Какой формулой выражается закон джоуля ленца: Закон Джоуля – Ленца: определение, формула, физический смысл

Содержание

Закон Джоуля – Ленца: определение, формула, физический смысл

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него электрического тока, пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

ω = j • E = ϭ E²,

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием электрического поля. Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при коротких замыканиях проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Математически эта формулировка выражается следующим образом:

Q = ∫ k • I² • R • t,

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

Закон Джоуля-Ленца: определение, формула, применение

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2 и в начале пробега (mu2

)/2 , то есть

Здесь uскорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент,  E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I2R
    ;
  • P = U2/R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон  Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение

U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным.

Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

формула и определение, в чем измеряется, открытие закона

Закон Джоуля-Ленца — часто используемый физический закон при расчетах потерь тепла в доме или при создании таких электроприборов как ламп. Более подробная информация о том, что это такое, какую имеет формулировку, в чем измеряется количественная величина теплового действия электротока, какой формулой выражается закон джоуля ленца далее.

Что это за закон

Закон джоуля ленца определение гласит, что это физический норматив, который определяет количественный вид меры теплового действия электротока. В девятнадцатом столетии, вне зависимости друг от друга Джоуль с российским ученым Ленцем стали изучать, как нагреваются проводники в момент прохождения электротока и нашли некую закономерность. Они узнали, что в момент прохождения электротока по проводниковому элементу получается тепло, которое равно силе тока, времени и проводниковому сопротивлению.

Обратите внимание! Это закономерность была названа законом в честь двух ученых. Стоит указать, что эта закономерность активно используется с момента открытия и по сегодняшний день и помогает решить многие вопросы, связанные с электрикой.

История появления формулировки закона ученых

Формулировка

Закон джоуля ленца формулировка словесно выглядит следующим образом: мощность тепла, которая выделяется в проводниковом элементе в момент протекания в нем электротока имеет пропорциональную зависимость умножения плотности электрополя на напряженность.

Его по-другому можно сформулировать так: энергия, протекая по проводнику, перемещает электрозаряд в электрополе. Так, электрополе совершает работу. Работа производится благодаря проводниковому нагреванию. Энергия превращается в тепло.

Однако, из-за чрезмерного проводникового нагрева при помощи тока и электрооборудования, может повредиться проводка и сами аппараты. Сильное перегревание опасно, когда есть короткое замыкание в проводах. Из-за этого проводники могут иметь большое токовое значение.

Что касается интегральной формы тонких проводников правило или уравнение Джоуля — Ленца звучит так: то тепло, которое выделяется за время в конкретном участке электроцепи, определяется квадратным произведением токовой силы на сопротивление участка.

Обратите внимание! Закон Джоуля-Ленца обладает достаточно общим характером, потому что не имеет зависимости от природы, силу которой генерирует электроток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Упрощенная формулировка

В чем измеряется

Единица теплового измерения это джоуль. Формула состоит из напряжения, измеряемого в вольтах, силы тока, измеряемого в амперах, и времени, измеряемой в секундах. Тогда выходит, что показатели будут измеряться в джоулях или одном вольте, перемноженном на ампер и секунду.

Единица измерения тепла, выделяемого электричеством

Какой формулой выражается

На данный момент существует две формулы по математическому нормативу двух ученых, в дополнение к теме, как найти джоуль формула. Согласно первой, нужно перемножить напряженность с плотностью электрического поля, а согласно второй, нужно сделать интеграл из произведения теплового эквивалента работы, количества выделяемого тепла, величины тока, активного проводникового сопротивления и времени. Величина будет определена, в зависимости от того, какая разрядность у единиц, в которых измеряются значения формулы.

Формула выражения математического и физического закона

Где и как используется

Закон Джоуля-Ленца используется активно в электрике, электродинамике и других сферах физики. Он применяется как в быту, так и в промышленности.

К примеру, благодаря нему создаются лампы накаливания и электронагревательные приборы. В них находится нагревательный элемент, выступающий в роли проводника, имеющего высокое сопротивления. Благодаря этому элементу локализовано выделяется тепло на участке. Оно будет выделяться в момент повышения сопротивления с увеличением проводниковой длины и выбором конкретного сплава.

Обратите внимание! Также используется для просчета снижения энергопотерь. Выделение тепла из тока приводит к тому, что снижается энергия. В момент ее передачи, мощность линейным образом зависит от показателя напряжения с силой тока, а нагревание зависит от токовой силы квадратичным образом. По этой причине при повышении напряжения и понижении силы тока до подачи электрической энергии, это действие будет выгодным. В момент повышения показателя напряжения снизится электробезопасность. Чтобы повысить электробезопасность, нужно повысить сопротивление нагрузки и сетевое напряжение.

Стоит указать, что он влияет на подбор проводников для электроцепей, поскольку из-за неправильного выбора может начать сильно нагреваться проводник, а также начать возгораться. Это происходит при превышении допустимых значений силы тока и выделении небольшого количества энергии. Нагрев проводников вредный, поэтому теряется энергия и передается тепло от источника к пользователю.

Чтобы уменьшить эту потерю, сила тока уменьшается и повышается напряжение источника с остатком передаваемой мощности. Во избежание изоляционного электропробоя, она поднимается на высоту на высоковольтной линии электрической передачи, которая связывает большие электрические станции с городскими и поселочными пунктами.

Сфера применения

В целом, закон Джоуля-Ленца — норма, придуманная двумя учеными, чтобы установить, какое тепло отдает электрический ток. Данное тепло выражается через перемноженное выражение удвоенной силы тока, времени, и сопротивления проводника и измеряется в вольтах, умноженных на ампер и секунду. Используется активно как в быту, так и в промышленности, как при изучении фактора тепловой потери, так и при создании ламп накаливания и электронагревательных установок. Нередко применяется в момент выбора между проводами электроцепи.

Формула закона Джоуля-Ленца

При прохождении электрического тока по проводнику происходит нагревание проводника. Можно сказать, что работа электрического тока тратится исключительно на увеличение внутренней энергии проводника, т. е. на тепло. Тогда, исходя из закона сохранения энергии, следует, что A = Q.

Причина нагревания проводника связана с взаимодействием движущихся электронов с ионами кристаллической решетки. В результате ионы в узлах кристаллической решетки начинают быстрее колебаться, т. е. их кинетическая энергия возрастает. В растворах электролитов перемещаются сами ионы.

Ученые Джеймс Джоуль и Эмилий Ленц независимо друг от друга открыли опытным путем, что количество теплоты, выделяемой проводником при прохождении через него электрического тока, равно силе тока в квадрате, умноженной на сопротивление проводника и на время прохождения тока:

Q = I2Rt

Именно эта закономерность называется законом Джоуля-Ленца. Хотя эти ученые вывели закон с помощью опытов, его формулу можно вывести из современных знаний об электричестве.

Работа по перемещению заряда q находится как произведение q на напряжение на участке цепи:

A = qU

В свою очередь перемещение заряда равно произведению силы тока в проводнике на время действия этого тока:

q = It

Если подставить в формулу работы вместо q его выражение через силу тока и время, то получим

A = ItU

Напряжение также можно выразить через силу тока (по закону Ома: I = U/R). Оно равно произведению силы тока на сопротивление проводника:

U = IR

Подставим в формулу работы вместо напряжения его выражение через силу тока и сопротивление:

A = ItIR или A = I2Rt

Поскольку A = Q, то и

Q = I2Rt

Единицей измерения теплоты является джоуль (Дж). В формуле закона Джоуля-Ленца IR — это напряжение (U), которое измеряется в вольтах (В), I — сила тока, измеряемая в амперах (A), t — время в секундах. Тогда получается, что

1 Дж = 1 В * 1 A * 1 c

Закон Джоуля — Ленца определение и формулы

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло. Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I2Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени. Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I2Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I2Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U2/R)t.

Основная формула Q = I2Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах – одинаковым. В этом случае для расчетов больше подойдет формула Q = (U2/R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля – Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Урок 30. закон джоуля-ленца. эдс — Физика — 10 класс

Физика, 10 класс

Урок 30. Закон Джоуля — Ленца. ЭДС

Перечень вопросов, рассматриваемых на уроке:

1) Работа электрического тока;

2) Мощность электрического тока;

3) Закон Джоуля — Ленца;

4) Сторонние силы;

5) Электродвижущая сила.

Глоссарий по теме

Работа тока на участке цепи равна произведению силы тока, напряжения на этом участке и времени, в течении которого совершалась работа.

Мощность тока равна отношению работы тока ко времени прохождения тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называются сторонними силами.

Электродвижущая сила (ЭДС) в замкнутом проводящем контуре равна отношению работы сторонних сил по перемещению заряда вдоль контура к этому заряду.

Основная и дополнительная литература по теме урока:

Обязательная литература:

1. Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 343 – 347.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа,2009.- 68 – 74.

Дополнительная литература.

http://kvant.mccme.ru/1972/10/zakon_dzhoulya-lenca.htm

Основное содержание урока

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу, равную произведению заряда, прошедшего через проводник, и напряжения.

Сила тока равна отношению заряда прошедшего через проводник ко времени прохождения

Выразим заряд из формулы силы тока

через силу тока и время:

после подстановки в формулу (1) получим

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток.

Из закона Ома для участка цепи выразим напряжение через силу тока и напряжение

и подставив в формулу работы получим:

При последовательном соединении проводников для определения работы тока удобнее пользоваться этой формулой, так как сила тока одинакова во всех проводниках.

При параллельном соединении проводников формулой:

так как напряжение на всех проводниках одинаково.

Работа тока показывает, сколько электроэнергии превратилось в другие виды энергии за конкретный период времени. Для электроэнергии справедлив закон сохранения энергии.

Мощность определяется по формуле:

Мощность тока равна отношению работы тока ко времени прохождения тока.

Так же формулу для мощности можно переписать в нескольких эквивалентных формах:

Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника.

Электрическое поле действует с силой на свободные электроны, которые начинают упорядоченно двигаться, одновременно участвуя в хаотическом движении, ускоряясь в промежутках между столкновениями с ионами кристаллической решетки. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом. Последующие столкновения электронов с другими ионами увеличивают амплитуду их колебаний и соответственно температуру всего проводника.

В неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии:

Количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При последовательном соединении большее количество теплоты выделяется в проводнике с большим сопротивлением, а при параллельном соединении – с меньшим.

Измерения, приводящие к закону Джоуля-Ленца, можно выполнить, поместив в калориметр с водой проводник с известным сопротивлением и пропуская через него ток определенной силы в течение известного времени. Количество выделяющейся при этом теплоты определяют, составив уравнение теплового баланса.

Если соединить проводником два металлических шарика, несущих заряды противоположных знаков, под влиянием электрического поля этих зарядов в проводнике возникает кратковременный электрический ток. Заряды быстро нейтрализуют друг друга, и электрическое поле исчезнет.

Чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство, которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, должны действовать силы неэлектростатического происхождения. Одно лишь электрическое поле заряженных частиц не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (то есть кулоновских), называют сторонними силами. Необходимости сторонних сил для поддержания постоянного тока в цепи объясняет закон сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. Работа этих сил вдоль замкнутого контура отлична от нуля. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

Электродвижущую силу выражают в вольтах.

Разбор тренировочных заданий

1. Электрочайник со спиралью нагревательного элемента сопротивлением 30 Ом включен в сеть напряжением 220 В. Какое количество теплоты выделится в нагревательном элемента за 5 мин?

1) 7260000 Дж;

2) 2200 Дж;

3) 484000 Дж.

Дано:

R=30Ом

U=220B

t=5мин=300с

Найти Q-?

Решение. Количество теплоты выделяемой нагревательным элементом определяется законом Джоуля – Ленца:

Правильный ответ 3) 484000 Дж.

2. Определите работу сторонних сил при перемещении по проводнику заряда 10 Кл, если ЭДС равно 9 В. Ответ округлите до десятых.

Дано:

q=10Кл

=9В

Найти: Аст

Решение. Из формулы ЭДС выражаем

Правильный ответ: 90 Дж.

§15.Закон Джоуля-Ленца. Работа и мощность тока

Если между двумя точками с напряжением U перенести заряд

, то совершается работа . Сила тока , а значит И .

Работа тока

. (15.1)

Ток, проходя по проводнику, совершает работу (15.1) в результате чего в проводнике выделяется тепло Джоуля-Ленца.

(15.2)

Мощность, развиваемая током

. (15.3)

В истории законом Джоуля-Ленца называют формулу (15.3), а не формулу (15.2). Закон был открыт в 1841 г. Дж. Джоулем (1818–1889) и в последующем подробно исследован Ленцем.

Применим закон Джоуля-Ленца к бесконечному круглому цилиндру сечением

.

Учитывая, что сопротивление бесконечно малого цилиндра равно

.

Из (15.3) можем получить, что

.

Введем объемную плотность тепловой мощности, выделяемой в проводнике:

. (15.4)

Формула (15.4) выражает закон Джона–Ленца в дифференциальной форме, поскольку все величины относятся к одной и той же точке.

Преобразуем (15.4):

. (15.5)

Любое из этих равенств является записью закона Джоуля–Ленца в дифференциальной форме.

Пример.

Рассмотрим замкнутую цепь, содержащую источник тока и нагрузку R. Энергия, вырабатываемая источником тока

Эта работа по закону Джоуля–Ленца ,Для мощности N существуют два тока

При той же полезной мощности меньшая энергия вырабатывается источником тока при меньшем токе. При этом и меньшие потери на источнике тока:

КПД

.

Переходные процессы.

Рассмотрим переходные процессы, которые могут происходить в цепи при ее замыкании и размыкании.

В некоторый момент времени t<0 подключили конденсатор к источнику постоянного напряжения и зарядили его, т. е. на конденсаторе имеется заряд

.

В момент t=0 замыкаем ключ k, тогда в цепи появляется ток

.

Напряжение

И , приравнивая правые части, получим, где (t-характерное время установление тока)

Количество теплоты

Интегрируя последнее соотношение, находим

При

вся энергия заряженного конденсатора превращается в теплоту, т. е. .

Закон Джоуля — Ленц

Эмиль Христианович Ленц (1804 — 1865) — русский физик. Он один из основоположников электромеханики. Его имя связано с открытием закона, определяющего направление индукционного тока, и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмили Ленц и английский физик Джоуль, изучая тепловые эффекты тока независимо друг от друга, обнаружили закон, согласно которому количество тепла, выделяемого в проводнике, будет прямо пропорционально квадрату электрический ток, который проходит через проводник, его сопротивление и время, в течение которого электрический ток в проводнике остается неизменным.

Этот закон получил название закона Джоуля-Ленца, его формула выглядит следующим образом:

Q = kl²Rt, (1)

где Q — количество выделяемого тепла, l — ток, R — сопротивление проводника. , t — время; величина k называется тепловым эквивалентом работы. Числовое значение этой величины зависит от выбора единиц измерения остальных величин в формуле.

Если количество тепла измеряется в калориях, ток — в амперах, сопротивление — в Омах, а время — в секундах, то k численно равно 0.24. Это означает, что ток в 1a обеспечивает в проводнике, имеющем сопротивление 1 Ом, в секунду тепловое число, равное 0,24 ккал. Исходя из этого, количество выделяемого в проводнике тепла в калориях можно рассчитать по формуле:

Q = 0,24l²Rt.

В системе единиц СИ энергия, количество тепла и работа измеряются в единицах — джоулях. Следовательно, коэффициент пропорциональности в законе Джоуля-Ленца равен единице. В этой системе формула Джоуля-Ленца имеет вид:

Q = l²Rt.(2)

Закон Джоуля-Ленца можно проверить на опыте. Ток пропускается через проволочную спираль, погруженную в жидкость, налитую в калориметр. Затем подсчитывают количество тепла, выделяемого в калориметре. Сопротивление спирали известно заранее, ток измеряется амперметром, а время — секундомером. Изменяя ток в цепи и используя разные спирали, можно проверить закон Джоуля-Ленца.

На основании закона Ома

I = U / R,

Подставляя ток в формулу (2), получаем новое выражение для формулы закона Джоуля-Ленца:

Q = (U² / R) t .

Удобно использовать формулу Q = l2Rt для расчета количества тепла, выделяемого при последовательном соединении, потому что в этом случае электрический ток во всех проводниках одинаков. Следовательно, когда несколько проводников соединены последовательно, каждому из них будет передано количество тепла, пропорциональное сопротивлению проводника. Если, например, последовательно соединить три провода одинакового размера — медь, железо и никель, то наибольшее количество тепла будет отдавать никель, так как его удельное сопротивление наибольшее, он сильнее и нагревается.

Если жилы соединить параллельно, то электрический ток в них будет разным, а напряжение на концах таких проводников будет одинаковым. Расчет количества тепла, которое будет выделяться при таком подключении, лучше проводить, используя формулу Q = (U² / R) t.

Эта формула показывает, что при параллельном подключении каждый проводник будет выделять столько тепла, сколько будет обратно пропорционально его проводимости.

Если вы соедините три провода одинаковой толщины — медь, железо и никель — параллельно друг другу и пропустите через них ток, то в медном проводе будет выделяться наибольшее количество тепла, и он будет нагреваться больше, чем другие.

Взяв за основу закон Джоуля-Ленца, произведем расчет различных электроосветительных установок, нагревательных и нагревательных электрических приборов. Также широко используется преобразование энергии электричества в тепло.

Закон Джоуля — Введение, Определение, Уравнение и Часто задаваемые вопросы

Закон Джоуля Определение

Когда электрический ток течет по цепи, он увеличивает внутреннюю энергию проводника, что приводит к столкновению электронов с атомами проводника, что приводит к выделению тепла.Чтобы измерить количество тепла, выделяемого в результате этих столкновений, английский физик Джоуль предложил закон Джоуля.

Закон Джоуля, когда электрический ток проходит через проводник, выделяется тепло H, которое прямо пропорционально сопротивлению R проводника, времени t, в течение которого течет ток, и квадрату величины тока I Математически это представлено как H ∝ I² .Rt.

Уравнение закона нагрева Джоуля

(изображение будет скоро загружено)

Закон Джоуля математически представлен следующим уравнением

  1. Тепло, выделяемое в проводнике из-за прохождения электрического тока через него, изменяется прямо пропорционально квадрат величины тока при постоянном сопротивлении проводника и времени протекания электрического тока.

H i²

т.е. H i² [Когда R и t постоянны]

  1. Количество тепла, выделяемого в проводнике из-за протекания электрического тока через него, прямо пропорционально сопротивлению, обеспечиваемому проводник, когда время протекания и величина тока постоянны.

т.е. H ∝ R [Когда i и t постоянны]

  1. Тепло, выделяемое в проводнике из-за протекания тока, прямо пропорционально продолжительности протекания тока, когда электрическое сопротивление и величина ток постоянный.

т.е. H ∝ t [Когда i и t постоянны]

Если эти три условия объединить, результирующая обобщенная формула будет иметь вид

H ∝ i².Rt [Когда i, R и t все переменные]

H = \ [\ frac {1} {J} \]. I².Rt [∵ J — постоянная Джоуля]

Где H — выделяемое тепло, а его единица СИ — Джоуль, i — ток, протекающий в проводника, t — время протекания тока, а J — константа пропорциональности, известная как механический эквивалент тепла Джоуля.

Механический эквивалент тепла определяется как количество единиц работы, которое должно быть выполнено в системе, чтобы произвести тепло в единицу количества. Величина механического эквивалента тепла зависит от величины работы, выполняемой системой, и производимого ею тепла. Экспериментально было обнаружено, что J = 4,2 джоуля / кал (и 1 джоуль = 107 эрг) = 1400 фут-фунт / CHU = 778 фут-фунт / B Th U. Эти значения дают точные значения, намного точнее реальных. во время экспериментов тепловых расчетов.

Закон Джоуля — эффект Джоуля или эффект нагрева тока

Закон Джоуля — эффект Джоуля или эффект нагрева тока и его приложения

Английский физик Джеймс Прескотт Джоуль открыл закон Джоуля (также известный как эффект Джоуля, эффект Джоуля). -Закон Ленца или первый закон Джоуля) в 1840-43 гг., Который показывает связь между током, теплотой и сопротивлением в определенное время, т.е. когда ток течет через материал, он выделяет в нем тепло.

Закон Джоуля

Закон Джоуля гласит, что «если через резистор« R »протекает ток« I »в течение« t »секунд, то объем выполненной работы (преобразование электрической энергии в тепловую) равен равно

Выполненная работа = Нагрев = I 2 Rt… Джоулей

или

WD = Нагрев = VIt… Джоули… (∴ R = V / I)

или

WD = Нагрев = Wt… Джоули… (∴ W = VI)

или

WD = Тепло = V 2 т / R… Джоули… (∴ I = V / R)

Выполненная работа — это количество тепловой энергии, преобразованное из электричества, которое рассеивается в воздухе.В этом случае количество произведенного тепла можно рассчитать, используя следующие формулы и уравнения.

Количество произведенного тепла = H = выполненная работа / Механический эквивалент тепла = WD / J

Где:

  • Дж = 4187 джоулей / ккал = 4200 джоулей / ккал (прибл.)
  • ∴ H = I 2 Rt / 4200 ккал = VIt / 4200 ккал = Wt / 4200 ккал = V 2 t / 4200 ккал

Одна килокалория (ккал) — это количество тепла, необходимое для повышения температуры на один килограмм (кг ) воды на один градус по Цельсию (1 ° C).

Похожие сообщения

Эффект нагрева от тока

Почти все мы испытали, что когда ток течет по проводнику или кабелю и проводу, он позже нагревается. Причина этой сцены в том, что когда ток течет по проводнику, приложенная электрическая энергия преобразуется в тепловую, что увеличивает температуру проводника.

Мы знаем, что поток электронов в веществе известен как электрический ток. Дрейфующие электроны в веществе сталкиваются друг с другом и с электронами атомов молекул вещества.Столкновение электронов производит тепло. Вот почему при прохождении электрического тока в веществе выделяется тепло. Этот эффект известен как эффект нагрева от тока.

Тепло, выделяемое электрическим током, зависит от силы тока и материала этого вещества. Например,

Электрический ток производит больше тепла в изоляторах (тех материалах, которые сильно препятствуют протеканию в нем тока, например, вольфрам, нихром), в то время как количество тепла, генерируемого протекающим током в проводниках (тех материалах, в которых ток течет очень легко из-за к меньшему или почти незначительному сопротивлению e.грамм. золото, медь, алюминий) меньше, чем у изоляторов).

Похожие сообщения:

Почему от тепла светится элемент обогревателя, а не шнур обогревателя?

Как правило, нагревательные элементы нагревателей изготавливаются из нихрома, который имеет очень высокое сопротивление. Когда к нагревательному элементу через провод подается напряжение питания, материал сильно противодействует потоку электронов в нем. Из-за дрейфа электронов внутри нагревающего материала электроны сталкиваются с электронами в атомах материала.Это непрерывное столкновение электронов нагревает и зажигает нагревательный элемент, который дополнительно обеспечивает тепловую энергию. Проще говоря, нагревательный элемент из нихрома преобразует электрическую энергию в тепловую. Весь этот процесс известен как эффект нагрева от тока.

С другой стороны, шнур, подключенный к нагревателю, сделан из проводника, по которому легко протекает ток без заметного сопротивления. Поэтому светится только нагревательный элемент, а не кабель нагревателя.

Похожие сообщения:

Решенный пример закона Джоуля для нагрева Эффект тока

Пример:

Электрический нагреватель содержит 1,6 кг воды при 20 ° C. Для повышения температуры до 100 ° C требуется 12 минут. Предположим, что потери из-за излучения и нагрева чайника составляют 10 кг калорий. Найдите номинальную мощность обогревателя.

Раствор

Тепло, необходимое для повышения температуры 1,6 кг воды до точки кипения = 1,6 x 100 x 1 x (100-20) кал.

= 128000 кал.

Потери тепла = 10 x 1000 = 10000 кал.

Всего тепла = 128000) + 10000 = 138000 кал.

Итак, произведенное тепло = Wt = (W x 12 x 60) / 4,2 кал.

Выработанное тепло = тепло, забираемое нагревателем, т.е.

= (Ш x 12 x 60) /4,2 = 138000

Вт = (138000 x 4,2) /) 12 x 60)

W = 805 Вт = 0,8 кВт

Применение эффекта Джоуля или эффекта нагрева тока

Закон Джоуля или эффект нагрева электрическим током используются во многих домашних и промышленных приложениях.Ниже представлены приборы и устройства, использующие воздействие электрического тока.

  • Электрические обогреватели, плиты, водонагреватели и нагревательные элементы
  • Электрический утюг для одежды
  • Электрическая плита
  • Электросварка
  • Пищевая промышленность
  • Нить накаливания и лампочки
  • ИК-тепловидение (инфракрасная термография (IRT) ) лампочки
  • Змеевики резистивного нагрева, обогреватель помещения (электрический радиатор), погружные обогреватели PTC обогреватели, патронные обогреватели и тепловентиляторы
  • Фены
  • Паяльник
  • Предохранители и плавкие элементы

Помимо этих полезных приложений Из-за теплового воздействия тока, есть некоторые недостатки, такие как потеря электроэнергии (I 2 R) в линиях электропередачи и передачи HVAC (переменный ток высокого напряжения) из-за того, что существует некоторое сопротивление линий электропередач. материал.Более того, это приводит к серьезным проблемам с нагревом в электрических машинах и устройствах, таких как трансформатор, генератор, двигатели и т. Д.

Кроме того, тепловая эффективность или эффективность нагрева тока вообще не могут быть использованы, потому что есть некоторые потери тепла из-за излучение (передача тепла в виде волн нагрева) и конвекция (движение молекул в материале, используемом для передачи тепла).

Похожие сообщения:

joule’s_laws

Законы Джоуля — это пара законов, касающихся тепла, выделяемого током, и зависимости энергии идеального газа от давления, объема и температуры соответственно.

Рекомендуемые дополнительные знания

Первый закон Джоуля , также известный как эффект Джоуля , является физическим законом, выражающим соотношение между теплотой, генерируемой током, протекающим через проводник. Он назван в честь Джеймса Прескотта Джоуля, изучавшего это явление в 1840-х годах. Это выражается как:

Где Q — тепло, выделяемое постоянным током I , протекающим через проводник с электрическим сопротивлением R , за время t .Когда ток, сопротивление и время выражаются в амперах, омах и секундах соответственно, единицей измерения Q является джоуль. Первый закон Джоуля иногда называют законом Джоуля-Ленца , поскольку он был позже независимо открыт Генрихом Ленцем. Эффект нагрева проводников, по которым протекает ток, известен как джоулев нагрев.

Первый закон Джоуля тесно связан с законом Ома и, таким образом, легко выводится из него. Ниже приводится краткий обзор того, как связаны эти два закона, для получения подробной информации см. Закон Ома.

Второй закон Джоуля гласит, что внутренняя энергия идеального газа не зависит от его объема и давления, а зависит только от его температуры.

Связь с законом Ома

Первый закон Джоуля тесно связан с законом Ома и, таким образом, легко выводится из него. Ниже приводится краткое описание взаимосвязи этих двух законов.

или
Закон Ома
Мощность, рассеиваемая на резисторе

Объединив два приведенных выше уравнения и представив их в терминах I и R:

Мощность, рассеиваемая в резисторе, выраженная в силе тока [ватт или джоуль / сек]

Для получения дополнительной информации о Power см. Power (физика).Наконец, количество мощности, рассеиваемой резистором, — это количество работы, проделанной на резисторе (то есть тепло, рассеиваемое резистором), деленное на время:

Что, следовательно, дает:

Обратите внимание, что первый закон Джоуля можно также записать в терминах напряжения на резисторе:

См. Также

Важность, формула, значение и применение

Закон Ленца был первоначально предложен Генрихом Фридрихом Ленцем, и вся его карьера была полностью связана с физикой и химией.Его первоначальное наблюдение было связано с эффектом Пельтье, который означает природу проводимости металлов и изменение значения электрического сопротивления в зависимости от температуры. Затем исследования Ленца перешли к электропроводности и открыли эффект Джоуля. Исследование независимости электрических вариаций было направлено на провозглашение закона Ленца в 1834 году. Таким образом, этот подход способствовал развитию закона Ленца, который делает возможность познания направления и вибрации, развиваемой изменением потока энергии.В этой статье дается четкое описание закона Ленца, его формулы, значения и применения.

Что такое закон Ленца?

Закон электромагнитной индукции Ленца определяет, что направление тока, развивающееся в проводнике за счет изменения магнитного поля (которое является магнитным полем, создаваемым индуцированным током), противоположно начальному изменяющемуся магнитному полю, создавшему его. Направление тока представлено с использованием принципа правой руки Флеминга.

Поначалу кажется трудным понять концепцию закона Ленца. Чтобы упростить это, рассмотрим приведенный ниже пример.

Когда моделирование тока выполняется с помощью магнитного поля, то магнитное поле, создаваемое этим моделируемым током, будет генерировать собственное магнитное поле. И генерируемое магнитное поле будет противодействовать магнитному полю, которое его изначально создало.

Принцип закона Ленца

Это качественный принцип, который указывает смоделированное направление тока, но не объясняет ничего, связанного с величиной. Закон Ленца определяет путь множественных эффектов в электромагнетизме, таких как путь напряжения, моделируемый в индукторе или проводе через переменный ток, или тянущая сила вихревых токов, приложенных к движущимся объектам в магнитном поле.

В приведенном ниже примере четко объясняется сценарий, в котором при увеличении магнитного поля моделируемое магнитное поле будет действовать противоположным образом. В то время как, когда магнитное поле уменьшается, моделируемое магнитное поле также действует противоположно ему. Но здесь противоположный путь соответствует тому, что он действует, чтобы усилить поле, поскольку оно сопротивляется снижению скорости изменения.

Этот закон в основном зависит от принципа индукции Фарадея.Согласно этому принципу, изменяющееся магнитное поле будет стимулировать прохождение тока через проводник. Принцип Ленца гласит, что путь симулированного тока противоречит действительному изменяющемуся магнитному полю, которое его генерировало. Этот сценарий можно представить в виде формулы, которая показана ниже:

Є = — (dФ B / dt)

Изменение магнитного поля может быть связано с изменением напряженности магнитного поля либо по изменение положения магнита близко или далеко от катушки или изменение положения катушки в соответствии с магнитным полем.Также можно сказать, что величина ЭДС, моделируемая в цепи, будет прямо пропорциональна скорости изменения магнитного потока.

Формула

Закон Ленца определяет, что когда возникает ЭДС из-за изменения магнитного поля, то поляризация моделируемой ЭДС такова, что она генерирует смоделированный ток, где его магнитное поле противоречит начальному изменяющемуся магнитному полю. поле, которое его сгенерировало. А формула закона Ленца имеет вид:

Є = -N (dФ B / dt)

Где «Є» соответствует смоделированной ЭДС

«dФ B » соответствует изменяющемуся магнитному полю

А «N» означает витки катушки.

Отрицательный знак в формуле означает, что смоделированная ЭДС и изменяющееся магнитное поле имеют противоположные знаки.

Закон Ленца и сохранение энергии

Чтобы соответствовать принципу сохранения энергии, смоделированный путь тока по закону Ленца должен генерировать магнитное поле, которое противоречит магнитному полю, которое его произвело. Этот закон является следствием принципа сохранения энергии.

Когда магнитное поле, создаваемое моделируемым током, аналогично полю, создавшему его, тогда оба поля объединяются и образует увеличенное магнитное поле.Это увеличенное поле будет генерировать другой моделируемый ток внутри проводника, который в два раза превышает величину фактического моделируемого тока. Опять же, это создает еще один смоделированный ток, и этот процесс продолжается.

Итак, можно констатировать, что закон Ленца сам генерирует симулированный ток, который противоречит полю, которое его произвело, — так что можно заключить, используя бесконечную петлю положительной обратной связи, тем самым блокируя сохранение энергии.

Закон Ленца также соответствует третьему принципу Ньютона.В соответствии с этим, когда моделируемый ток генерирует магнитное поле, которое является таким же и противоречит траектории магнитного поля, которое его произвело, тогда только он обладает способностью отражать изменение магнитного поля в этом месте.

Объясните закон Ленца

Чтобы четко понять феномен, лежащий в основе закона Ленца, рассмотрим следующие две ситуации.

Ситуация 1: Когда магнит движется близко к катушке.

Когда северный полюс магнита приближается к катушке, поток, который соединяется с катушкой, также увеличивается.Согласно принципу Фарадея, при изменении магнитного потока и ЭДС происходит моделирование тока в катушке, и это создает собственное магнитное поле.

Понимание закона Ленца — Случай 1

И согласно закону Ленца, магнитное поле само противоречит или противодействует увеличению потока через катушку, и это возможно только тогда, когда катушка приобретает северную полярность, потому что полюса такого же типа отталкивает друг друга. Зная магнитную полярность катушки, можно также узнать путь симулированного тока.Здесь направление тока будет против часовой стрелки.

Ситуация 2: Когда магнит движется далеко от катушки.

Когда северный полюс магнита удаляется от катушки, поток, который соединяется с катушкой, уменьшается. Согласно принципу Фарадея, при изменении магнитного потока и ЭДС происходит моделирование тока в катушке, и это создает собственное магнитное поле.

Понимание закона Ленца — Случай 2

И согласно закону Ленца, магнитное поле само будет противоречить или противодействовать уменьшенному потоку через катушку, и это возможно только тогда, когда катушка приобретает южную полярность, поскольку неидентичные полюса притягиваются. друг с другом.Зная магнитную полярность катушки, можно также узнать путь симулированного тока. Здесь направление тока будет по часовой стрелке.

Это считается подробным значением закона Ленца .

С помощью принципа большого пальца правой руки можно узнать направление тока или магнитного поля. Когда пальцы правой руки расположены поперек провода, то направление большого пальца соответствует направлению тока, а направление согнутых пальцев соответствует направлению магнитного поля, создаваемого проводом.

С помощью этого правила большого пальца правой руки закон Ленца определяется как:

Когда магнитный поток Ф, который соединяется с катушкой, увеличивается, тогда направление тока таково, что оно противоречит приращению потока, и поэтому моделируемый ток будет генерировать свой поток в направлении.

Правило большого пальца правой руки

Когда магнитный поток Ф, который соединяется с катушкой, уменьшается, тогда направление тока таково, что оно похоже на направление уменьшающегося потока, и поэтому моделируемый ток будет генерировать свой поток в направление, как показано на рисунке ниже.

Процедура решения проблем

Проблемы, которые должны быть решены в соответствии с законом Ленца, можно легко решить, выполнив следующие шаги:

  • Знать вопрос и иметь четкое представление о том, что необходимо определить.
  • Определите путь магнитного поля
  • Узнайте, уменьшается или увеличивается скорость магнитного потока
  • Теперь найдите путь моделируемого магнитного поля. Это противоречит изменению магнитного потока путем вычитания или объединения с фактическим полем
  • Рассчитайте моделируемый ток, который генерирует моделируемое магнитное поле
  • Путь смоделированной ЭДС теперь будет запускать ток на этом пути и может быть указан как ток, который развивается от положительного фронта ЭДС и возвращается к отрицательному.

Приложения

Это несколько приложений закона Ленца :

  • Благодаря этому закону известна теория накопленной магнитной энергии в индукторе. Когда исходная ЭДС подключена через катушку индуктивности, через нее будет протекать ток. Обратная ЭДС будет противоречить приращению тока через катушку индуктивности. Итак, чтобы вызвать ток, должен быть другой периферийный источник ЭДС, который устраняет противоречие. Это достигается за счет ЭДС, которая накапливается в катушке индуктивности, и ее также можно восстановить после удаления периферийного источника ЭДС из схемы.
  • Этот закон определяет, что моделируемая ЭДС и изменение потока будут иметь разные знаки, и это показывает физический анализ выбора знаков в принципе индукции Фарадея.
  • Закон Ленца также применим к электрическим генераторам. Когда в генераторе происходит имитация тока, это противоречит ему и запускает вращение генератора, поэтому устройству требуется дополнительная механическая энергия. Это также обеспечивает обратную ЭДС, когда устройства представляют собой электродвигатели.
  • Применяется в посуде с электромагнитным торможением и индукционной посуде.
  • Используется в вихретоковых компенсаторах и вихретоковых динамометрах.
  • Используемые микрофоны, тормозное оборудование в поездах и генераторы переменного тока.
  • Устройства, работающие по закону Ленца, также можно использовать в кардридерах.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о измерителе потока.

Это все о концепции закона Ленца. Эта статья предоставила исчерпывающую информацию о принципе закона Ленца, его формуле, сохранении энергии, значении и применении.Еще более важно знать еще несколько примеров закона Ленца в реальных приложениях.

Калькулятор закона Ома • Электрические, радиочастотные и электронные калькуляторы • Онлайн-преобразователи единиц

Определения и формулы

Схема простой схемы, иллюстрирующей параметры закона Ома U , I и R

Мы окружены электрические цепи в нашей повседневной жизни. От компьютеров, планшетов, смартфонов и автомобилей до кредитных карт и ключей от наших автомобилей и домов — все они сделаны с использованием электрических цепей.И все они работают по закону Ома:

Мы все (ладно, не все, только некоторые) знаем эту простую формулу со школы, а некоторые из нас знают ее даже с раннего возраста. Европейцы знают первую формулу, а жители Северной Америки знают вторую. Европейцы предпочитают U для напряжения, а американцы предпочитают V для того же физического количества. Итак, мы можем сказать, что закон Ома действует везде. Попробуем лучше понять этот закон.

Закон Ома

Георг Симон Ом (1789–1854)

Закон Ома назван в честь немецкого физика и математика Георга Симона Ома (1789–1854), который был школьным учителем в школе с хорошо оборудованной физической лабораторией. , исследовал недавно изобретенную (в 1799 году) гальваническую батарею и термопару, изобретенную в 1821 году.Он обнаружил, что ток в проводнике прямо пропорционален разности потенциалов на проводнике. Он опубликовал результаты своих исследований в 1827 году в известной книге Die galvanische Kette, Mathematisch Bearbeitet (Математическое исследование гальванической цепи) . В результате его работы отряд сопротивления назван его именем. Эта взаимосвязь между током, напряжением и сопротивлением, известная теперь как закон Ома, является основной основой всей электроники.Ом годами боролся за признание своей работы.

Элемент схемы, основным назначением которого является создание электрического сопротивления, называется резистором. На схемах он представлен двумя видами символов: один используется в основном в Европе и стандартизирован Международной электротехнической комиссией (МЭК), а другой — в Северной Америке и стандартизирован Институтом инженеров по электротехнике и электронике (IEEE).

Резисторы и их электронные символы — европейские, стандартизированные IEC (слева) и американские, стандартизованные IEEE (справа)

По закону Ома сопротивление, измеренное в омах, представляет собой просто константу пропорциональности между током и напряжением:

, где I — ток, В и U — напряжение, а R — сопротивление.Обратите внимание, что в этом выражении R ≥ 0. Также обратите внимание, что в этом выражении мы предположили, что резистор имеет постоянное сопротивление, которое не зависит от напряжения или тока. Если значение R или отношение U / I является постоянным, то ток можно изобразить как функцию напряжения в виде прямой линии.

В резистивных цепях, например, в проводах и резисторах, ток и напряжение линейно пропорциональны. В математике линейная функция — это функция, график которой представляет собой прямую линию (см. Иллюстрацию ниже).Например, y = 2 x является линейной функцией. В линейных отношениях, если одна из величин увеличивается или уменьшается, например, в три раза, другая также будет увеличиваться или уменьшаться на ту же величину. По закону Ома это означает, что если напряжение на резисторе утроится, ток также утроится. Это предполагает постоянное сопротивление.

График, показывающий соотношение между током и напряжением для конкретного электронного компонента, называется вольт-амперной характеристикой.Резисторы имеют линейную вольт-амперную характеристику.

Дополнительную информацию о резисторах и других электронных компонентах можно найти в наших электрических, радиочастотных и электронных калькуляторах и электротехнических преобразователях.

Неомические компоненты

Графическое изображение вольт-амперных кривых нескольких устройств: 1 — резистор, 2 — диод, 3 — лампа накаливания, 4 — стабилитрон; как мы видим, только резистор имеет линейную вольт-амперную характеристику

Хотя при изучении закона Ома мы всегда предполагаем, что вольт-амперные характеристики резисторов линейны, важно отметить, что многие очень полезные электрические и электронные компоненты как лампы накаливания, диоды и транзисторы, которые широко используются в электрических цепях, демонстрируют нелинейную характеристику сопротивления.То есть отношение напряжения к току для них не является прямой линией, проходящей через начало координат.

В этой схеме увеличение напряжения не будет производить пропорционально увеличивающийся ток, потому что сопротивление горячей лампы при номинальном напряжении 12 В выше, чем ее сопротивление при 4 или 6 В. Кривая вольт-амперной характеристики сглаживается по мере того, как увеличивается напряжение и увеличивается сопротивление лампы (см. рисунок выше)

Во многих случаях это предположение о линейности резисторов неверно.Рассмотрим, например, схему с лампой накаливания и блоком питания с переменным напряжением. Эту схему можно найти во многих школьных учебниках, где обсуждается, как ток зависит от напряжения, при условии, что сопротивление лампы постоянно. Они объясняют, что если напряжение на 12-вольтовых выводах лампы увеличивается, пропорционально увеличивается и ток. Тем не менее, это не так! Если мы поместим амперметр и измерим ток, мы заметим, что он не прямо пропорционален напряжению.Это связано с тем, что сопротивление лампы изменяется, когда ее нить накаливания начинает светиться — лампа имеет нелинейную вольт-амперную характеристику.

Когда молодые люди начинают изучать электричество, законы Ома и Джоуля — первые два закона, которые они узнают, и довольно часто они видят их в форме колеса закона Ома, что действительно пугает, особенно когда они понимают, что им нужно запомнит это колесо — потому что для их учителей намного проще проверить память учеников, чем проверить их понимание.Учителя часто заставляют своих учеников запоминать все 12 формул вместо запоминания или, что еще лучше, понимают только их двоих, а именно:

и

Хотя это колесо обычно называют колесом закона Ома, это колесо фактически объединяет два закона — закон Ома и закон нагрева Джоуля, также называемый первым законом Джоуля, и закон Джоуля-Ленца

Недорогой комплект электричества для детей

Остальные 10 страшных формул могут быть легко выведены из этих двух.И даже эти две формулы запоминать не нужно. Что действительно необходимо помнить и понимать, так это то, что ток через компонент прямо пропорционален разности потенциалов, приложенной к этому компоненту, и обратно пропорционален его сопротивлению. Это закон Ома. И что мощность прямо пропорциональна току и напряжению — это закон Джоуля.

Эти два закона очень интуитивно понятны, если учащиеся понимают, что такое ток, напряжение, сопротивление и мощность.Они поймут, если поиграют с батареей, несколькими резисторами и мультиметром. Они также могут поиграть с этим калькулятором.

Это легко, если они используют аналогию водяного насоса с ограничением и трубой, в которой насос оказывает давление (представляющее напряжение), чтобы протолкнуть воду (ток) по контуру (трубе) с ограничением (сопротивлением). Все остальные формулы, представленные в колесе закона Ома, могут быть выведены из этих двух формул, и если человек использует другие формулы ежедневно, он в конечном итоге запомнит их без каких-либо усилий.

Закон Джоуля

Джеймс Прескотт Джоуль (1818–1889)

Для молодого английского пивовара Джеймса Прескотта Джоуля, который зарабатывал себе на жизнь, работая менеджером пивоварни, наука была просто хобби. Его отец был богатым пивоваром, и молодой Джеймс начал работать на пивоварне в возрасте пятнадцати лет. Когда Джоуля было всего 23 года, он открыл закон, который теперь носит его имя, проводя эксперименты, пытаясь выяснить, что более эффективно в их пивоварне: паровой двигатель или недавно изобретенные электродвигатели.В результате он установил взаимосвязь между током, протекающим через сопротивление (провод), и выделяемым теплом.

Закон Джоуля гласит, что мощность нагрева P , генерируемая электрическим током I в проводнике, пропорциональна произведению квадрата тока и сопротивления провода R :

Если мы сложим Используя закон Джоуля и закон Ома, мы можем вывести несколько полезных формул, которые можно использовать для расчета мощности, рассеиваемой в резисторе, сопротивления на основе известных значений напряжения и тока, тока, протекающего в резисторе, и напряжения на резисторе.Эти формулы часто отображаются в виде страшного колеса закона Ома или (менее страшного) треугольника закона Ома. Щелкните примеры ниже, чтобы узнать, как использовать эти формулы. Этот нагрев провода электрическим током также называется омическим нагревом, джоулевым нагревом или резистивным нагревом.

Эмиль Ленц (1804–1865)

Омический нагрев был независимо изучен русским физиком Эмилем Ленцем, который изучал электромагнетизм с 1831 года и наиболее известен тем, что открыл закон, который связывает направление индуцированного электрического тока с движущимся магнитным полем. который назван в его честь.Он также независимо открыл закон Джоуля, и этот закон часто носит также имя Ленца — «закон Джоуля-Ленца».

Следует также отметить, что в некоторых учебниках этот закон неверно именуется законом Ватта, особенно если они ссылаются на формулу P = UI .

Закон Ома в цепях переменного тока

Закон Ома используется не только для анализа цепей постоянного тока, описанных выше. Когда переменное во времени напряжение, например синусоидальное напряжение, прикладывается к цепи, закон Ома все еще применяется.Если на резистор подается синусоидальное напряжение, в нем будет течь синусоидальный ток. Этот ток находится в фазе с приложенным напряжением, потому что, когда напряжение меняет полярность, ток также меняет ее. Когда напряжение на максимуме, ток также на максимуме.

При применении закона Ома для анализа цепи переменного тока всегда необходимо последовательно выражать напряжение и ток. Это означает, что напряжение и ток должны быть выражены как среднеквадратичные значения, так и пиковое или размах.При применении закона Джоуля для определения мощности, рассеиваемой в резисторе, применяется то же правило: и ток, и напряжение должны выражаться с использованием одних и тех же значений. Например:

, где субиндекс RMS обозначает среднеквадратичное значение, или

Здесь p означает пиковое значение. Если цепь переменного тока содержит реактивные компоненты, такие как конденсаторы и катушки индуктивности, к ним также применяется закон Ома. В этом случае их реактивные сопротивления используются вместо сопротивления:

, где X может быть реактивным сопротивлением конденсатора X C или катушки индуктивности X L , которые рассчитываются по следующим формулам :

и

Дополнительную информацию о реактивном сопротивлении различных компонентов и их последовательном и параллельном сочетании можно найти в наших электрических, радиочастотных и электронных калькуляторах и электротехнических преобразователях.

Что касается мощности в реактивных компонентах, они не преобразуют энергию в тепло и, следовательно, энергия не теряется, и истинная (активная, активная) мощность P равна нулю. Мгновенная мощность передается между конденсатором или катушкой индуктивности и источником питания. Скорость, с которой реактивный компонент накапливает или возвращает энергию, называется его реактивной мощностью Q и определяется по следующим формулам:

Реактивная мощность измеряется в вольт-амперах реактивной (вар) и может использоваться с обычными десятичные префиксы, например квар, мвар и т. д.

Параллельная цепь RLC

В схемах, содержащих активные и реактивные компоненты, применение закона Ома включает использование комплексных величин импеданса Z , напряжения U и тока I . Поскольку для вычислений по законам Ома и Джоуля используются операции умножения и деления, удобно выражать комплексные значения в полярной форме. Вы можете использовать наш калькулятор преобразования прямоугольного фазора в полярный для преобразования значений комплексной мощности, тока, напряжения и импеданса между комплексными и полярными формами.Чтобы определить полное сопротивление различных параллельных и последовательных цепей с активными и реактивными компонентами, используйте наши электрические, радиочастотные и электронные калькуляторы.

Формулы закона Ома переменного тока

Примечание для читателей, которые не знакомы с обозначениями углов, используемыми в американских учебниках по электронике и электротехнике. Специальное обозначение, называемое обозначением вектора или угла, используется с символом угла (∠). Используется для описания векторов. Вектор — это комплексное число U , используемое для обозначения синусоиды.Он представлен в полярных координатах вектором с величиной U и углом φ , который обычно выражается в градусах. Фазоры предоставляют простые средства анализа электрических цепей. Формула Эйлера лежит в основе векторного анализа:

Это U∠φ — всего лишь сокращенное обозначение для Ue .

Следующие формулы используются в этом калькуляторе. Расчеты производятся со значениями в форме векторов в соответствии с правилами умножения и деления векторов:

, где φ U , φ I и φ Z — напряжение, ток и фазовые углы импеданса.

Все комплексные значения вводятся в форму калькулятора либо в прямоугольной, либо в векторной форме. Хотя импеданс и комплексная мощность не являются векторными величинами, они могут быть представлены в сложной форме, потому что, как и напряжение и ток, они являются комплексными числами и имеют как величину, так и угол. Если они введены в прямоугольной форме, они преобразуются в форму вектора перед вычислением с использованием формул, описанных в нашем Калькуляторе комплекса в фазор.

В качестве примера мы рассчитаем полный ток I T в параллельной RLC-цепи с R = 10 Ом, L = 100 мкГн и C = 1 мкФ.Источник переменного тока подает синусоидальное напряжение 0,5 В с частотой 10 кГц (нажмите, чтобы просмотреть результат расчетов).

Величина импеданса этой цепи RLC в прямоугольной форме составляет

Фазовый угол

Положительный фазовый угол означает, что нагрузка является индуктивной, а ток отстает от напряжения. Общий импеданс в полярной форме равен

Используя закон Ома и правило деления чисел в полярной форме, мы определим полный ток:

Мощность в цепях переменного тока

В нашем калькуляторе мощности переменного тока мы показали, что активный P , реактивный Q , кажущийся | S | и комплексную мощность S можно рассчитать по следующим формулам:

и

Опять же, поскольку умножения и деления участвуют в вычислениях мощности, удобно выражать комплексные значения в полярной форме .Можно математически показать, что комплексная мощность равна произведению векторного напряжения и комплексно-сопряженного вектора тока векторов, то есть

Здесь U и I — напряжение и ток в комплексная форма и I * , U * и Z * представляют собой сопряженные значения тока, напряжения и импеданса в комплексной форме. Жирный шрифт означает, что эти значения являются векторными величинами.Обратите внимание, что здесь комплексная мощность S измеряется в вольт-амперах (ВА). В векторной форме мы имеем

, где φ U — фазовый угол напряжения, а φ I — текущий фазовый угол. Эти формулы были использованы для создания колеса закона Ома переменного тока.

Колесо закона Ома переменного тока; жирный шрифт используется для отображения комплексного тока, напряжения, мощности и импеданса. Звездочка, например, в I * , показывает комплексное сопряжение комплексного тока I

Более подробную информацию о расчетах мощности переменного тока вы найдете в нашем калькуляторе мощности переменного тока.Ниже приведены несколько примеров расчетов с помощью этого калькулятора.

Примеры расчетов

Пример 3 . К розетке на 120 В. подключается электронагреватель сопротивлением 10 Ом. Рассчитайте потребляемую мощность и ток, потребляемый нагревателем.

Пример 4 . Маленькая лампочка с сопротивлением 2300 Ом в холодильнике подключается к линии питания 120 В. Рассчитайте потребляемую мощность и ток, потребляемый лампой.

Пример 5 . Ток 0,15 А от солнечной панели протекает через резистор 220 Ом. Рассчитайте напряжение на этом резисторе и мощность, которую он рассеивает в виде тепла.

Пример 6 . Вычислите сопротивление галогенной лампочки и мощность, которую она рассеивает, если потребляет 1,5 А от 12-вольтового автомобильного аккумулятора.

Пример 7 . Вычислите ток через резистор 12 кОм и напряжение на нем, если резистор рассеивает мощность 1 Вт.RC-цепочка серии

(см. Пример 6). Дано: R = 10 Ом, C = 0,1 мкФ, I T = 0,2∠0 °. Требуется: U T

Пример 8 . К источнику питания синусоидальной формы с частотой 1 МГц последовательно подключены резистор на 10 Ом и конденсатор 0,01 мкФ. Определите напряжение источника в полярной форме, если ток, потребляемый от источника, составляет I = 0,2∠0 ° A. Подсказка: используйте наш калькулятор импеданса последовательной RC-цепи, чтобы определить полное сопротивление RC-цепи в полярной форме (Z = 18.8 – 57,86 °), затем с помощью этого калькулятора определите напряжение источника (V = 3,76–57,8 ° В).

Эту статью написал Анатолий Золотков

Электронное — Закон Джоуля – Ленца .. Забытая история? — iTecTec

Закрыт . Этот вопрос основан на мнении. В настоящее время он не принимает ответы.

Хотите улучшить этот вопрос? Обновите вопрос, чтобы на него можно было ответить с помощью фактов и цитат, отредактировав это сообщение.

Закрыт 3 года назад.

Мы все или должны быть хорошо знакомы с этим рисунком.

Это, конечно, магический треугольник, используемый для обозначения закона Ома.

Мы все должны быть хорошо знакомы с подобным треугольником власти.

Что мне интересно, так это то, что все мы сразу узнаем и говорим о законе Ома, но мне интересно, сколько именно из нас знает, кто несет ответственность за треугольник силы.

Даже хорошие учебные страницы, подобные этой, бойко рассказывают о законе Ома, а затем переходят в треугольник власти, как будто он каким-то образом является его частью.Фактические создатели никогда не упоминаются.

На самом деле закон P = IV является результатом нагрева Джоуля, первого закона Джоуля, также известного как закон Джоуля – Ленца, независимо открытого Джеймсом Прескоттом Джоулем и Эмилем Ленцем в 1842 году.

Почему Георгу Ому уделяется столько внимания, в то время как Джоуль и Ленц с законом, который, на мой взгляд, не менее важен, чем закон Ома, отодвинуты на задний план?

Стоит задаться вопросом, кто с кем спал, чтобы его либо узнали, либо забыли.

Я понимаю, что это похоже на вопрос для обсуждения, но я действительно хочу знать, есть ли какая-то причина не называть это тем, что есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *