротив друга с определённым смещением, с помощью которых поток разворачивается на угол, близкий к 180°, группа втулок 3, предназначенных для разделения потока, а также входной и выходной штуцеры 4 и 5 соответственно.

Принцип действия

Основная идея этого устройства состоит в разделении потока и перенаправлении одной его части навстречу другой. Значительный эффект клапан Теслы может обеспечить лишь в импульсном режиме работы. На рисунке пунктирными стрелками 7 показано, как проходит поток с разных сторон клапана. Очевидно, что когда поток проходит от штуцера 5 до штуцера 4, сопротивление его движению является минимальным. Поток отклоняется не более чем на 10…12°. Но если поток движется в обратном направлении, от штуцера 4 до штуцера 5, то сопротивление возрастает на несколько порядков за счёт внезапных изменений направления и скорости движения потока. Чем резче возрастает противодавление, тем значительнее клапанный эффект.

См. также

Примечания

Источники

  • Nikola Tesla
    Patent #1,329,559 Valvular conduit. Priority date Feb 21, 1916; publication date Feb 3, 1920. (англ.)

Ссылки

Клапан Теслы — Карта знаний

  • Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit) — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году.

    Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Источник: Википедия

Связанные понятия

Гидравли́ческий уда́р (гидроудар) — скачок давления в какой-либо системе, заполненной жидкостью, вызванный быстрым изменением скорости потока этой жидкости. Может возникать вследствие резкого закрытия или открытия задвижки. В первом случае гидроудар называют положительным, во втором — отрицательным. Особо опасен положительный гидроудар. При положительном гидроударе несжимаемую жидкость следует рассматривать как сжимаемую. Гидравлический удар способен вызывать образование продольных трещин в трубах… Ко́нус воздухозабо́рника (также называемый генератор скачка) — конструктивный элемент внутри воздухозаборника реактивного самолёта или ракеты, использующийся для регулирования пропускной способности воздухозаборника. Применяется в некоторых летательных аппаратах с ПВРД, таких как Х-61 «Оникс» («Яхонт»), Lockheed D-21, PJ-10 «БраМос». Самолёты с турбореактивным двигателем (МиГ-21, Су-7, SR-71 и др.) также снабжаются конусом воздухозаборника. Счётчик газа (газовый счётчик) — прибор учёта, предназначенный для измерения количества (объёма), реже — массы прошедшего по газопроводу газа. Соответственно, количество газа, как правило, измеряют в кубических метрах (м³), редко — в единицах массы, килограммах или тоннах (в основном — технологических газов). Приборы, позволяющие измерять или вычислять проходящее количество газа за единицу времени (расход газа), называются расходомерами или расходомерами-счетчиками. Чаще всего расход газа измеряют… Защитная арматура — вид трубопроводной арматуры, предназначенный для защиты технологических систем, оборудования, трубопроводов, насосов и сосудов под давлением от возникновения или последствий аварийных ситуаций. В результате эксплуатации могут возникать различные проблемы, обусловленные неисправностями оборудования, неправильным ведением технологического процесса, другими сторонними факторами (применительно к рисунку справа это может быть, к примеру, разрушение части топливной системы очередью… Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect) — эффект температурного разделения газа при закручивании в цилиндрической или конической камере при условии, что поток газа в трубке проходит не только прямо, но и обратно. На периферии образуется закрученный поток с большей температурой, а из центра — в противоположную сторону выходит охлажденный поток. Существует распространённое заблуждение, что температурное разделение происходит путём перемещения молекул газа на прямом проходе… Спира́льный компре́ссор — разновидность компрессора (насоса) объёмного типа, в котором сжатие рабочей среды происходит при взаимодействии двух спиралей. Одна спираль остаётся неподвижной, а другая — совершает эксцентрические движения без вращения, благодаря чему обеспечивается перенос рабочей среды из полости всасывания в полость нагнетания. Гидравлические механизмы — аппараты и инструменты, использующие в своей работе кинетическую или потенциальную энергию жидкости. К гидравлическим механизмам относят гидравлические машины. Высоковольтный выключатель — коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме в нормальных или аварийных режимах при ручном, дистанционном или автоматическом управлении. Ультразвуково́й дви́гатель (Ультразвуковой мотор, Пьезодвигатель, Пьезомагнитный двигатель, Пьезоэлектрический двигатель), (англ. USM — Ultra Sonic Motor, SWM — Silent Wave Motor, HSM — Hyper Sonic Motor, SDM — Supersonic Direct-drive Motor и др.) — двигатель, в котором рабочим элементом является пьезоэлектрическая керамика, благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД, превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы… УЭЦН (Установка ЭЦН, Установка электроприводного центробежного насоса) УЭЦН относится к погружным бесштанговым насосным установкам. Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером. Сверхзвуковой воздухозаборник — воздухозаборник реактивного двигателя, предназначенный для работы при сверхзвуковых скоростях набегающего потока воздуха. Это тщательно спроектированная и изготовленная конструкция, от исполнения которой зависит надёжность работы авиационного двигателя и достижения им требуемых характеристик во всех эксплуатационных режимах полёта. Нитиноловый двигатель — двигатель, основанный на способности сплава с эффектом «памяти» нитинола (сплава титана и никеля) восстанавливать свою форму, которую он получил при температуре красного каления. В общенаучной литературе такой вид двигателя известен как мартенситный двигатель или martensite rotorheat engine(MRHE). Импульсное предохранительное устройство — устройство, относящееся к предохранительной трубопроводной арматуре и представляющее собой, в общем случае, совокупность двух или более предохранительных клапанов, из которых один (главный), установленный на основной магистрали, ёмкости или резервуаре, оснащён поршневым приводом, а второй (импульсный), с меньшим проходным сечением, служит управляющим элементом. Он открывается по команде от датчика при соответствующем давлении рабочей среды и направляет её… Масляный выключатель — коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме, в нормальных или аварийных режимах, при ручном или автоматическом управлении. Дугогашение в таком выключателе происходит в масле. Силовая неоднородность шины — это динамически-механические свойства пневматических шин, которые четко обозначены набором стандартов измерений и условий проведения испытаний, принятых производителями шин и автомобилей по всему миру. Эти эталоны включают такие параметры как: разброс радиальной и поперечной сил, конусность, угол бокового увода шины, радиальное и боковое биения, выпуклости по боковине. Производители шин по всему миру применяют данное тестирование с целью выявления негодных покрышек… Мальти́йский механи́зм — механизм прерывистого движения, преобразующий равномерное вращательное движение в прерывистое вращательное движение. Система изменения фаз газораспределения (англ. variable valve timing, VVT) в двигателях внутреннего сгорания предназначена для изменения времени открытия клапанов и часто применяется для улучшения показателей эффективности, экономичности и токсичности. Система все более часто используется совместно с системой изменения высоты подъема клапанов. Изменение фаз газораспределения может достигаться разными способами: полностью механическим, электро-гидравлическим и при конструкции двигателей без использования… Ша́говый электродви́гатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора. Предохранительный клапан — трубопроводная арматура, предназначенная для защиты от механического разрушения оборудования и трубопроводов избыточным давлением путём автоматического выпуска избытка жидкой, паро- и газообразной среды из систем и сосудов с давлением сверх установленного. Клапан также должен обеспечивать прекращение сброса среды при восстановлении рабочего давления. Предохранительный клапан является арматурой прямого действия, работающей непосредственно от рабочей среды, наряду с большинством… Электродинамический громкоговоритель — это громкоговоритель, в котором преобразование электрического сигнала в звуковой происходит благодаря перемещению катушки с током в магнитном поле постоянного магнита (реже — электромагнита) с последующим преобразованием полученных механических колебаний в колебания окружающего воздуха при помощи диффузора. Бондграф — графическое представление динамической системы, возникающее при описании той или иной физической (механической, электрической, гидравлической, пневматической, экономической и т.д.) системы, отражающее процесс перераспределения энергии в данной системе. Похож на граф, более известный как блок-схема, или на граф прохождения сигналов и опирается на закон сохранения энергии. Основное отличие от блок-схем или графов прохождения сигналов состоит в том, что в бондграфе рёбрам ставится в соответствие… Лине́йный дви́гатель — электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле, а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя. Сейчас разработано множество разновидностей (типов) линейных электродвигателей, например… Регулятор давления, редуктор давления газа — разновидность регулирующей арматуры, автоматически действующее автономное устройство, служащее для поддержания постоянного давления газа в трубопроводе. При регулировании давления происходит снижение начального высокого давления на конечное низкое. Это достигается автоматическим изменением степени открытия дросселирующего органа регулятора, вследствие чего автоматически изменяется гидравлическое сопротивление проходящему потоку газа. Микрокана́льные пласти́ны (МКП) — вид изделий вакуумной микроэлектроники. Предназначены для работы в вакууме в качестве многоканальных детекторов, преобразователей и вторично-электронных усилителей пространственно-организованных потоков заряженных частиц и излучений. Основное применение — преобразователь и усилитель яркости изображения индивидуальных приборов ночного видения.

Подробнее: Микроканальная пластина

Электромагнитный громкоговоритель (по отношению к устройствам, не излучающим звук в окружающее пространство, а предназначенным для телефонов и наушников, применяются термины электромагнитный капсюль и электромагнитный телефон) — громкоговоритель, в котором звуковые колебания создаются за счёт движения мембраны из магнитного материала либо металлического якоря в поле неподвижного электромагнита. Исторически — самый первый громкоговоритель. С появлением динамических громкоговорителей электромагнитный… Противоточная хроматография (ПТХ) является техникой жидкостной хроматографии которая применяется для двух несмешиваемых жидкостей без применения твердого наполнителя. Одна жидкость в качестве стационарной фазы, а другая в качестве подвижной. Жидкая стационарная фаза удерживается на месте за счёт силы гравитации или центробежной силы… Ударно-волновой излучатель, УВИ — наиболее эффективный в настоящее время тип взрывного источника радиочастотного электромагнитного излучения с «виртуальным» лайнером. Дугогаси́тельная ка́мера (дугогаси́тельная решётка) — специальное устройство, применяющееся в приспособлениях дугогашения в различных электрических коммутационных аппаратах для предотвращения горения и быстрого гашения электрической дуги. Гидрозамок (гидравлический замок) — устройство, предназначенное для удержания гидравлических двигателей в статическом положении под нагрузкой. Виброизоляция (англ. vibration-isolation, vibration control) — это способность препятствия (виброизолятора, виброопоры) изолировать конструкцию (оборудование, механизм и т. п.) от распространяющейся по ней вибрации. Численно виброизоляция оценивается ослаблением колебаний в защищаемом объекте после установки препятствия между точкой приема и районом расположения источника вибраций. Единица измерения — dB. Сопло́ Лава́ля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей. Лого́метр — магнитоэлектрический электроизмерительный прибор для измерения отношения сил двух электрических токов. Вихревые насосы — это оборудование или аппарат, который предназначается для перекачивания или подачи воды из водоёмов, скважин, накопительных резервуаров. Как правило, оно используется там, где необходимо обеспечить значительный напор при малых объёмах. Перекачиваемая жидкость не должна содержать механических примесей. Насосы данного типа устанавливаются в системах автоматического водоснабжения, применяются в оросительных комплексах для сельского хозяйства. В химической промышленности они используются… Листогиб или листогибочный пресс — устройство для холодной гибки листового металла. Отвёртка — ручной слесарный инструмент, предназначенный для завинчивания и отвинчивания крепёжных изделий с резьбой. Чаще всего винтов и шурупов, на головке которых имеется шлиц (паз). Обычно представляет собой металлический стержень с наконечником и рукояткой (пластмассовой или деревянной). ГОСТ 29308-92 «Инструмент монтажный для винтов и гаек. Номенклатура» относит к отвёрткам также некоторые виды ключей (ключи торцовые и ключи для круглых гаек с шлицем (шлицами) или отверстиями на торце) и сменные… Магнитостри́кция (от лат. strictio — сжатие, натягивание) — явление, заключающееся в том, что при изменении состояния намагниченности тела его объём и линейные размеры изменяются. Выключатель магнитного поля (автомат гашения поля, АГП)- электрический аппарат, предназначенный для коммутации в цепи обмотки возбуждения крупных синхронных машин и машин постоянного тока. Конечная кольцевая проводка или кольцевая проводка (неформально называемая также ring main или просто кольцо (ring)) это принцип разводки проводов, разработанный и используемый главным образом в Соединённом Королевстве, предусматривающий по два независимых проводника для фазы, нейтрали и защитного заземления в здании для каждой подключённой нагрузки или розетки. Управление вектором тяги (УВТ) реактивного двигателя — отклонение реактивной струи двигателя от направления, соответствующего крейсерскому режиму. Аэродинами́ческая труба́ — это техническое устройство, предназначенное для моделирования воздействия среды на движущиеся в ней тела. Применение труб в аэродинамике базируется на принципе обратимости движений и теории подобия физических явлений. Объектами испытаний в аэродинамических трубах являются модели натурных летательных аппаратов или их элементов (геометрически подобные, упруго подобные, термически подобные и т. д.), натурные объекты или их элементы, образцы материалов (унос материалов, каталитичность… Регулирующая арматура — это вид трубопроводной арматуры, предназначенный для регулирования параметров рабочей среды. В понятие регулирования параметров входит регулирование расхода среды, поддержания давления среды в заданных пределах, смешивание различных сред в необходимых пропорциях, поддержание заданного уровня жидкости в сосудах и некоторые другие. Выполнение всех своих функций регулирующая арматура осуществляет за счёт изменения расхода среды через своё проходное сечение. Маховик (маховое колесо) — массивное вращающееся колесо, использующееся в качестве накопителя (инерционный аккумулятор) кинетической энергии или для создания инерционного момента как это используется на космических аппаратах. Гидротаранный насос или гидравлический таран (фр. bélier hydraulique, англ. hydraulic ram) — механическое устройство для подъёма воды на значительную (до нескольких десятков метров) высоту. Энергию для работы насос получает из потока воды, перетекающего под действием силы тяжести из т. н. «питающего» резервуара (например, из запруды на реке) по «питающей» трубе в какой-либо нижерасположенный сток (например, в ту же реку ниже по течению), благодаря чему устройство можно применять в местности, где… Диафра́гма (от греч. διάφραγμα — перегородка) — сужающее устройство потока газа или жидкости в трубопроводе. Является трубопроводной арматурой в качестве первичного измерительного преобразователя для измерения объёмного расхода. Представляет собой пластинчатую перегородку с отверстием внутри трубы с жидкостью или газом. Следящий гидропривод — это регулируемый гидропривод, в котором закон движения выходного звена (вала гидромотора или штока (в некоторых случаях корпуса) гидроцилиндра) изменяется в зависимости от управляющего воздействия. Вихрева́я доро́жка (также доро́жка Ка́рмана в честь Теодора Кармана) — цепочки вихрей, которые наблюдаются при обтекании жидкостью или газом протяжённых цилиндрических тел (или других линейно вытянутых плохо обтекаемых профилей) с продольной осью, перпендикулярной направлению движения сплошной среды. Шаговый искатель — электромеханический коммутационный аппарат, применяемый в системах коммутации, автоматизации и управления технологическими процессами. Векторное управление является методом управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора. Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение. Материал изготовления регулирующих клапанов зависит напрямую от типа рабочей среды, с которой клапан будет иметь контакт.

Клапан Теслы Википедия

Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit)[1] — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году[2].

Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Продольный разрез клапана Теслы[2]

Конструкция[ | ]

На рисунке схематически изображён клапан Теслы, на котором обозначены корпус 1, группа полостей 2, имеющих определённую форму, и расположенных друг напротив друга с определённым смещением, с помощью которых поток разворачивается на угол, близкий к 180°, группа втулок 3, предназначенных для разделения потока, а также входной и выходной штуцеры 4 и 5 соответственно.

Принцип действия[ | ]

Основная идея этого устройства состоит в разделении потока и перенаправлении одной его части навстречу другой. Значительный эффект клапан Теслы может обеспечить лишь в импульсном режиме работы. На рисунке пунктирными стрелками 7 показано, как проходит поток с разных сторон клапана. Очевидно, что когда поток проходит от штуцера 5 до штуцера 4, сопротивление его движению является минимальным. Поток отклоняется не более чем на 10…12°. Но если поток движется в обратном направлении, от штуцера 4 до штуцера 5, то сопротивление возрастает на несколько порядков за счёт внезапных изменений направления и скорости движения потока. Чем резче возрастает противодавление, тем значительнее клапанный эффект.

См. также[ | ]

Примечания[ | ]

Источники[ | ]

  • Nikola Tesla Patent #1,329,559 Valvular conduit. Priority date Feb 21, 1916; publication date Feb 3, 1920. (англ.)

Ссылки[ | ]

Клапан Теслы — Википедия

Материал из Википедии — свободной энциклопедии

Кла́пан Те́слы (англ. Tesla valve) или кла́панный кана́л Те́слы (англ. Tesla’s valvular conduit)[1] — разновидность обратного клапана, предназначенного для пропускания потока в одном направлении, конструкция которого выполнена без подвижных деталей. Принцип действия клапана состоит в том, что поток, проходящий через него в одном направлении, разделяется на потоки, которые направляются таким образом, что обеспечивается взаимное гашение их кинетической энергии, в результате чего обеспечивается значительное возрастание активного сопротивления клапана в этом направлении. Назван в честь Николы Теслы, который изобрёл этот клапан в 1916 году[2].

Кроме конструкции клапана Теслы эта идея нашла применение в другом устройстве — смесителе, построенном на эффекте Коанда.

Продольный разрез клапана Теслы[2]

Конструкция

На рисунке схематически изображён клапан Теслы, на котором обозначены корпус 1, группа полостей 2, имеющих определённую форму, и расположенных друг напротив друга с определённым смещением, с помощью которых поток разворачивается на угол, близкий к 180°, группа втулок 3, предназначенных для разделения потока, а также входной и выходной штуцеры 4 и 5 соответственно.

Принцип действия

Основная идея этого устройства состоит в разделении потока и перенаправлении одной его части навстречу другой. Значительный эффект клапан Теслы может обеспечить лишь в импульсном режиме работы. На рисунке пунктирными стрелками 7 показано, как проходит поток с разных сторон клапана. Очевидно, что когда поток проходит от штуцера 5 до штуцера 4, сопротивление его движению является минимальным. Поток отклоняется не более чем на 10…12°. Но если поток движется в обратном направлении, от штуцера 4 до штуцера 5, то сопротивление возрастает на несколько порядков за счёт внезапных изменений направления и скорости движения потока. Чем резче возрастает противодавление, тем значительнее клапанный эффект.

См. также

Примечания

Источники

  • Nikola Tesla Patent #1,329,559 Valvular conduit. Priority date Feb 21, 1916; publication date Feb 3, 1920. (англ.)

Ссылки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *