Как выглядит диод: Диоды и их разновидности – Диод — Википедия

Содержание

Виды диодов, характеристики, применение

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

виды диодов

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

триод и диод

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

ламповые диоды

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

характеристики полупроводниковых диодов

Светодиод

Особенность данного типа диодов заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

диод переменного тока

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

диоды цена

Диоды и триоды (транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

Плюсы:

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Немного интересных сведений о диодах

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

сопротивление диода

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

Как выглядит диод фото, виды диодов, диоды фото

В наши дни все чаще можно услышать слово диод. Но что же оно значит на самом деле и как выглядит этот диод. Об этом мы и расскажем вам в этой записи.

Также, будут упомянуты разновидности диодов и способы их применения в повседневной жизни.

В любой электронике, диод состоит из двух электронных компонентов. Он имеет низкое сопротивление (в идеале 0) в одном направлении и высокое (в идеале бесконечное) в другом направлении.

Полупроводниковый диод, является наиболее распространенным типом диодов сегодня. Он состоит из кристаллической части и полупроводникового материала, подключается двумя клеммами.

Разновидности и применение диодов

Вакуумная диодная трубка представляет собой простую трубу с двумя электродами, пластину (аноид) и нагретый катод.

Наиболее распространенная функция диода, это передавать электрический ток в одном направлении. Однако диоды могут быть более сложными.

В зависимости от порога напряжения, диоды могут использоваться как датчики температуры или регуляторы напряжения, для защиты цепей от скачков высокого напряжения. Такие диоды называются

Варакторные и используются в радио-магнитофонах или телевизоре.

Так выглядит диод крупным планом:

Так выглядит диод, который чаще всего встраивают в корпусы телевизоров и видео приемников:

 

Немного истории

Диоды стали первыми полупроводниковыми электронными устройствами в 1906 году. Открытие диодных кристаллов упало немецкому физику Брауну. На тот момент они состояли из минеральных кристаллов, таких как галенит.

Сегодня большинство диодов производят из кремния, но и другие полупроводники, такие как германий используются тоже.

Фотодиод — Википедия

Материал из Википедии — свободной энциклопедии

ФД-10-100 (активная площадь — 10×10 мм²). ФД1604 (активная площадь ячейки 1,2×4 мм² — 16 шт). Обозначение на схемах.
Типовая спектральная чувствительность кремниевого фотодиода.

Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n-области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p и n находится слой нелегированного полупроводника i. p-n- и p-i-n-фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.

Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.

Принцип работы:

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода C

p-n

Фотодиод может работать в двух режимах:

  • фотогальванический — без внешнего напряжения
  • фотодиодный — с внешним обратным напряжением

Особенности:

  • простота технологии изготовления и структуры
  • сочетание высокой фоточувствительности и быстродействия
  • малое сопротивление базы
  • малая инерционность

Параметры и характеристики фотодиодов[править | править код]

Параметры:

  • чувствительность
    отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему.
    Si,Φv=IΦΦv{\displaystyle S_{i,{\Phi _{v}}}={\frac {I_{\Phi }}{\Phi _{v}}}}; Si,Ev=IΦEv{\displaystyle S_{i,{E_{v}}}={\frac {I_{\Phi }}{E_{v}}}} — токовая чувствительность по световому потоку
    Su,Φe=UΦΦe{\displaystyle S_{u,{\Phi _{e}}}={\frac {U_{\Phi }}{\Phi _{e}}}}; Si,Ee=UΦEe{\displaystyle S_{i,{E_{e}}}={\frac {U_{\Phi }}{E_{e}}}} — вольтаическая чувствительность по энергетическому потоку
  • шумы
    помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

Характеристики:

  • вольт-амперная характеристика (ВАХ)
    зависимость выходного напряжения от входного тока. UΦ=f(IΦ){\displaystyle U_{\Phi }=f(I_{\Phi })}
  • спектральные характеристики
    зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
  • световые характеристики
    зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
  • постоянная времени
    это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
  • темновое сопротивление
    сопротивление фотодиода в отсутствие освещения.
  • инерционность
  • В p-i-n-структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n-переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n-фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при U
    обр
     ≈ 0,1 В p-i-n-фотодиод имеет преимущество в быстродействии.
Достоинства:
1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области.
2) высокая чувствительность и быстродействие
3) малое рабочее напряжение Uраб
Недостатки:
сложность получения высокой чистоты i-области
  • Фотодиод Шоттки (фотодиод с барьером Шоттки)
    Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
  • Лавинный фотодиод
  • В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения:
    M=IΦIΦ0{\displaystyle M={\frac {I_{\Phi }}{I_{\Phi _{0}}}}}
    M=11−(UUpr)m{\displaystyle M={\frac {1}{1-\left({\frac {U}{U_{pr}}}\right)^{m}}}}
    Для реализации лавинного умножения необходимо выполнить два условия:
    1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны:
    qλ=3Ig2{\displaystyle q\lambda ={\frac {3I_{g}}{2}}}
    2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега:
    W>>λ{\displaystyle W>>\lambda }
    Значение коэффициентов внутреннего усиления составляет M = 10—100 в зависимости от типа фотодиодов.
  • Фотодиод с гетероструктурой
    Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.

Что такое диод и как его проверить

Приветствую друзья!

Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.

А собранные вместе, они являют собой нечто совершенно уникальное!

Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.

Проверка диодовЭто как дом, построенный из кирпичей.

Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.

Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.

Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.

Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.

Что такое диод?

Диоды в блоке питанияДиоды применяются в компьютерных блоках питания для выпрямления переменного тока.

Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).

При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.

Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.

В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).

Вольт-амперная характеристика диода

Когда диод открыт, то на нем падает какое-то напряжение.

Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.

Причем зависимость эта нелинейная.

Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.

Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).

Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.

Мостовая схема выпрямления

Мостовая схема выпрямленияВ компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.

Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.

Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.

В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.

В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.

Схема выпрямления из двух диодов

Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.

Схема выпрямления из двух диодовВнимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»

Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.

В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.

А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.

К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.

Схема выпрямления из двух диодовСледует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.

Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.

Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.

Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.

Проверка диодов

Изображение диода в схемахДля начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.

Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.

Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.

Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.

Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).

Открытый диод

Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.

Дисплей покажет величину 0,5 – 0,6 В.

Если изменить полярность щупов, диод будет заперт.

Дисплей при этом покажет единицу в крайнем левом разряде.

Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).

Диод закрытДиодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».

При этом один диод будет открыт, а другой закрыт.

Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.

Следует обратить внимание на то, что катод – это плюсовой вывод моста.

Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).

Диод закорочен Такой мост, естественно, непригоден для работы.

В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.

При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.

Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.

Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.

Диодный мостТоки потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.

Вследствие этого они будут сильно греться.

Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.

Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.

Диоды Шоттки

Низковольтная диодная сборкаДиод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.

Получающийся при этом так называемый потенциальный барьер будет меньше.

В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.

Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.

Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.

Схема выпрямления из двух диодовВ заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.

Низковольтная диодная сборкаЕсли в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!

Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?

Купить диоды для экспериментов можно здесь:

До встречи на блоге!


ДИОДЫ

ДИОДЫ

Диоды — это двухэлектродные элементы, обладающие односторонней проводимостью тока. В полупроводниковых диодах односторонняя проводимость обуславливается применением полупроводниковой структуры, сочетающей в себе два слоя, один из которых обладает дырочной (p), а другой – электронной (n) электропроводностью.

Полупроводниковый диод представляет собой прибор с двумя выводами и одним электронно-дырочным переходом.

Как  возникает выпрямляющий запирающий слой? Образование слоя начинается с того, что в p-половине больше дырок, а в n-половине больше электронов. Разность плотности носителей зарядов начинается уравновешиваться через переход: дырки проникают в n-половину, электроны в p-половину.

С помощью внешнего источника тока можно повысить или понизить внешний потенциальный барьер. Если к диоду приложить прямое напряжение, т.е положительный полюс соединить с p-половиной, то внешняя электрическая сила начнёт действовать против двойного слоя, и диод пропускает ток, который быстро растёт с увеличением напряжения. Если же изменить полярность проводников, то напряжение падает почти до нулевой отметки. Если диод подключить в цепь переменного напряжения, то он будет служить как выпрямитель, т.е на выходе будет постоянное пульсирующее напряжение, по направлению в одну сторону. 

                                   Виды диодов

— Выпрямительные — диоды, предназначенные для выпрямления переменного тока. Основной характеристикой такого диода является коэффициент выпрямления равный отношению прямого и обратного токов при одном и том же напряжении. Чем выше коэффициент выпрямления, тем меньше потери выпрямителя.

— Высокочастотные — эти диоды предназначены для работы в устройствах высокой и сверхвысокой частоты. Они используются для модуляции и детектирования сверхвысокочастотных колебаний в диапазоне сотен мегагерц. В качестве высокочастотных обычно применяют точечные диоды, емкость электронно-дырочного перехода в которых составляет доли пикофарад.

— Варикапы — диоды, работа которых основана на изменении емкости электронно-дырочного перехода в зависимости прикладываемого обратного напряжения. Эти диоды применяются в качестве конденсаторов с управляемой емкостью.

— Стабилитроны – диоды, используемые для стабилизации напряжения. В этих диодах используется наличие у диода критического обратного напряжения, при котором наступает электрический пробой.

— Туннельные — диоды, где при больших концентрациях легирующих примесей заметно усиливается туннельный эффект p-n-перехода. При этом в ВАХ диода появляется участок с отрицательным сопротивлением, что позволяет использовать его в схемах генерации и усиления электрических колебаний.

Диоды различают по следующим признакам. По конструкции: плоскостные диоды; точечные диоды; микросплавные диоды. По мощности: маломощные; средней мощности; мощные. По частоте: низкочастотные; высокочастотные; СВЧ. По функциональному назначению: выпрямительные диоды; импульсные диоды; стабилитроны; варикапы; светодиоды; тоннельные диоды.

Условное обозначение диодов


а) выпрямительные, высокочастотные, СВЧ, импульсные и диоды Гана; б) стабилитроны; в) варикапы; г) тоннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки.

принцип действия диода основан на том, что в полупроводнике n-типа основными носителями свободного заряда являются электроны, и их концентрация превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn). При контакте двух полупроводников n- и p-типов начинается диффузия: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу. Пограничная область раздела полупроводников с разными типами проводимости, достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,3 В для германиевых n–p-переходов и 0,65 В для кремниевых.

Основой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой транзистора. База припаивается к металлической пластинке, которая называется кристаллодержателем.


Вольтамперная характеристика реального диода проходит ниже, чем у идеального p-n перехода, так как сказывается влияние сопротивления базы. После точки А вольтамперная характеристика будет представлять собой прямую линию, так как при напряжении Uа потенциальный барьер полностью компенсируется внешним полем. Кривая обратного тока ВАХ имеет наклон, так как за счёт возрастания обратного напряжения увеличивается генерация собственных носителей заряда.




 
   Справочники радиодеталей

принцип работы, устройство и маркировка

Диод Шоттки был создан немецким физиком, инженером Вальтером Шоттки в 30-х годах прошлого века. Им было замечено, что электрическое поле влияет на свободные электроны, тем самым заставляя их вылетать из зоны проводимости. Буквально, это выглядит как выход из твердого тела. Эта зависимость получила свое название в честь ее первооткрывателя, то есть самого Вальтера Шоттки. В научной литературе подобное явление называется эффектом Шоттки.

В зоне контакта это приводит к появлению слоя, который содержит малое количество электронов и имеет выраженные вентильные свойства. Спустя некоторое время, они стали использоваться в электротехнике, в создании различного оборудования. В статье подробно описаны все особенности строения диода, сфера его применения и как он используется. В дополнении, статья содержит видеоролик и научную статья по выбранной теме.

Диод Шоттки.

Диод Шоттки.

Металл и полупроводник: особенности контакта

В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.

Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:

  1. пониженное падение напряжения при прямом смещении;
  2. незначительная собственная ёмкость;
  3. малый обратный ток;
  4. низкое допустимое обратное напряжение.

При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом. В таблице ниже представлены характеристики диодов Шоттки. Как работает диод с барьером Шоттки

Как работает диод с барьером Шоттки

Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов.

Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.

Низковольтные диоды

Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.

Мост из диодов Шоттки

Мост из диодов Шоттки

 

Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.

Основные параметры:

  1. Максимальное постоянное обратное напряжение;
  2. Максимальное импульсное обратное напряжение;
  3. Максимальный (средний) прямой ток;
  4. Максимальный импульсный прямой ток;
  5. Постоянное прямое напряжение на диоде при заданном прямом токе через него;
  6. Обратный ток диода при предельном обратном напряжении;
  7. Максимальная рабочая частота диода;
  8. Время обратного восстановления;
  9. Общая емкость диода.

В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.

Диод Шоттки на электросхеме

Диод Шоттки на электросхеме

Производство диодов Шоттки

В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки. Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.

Материал в тему: Что такое кондесатор

Диоды Шоттки в блоках питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

  • Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.
  • Прямое падение напряжения на диоде Шоки также очень мало, что при величине тока 15–30 А обеспечивает значительный выигрыш в КПД.

Так как в современных блоках питания очень мощным становится и канал напряжения +12В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50В (а в канале +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12В используются быстродействующие кремниевые импульсные диоды.

Устройства диода.

Устройства диода.

Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12В. В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов, а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько. Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:

  • При включении блока питания вентилятор «дергается», т. е. совершает несколько оборотов и останавливается; после этого выходные напряжения полностью отсутствуют, т. е. источник питания блокируется.
  • После включения блока питания вентилятор «дергается» постоянно, на выходах блока питания можно наблюдать пульсации напряжения, т. е. защита срабатывает периодически, но блок питания при этом полностью не блокируется.
  • Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.
  • Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, а значит и компьютера, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), а также невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Материал по теме: Что такое реле времени

Диагностика диодов Шоттки

Проверка и точная диагностика диодов Шоттки, на практике, является достаточно непростым делом, т. к. многое здесь определяется типом используемого измерительного прибора и опытом подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки не составляет особого труда. Для этого необходимо выпаять диодную сборку и проверить тестером оба диода согласно схеме на рис. 5. При подобной диагностике тестер необходимо установить в режим проверки диодов. Неисправный диод в обоих направлениях покажет одинаковое сопротивление (как правило, очень малое, т. е. покажет короткое замыкание), что и указывает на его непригодность для дальнейшего использования. Однако явные пробои диодных сборок в практике встречаются очень и очень редко.

Как работает диод с барьером Шоттки

В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.

Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.

Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода (рис. 6). Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.

Принцип работы диода Шоттки.

Принцип работы диода Шоттки.

Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены диодной сборки.

Иногда встречаются ситуации, когда выходит из строя только один из диодов сборки. В этом случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление. Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла.

Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.

Заключение

В статье описаны все аспекты работы и устройства диода Шоттки. Еще больше информации можно найти в статье Устройство высоковольтных диодов Шоттки. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.xprt.ru

www.eandc.ru

www.texnic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *