Чем дросель отличается от катушки индуктивности?
Немного неправильно ответили Вася и Владимир. Дроссель — это разновидность катушки индуктивности. Дроссель включают в цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрических сигналов различной частоты. Применяется, например, в выпрямителях тока. Грубо говоря, если катушка индуктивности выполняет перечисленные функции — то её называют «дроссель».
В дросселе есть магнитопровод. Может менять свое положение в катушке что бы менялась магнитная проницаемость. В катушке индуктивности может не быть. Дроссель это более массивная катушка индуктивности . Применяеться в силовых схемах. А катушка инд. в слаботочных ( радио) .
В дроселе есть сердечник с магнитным зазором, в катушке индуктивности может и не быть. Есть мнение что в колебательных контурах применяют катушки индуктивности остальное дроселя. Я согласен с второй теорией.
По сути это одно и тоже. Дроссель это разновидность катушки индуктивности, это термин технический, а не общий физический.
Дроссель — в основном для отсечки импульсных помех или сдвига фазы ПИТАЮЩИХ устройств.
Дроссель переменного тока и его расчёт
Всем доброго времени суток! В прошлой статье я рассказал о дросселях сглаживающих фильтров и изложил принцип их расчёта. Однако такие типы дросселей в бытовой технике применяются не очень часто, так как в маломощных устройствах зачастую эффективнее использовать ёмкостные фильтры. Наиболее часто в электронных устройствах применяют другой вид дросселей – дроссели переменного тока. Об их особенностях, принципах работы и расчёте параметров таких дросселей пойдёт речь в этой статье.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Особенности работы дросселя переменного тока
Дроссель переменного тока, так же как и любой другой дроссель представляет собой катушку индуктивности с ферромагнитным сердечником. Данный тип дросселя включается последовательно с нагрузкой, аналогично сглаживающему дросселю, но в отличие от него, протекающий ток через дроссель переменного тока не имеет постоянного тока подмагничивания. В связи с этим дроссель переменного тока широко применяется в балластных и токоограничительных цепях, мощных антенных и фильтрующих устройствах, а так же в различных импульсных преобразователях напряжения.
В независимости от применения дросселя в схеме его работа основана на зависимости его реактивного сопротивления XL от частоты f протекающего через него тока IH и падении напряжения на дросселе UL
Дроссель переменного тока.
Таким образом, величина напряжения на дросселе UL определяется индуктивностью дросселя L и параметрами тока, протекающего через дроссель: частота тока f и значение тока в цепи IH.
Влияние немагнитного зазора на дроссель
В предыдущих статьях я рассказывал о негативном влиянии насыщения сердечника на снижение магнитной проницаемости μe и индуктивности дросселя L, которые приводят к искажению формы тока протекающего через дроссель.
Форма тока, протекающего через дроссель: для ненасыщенного сердечника (1) и для насыщенного сердечника (2).
На данном рисунке изображено искажение формы тока синусоидального напряжения при работе дросселя на насыщенном и ненасыщенном участке кривой намагничивания. Степень искажения формы напряжения зависит также от отношения реактивного сопротивления дросселя к активному сопротивлению нагрузки XL/RH. То есть при насыщении сердечника, чем меньше данное соотношение, тем меньше степень искажения формы напряжения. Таким образом, введение немагнитного зазора кроме стабилизации величины индуктивности, в широких пределах изменения тока, позволяет пропустить через дроссель переменный ток без значительных изменений.
Кроме вышеописанных факторов, введение немагнитного зазора приводит к некоторым особенностям, которые необходимо учитывать при разработке и изготовлении дросселей с зазором. Основной особенностью является уширение магнитного потока в зазоре.
Уширение магнитного потока в немагнитном зазоре дросселя: стержень дросселя (слева) и его поперечное сечение (справа). Пунктиром обозначены размеры увеличенного сечения вследствие выпучивания магнитного потока.
Данное явление связанно с тем, что в дросселе с зазором магнитный поток выходит за пределы пространства, находящегося между двух концов разрезанного сердечника, поэтому площадь поперечного сечения в немагнитном зазоре как бы увеличивается.
Размеры уширения сечения зависит от длины обмотки дросселя lоб, площади сечения сердечника Se и длины немагнитного зазора lз. Уширение магнитного потока уменьшает магнитное сопротивление цепи и, следовательно, увеличивает индуктивность дросселя. Для учёта уширения магнитного потока и увеличения индуктивности вводится коэффициент выпучивания F, учитывающий уширение магнитного потока в немагнитном зазоре. Поэтому значение индуктивности дросселя будет определятся следующим выражением
где ω – количество витков провода в обмотке,
μ0 – магнитная постоянная, μ0 = 4π*10-7 Гн/м,
μе – эквивалентная (относительная) магнитная проницаемость сердечника,
Sе – эквивалентная площадь поперечного сечения сердечника,
lе – эквивалентная длина магнитной линии сердечника.
lM – длина магнитной линии в сердечнике.
F – коэффициент, учитывающий уширение магнитного потока в зазоре.
Принципы расчёта дросселей переменного тока
Расчёт дросселя переменного тока ведётся аналогично расчёту сглаживающего дросселя, но с учётом начальных условий. Так для дросселя переменного тока определяющими параметрами являются: требуемая индуктивность L, приложенное напряжение UL, частота переменного тока f, перегрев дросселя. Кроме этого необходимо определиться с материалом сердечника дросселя, который определят индукцию насыщения BS и максимальную индукцию в сердечнике Bm, которая для предотвращения насыщения сердечника выбирается из условия
В основе расчётов дросселя переменного тока лежит выражения для определения величина действующего напряжения падающего на дросселе UL
где f – частота переменного тока,
L – индуктивность дросселя,
I – действующее значение тока дросселя.
Тогда с учетом выражения для индуктивности дросселя с замкнутым сердечником и выражения для максимальной индукции в сердечнике напряжение на дросселе будет зависеть от следующих параметров
где μе – эквивалентная магнитная проницаемость сердечника,
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
ω – количество витков обмотки дросселя,
Se – эквивалентное сечение сердечника дросселя,
le – эквивалентная длина магнитного пути сердечника дросселя,
Bm – максимальное значение магнитной индукции сердечника,
ka – коэффициент амплитуды тока (напряжения) дросселя.
Получившееся выражение довольно часто можно встретить под названием основной формулы трансформаторной ЭДС, так как оно устанавливает однозначное соотношение, между ЭДС на зажимах обмотки и числом витков обмотки, при заданной величине магнитной индукции в сердечнике. Тогда при синусоидальном напряжении (коэффициент амплитуды ka ≈ 1,414) выражение принимает следующий вид
Вернёмся к исходному выражению для напряжения на дросселе UL, в котором неоднозначным является параметр – количество витков. Данный параметр кроме всего прочего (величины индуктивности L и магнитной проницаемости μе сердечника) зависит от размеров магнитопровода, а конкретнее от площади окна SO, которое можно вычислить по следующему выражению
где I – действующее значение тока дросселя,
ω – количество витков обмотки дросселя,
kИ – коэффициент использования окна сердечника,
j – плотность тока в проводе обмотки.
Параметры kИ и j выбирают аналогично, как и для дросселя сглаживающего фильтра, то есть коэффициент использования окна сердечника kИ ≈ 0,3, а плотность тока j = 5 А/мм2.
Тогда выражая из данного выражения количество витков провода ω, получим
Получившееся выражение определяет основное расчётное выражение для определения типоразмера сердечника – произведение площадей сердечника SeSO. После преобразования выражения для действующего напряжения на дросселе UL определяем количество витков обмотки ω и величину немагнитного зазора δ
где μе – эквивалентная магнитная проницаемость сердечника,
μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
Se – эквивалентное сечение сердечника дросселя,
le – эквивалентная длина магнитного пути сердечника дросселя,
Bm – максимальное значение магнитной индукции сердечника,
ka – коэффициент амплитуды тока (напряжения) дросселя.
Вычисленное количество витков является ориентировочным, так как из-за уширения магнитного потока значение индуктивности оказывается несколько больше при данном количестве витков, что в некоторых случаях является нежелательным. Поэтому необходимо пересчитать витки с учётом коэффициента уширения магнитного потока F
Осталось выбрать сечение обмоточного провода SП
где SO – площадь окна используемого сердечника,
kИ – коэффициент использования окна сердечника,
ω – количество витков обмотки дросселя.
Выбор сечения провода необходимо производить, округлив полученное значение до ближайшего номинала, при этом необходимо учитывать, что на высоких частотах возрастают потери мощности в проводе. Поэтому при достаточно высокой частоте необходимо использовать обмоточный провод, состоящий из нескольких жил, при этом диаметр жилы выбирают исходя из глубины скин-слоя δ
где f – частота переменного тока, протекающего через дроссель,
δ – толщина скин-слоя,
dп – диаметр жилы в обмоточном проводе.
После конструктивного расчёта сердечника и обмотки необходимо проверить тепловой режим работы дросселя – нагрев и перегрев дросселя.
Расчёт дросселя переменного тока
В качестве примера рассчитаем дроссель переменного тока со следующими исходными данными: индуктивность дросселя L = 20 мкГн, частота переменного тока f = 50 кГц, действующее значение тока дросселя Iд = 5 А, температура перегрева ∆Т = 50 °C. Ток, протекающий через дроссель, имеет форму прямоугольных импульсов с коэффициентом заполнения D = 0,5.
В общем случае расчёт сводится к выбору параметров магнитопровода и обмотки, при этом режим работы дросселя должен отвечать заданным условиям, в данном случае, температуре перегрева ∆Т.
1.Выберем типоразмер сердечника соответствующего произведению площадей SeSO. Для этого необходимо дополнительно определить действующее напряжение на дросселе UL, коэффициент амплитуды тока дросселя ka, коэффициент использования окна сердечника kИ, значение максимальной индукции тока дросселя Bm и плотность тока j.
Так как частота тока достаточно высокая, то в качестве материала магнитопровода выберем феррит марки N87, следовательно, Bm = 0,3. Коэффициент использования окна сердечника и плотность тока выберем соответственно kИ = 0,3 и j = 5 А/мм2.
Таким образом, выберем магнитопровод, состоящий из двух половинок типа E 20/10/6 со следующими параметрами: le = 93мм, Se = 32 мм2, SO = 57 мм2, Ve = 2980 мм3, SeSO = 1824 мм4.
Сердечник, состоящий из двух половинок Е 20/10/6, имеет следующие размеры:
L = 20,4 мм, H = 20,2 мм, B = 5,9 мм, h = 14 мм, l0 = 5,9 мм, l1 = 4,1 мм.
2.Определим предварительное число витков обмотки дросселя без учёта эффекта уширения магнитного потока
Полученный результат округлим до ближайшего целого, таким образом, количество витков примем ω = 15. С учетом этого определим величину немагнитного зазора сердечника δ
В связи с тем, что прокладка для создания немагнитного зазора прокладывается как между центральными кернами, так и между боковыми, то соответственно толщина прокладки необходимо уменьшить вдвое по сравнению с рассчитанным значением. То есть толщина прокладки должна составлять 0,1…0,12 мм.
В связи с наличием немагнитного зазора происходит уширение магнитного потока и как следствие увеличение индуктивности. Для того чтобы индуктивность дросселя L соответствовала заданной, необходимо пересчитать число витков обмотки ω с учётом коэффициента уширения F
Таким образом, количество витков примем равным ω = 14. Для окончательного расчёта параметров дросселя определим сечение провода с учётом плотности тока j = 5 А/мм2.
Как видно сечение провода составляет SП = 1 мм2, данному сечению соответствует провод диаметром dП = 1,12 мм. Так как частота переменного тока дросселя достаточно высокая, то для снижения потерь мощности вследствие скин-эффекта необходимо использовать литцендрат – провод состоящий из нескольких жил. Диаметр жилы dЖ не должен превышать удвоенной толщины скин-слоя ∆
В связи с этим для обмотки можно использовать провод, скрученный из 9 жил диаметром 0,38 мм, имеющего суммарное сечение SП = 1,02 мм2.
4.Для завершения расчётов необходимо рассчитать температуру перегрева дросселя ∆Т. Для этого необходимо определить потери мощности в обмотке ∆Р1 и в сердечнике ∆Р2, также суммарную площадь охлаждения дросселя.
Мощность потерь в обмотке ∆P1, зависит от удельного сопротивления проводника (qCu = 0,0171 (Ом•мм2)/м), длины обмоточного провода lпр.об и температурного коэф
Измеритель тока насыщения катушек индуктивности
Доброго времени суток, уважаемое Сообщество!Прототипами для создания схемы послужили схемы из журнала Схемотехника за 2002 год, №6, стр. 7 и отсюда
Получился некий симбиоз двух схем:
Кратко о самой схеме. На DD1, R3-R5, C1, VD1 собран стандартный генератор прямоугольных импульсов. При указанных номиналах период составляет 10 мс, длительность импульса в зависимости от положения движка R5 10…300 мкс. Генератор может быть собран, например на NE555. На VT1, R1, R2 собрана защита по току, которая прерывает импульс, как только ток через индуктивность превысит значение около 6А. Если перемычка XS1 снята, защита отключается и тут уже надо быть внимательным, чтобы ничего не сжечь. Через розетку XP1 выводится сигнал синхронизации для осциллографа (впрочем, как показала практика, он практически не нужен – мой С1-94 спокойно синхронизируется по самому сигналу с датчика тока). На VT2, VT3 собран драйвер затвора VT4. Отдельно хочется сказать о транзисторах 8050. У нас на рынке (Минск, Ждановичи) попадаются транзисторы с маркировкой S8050 и HE8050 и что самое гадкое, они имеют разную цоколёвку, так что будьте внимательны. Сигнал для осциллографа снимается с шунта 0,1 Ом 1% (выход, соответственно, 0,1В/А). Диод VD3 «принимает» на себя энергию, запасённую в катушке, когда транзистор закрывается. Диод VD2 служит для отфильтровывания питания для цифровой части.
Методика работы проста. Подключаем осциллограф, исследуемую индуктивность, регулятор длительности импульса заводим в минимум, перемычку ограничения тока на уровне 6А ставим. Подключаем питание. От катушки может послышаться 100 Гц гудение, особенно, если она не залита лаком. На осциллографе мы должны наблюдать линейно нарастающее напряжение (примеры ниже). Плавно увеличиваем длительность импульса, и, соответственно, максимальный ток. Как только осциллограмма начнёт загибаться вверх – вот она – граница перехода в насыщение. Значит при токе выше этого эксплуатировать индуктивность уже нельзя.
Фото собранной платы:
Выводные компоненты использованы потому, что а) их тоже надо куда-то девать; б) задача миниатюризации не ставилась.
Практика использования показала, что в течение небольшого времени с приставки можно снимать до 45А. Доказательством тому служит осциллограмма, снятая с ДГС и блока питания АТХ (индуктивность обмотки около 50 мкГн):
10А/дел.
Видно, что чёткой границы насыщения нет. При этом транзистор начинает греться, да и падение на шунте становится неприлично большим – 4,5В, что транзистору никак не помогает – уменьшается напряжение исток-затвор. Так что такие измерения (при больших токах) проводить нужно очень кратковременно.
1А/дел.
Пока осциллограмма линейна – дроссель можно использовать. Как только она начинает загибаться вверх – магнитопровод входит в насыщение – такого режима следует избегать. Здесь насыщение происходит при токе чуть более 1А.
Также необходимо отметить, что при помощи этой приставки можно приблизительно измерять индуктивность. Для этого существует предельно простая формула:
где Uпит – напряжения питания, ΔI – приращение тока за время Δt. Напряжение в вольтах, ток в амперах, время в микросекундах – ответ получим в микрогенри.
Разумеется, такие измерения следует проводить только на линейной части осциллограммы.
В корпус приставку устанавливать не планируется. Только сделаю «поддон» из нефольгированного стеклотекстолита или оргстекла, чтоб случайно его на что-нибудь металлическое не положить.
Проект был создан в Altium Designer, файл PDF со схемой, общим видом, проводящим рисунком и шелкографией прикладываю.
На сим всё, спасибо за внимание)
Как проверить дроссель (катушку индуктивности) при помощи мультиметра?
Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.
Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.
Проверка дросселя мультиметром.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Схема дросселя.
Дроссель
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:
Таблица основных поломок дросселя и способы их проверки мультимером.
При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Тороидальный дроссель.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Проверка приборов низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
- Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
- Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
- Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
- Измерение индуктивности обмотки.
- Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Диагностика дросселя.
Стартер
При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.
При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.
Стартеры.
Неисправности светильников с ЭМПРА
Лампа не зажигается
- Неисправность электросети — проверить наличие напряжения на контактах патрона.
- Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
- Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
- Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
- Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.
Лампа не зажигается. Свечение по краям лампы
- Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.
Лампа мигает, но не зажигается
- Неисправен стартер — заменить стартер.
- Низкое напряжение сети — проверить мультиметром напряжение.
- Потеря эмиссии электродов лампы — заменить лампу.
Стартер в лампе.
На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается
- В лампу попал воздух — заменить лампу.
Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы
- Замыкание на корпус светильника — проверить изоляцию.
- Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.
Лампа периодически зажигается и гаснет
- Неисправна лампа — заменить лампу
- Неисправен стартер — заменить стартер
Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки
- Неисправен дроссель — проверить значение пускового и рабочего токов.
- Неисправна лампа — заменить лампу.
При включении лампы перегорают, потемнение на концах лампы
- Пробой изоляции дросселя — заменить дроссель
При работе светильника слышно гудение
- Колебание пластин дросселя — заменить дроссель
Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.
Материал в тему: Что такое кондесатор
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Проверка дросселя люминесцентного светильника.
Как проверить стартер
Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.
Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.
Схема из лампы и дросселя.
Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.
Заключение
В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.
В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.1000eletric.com
www.electricalschool.info
www.electric-blogger.ru
Coil32 — Особенности расчета силовых дросселей
Причина кроется в том, что начинающие радиолюбители часто либо не знают, либо имеют упрощенный взгляд на особенности намагничивания феррита. Вот мы взяли сердечник, засунули его в катушку и ее индуктивность возросла на величину относительной магнитной проницаемости сердечника. Верно? Верно, да не совсем! Один только факт, что для описания свойств феррита существует несколько магнитных проницаемостей, говорит, что не все так однозначно. Магнитные свойства феррита наиболее полно описываются семейством так называемых кривых намагничивания, иначе называемых «петля гистерезиса».
- Относительная и абсолютная магнитная проницаемость. По сути различаются только множителем µ0 = 4π*10-7., который реально согласует в системе СИ единицы измерения в электромагнетизме и единицы длины и условно именуется как магнитная проницаемость вакуума или магнитная постоянная.
- В общем случае величина относительной магнитной проницаемости пропорциональна наклону касательной к кривой намагничивания в данной точке. Эта величина называется дифференциальной магнитной проницаемостью. Она не постоянна и динамически меняется при движении по кривой намагничивания.
- Начальная магнитная проницаемость µi характеризуется наклоном начальной кривой намагничивания [0] в начале координат. Обычно эта величина приводится в справочниках.
- Максимальная магнитная проницаемость µmax. При намагничивании феррита его магнитная проницаемость растет, достигая некоторого максимума, а затем начинает уменьшаться. Величина максимальной магнитной проницаемости обычно в разы больше начальной. Также можно найти в справочниках по ферритам.
- Динамическая магнитная проницаемость. Характеризует насколько возрастет индуктивное сопротивление переменному току у катушки, если воздух вокруг нее заменить на наш феррит. Т.е. как раз то, что нас интересует. Если феррит помещен в относительно слабое переменное магнитное поле, не загоняющее его в предельную петлю гистерезиса, то его петлю перемагничивания (частную петлю гистерезиса) можно приближенно представить как эллипс. Тогда с достаточным приближением можно считать, что динамическая магнитная проницаемость характеризуется наклоном большой оси этого эллипса.
- Эффективная магнитная проницаемость. Это величина относится не к самому ферриту, а к сердечнику из него с разомкнутой магнитной цепью.
При слабых полях, без подмагничивания постоянным током (важно!), феррит перемагничивается условно по кривой [3] и в этом случае величина динамической магнитной проницаемости близка к величине начальной магнитной проницаемости феррита. Поэтому в слаботочных цепях с относительно небольшой погрешностью при расчетах можно использовать величину начальной магнитной проницаемости, что и делает наш онлайн калькулятор и программа Coil32.
Другое дело силовой дроссель в импульсной схеме питания. Ферриты широкого применения имеют относительно низкое значение индукции насыщения (около 0.3Т), поэтому в цепи силового ключа дроссель переключается между максимальным значением поля, когда он почти заходит в режим насыщения и нулевым значением поля, когда он размагничивается до величины остаточной индукции (кривая [4]). Как мы видим наклон большой оси эллипса 4 намного меньше чем у эллипса 3. Другими словами магнитная проницаемость сердечника в таком режиме значительно снижается. Ситуация усугубляется если сердечник дросселя кроме того подмагничивается постоянным током (кривая [5]). Предельная петля гистерезиса реального феррита более прямоугольна, чем на нашем схематическом рисунке и, в итоге, динамическая магнитная проницаемость силового дросселя на ферритовом кольце падает до единиц. Будто бы феррита и нет совсем! В итоге, индуктивное сопротивление дросселя падает, ток резко возрастает (что ведет еще к большему уменьшению µ!), ключевой транзистор греется и выходит из строя. А расчеты из Coil32 для такого дросселя дают абсолютно неверный результат. Ведь мы использовали при расчете начальную магнитную проницаемость, а в реальной схеме она на два-три порядка меньше. В такую же ситуацию вы попадете, если измерите относительную магнитную проницаемость кольца методом пробной намотки, ведь прибор, измеряющий индуктивность, также является слаботочным устройством.
Выходом из ситуации является использование ферритового сердечника с разорванной магнитной цепью. В случае ферритового кольца, его приходится ломать пополам и потом склеивать с зазором. Предельная петля гистерезиса такого сердечника становится более пологой [2], остаточная индукция значительно меньше [B’r], эффективная магнитная проницаемость тоже меньше, чем у сердечника без зазора. Однако при этом, кривая перемагничивания [6] показывает, что динамическая магнитная проницаемость у такого дросселя намного выше, чем у аналогичного, но с сердечником без зазора. Реально она имеет величину порядка 50..100 и слабо зависит от величины начальной магнитной проницаемости феррита. Coil32 такой дроссель также не в состоянии правильно рассчитать, поскольку не учитывает немагнитный зазор. Другим выходом из ситуации является применение специальных колец для силовых дросселей из распыленного железа, Iron Powder (это не феррит). Именно такие кольца можно найти в импульсных блоках питания и на материнских платах компьютеров. «Зазор» в таком кольце как бы размазан по всему его объему.
Вывод. Программа Coil32 рассчитывает только слаботочные катушки на ферритовых кольцах, работающие в слабых полях. Для расчета силовых дросселей необходимо применять совершенно другую методику, в чем вам могут помочь следующие ссылки:
- КАК ЖЕ РАБОТАЮТ ТРАНСФОРМАТОРЫ И ДРОССЕЛИ — физические законы по которым работают трансформаторы и дроссели, петля гистерезиса, основные формулы.
- Трансформаторы и дроссели для ИИП — формулы и таблицы для расчета дросселей и трансформаторов импульсных источников питания.
- Сердечники из распылённого железа (IronPowder) — таблицы параметров сердечников из порошкового железа.
- Дроссели для импульсных источников питания на ферритовых кольцах — таблицы и формулы для расчета дросселя на кольце из феррита широкого применения.
- РАСЧЁТ ДРОССЕЛЯ — В.Я. Володин. Изложена оригинальная методика расчетов силовых дросселей как на стальных, так и на ферритовых сердечниках. Приведены формулы расчетов и примеры.
- Силовая электроника для любителей и профессионалов Б.Ю. Семенов 2001 — Доступным языком рассказывается о проектировании импульсных устройств питания. (Выбор магнитных материалов, расчет дросселей и трансформаторов, «Зачем нужен этот зазор?», MOSFET, IGBT, чоппер, бустер и т.п.) Практические примеры конструкций и расчетов.
- Параметры ферритов широкого применения — справочная таблица основных характеристик.