Сопротивление обмоток – каким оно должно быть, как проверить, измерить.
Тема: что нужно знать про электрическое сопротивление намоток катушек, их проверка.
Достаточно большое количество электрических устройств имеет в своем составе катушки в виде намотки медной изолированной проволоки. Главным свойством, которым обладает электрическая катушка является взаимодействие с электромагнитным полем. Для одних устройств катушка выступает в роли электромагнита, притягивающая либо отталкивающая металлические части или другие катушки. В иных же устройствах электрическая катушка может служить генератором электрической энергии, по средствам электромагнитной индукции (если на катушку воздействовать внешним электромагнитным полем).
Любая электрическая катушка имеет свое внутреннее сопротивление. Причем, это сопротивление можно разделить на два типа, это активное и реактивное. Активным сопротивлением обладают катушки, через которые протекает только постоянный ток. Активное сопротивление катушки зависит от материала провода катушки, его сечения, длины. При протекании через катушку переменного тока мы уже будет иметь дело с реактивным сопротивлением, величина которого уже будет зависеть ещё и от частоты протекающего переменного тока (чем частота выше, тем больше реактивное сопротивление).
На практике, в большинстве случаев, приходится сталкиваться именно с активным электрическим сопротивлением катушек. Это сопротивление обусловлено внутренней структурой атомов, из которых состоит вещество проводника. У различных проводников внутреннее сопротивление имеет разные значения (при одной и той же длине и сечении). Это ещё называется удельным сопротивлением проводника (его обычно берут из справочников). Для нахождения сопротивления определенного проводника можно воспользоваться простой формулой: сопротивление равно удельное сопротивление материала проводника умноженное на его длину и это всё деленное на площадь поперечного сечения.
Более простым способом нахождения сопротивления обмоток, широко используемом на практике, является метод обычного измерения. Берём мультиметр, омметр, выставляем нужный диапазон измерения (Омы, килоОмы, мегаОмы) и прикасаемся щупами измерителя прямо к катушке, обмотке. Наш тестер с достаточно большой точность покажет имеющееся сопротивление. Как правило, обмотка катушек, рассчитанных на низкое напряжение имеет достаточно малое сопротивление (в районе единицы-сотни Ом). Обмотки под напряжение 220, 380 и выше уже имеют сопротивление в пределах от сотен Ом до десятков килоОм.
Зная сопротивление обмотки, как минимум можно судить о её работоспособности (если в ней нет короткозамкнутых витков), а как максимум её величину можно использовать в различных формулах. Наиболее известной и широко используемой является формула закона Ома, которая позволяет найти любую одну неизвестную величину (из трех – напряжение, ток, сопротивление) из двух известных. Учтите, в формулах нужно использовать основные единицы измерения физических величин. В законе Ома таковыми являются: для силы тока это ампер, для напряжения это вольт и для сопротивления это Ом.
Если при измерении сопротивления обмотки прибор ничего не показывает (пробник не реагирует), значит в этой катушке имеется обрыв. В этом случае катушку следует разобрать, хорошо визуально осмотреть (возможно обрыв произошел возле самих выводов катушки, что происходит достаточно часто), при необходимости её перемотать. Но бывают случаи, когда обрыва нет, тестер показывает какое-то сопротивление, сама же катушка не работает как надо. В этом случае, если вы уверены надёжности проводов и цепей, по которым подводится к обмотке напряжение, возможен вариант короткозамкнутых витков.
Короткозамкнутые витки – это витки обмоточного провода катушки, которые были накоротко замкнуты внутри самой обмотке между собой. Естественно, участок обмотки с короткозамкнутыми витками является нерабочим, более того, он является причиной возникновения дополнительного нагрева самой катушки (по причине самоиндукции, в цепях переменного тока). Причиной возникновения такого явления может послужить полое качество изоляции обмоточного провода, температурный удар (возникший сильный перегрев катушки), который был прежде, чрезмерное динамическое воздействие на катушку (удары, тряски и т.д.). Сопротивление обмотки, что имеет короткозамкнутые витки, будет меньше номинального значения, а это ведёт к ненормальной работе самой этой катушки.
Короткозамкнутые витки выявляются не просто. Для проверки обмотки якоря электродвигателя существует специальное устройство (можно сделать и самому, это трансформатор со специальным распилом на своем магнитопроводе, куда и ложится якорь для проверки). Если катушка до этого работала нормально, при этом особо не нагревалась, а потом вдруг начала, то скорее всего у неё появились эти самые бракованные витки. Хорошо если вы изначально знаете номинальное сопротивление своей катушки, будет с чем сравнить при измерении и выявлении неисправности обмотки. Либо же нужно сравнивать сопротивление с заведомо рабочей обмоткой другого устройства. Или же прибегнуть в вычислением сопротивления по формуле, если известны: мощность, сила тока, напряжение.

P.S. Далеко не во всех случаях при неисправности катушки виновата сама обмотка. Достаточно часто бывает так, что те провода, которые питают эту самую катушку находятся в плохом состоянии. Окисленные контакты соединяющие концы обмотки и питающие клеммы, провода, место спая значительно увеличивают сопротивление электрической цепи. Достаточно хорошо почистить подобные места, как тут же работоспособность катушки того или иного устройства полностью восстановится.
Реальная катушка в цепи переменного тока
Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.
Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.
В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.
Схема замещения катушки с последовательным соединением элементов
В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.
Активное сопротивление определяется величиной мощности потерь
R = P/I2
а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:
Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.
В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.
Поэтому:
u = R*Imsinωt + ωLImsin(ωt+π/2).
Векторная диаграмма реальной катушки и полное её сопротивление
Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения
UmR = RIm; UmL = ωLIm ,
а действующие величины
UR = RI; UL = XLI .
Вектор общего напряжения
U = UR + UL
Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.
За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.
Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.
Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ<90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях UR и UL :
UR = Ucosφ
Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR
U = Usinφ (13.14)
Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде
U = Umsin(ωt+φ)
Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.
Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи.
Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.
Из треугольника сопротивлений следует
Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

Из треугольников сопротивления и напряжения определяются
cosφ = UR/U = R/Z; sinφ = UL/U = XL/Z; tgφ = UL/UR = XL/R. (13.18)
Мощность реальной катушки
Мгновенная мощность катушки
p = ui = Umsin(ωt+φ) * Imsinωt
Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).
Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).
Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.
Согласно выводам полученных в этих предыдущих (первая, вторая) статьях — в активном сопротивлении P = URI Q = 0; а в индуктивном Р = 0; Q = ULI.
Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:
P = UIcosφ (13.19)
Q = UIsinφ (13.20)
Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;
S = UI = I2Z (13.21)
Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):
(13.22)
Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить
cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)
Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).
Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.
Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.
Схема замещения реальной катушки в с параллельным соединением элементов
Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.
Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством
I = IG + IL (13.24)
Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.
Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе
IG = Icosφ
Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.
Составляющая тока в реактивном элементе
IL = Isinφ
Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается Iр. Для катушки Iр = IL .
Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.
Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

Определение индуктивности, активного сопротивления катушки.
⇐ ПредыдущаяСтр 9 из 10Следующая ⇒Для колебательного контура рекомендуется выбрать катушку 220/127 от школьного трансформатора, магазин конденсаторов Р544, выставив емкость порядка 0,5 мкФ, и магазин сопротивлений Р33.
Определить индуктивность и активное сопротивление катушки методом амперметра и вольтметра. Для этого собрать схему, указанную на (Рис. 4). При подключении в качестве источника тока постоянного выхода ВС-24 сопротивление
,
а при подключении переменного выхода – сопротивление Z равно:
,
.
Расчет параметров колебательного контура и экспериментальное получение затухающих колебаний.
Задав емкость конденсатора порядка 0,1 мкФ и активное сопротивление R равное нулю, рассчитать параметры получившегося колебательного контура: частоту n (или w), коэффициент затухания b, период затухающих колебаний Т, логарифмический декремент затухания d, добротность колебательного контура Q, критическое сопротивление Rкр.
Собрать схему (Рис. 5), выставив на магазине емкостей 0,1 мкФ, на магазине сопротивлений – 0 Ом. Для того, чтобы картина затухающих колебаний была постоянно видна на экране осциллографа, необходимо периодически добавлять энергию в колебательный контур подзаряжая конденсатор. В качестве периодического источника энергии используется выход пилообразного
Конденсатор Сдиф и входное сопротивление осциллографа Rвх представляют из себя дифференцирующую цепь, превращающую пилообразный сигнал в импульсный (Рис. 6). При плавном нарастании напряжения конденсатор успевает заряжаться, напряжение на нем в каждый момент времени практически равно напряжению источника пилообразного сигнала, и ток в цепи отсутствует. При резком уменьшении напряжения в цепи наблюдается импульс тока разрядки конденсатора. Выходное напряжение является дифференциалом входного напряжения по времени. Подобрать
По полученной картине определить параметры колебательного контура и сравнить их с рассчитанными ранее. Меняя индуктивность катушки, вводя в нее сердечник, и емкость конденсатора, пронаблюдать и объяснить изменение картины затухающих колебаний.
Пронаблюдать изменение картины при увеличении активного сопротивления R. Выставить на магазине сопротивлений такое R, чтобы выполнялось условие:
,
и убедиться, что колебания в контуре отсутствуют.
Вопросы к зачету по работе.
– Объяснить физический механизм электромагнитных колебаний в колебательном контуре.
– Как преобразуется энергия при электромагнитных колебаниях и чему равна полная энергия?
– Как влияет наличие активного сопротивления колебательного контура на электромагнитные колебания? Что такое затухающие электромагнитные колебания?
– Какие параметры контура определяют характер электромагнитных колебаний в контуре?
– Объяснить, почему наличие критического сопротивления в цепи препятствует возникновению электромагнитных колебаний в контуре.
Лабораторная работа № 10
Явления в цепях переменного тока
Цель работы.
Изучить закономерности явлений, наблюдаемых в цепях переменного тока.
Знания, необходимые для допуска к работе.
– Индуктивность и емкость в цепях переменного тока;
– Закон Ома для переменного тока;
– Резонансные явления в цепях переменного тока.
Краткие сведения из теории.
Переменным током называется любой ток, величина которого периодически меняется со временем. Но чаще всего под переменным током подразумевается ток, меняющийся по закону синуса (или косинуса):
,
где I – амплитуда тока, – циклическая частота, а
– фаза колебаний, характеризующая состояние колебательной системы в данный момент времени t.
Рассмотрим электрическую цепь, содержащую последовательно соединенные резистор, конденсатор и катушку индуктивности, подключенную к источнику переменного напряжения (Рис. 1). По этой цепи протекает ток, меняющийся по синусоидальному закону
.
,
но при переменном токе в цепи, содержащей емкость и индуктивность, есть некоторые отличия.
Падение напряжения на резисторе колеблется по такому же закону, как и ток
,
и их фазы колебаний совпадают.
Напряжение на обкладках конденсатора пропорционально заряду на них в каждый момент времени
,
а заряд можно определить как интеграл тока по времени
.
Тогда
.
Из этого выражения следуют два вывода: во-первых, колебания напряжения на конденсаторе отстают от колебаний тока на , а во-вторых, амплитудное значение напряжение связано с амплитудным значением тока соотношением:
,
где называется емкостным сопротивлением.
.
В этом случае для участка цепи, содержащего катушку (т.е. источник ЭДС, включенный навстречу току) падение напряжения равно
,
так как помимо ЭДС самоиндукции происходит падение напряжения на сопротивлении провода r, из которого изготовлена катушка. Если предположить его малым, то и
.
Очевидно, что колебания напряжения на катушке опережают колебания тока на , а их амплитуды связаны соотношением
,
где – индуктивное сопротивление катушки.
Сопротивления R, r называются активными (или омическими), а сопротивления XL и XC – реактивными.
Соотношения фаз колебаний напряжений на активных и реактивных сопротивлениях можно проиллюстрировать на векторной диаграмме (Рис. 2). За основное направление надо взять силу тока, так как он является общим для последовательно соединенных элементов схемы. Величину амплитуды выходного напряжения можно определить, используя закон сложения векторов:

Видно, что колебания напряжения и тока сдвинуты по фазе друг относительно друга на j. Вынеся общий множитель – силу тока – из-под корня, получаем выражение:
,
где R0 – все активное сопротивление электрической цепи. Это выражение является математической формулировкой закона Ома для переменной цепи. Общее сопротивление цепи Z и тангенс сдвига фаз между колебаниями тока и напряжения tgj определяется по формулам:
.
Как видно из этих формул, полное сопротивление цепи переменного тока зависит не только от величин активного сопротивления, индуктивности и емкости, но и от частоты переменного тока. При частоте близкой к нулю полное сопротивление цепи определяется емкостным сопротивлением и стремится к бесконечности, а сдвиг фаз
. При высокой частоте переменного тока соответственно
и
.
Интересная ситуация наблюдается, когда частота переменного тока удовлетворяет условию:
.


Интересен также факт превышения напряжения на реактивных элементах схемы выходного напряжения источника тока. Если в момент резонанса индуктивное и емкостное сопротивления больше активного сопротивления цепи , то напряжения на них
.
Практические задания
Омическое сопротивление — катушка — Большая Энциклопедия Нефти и Газа, статья, страница 1
Омическое сопротивление — катушка
Cтраница 1
Омическое сопротивление катушки измеряется универсальным мостом. Точное соответствие значения омического сопротивления расчетному важно для катушек постоянного тока, так как значение R характеризует потребляемую мощность катушки и, следовательно, ее тепловой режим. Измерение сопротивления катушки производят сразу после намотки перед наложением наружной изоляции. В случае отклонения от указанных допусков число витков увеличивают или уменьшают. [1]
Омическое сопротивление катушек колеблется от 9 до 18 000 ом. [2]
Измеряется омическое сопротивление катушки универсальным мостиком. [3]
Подчеркнем, что омическое сопротивление катушки ( с железным сердечником), имеющей индуктивность 1 гн, составляет обычно лишь несколько ом. [4]
Под Rt подразумевается омическое сопротивление катушек, входящих в колебательный контур трансгенерации. Можно контур L f Ct присоединять и параллельно d, тогда L2 не будет входить в него. [5]
Омического сопротивления ДКОИт контура ( омическое сопротивление катушки самоиндукции плюс дополнительное сопротивление Д, вводимое в контур) для разных колебательных режимов вплоть до критического. [6]
Прозвонка с помощью омметра позволяет одновременно проверить и омические сопротивления катушек аппаратов и реле, установленных на щите или панели. [8]
Важным случаем применения сложной связи является компенсация активной составляющей величины ik, вызванной омическим сопротивлением катушки саязи. Это индуктивная Т — образная секция, нагруженная с обеих сторон емкостями и содержащая в каждом плече последовательно включенное сопротивление потерь. Индуктивность связи LIZ неизбежно имеет некоторое сопротивление, так что св. Как было отмечено в параграфе, относящемся к количественному анализу, это приводит к случаю двух неравных по высоте горбов. [9]
Величина тока в катушке на переменном токе не равна подведенному напряжению, деленному на омическое сопротивление катушки, как это имеет место при постоянном токе. Величина тока здесь должна быть такой, чтобы число потокосцеплений катушки соответствовало подведенному напряжению. [10]
На рисунке 32 — 9 изображена схема мостика Уитстона, с помощью которого измеряют омическое сопротивление катушки индуктивностью L 0 1 Гн. Передвигая движок D по струне АВ, добились, что при медленном нажатии кнопки двойного ключа стрелка гальванометра G не отклоняется. [11]
Эквивалентная схема отклоняющей катушки изображена на рис, 6.19, а, где LK — индуктивность катушки, г — омическое сопротивление катушки, Ск — междувитковая емкость катушки. [12]
Статистические материалы по стабильности манганиновых сопротивлений дают основание использовать указанные режимы их термического и естественного старения, что обеспечивает изменение омического сопротивления катушек в пределах 0 005 — 0 01 % в год. [13]
Полное шунтирующее сопротивление, в которое включено не только сопротивление яапрузки, но и шунтирующее действие входной и выходной проводимостей лампы, омическое сопротивление катушки и соединительных проводов. [14]
Левая часть выражения представляет собой энергию, поступившую из сети за время dt; первый член правой части — потерю энергии в омическом сопротивлении катушки; второй член правой части — приращение энергии Магнитного поля в электромагните. [15]
Страницы: 1 2 3