Катушки индуктивности обозначение – ГОСТ 2.723-68 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители (с Изменениями N 1, 2, 3), ГОСТ от 13 августа 1968 года №2.723-68

Маркировка катушек индуктивности и дросселей |

Катушка индуктивности, как следует из названия представляет из себя именно катушку, то есть имеется некоторое количество витков проводника (обычно медного) намотанных на каркасе. Причем наличие изоляции между витками и каркасом является важнейшим условием. Кроме того витки катушки индуктивности не должны замыкаться между собой. Чаще всего витки наматываются на тороидальный или цилиндрический каркас.

Маркировка катушек индуктивностей

Обычно они копируются номинальным значение индуктивности и допуском, т.е. некоторым небольшим отклонение от указанного номинала в процентах. Номинальное значение обозначается цифрами, а допуск буквами. На типовые примеры маркировки индуктивностей буквенно-цифровым кодом вы можете посмотреть на изображении ниже.

Наибольшее распространение получили два два вида кодирования:

Первые две цифры обозначают значение в микрогенри (мкГн), последняя — число нулей

. Идущая следом за ними за буква говорит о допуске от номинала. Например, маркировка индуктивности 272J говорит о номинале в 2700 мкГн, с допуском ± 5%. Если последняя буква не указывается, то по умолчанию допуск считается ±20%. Для катушек индуктивностей меньше 10 мкГн функцию десятичной запятой выполняет латинская буква R, а для индуктивностей меньше 1 мкГн — символ N. Примеры смотри на рисунке ниже.

Второй способ кодировки — непосредственная маркировка. В этом случае маркировка 680К будет говорить о не 68 мкГн ±10%, как в методе чуть выше, а 680 мкГн ±10%.

Отличный сборник утилит используемых в радиолюбительских расчетах катушек индуктивности и различных видов колебательных контуров. Используя эти программы вы сможете без лишних заморочек рассчитать катушку даже для металлодетектора.

В соответствии с международным стандартом IEC 82 на дросселях кодируется номинальное значение индуктивности и допуск цветными метками. Обычно используется кодировка четырех или трех цветными точками или кольцами. Первые две метки маркируют значение номинальной индуктивности в микрогенри (мкГн), третья эта множитель, четвертая обозначает допуск. В случае трех точечной кодировки подразумевается допуск 20%. Цветное кольцо, маркирующее первую цифру номинала, может быть немного шире, чем остальные.

Номинал и его допустимые отклонения кодируются с помощью цветных полосок. 1 и 2 полосы означают две цифры номинала в микрогенри, между которыми стоит десятичная запятая, третья полоска — десятичный множитель, четвертая — точность. Например, на дроссель нанесены коричневая, чёрная, черная и серебристая полоски, его номинал 10×1 = 10 мкГн с погрешностью 10%.

Назначение цветовых полос смотри в таблице ниже:

Цвет1 -я и 2-я цифры номиналаМножительТочность
Черный1±20%
Коричневый110
Красный2100
Оранжевый3
1000
Желтый4
Зеленый5
Голубой6
Фиолетовый7
Серый8
Белый
9
Золотойо,1±5%
Серебряный0,01±10%

Дроссели в smd исполнении попадаются во множестве видов корпусов, но корпуса подчиняются общепринятому стандарту типоразмеров. Это существенно упрощает автоматический монтаж электронных компонентов. Да и радиолюбителям, несколько легче ориентироваться.

Подбирать нужный дроссель проще всего по каталогам и типоразмеру. Типоразмеры, как и в случае маркировки smd резисторов обозначаются с помощью кода из четырех цифр (например 0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такой SMD-индуктивности равен 0.08х0.05 дюйма.

SMD — Абривиатура из английского языка, от Surface Mounted Device — Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

Отличная радиолюбительская подборка неизвестного автора по различным типам почти всех радио компонентов

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами.
Применяется два вида кодирования.

А . Первые две цифры указывают значение в микрогенри (мкГн, uН), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается — допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

Допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%

В . Индуктивности маркируются непосредственно в микрогенри (мкГн, uН). В таких случаях маркировка 680К будет означать не 68 мкГн ± 10 %, как в случае А, а 680 мкГн ± 10%.

Цветовая и кодовая маркировка индуктивностей

В соответствии с Публикацией IEC 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.

Серебряный0,0110%
Золотой0,15%
Черный120%
Коричневый1110Допуск
Красный22100
Оранжевый31000
Желтый44Множитель
Зеленый55
Голубой
Фиолетовый77
Серый88
Белый99

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.

А. Кодированная маркировка

Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

Допуск:

D=±0,3 нГн; J=±5%; К=±10%; M=±20%

Примеры обозначений:

КодОбозначение
22N22 нГн ±20%
R10M0,10 мкГн±20%
R15M0,15 мкГн±20%
R22M0,22 мкГн ±20%
R33M0,33мкГн+20%
R47M0,47мкГн±20%
R68M0,68 мкГн +20%
1R0M1,2мкГн ±20%
КодОбозначение
2R2K2,2 мкГн±10%
3R3K3,3 мкГн ±10%
4R7K4,7 мкГн±10%
6R8K6,8 мкГн±10%
100К10 мкГн±10%
150К15 мкГн±10%
220К22 мкГн±10%
33ОК33 мкГн±10%
КодОбозначение
680К68 мкГн ± 10%
101К100мкГн±10%
151К150 мкГн ± 10%
221K220 мкГн ±10%
331К33ОмкГн ±10%
471J470 мкГн ±5%
681J680 мкГн ±5%
1021000 мкГн±20%

В. Непосредственная маркировка

Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.

Кодовая и цветовая маркировка популярных индуктивностей

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Примеры обозначения индуктивностей буквенно-цифровым кодом представлен на рис. 6.

Применяются два вида кодирования.

1.   Первые две цифры указывают значение в микрогенри (мкГн, иН), последняя — количество нулей. Следующая за цифрами буква указывает на допуск.

Например, код 101J обозначает 100мкГн± 5%. Если последняя буква не указывается — допуск 20%.

Исключения: для индуктивностей меньше ЮмкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N. Например:

Допуск: D = ±0,3 нГн; J = ±5%; К = ±10%; М = ±20%.

  Примеры обозначений:

2.  Индуктивности маркируются непосредственно в микрогенри (мкГн, иН). В таких случаях маркировка 680 К будет означать не 68 мкГн ±10%, как в случае 1, а 680 мкГн ± 10%.

2N2D-2,2 нГн ±0,3 нГн

22N —22 нГн R10M —0,10 мкГн±20% R15M — 0,15 мкГн±20% R22M — 0,22 мкГн±20% R33M – 0,33 мкГн±20% R47M — 0,47 мкГн ± 20% R68M — 0,68 мкГн + 20% 1R0K-U мкГн±20%

ШОК-1,2 мкГн ± 10% 2R2K — 2,2 мкГн ± 10% 3R3K —3,3 мкГн ± 10% 4R7K —4,7 мкГн ± 10% 6R8K—6,8 мкГн± 10% 100К — ЮмкГн ±10% 150К- 15 мкГн ± 10% 220К- 22 мкГн± 10% 330К- 33 мкГн ± 10% 470К- 47 мкГн± 10% 680К- 68 мкГн± 10% 101К-100 мкГн ± 10% 151К — 150 мкГн ± 10% 221К —220 мкГн± 10% 331К-330 мкГн ± 10% 471J —470 мкГн ± 5% 681J —680 мкГн± 5% 102-1000 мкГн





Рис. 7. Внешний вид индуктивностей

 

Рис. 8. Внешний вид индуктивностей, рассмотренных в п. 2

На рис. 8 представлен внешний вид индуктивностей, рассмотренных по 2 признаку.

Цветовая маркировка индуктивностей

В соответствии со стандартами IEC 82 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн, иН), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%.

Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные. Рис. 9 иллюстрирует кодовую маркировку индуктивностей.

Цветовая маркировка контурных катушек радиоприемников зарубежного производства. Радиолюбителям все чаще приходится сталкиваться с необходимостью ремонта импортных радиоприемников. Одной из причин частого выхода их из строя является неисправность контурных катушек. Как показывает статистика, она занимает второе место после поломки всевозможных переключателей. Хотя маркировка современных импортных контурных катушек, похоже, унифицирована, в популярной литературе найти сведения о ней весьма затруднительно.

Думается, что предлагаемый мною материал, полученный на основе ремонта недорогих радиоприемников и магнитол фирм Aiwa, Panasonic, Sharp, а также некоторых немаркированных моделей китайского производства, будет полезен радиолюбителям.

Чаще всего в радиоприемниках применяются контурные катушки размерами 10x10x14 мм и 8x8x11 мм (рис. 10). Все обмотки обычно намотаны внавал эмалированным проводом диаметром 0,05—0,12 мм на фер- ритовом магнитопроводе, приклеенном к пластмассовому основанию. Контурные катушки намотаны поверх катушек связи и залиты парафином. Подстроечником служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Весь контур

Рис. 9. Цветовая маркировка индуктивностей

Рис. 10. Внешний вид популярных контурных катушек радиоприемников

заключен в латунный экран. В контурах, применяемых в трактах ПЧ, имеются встроенные конденсаторы.

Цветовая маркировка популярных катушек индуктивности, Цветовая маркировка катушек представляет собой пятна или полосы краски, нанесенные соответственно на дно магнитопровода или на экран.

Схемы контурных катушек приведены на рис. 11.

В табл. 14 указаны намоточные данные, назначение, емкость встроенного конденсатора и цветовая маркировка катушек размерами 10 х 10 х 14 мм.

Контурные катушки размерами 8x8x11 мм имеют то же назначение и емкость встроенного конденсатора,

Рис. И. Схемы контурных катушек

Таблица 14

Цвет маркировки

Назначение контурных катушек

Схема включения обмоток по рис. 11

Номера выводов обмоток

Число витков

Емкость встроенного конденсатора, пФ

Желтый

Фильтр ПЧ-АМ 455…460 кГц

а

1-2-3 4-6

100 + 50 9

190

Белый

Детектор ПЧ-АМ 455…460 кГц

б

1-2-3

50+50

410

Оранжевый

Фильтр ПЧ-ЧМ 10,7МГц*

в

1-3 4-6

12 2

75

Сиреневый

Фильтр ПЧ-ЧМ 10,7 МГц

в

1-3 4-6

11 2

90

Розовый

Дискриминатор ПЧ-ЧМ 10,7 МГц**

г

1-3

7

190

Зеленый или синий

Дискриминатор ПЧ-ЧМ 10,7 МГц**

г

1-3

и

90

Красный

Контур гетеродина AM СВ-ДВ

д, е, ж

1-                   3 4-6,

2-                   3

80…100*** 8…12

Примечания. * Может использоваться вместо синего и зеленого. ** Применяются с различными микросхемами. *** Число витков зависит от емкости КПЕ. Соотношение числа витков обмоток контурной катушки и катушки связи выбрано в пределах 10:1-8:1.

но их обмотки могут быть намотаны более тонким проводом, и содержать большее число витков. Эти катушки менее ремонтопригодны, чем катушки размерами 10x10x14 мм.

Постоянные индуктивности серии ЕС24

Катушки индуктивности размерами 10x10x14 мм

Малогабаритные постоянные индуктивности серии ЕС24 представляют собой миниатюрную катушку с фер- ритовым сердечникам, размещенную в изолирующем корпусе с двумя выводами (рис. 12). Диапазон номинальных значений индуктивности — ОД… 1000 мкГн; точность — 5, 10, 20%; температурный диапазон — от -20 до +100 °С. Основные геометрические размеры индуктивностей приведены на рис. 7, 8. Номинал индуктивности и его допустимые отклонения обозначаются цветными полосками (рис. 9). Полоски / и 2 определяют две цифры номинала (в микрогенри), между которыми стоит десятичная запятая, полоска 3 — десятичный множитель, полоска 4 — точность.

Назначение цветов полосок приведено в табл. 15. Так, например, индуктивность, на которую нанесены красная, желтая, коричневая и черная полоски, имеет номинал 2,4×10 = 24 мкГн и точность 20%.

Полный список всех типономиналов индуктивностей серии ЕС24 и их параметры приведены в табл. 16.

Таблица 15 Назначение цветовых полос индуктивностей

Цвет

1 -я и 2-я цифры номинала

Множитель

Точность

Черный

0

1

±20%

Коричневый

1

10

Красный

2

100

Оранжевый

3

1000

Желтый

4

Зеленый

5

Голубой

6

Фиолетовый

7

Окончание табл. 15

Цвет

1-я и 2-я цифры номинала

Множитель

Точность

Серый

8

Белый

9

Золотой

од

±5%

Серебряный

0,01

±10%

 

Таблица 16 Цветовая маркировка индуктивностей типа ЕС24

Наименование

Индуктивность, мкГн

Точность,

%

Добротность, (mill)

Тестовая частота, МГц

Активное сопротивление (max), Ом

Постоянный ток (max), мА

EC24-R10M

0,10

±20

30

25,2

0,08

700

EC24-R12M

0,12

±20

30

25,2

0,085

700

EC24-R15M

0,15

±20

30

25,2

0,095

700

EC24-R18M

0,18

±20

30

25,2

0,12

700

EC24-R22M

0,22

±20

40

25,2

0,15

700

EG24-R27M

0,27

±20

40

25,2

0,15

700

EC24-R33M

0,33

±20

40

25,2

0,15

700

EC24-R39M

0,39

±20

40

25,2

0,17

700

EC24-R47M

0,47

±20

40

25,2

0,17

700

EC24-R56M

0,56

±20

40

25,2

0,17

700

EC24-R68M

0,68

±20

40

25,2

0,18

700

EC24-R82M

0,82

±20

40

25,2

0,18

700

EC24-1ROK

1,00

±10

40

25,2

0,18

700

EC24-1R2K

J ,20

±10

40

7,96

0,18

700

EC24-1R5K

1,50

±10

40

7,96

0,20

700

EC24-1R8K

1,80

±10

40

7,96

0,23

655

EC24-2R2K

2,20

±10

40

7,96

0,25

630

EC24-2R7K

2,70

±10

40

7,96

0,28

595

EC24-3R3K

3,30

±10

40

7,96

0,30

575

EC24-3R9K

3,90

±10

40

7,96

0,32

555

Окончание табл. 16

Наименование

Индуктивность, мкГн

Точность,

%

Добротность, (min)

Тестовая частота, МГц

Активное сопротивление (max), Ом

Постоянный ток (max), мА

EC24-4R7K

4,70

±10

40

7,96

0,35

530

EC24-5R6K

5,60

±10

40

7,96

0,40

500

EC24-6R8K

6,80

±10

40

7,96

0,45

470

EC24-8R2K

8,20

±10

40

7,96

0,56

425

EC24-J00K

10

±10

40

7,96

0,72

370

ЕС24-120К

12

±10

40

2,52

0,80

350

ЕС24-150К

15

±10

40

2,52

0,88

335

ЕС24-180К

18

±10

40

2,52

1,00

315

ЕС24-220К

22

±10

40

2,52

1,20

285

ЕС24-270К

27

±10

40

2,52

1,35

270

ЕС24-330К

33

±10

40

2,52

1,50

255

ЕС24-390К

39

±10

40

2,52

1,70

240

ЕС24-470К

47

±10

50

2,52

2,30

205

ЕС24-560К

56

±10

50

2,52

2,60

195

ЕС24-680К

68

±10

50

2,52

2,90

185

ЕС24-820К

82

±10

50

2,52

3,20

175

ЕС24-101К

100

±10

50

2,52

3,50

165

ЕС24-121К

120

±10

60

0,796

3,80

160

ЕС24-151К

150

±10

60

0,796

4,40

150

ЕС24-181К

180

±10

60

0,796

5,00

140

EC24-221K

220

±10

60

0,796

5,70

130

ЕС24-271К

270

±10

60

0,796

7,50

120

ЕС24-331К

330

±10

60

0,796

9,50

100

ЕС24-391К

390

±10

60

0,796

10,50

95

ЕС24-471К

470

±10

60

0,796

11,60

90

ЕС24-561К

560

±10

60

0,796

13,00

85

ЕС24-681К

680

±10

60

0,796

18,00

75

ЕС24-821К

820

±10

60

0,796

23,70

65

EC24-102K

1000

±10

50

0,796

30,00

60

 

Маркировка радиоэлементов 1. Основные свойства индуктивности. 2. Маркировка

Маркировка радиоэлементов 1. Основные свойства индуктивности. 2. Маркировка индуктивностей. 3. Виды полупроводниковых диодов. 4. Маркировка радиоэлементов 1. Основные свойства индуктивности. 2. Маркировка индуктивностей. 3. Виды полупроводниковых диодов. 4. Маркировка полупроводниковых диодов.

Основные свойства индуктивности n n Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит Основные свойства индуктивности n n Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит. Наиболее близким к идеализированному элементу индуктивности является реальный элемент электрической цепи индуктивная катушка.

Основные свойства индуктивности n Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную Основные свойства индуктивности n Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля. Эдс самоиндукции Обозначение на схемах Зависимость потокосцепления от тока

Электрические х-ки индуктивности n Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода Электрические х-ки индуктивности n Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Выбор индуктивности n n n n n факторы, которые следует учитывать при выборе катушки Выбор индуктивности n n n n n факторы, которые следует учитывать при выборе катушки индуктивности: а) требуемое значение индуктивности (Гн, мк. Гн, н. Гн), б) максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности, в) точность выполнения индуктивности, г) температурный коэффициент индуктивности, д) стабильность, определяемая зависимостью индуктивности от внешних факторов, е) активное сопротивление провода обмотки, ж) добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений, з) частотный диапазон катушки.

n Применение катушек индуктивности Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения n Применение катушек индуктивности Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п. . Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения. Две и более индуктивно связанные катушки образуют трансформатор. Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив. Катушки используются также в качестве электромагнитов. Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы. Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна). Рамочная антенна. Индукционная петля Для разогрева электропроводящих материалов в индукционных печах. .

Виды катушек индуктивности Виды катушек индуктивности

Классификация катушек индуктивности По конструкции они подразделяются на: n однослойные и многослойные, n на Классификация катушек индуктивности По конструкции они подразделяются на: n однослойные и многослойные, n на каркасах и бескаркасные, n с сердечниками и без сердечников, на экранированные и неэкранированные, n высокочастотные (обладающие индуктивным характером полного сопротивления в диапазоне частот от 100 к. Гц до 400 МГц) и низкочастотные и т. д. n

Классификация катушек индуктивности n n о назначению катушки индуктивности подразделяются на: контурные, катушки связи, Классификация катушек индуктивности n n о назначению катушки индуктивности подразделяются на: контурные, катушки связи, дроссели высокой и низкой частоты и т. п.

Параметры катушек индуктивности n Индуктивность катушки L основной параметр, определяющий реактивное сопротивление, которым обладает Параметры катушек индуктивности n Индуктивность катушки L основной параметр, определяющий реактивное сопротивление, которым обладает катушка в электрической цепи. При расчете индуктивности катушек различной конструкции пользуются полуэмпирическими формулами и вспомогательными графиками, приводимыми в справочной литературе. В отличие от конденсаторов и резисторов, номинальные значения индуктивности катушек (исключение составляют унифицированные ВЧ и НЧ дроссели) ГОСТами не нормируются, а определяются исходя из стандартов предприятий или технических условий на конкретную аппаратуру. В РЭА применяются катушки с индуктивностью от долей микрогенри (контурные высокочастотные) до десятков генри (дроссели фильтров выпрямителей). Контурные катушки по величине индуктивности изготовляются с точностью 0, 2. . . 0, 5%, а для других катушек индуктивности допустима точность 10. . . 15%.

Параметры катушек индуктивности n n Собственная емкость катушки CL обусловлена существованием электрического поля между Параметры катушек индуктивности n n Собственная емкость катушки CL обусловлена существованием электрического поля между ее отдельными витками, а также между отдельными витками и корпусом (и экраном, если он имеется) прибора. Обычно считают что соб ственная емкость катушки состоит из внутренней межвитковой емкости C ВН= S C ВН i и монтажной емкости CМ= S C М i, т. е. CL = C ВН + CМ. С увеличением диаметра намотки и уменьшением ее шага емкость C ВН возрастает. Существенное увеличение емкости C ВН происходит при использовании каркасов катушек из материалов с повышенным значением e.

Параметры катушек индуктивности n n опротивление потерь. Добротность катушки индуктивности. На низких частотах активное Параметры катушек индуктивности n n опротивление потерь. Добротность катушки индуктивности. На низких частотах активное сопротивление катушки индуктивности можно считать равным сопротивлению провода ее обмотки на постоянном токе. С переходом на более высокие частоты начинает проявляться поверхностный эффект и активное сопротивление катушки возрастает. Кроме то го, при сворачивании провода в спираль, т. е. при его намотке на катушку, магнитное поле проводника искажается вследствие появления магнитной связи между отдельными витками, и оно оказывается несимметричным относительно сечения провода. Это, в свою очередь, приводит к неравномерному распределению тока по периметру сечения проводника: внутри витка плотность тока будет выше. Смещение тока высокой частоты к оси обмотки катушки носит название эффекта близости. Его влияние также увеличивает активное сопротивление катушки. Таким образом, можно считать, что активное сопротивление провода обмотки на переменном токе R~= RПЭ+RБ, где RПЭ — составляющая сопротивления, зависящая от поверхностного эффекта, RБ. — составляющая, показывающая дополнительное возрастание сопротивления провода обмотки вследствие эффекта близости.

Параметры катушек индуктивности n n Температурный коэффициент индуктивности. Изменение температуры окружающей среды приводит к Параметры катушек индуктивности n n Температурный коэффициент индуктивности. Изменение температуры окружающей среды приводит к тому, что меняются длина и диаметр провода обмотки, размеры каркаса катушки, диэлектрическая проницаемость материала каркаса и изоляции и т. д. Это приводит к изменению индуктивности катушки и ее добротности. Мерой зависимости индуктивности катушки от температуры является температурный коэффициент индуктивности (ТКИ), определяемый аналогично другим температурным коэффициентам. Для катушек с многослойной обмоткой ТКИ = (50. . . 500)10 — 6 К, для катушек с однослойной обмоткой ТКИ существенно ниже. Для повышения температурной стабильности катушек приме няют пропитку их каркасов и изоляции, используют керамические каркасы с обмоткой, выполненной методом вжигания серебра, и герметизацию катушек. можно считать, что добротность катушек снижается в среднем на 1 % на каждые 3°с приращения температуры по отношению к их добротности при 20°с. воздействие влаги может привести к существенному изменению (до 30 %) собственной емкости и добротности катушек. Обычно это изменение носит обратимый характер, и после сушки величины принимают практически прежние значения.

Параметры катушек индуктивности n n n Для сравнения между собой отдельных катушек удобнее использовать Параметры катушек индуктивности n n n Для сравнения между собой отдельных катушек удобнее использовать параметр, определяющий активные потери как относительную величину, определяемую сравнением энергии W R , которая затрачивается в сопротивлении R~ за период гармонического колебания, с максимальной энергией W L, запасаемой в магнитном поле катушки. Отношение W L, / W R = w L / 2 p. R~ и характеризует качество катушки. Однако для упрощения расчетов параметром катушки принято считать величину в 2 p раз большую W L, / W R: Q = w L / R~ Эта величина называется добротностью катушки индуктивности.

Маркировка индуктивностей n n Кодированная маркировка Первые две цифры указывают значение в микрогенри (мк. Маркировка индуктивностей n n Кодированная маркировка Первые две цифры указывают значение в микрогенри (мк. Гн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101 J обозначает 100 мк. Гн ± 5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мк. Гн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мк. Гн — буква N. Допуск: D=± 0, 3 н. Гн; J=± 5%; К=± 10%; M=± 20%

Маркировка индуктивностей n Непосредственная маркировка Индуктивности маркируются непосредственно в микрогенри (мк. Гн). В таких Маркировка индуктивностей n Непосредственная маркировка Индуктивности маркируются непосредственно в микрогенри (мк. Гн). В таких случаях маркировка 680 К будет означать не 68 мк. Гн ± 10%, как в случае А, а 680 мк. Гн ± 10%.

Примеры маркировки индуктивностей Примеры маркировки индуктивностей

Цветовая маркировка индуктивностей n Наиболее часто применяется кодировка 4 или 3 цветными кольцами или Цветовая маркировка индуктивностей n Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мк. Гн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.

Пример цветовой маркировки индуктивностей Пример цветовой маркировки индуктивностей

Маркировка SMD индуктивностей n n n n Маркировка SMD индуктивностей. Для маркировки SMD индуктивностей Маркировка SMD индуктивностей n n n n Маркировка SMD индуктивностей. Для маркировки SMD индуктивностей обычно используется второй вариант (тремя цифрами и буквой), но есть два исключения: 1) индуктивности менее 10 мк. Гн маркируются непосредственно в микрогенри, при этом роль десятичной запятой выполняет буква R; 2) индуктивности менее 0, 1 мк. Гн маркируются непосредственно в наногенри, при этом роль десятичной запятой выполняет буква N. Примеры: 6 R 8 K = 6, 8 мк. Гн ± 10%, R 15 = 0, 15 мк. Гн ± 20%, 22 N = 22 н. Гн ± 20%, 2 N 2 D = 2, 2 н. Гн ± 0, 3 н. Гн

Маркировка SMD индуктивностей n n n Маркировка тремя цифрами и буквой. В этом случае Маркировка SMD индуктивностей n n n Маркировка тремя цифрами и буквой. В этом случае первые две цифры обозначают мантиссу, а третья показатель степени по основанию 10, для определения индуктивности в микрогенри. Буква также кодирует допуск. Например: 680 К = 68 мк. Гн ± 10%, 471 = 470 мк. Гн ± 20%

5. Катушки индуктивности. Разновидность обозначения на схемах.

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — её индуктивность, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике

Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.

Катушки связи, или трансформаторы связи

Взаимодействующие магнитными полями пара и более катушек обычно включаются параллельно конденсаторам для организации колебательных контуров. Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами, что позволяет разделить по постоянному току, например, цепь базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).

Вариометры

Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется степень взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.

Дроссели

Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Дроссели включаются последовательно с нагрузкой для ограничения переменного тока в цепи, они часто применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента, а также в качестве балласта для включения разрядных ламп в сеть переменного напряжения. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца), нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.

Сдвоенные дроссели

Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный сердечник (из трансформаторной стали). Для фильтрации высокочастотных помех — сердечник ферритовый.

Цветовая маркировка контурных катушек импортных радиоприемников

В настоящее время радиолюбителям все чаще приходится сталкиваться с необходимостью ремонта импортных радиоприемников. Одной из причин частого выхода их из строя является неисправность контурных катушек. Как показывает статистика, она занимает второе место после поломки всевозможных переключателей. Хотя маркировка современных импортных контурных катушек, похоже, унифицирована, в популярной литературе найти сведения о ней весьма затруднительно. Думается, что предлагаемый мною материал, полученный на основе ремонта недорогих радиоприемников и магнитол фирм Aiwa, Panasonic, Sharp, а также некоторых немаркированных моделей китайского производства, будет полезен радиолюбителям.

Чаще всего в радиоприемниках применяются контурные катушки размерами 10х10х14 мм и 8х8х11 мм (рис. 1). Все обмотки обычно намотаны внавал эмалированным проводом диаметром 0,05…0,12 мм на ферритовом магнитопроводе, приклеенном к пластмассовому основанию. Контурные катушки намотаны поверх катушек связи и залиты парафином. Подстроечником служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Весь контур заключен в латунный экран. В контурах, применяемых в трактах ПЧ, имеются встроенные конденсаторы.


рис. 1

Цветовая маркировка катушек представляет собой пятна или полосы краски, нанесенные соответственно на дно магнитопровода или на экран. Схемы контурных катушек приведены на рис. 2.


рис. 2

В таблице указаны намоточные данные, назначение, емкость встроенного конденсатора и цветовая маркировка катушек размерами 10х10х14 мм. Контурные катушки размерами 8х8х11 мм имеют то же назначение и емкость встроенного конденсатора, но их обмотки могут быть намотаны более тонким проводом и содержать большее число витков. Эти катушки менее ремонтнопригодны, чем катушки размерами 10х10х14 мм.

Цвет
маркировки
Назначение
контурных
катушек
Схема
включения
обмоток
по рис.2
Номера
выводов
обмоток
Число
витков
Емкость
встроенного
конденсатора,
пф
Желтый Фильтр ПЧ-АМ
455…460 кГц
а 1-2-3
4-6
100+50 9 190
Белый Детектор ПЧ-АМ
455…460 кГц
б 1-2-3 50+50 410
Оранжевый Фильтр ПЧ-ЧМ
10,7МГц1)
в 1-3
4-6
12
2
75
Сиреневый Фильтр ПЧ-ЧМ
10,7 МГц
в 1-3
4-6
11
2
90
Розовый Дискриминатор ПЧ-ЧМ
10,7 МГц2)
г 1-3 7 190
Зеленый
или синий
Дискриминатор ПЧ-ЧМ
10,7 МГц2)
г 1-3 11 90
Красный Контур гетеродина
АМ СВ-ДВ
д,е,ж 1-3
4 — 6, 2 — 3
80…1003)
8…12
 
Без
маркировки
Входной СВ контур
в автомагнитолах

Входные и
гетеродинные
KB контуры

д,е,ж Соотношения витков
контурных катушек и
катушек связи различны
у разных моделей
 

1) Может использоваться вместо синего и зеленого. В этом случае катушка связи 4-6 не подключена к плате.

2) Применяются с различными микросхемами.

3) Число витков зависит от емкости КПЕ. Соотношение числа витков обмоток контурной катушки и катушки связи выбрано в пределах 10:1-8:1.

 

Условно-графические обозначения катушек индуктивности, дросселей и трансформаторов

 

Катушку индуктивности и дроссель изображают на схемах в виде нескольких (обычно 4-х) соединенных полуокружностей, символизирующих витки катушки. Отводы катушек изображают отрезками прямых, отходящих от точек со­единения полуокружностей или от выпуклой части самой полуокружности.

Если катушка имеет сер­дечник, то на схеме рядом с изображением витков катушки ставится сплошная линия. Ферритовый или немагнитный сердечники обозначаются сплошной лини­ей, а магнитодиэлектрический — штриховой. Возле изображения немагнитного сердечника ставится обозначение материала, например, медный сердечник – Cu. Катушки, индуктивность которых может изменяться, изображаются с использо­ванием символа регулирования. Если сердечник катушки состоит из двух или не­скольких частей, то на схеме показывают расстояние между ними, зазор.

Катушка, состоящая из двух последовательно соединенных катушек, индуктивность кото­рой плавно изменяется перемещением ее составляющих (вариометр) изобража­ется двумя способами в виде параллельных или перпендикулярных катушек, которые пересекает прямая со стрелкой на конце. Порядок подключения выводов катушек указывают жирной точкой.

 

Таблица 5.11 – Обозначение некоторых видов катушек индуктивности

 

Обмотки трансформаторов обозначают на схемах римскими цифрами. Иногда на схемах ставят нумерацию выводов. Количество полуокружностей при изображении обмоток трансформатора мо­жет быть любое, но не меньше двух. Экран между первичной и вторичной об­моткой трансформатора изображается рядом с изображением сердечника штри­ховой линией, которая оканчивается перпендикулярной чертой — символ за­земляющего провода (таблица 5.11).

 

Таблица 5.11 – Обозначения некоторых видов трансформаторов

 

Размеры условно-графического обозначения катушки индуктивности приведены на рисунке 5.11.

 

Рисунок 5.11 – Размеры условно-графического обозначения катушки индуктивности

 




принцип работы, схема, ток и напряжение в нем

В данной статье мы подробно рассмотрим индуктор. Отдельно разберем индуктор на схеме, обратную ЭДС генерируемую индуктором, постоянную времени индуктора, ток и напряжение в индукторе, а так же мощность и энергию в индукторе.

Определение и принцип работы

В наших уроках об электромагнетизме мы увидели, что когда электрический ток протекает через проводник, вокруг проводника возникает магнитный поток. Это создает взаимосвязь между направлением магнитного потока, который циркулирует вокруг проводника, и направлением тока, протекающего через тот же проводник, что приводит к хорошо известной взаимосвязи между током и направлением магнитного потока, называемой «Правило правой руки Флеминга».

Но есть и другое важное свойство, относящееся к намотанной катушке, которая также существует, а именно то, что вторичное напряжение индуцируется в ту же катушку движением магнитного потока, поскольку оно противостоит любым изменениям электрического тока, протекающего по нему.

типичный индукторТипичный индуктор

В своей основной форме Индуктор — это не что иное, как катушка проволоки, намотанная вокруг центрального сердечника. Для большинства катушек ток I, протекающий через катушку, создает магнитный поток вокруг нее, который пропорционален этому потоку электрического тока.

Индуктор, называемый также дросселем, является еще одним типом пассивного электрического компонента, который является простой катушкой провода предназначенного, чтобы воспользоваться этой взаимосвязью путем индукции магнитного поля, сам по себе, или в активной зоне в результате тока, проходящем через катушки. Это приводит к гораздо более сильному магнитному полю, чем то, которое создавалось бы простой катушкой из проволоки.

Индукторы образованы проволокой, плотно обернутой вокруг сплошного центрального сердечника, который может представлять собой либо прямой цилиндрический стержень, либо непрерывную петлю или кольцо для концентрации их магнитного потока.

Схематическое обозначение индуктора — это катушка с проводом, поэтому катушку с проводом можно также назвать индуктором. Индукторы обычно классифицируются в соответствии с типом внутреннего сердечника, вокруг которого они намотаны, например, полый сердечник, твердый железный сердечник или мягкий ферритовый сердечник, причем различные типы сердечников различаются путем добавления непрерывных или пунктирных параллельных линий рядом с проволочная катушкой, как показано ниже.

Индуктор на схеме

картинка-схема индуктора

Ток I, который протекает через катушку индуктивности производит магнитный поток, который пропорционален к нему. Но в отличие от конденсатора, который противодействует изменению напряжения на своих пластинах, индуктор противодействует скорости изменения тока, протекающего через него, из-за накопления самоиндуцированной энергии в его магнитном поле.

Другими словами, катушки индуктивности сопротивляются или противостоят изменениям тока, но легко пропустят постоянный ток. Эта способность индуктора противостоять изменениям тока и которая также связывает ток I с его магнитным потоком как коэффициент пропорциональности, называется индуктивностью, которому присвоен символ L с единицами измерения ГенриH ).

Поскольку Генри представляет собой относительно большую единицу индуктивности, для младших индукторов Генри используются для обозначения его значения. Например:

Префиксы индуктивности

ПрефиксУсловное обозначениемультипликаторСтепень десяти
миллиm1/1 00010 -3
микроμ1/100000010 -6
наноn1/100000000010 -9

Таким образом, для отображения подразделов Генри мы будем использовать в качестве примера:

  • 1mH = 1 милли-Генри   — что равно одной тысячной (1/1000) Генри.
  • 100μH = 100 микро-Генри   — что равно одной 100-миллионной ( 1/1 000 000) Генри.

Индукторы или катушки очень распространены в электрических цепях, и существует множество факторов, определяющих индуктивность катушки, таких как форма катушки, число витков изолированного провода, число слоев провода, расстояние между витками, проницаемость материала сердечника, размер или площадь поперечного сечения сердечника и т. д.

Катушка индуктивности имеет площадь поперечного сечения сердечника ( A ) с постоянным числом витков провода на единицу длины ( l ). Таким образом, если катушка N витков связана на величину магнитного потока Φ то катушка имеет потокосцепление и любой ток I, который протекает через катушку будет производить индуцированный магнитный поток в противоположном направлении по отношению к потоку тока. Затем, согласно закону Фарадея, любое изменение в этой связи магнитного потока производит самоиндуцированное напряжение в одной катушке:

формула самоиндуцированного напряжения

Где:

  •    N — число витков
  •     А — площадь поперечного сечения в м 2
  •    Φ — количество потока в Веберах
  •     μ — проницаемость материала сердечника
  •     L — длина катушки в метрах
  •    di / dt — скорость изменения тока в Амперах в секунду

Изменяющееся во времени магнитное поле индуцирует напряжение, которое пропорционально скорости изменения тока, создающего его, с положительным значением, указывающим на увеличение ЭДС, и отрицательным значением, указывающим на уменьшение ЭДС. Уравнение, связывающее это напряжение, ток и индуктивность с самоиндукцией, может быть найдено путем замены μN 2 A / l на L, обозначая постоянную пропорциональности, называемую индуктивностью катушки.

Соотношение между потоком в катушке индуктивности и током, протекающим через катушку индуктивности, имеет вид: NΦ = Li . Поскольку катушка индуктивности состоит из катушки с проводящим проводом, это уменьшает приведенное выше уравнение, чтобы получить самоиндуцированную ЭДС, иногда называемую также обратной ЭДС, индуцированной в катушке.

Обратная ЭДС генерируемая индуктором

формула обратной ЭДС
Где: 
L — собственная индуктивность, а 
di / dt — скорость изменения тока.

Таким образом, из этого уравнения мы можем сказать, что «самоиндуцированная ЭДС = индуктивность * скорость изменения тока» и цепь с индуктивностью один Генри будет иметь ЭДС 1 вольт, индуцированную в цепи, когда ток, протекающий через цепь, изменяется со скоростью 1 Ампер в секунду.

Катушка индуктивности
Катушка индуктивности

Один важный момент, который нужно отметить относительно приведенного выше уравнения. Он только связывает ЭДС, создаваемую через индуктор, с изменениями тока, потому что, если ток индуктора постоянен и не изменяется, например, в постоянном токе, то индуцированное напряжение ЭДС будет равно нулю, поскольку мгновенная скорость изменения тока равна ноль di / dt = 0.

При постоянном токе, протекающем через индуктор и, следовательно, нулевом индуцированном напряжении на нем, индуктор действует как короткое замыкание, равное куску провода, или, по крайней мере, очень низкое значение сопротивления. Другими словами, противодействие протеканию тока, предлагаемого индуктором, очень различно в цепях переменного и постоянного тока.

Постоянная времени индуктора

Теперь мы знаем, что ток не может изменяться мгновенно в индуктивности, потому что для этого ток должен измениться на конечную величину за нулевое время, что приведет к тому, что скорость изменения тока будет бесконечной di / dt =  ∞ , делая индуцированную ЭДС бесконечной, а бесконечного напряжения не существует. Однако, если ток, протекающий через индуктор, изменяется очень быстро, например, при работе переключателя, на катушке индуктивности могут возникать высокие напряжения.

картинка-схема индуктора

Рассмотрим схему индуктора выше. Когда переключатель ( S1 ) разомкнут, ток через катушку индуктивности не течет. Поскольку через индуктор ток не течет, скорость изменения тока ( di / dt ) в катушке будет равна нулю. Если скорость изменения тока равна нулю, то  в катушке индуктивности нет ЭДС самоиндукции ( V L= 0 ).

Если мы теперь закроем переключатель (t = 0), ток будет проходить через цепь и медленно подниматься до своего максимального значения со скоростью, определяемой индуктивностью индуктора. Эта скорость тока, протекающего через катушку индуктивности, умноженная на индуктивность по Генри, приводит к тому, что на катушке образуется некоторая самоиндуцированная ЭДС с фиксированным значением, определенная уравнением Фарадея V L  = Ldi / dt.

Эта самоиндуцированная ЭДС на катушке индуктивности ( V L ) борется с приложенным напряжением до тех пор, пока ток не достигнет своего максимального значения и не будет достигнуто устойчивое состояние. Ток, который сейчас течет через катушку, определяется только постоянным или «чистым» сопротивлением обмоток катушек, поскольку значение реактивного сопротивления катушки уменьшилось до нуля, поскольку скорость изменения тока (di / dt) равна нулю в устойчивом состоянии. Другими словами, теперь существует только сопротивление катушек постоянного тока, чтобы противостоять потоку тока.

Аналогичным образом, если переключатель ( S1 ) разомкнут, ток, протекающий через катушку, начнет падать, но индуктор снова будет бороться с этим изменением и попытается удержать ток в своем прежнем значении, индуцируя напряжение в другом направлении. Наклон падения будет отрицательным и связан с индуктивностью катушки, как показано ниже.

Ток и напряжение в индукторе

ток и напряжение в индукторе

Сколько индуктивного напряжения будет генерироваться индуктором, зависит от скорости изменения тока. В нашем уроке об электромагнитной индукции закон Ленца гласил: «Направление индуцированной ЭДС таково, что оно всегда будет противостоять изменению, которое его вызывает». Другими словами, индуцированная ЭДС всегда будет противопоставлять движение или изменение, которые изначально вызвали индуцированную ЭДС.

Таким образом, при уменьшении тока полярность напряжения будет действовать как источник, а при увеличении тока полярность напряжения будет действовать как нагрузка. Таким образом, при одинаковой скорости изменения тока через катушку, увеличение или уменьшение величины индуцированной ЭДС будет одинаковым.

Мощность в индукторе

Мы знаем, что индуктор в цепи противостоит потоку тока I через него, потому что поток этого тока индуцирует ЭДС, которая противостоит ему, закон Ленца. Затем необходимо выполнить работу от внешнего источника батареи, чтобы ток протекал против этой индуцированной ЭДС. Мгновенная мощность, используемая для форсирования тока I по отношению к этой самоиндуцированной ЭДС (V L), определяется как:

мгновенная мощность

Мощность в цепи задается как P = V * I, поэтому:

мощность в индукторе

Идеальный индуктор не имеет сопротивления, только индуктивность, поэтому R = 0 Ом, и поэтому мощность в катушке не рассеивается, поэтому можно сказать, что идеальный индуктор имеет нулевую потерю мощности.

Энергия в индукторе

Когда мощность поступает в индуктор, энергия накапливается в его магнитном поле. Когда ток, протекающий через индуктор, увеличивается и di / dt становится больше нуля, мгновенная мощность в цепи также должна быть больше нуля, ( P> 0 ), т.е. положительная, что означает, что энергия накапливается в индукторе.

Аналогичным образом, если ток через индуктор уменьшается и di / dt меньше нуля, то мгновенная мощность также должна быть меньше нуля ( P <0 ), т.е. отрицательна, что означает, что индуктор возвращает энергию обратно в цепь. Затем, интегрируя приведенное выше уравнение для мощности, полная магнитная энергия, которая всегда положительна и сохраняется в индуктивности, определяется как:

формула полной магнитной энергии
Где:   
W в джоулях, 
L в Генри и 
I в амперах

Энергия фактически накапливается в магнитном поле, которое окружает индуктор током, текущим через него. В идеальном индукторе, который не имеет сопротивления или емкости, поскольку ток увеличивает энергию, стекающую в индуктор и накапливающуюся там в его магнитном поле без потерь, он не высвобождается до тех пор, пока ток не уменьшится и магнитное поле не разрушится.

Затем в переменном токе, переменного тока индуктор постоянно накапливает и доставляет энергию на каждом цикле. Если ток, протекающий через индуктор, является постоянным, как в цепи постоянного тока, то сохраненная энергия не изменяется, так как P = Li (di / dt) = 0 .

Таким образом, индукторы могут быть определены как пассивные компоненты, так как они могут как накапливать, так и доставлять энергию в цепь, но они не могут генерировать энергию. Идеальный индуктор классифицируется как меньше потерь, что означает, что он может хранить энергию бесконечно, так как энергия не теряется.

Однако, реальные катушки индуктивности всегда будут иметь некоторое сопротивление, связанное с обмотками катушки, и всякий раз, когда ток протекает через энергию сопротивления, теряется в виде тепла по закону Ома ( P = I R ) независимо от того, является ли ток переменным или постоянный.

Тогда основное использование индукторов — это в фильтрационных цепях, резонансных цепях и для ограничения тока. Индуктор может использоваться в цепях для блокировки или изменения переменного тока или диапазона синусоидальных частот, и в этой роли индуктор может использоваться для «настройки» простого радиоприемника или генераторов различных типов. Он также может защитить чувствительное оборудование от разрушительных скачков напряжения и высоких пусковых токов.

В следующем уроке об индукторах мы увидим, что эффективное сопротивление катушки называется индуктивностью, а индуктивность, которая, как мы теперь знаем, является характеристикой электрического проводника, который «противодействует изменению тока», может быть как внутренней, индуцированный, называемый самоиндуктивностью или индуцированный извне, называемый взаимоиндуктивностью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *