Как влияет инфракрасное излучение на организм человека: Инфракрасное излучение и его влияние на организм человека

Содержание

Инфракрасное излучение и его влияние на организм человека

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ И ЕГО ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА.

 

Инфракрасным излучением (ИК) называют электромагнитное излучение, длинна волны которой больше красного конца видимого света (0,74 мкм), но меньше микроволнового радиоизлучения(1-2 мм), т. е. от 0,74 мкм до 1–2 мм. 

Его открыл в 1800 году Фредерик Уильям (Фридрих Вильгельм) Гершель — английский астроном немецкого происхождения. Этот вид излучения получил название – «тепловое излучение», т.к. попадая на предметы, оно впитываются телом, преобразуясь в тепловую энергию.

Инфракрасную область спектра можно условно разделить на три области (все цифры примерные):

  • коротковолновая область (0,74 — 1,5 мкм — источник с температурой более 700°С)
  • средневолновая область (1,5 — 5,6 мкм — источник с температурой от 300 до 700°С)
  • длинноволновая область (5,6 — 100 мкм — источник с температурой от   35 до 300 °С)

ИК-лучи выделяют все нагретые твёрдые и жидкие тела, при этом длина излучаемой волны зависит от температуры тела — чем она выше, тем короче волны, но выше интенсивность излучения. Из этого следует, что источники инфракрасного излучения – это все окружающие нас предметы, которые нагрели до определенной температуры.

Различают две основные группы источников ИК излучения – светлые и темные.

Светлые источники инфракрасного излучения тепла дают инфракрасное излучение, с малой долей в области видимого света и воспринимается глазом. Инфракрасное излучение, исходящее от тёмного источника инфракрасного излучения, может быть воспринято только ощущением тепла кожей человека, но не зрением. Поверхностная температура, не более 700 градусов (длина волны = 3 микрометрам и больше), является границей между этими двумя группами. Наиболее известным и значимым источником инфракрасного излучение является Солнце (около 50% его излучения лежит в инфракрасной области). Известная русская печь, применяемая для отопления дома, является темным источником инфракрасного излучения тепла.

 

Влияние на здоровье человека инфракрасного излучения.

 

ИК тепло необходимо  человеку. Человеческий организм как излучает инфракрасные лучи, так и поглощает их. У каждого диапазона тепловых волн свои способности проникать через атмосферу и через кожные покровы человека. 

Максимальный прогрев вызывает коротковолновое ИК излучение, т.к. оно наиболее глубоко проникает в организм. Тепло с длинами волн примерно от 7 до 14 мкм проникает не только под кожу человека, но также и на клеточный уровень.

В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови. Однако длительное воздействие коротковолнового инфракрасного излучения на организм человека — нежелательно. Именно на этом свойстве основан эффект теплового лечения, широко используемого в физиотерапевтических кабинетах, и  длительность процедур — ограничена.

Длинноволновое излучение проникает в организм человека значительно меньше по сравнению с коротковолновым излучением. Современные исследования в области биотехнологий показали, что именно длинные тепловые (ИК) волны имеют исключительное значение в развитии всех форм жизни на Земле. Поэтому их называют  биогенетическими лучами, или лучами жизни. Организм человека нуждается  в постоянной подпитке длинноволновым теплом. Его недостаток  подвергает организм  возникновению различных заболеваний, быстрому старению на фоне общего ухудшения самочувствия.  Тепло дальнего спектра ИК излучения мягкое и нежное, проникая под кожный покров, оно воздействует на него с внутренней стороны, способствуя расширению капилляров, расслаблению напряженных мышц, сухожилий и суставов, оно нормализует процесс обмена и устраняет причину болезни, а не только её симптомы. Воздействие этого спектра излучения содействует активному поглощению внешней энергии, за счет этого в организме повышается уровень гемоглобина, активность гормонов и ферментов, активизируется иммунитет, а на клеточном уровне идет стимуляция жизненной активности.

 

польза и вред для организма человека, свойства, область применения

Инфракрасные лучи используются во многих сферах жизни человека. Такой вид излучения применяется в обогревателях, пультах дистанционного управления, системах отопления, медицинском оборудовании. Эти лучи человеческий глаз не воспринимает, но почувствовать их силу действия можно. В зависимости от длины волны они способны оказывать различное воздействие на всё живое. Поэтому польза и вред инфракрасного излучения напрямую зависят от этого показателя.

Инфракрасные лучи используются для лечения

Источники инфракрасного излучения

Инфракрасные лучи относятся к электромагнитному излучению. Они располагаются в спектре рядом с микроволновым радиоизлучением. Солнце — это естественный и самый большой источник такого излучения. Эти волны имеют обширный диапазон от 7 до 14 мкм.

Источником теплового излучения являются также любые тела, температура которых выше нуля. Длина таких волн напрямую зависит от температуры нагревания. Различают следующие виды волн:

  • короткие — выше +800°C;
  • средние — до +600°C;
  • длинные — до +300°C.

Таким образом, короткие волны имеют самую высокую температуру и большую интенсивность излучения. Тепловые лучи образуются благодаря ионам вещества, а также атомам с избыточной энергией. Каждый из диапазонов ИК волн имеет свою интенсивность, проникающую способность и оказывает различное воздействие на организм человека.

В этом видео вы узнаете о влиянии различных излучений на организм:

В наше время инфракрасные лучи активно применяются во многих сферах. Например, на их основе работают современные видеокамеры, которые используются для охранных целей, болометры и многие другие приборы. С помощью таких лучей осуществляется беспроводная связь между компьютерами и другими стационарными устройствами.

В продаже можно найти большое разнообразие отопительных приборов, работающих за счёт инфракрасных лучей. Такие приборы позволяют значительно экономить электроэнергию. В промышленных целях их используют для сушки поверхностей, покрытых краской или лаком.

Польза и вред

Инфракрасные лучи по-разному воздействуют на живые организмы. Например, длинные волны оказывают оздоровительное действие на состояние здоровья человека, поэтому их часто используют в лечебных целях. Именно на таком принципе основана работа оборудования для проведения физиотерапевтических процедур.

Инфракрасные приборы могут принести как пользу, так и вред

Длинноволновые ИК лучи оказывают следующее положительное воздействие на человека:

  • улучшают мозговое кровообращение и память;
  • укрепляют иммунную систему;
  • нормализуют водно-солевой баланс;
  • улучшают гормональный фон;
  • нормализуют артериальное давление;
  • очищают организм от токсинов исолей тяжёлых металлов;
  • препятствуют размножению бактерий, грибков и болезнетворных микробов.
Также лучи помогают при воспалительных процессах в организме, повышают содержание инсулина у больных сахарных диабетом и даже снижают уровень радиоактивного излучения.

Таким образом, длинноволновое ИК излучение не только полезно для человека, но и необходимо ему. При недостатке таких лучей страдает иммунитет и запускается процесс ускоренного старения.

В этом видео вы узнаете, что такое инфракрасное тепло:

Обогреватели на основе инфракрасных лучей устраняют различные вредные и опасные бактерии, а специальные ИК лампы помогают при:

  • радикулите;
  • нарушении работы яичников;
  • бронхиальной астме;
  • остеохондрозе;
  • нарушении слизистой оболочки.

Также с помощью такого облучателя можно вылечить пневмонию, простатит в стадии обострения, ринит, тонзиллит и отит без гнойных образований.

Несмотря на большое количество полезных и лечебных свойств, у этого прибора имеются противопоказания. Вредно инфракрасное излучения для человека, если у него наблюдаются острые воспалительные заболевания.

Нельзя использовать такие лучи и при злокачественных образованиях, острых гнойных заболеваниях и кровотечении.
Инфракрасные лучи могут вызвать побочные действия

Большой вред инфракрасного излучения на организм человека оказывают также короткие волны. Под их воздействием могут появиться следующие симптомы:

  • тошнота;
  • сильное головокружение;
  • потемнение в глазах;
  • обморок;
  • нарушение координации движений;
  • учащённое сердцебиение.

Обычно под воздействием таких лучей начинает краснеть кожа, могут появиться ожоги, судороги. Длительное пребывание рядом с короткими волнами приводит к нарушению водно-солевого баланса или тепловому удару. Такое излучение представляет большую опасность и для слизистой оболочки глаз, так как оно может привести к развитию светобоязни, катаракте и другим проблемам со зрением.

Подробнее об инфракрасном обогревателе:

Первая помощь при тепловом ударе

При интенсивном или длительном воздействии на человека коротких волн может произойти тепловой удар. Обычно это случается, если температура головного мозга резко повышается хотя бы на 1 градус. В таком случае пострадавшему сразу же следует оказать первую помощью. Для этого его нужно аккуратно переложить или перевезти в прохладное место и постараться снять с него тесную одежду. К сердцу, голове, подмышечным впадинам и паховой области следует приложить что-нибудь холодное.

После этого пострадавшего нужно обернуть мокрой простынёй и направить на него воздух от вентилятора.

Такие действия помогут снизить температуру тела. В тяжёлых случаях следует сделать искусственное дыхание и обязательно вызвать скорую помощь. На протяжении этого времени пострадавшему нужно давать прохладное и обильное питьё.

Обогревательные приборы

За последние несколько лет очень популярными стали инфракрасные обогревательные приборы. И многие люди, приобретая их, даже не знают о том, что они могут оказывать негативное влияние на человека.

Плюсом инфракрасных обогревателей является мгновенное нагревание помещения

Инфракрасное излучение способно нанести вред при постоянном и длительном воздействии. Поэтому при покупке обогревательного прибора нужно обращать внимание на характер его излучения. Такие данные обычно указываются в техническом паспорте. Отдавать предпочтение следует таким обогревателям, у которых нагревательный элемент имеет теплоизолирующую защиту. В этом случае прибор будет выделять длинные волны, которые, наоборот, полезны для здоровья.

Если же спираль, которая выделяет тепло, не изолирована, то такое устройство распространяет короткие волны и может навредить человеку. Находиться долгое время рядом с такими приборами нежелательно. Не следует их монтировать в спальнях и детских комнатах. Если это всё-таки необходимо сделать, то отдавать предпочтение следует маломощным моделям.

Подробнее об инфракрасном обогревателе:

Когда следует установить обогревательную систему на потолке, делать это нужно на максимально возможном расстоянии. При этом направлять её лучше в такую сторону, чтобы постоянно не находиться под инфракрасными лучами. Покупать ИК обогреватели нужно только у проверенных производителей. Выполненные из материалов низкого качества, они могут нанести непоправимый вред здоровью.

Инфракрасное излучение может принести как пользу, так и вред для здоровья человека. Относиться к нему нужно крайне осторожно, а использовать приборы на его основе следует в соответствии со всеми правилами безопасности.

Влияние инфракрасного излучения на организм человека. Полезно или вредно?

В повседневной жизни мы встречаем различные источники инфракрасного излучения. Они могут быть как природным явлением, так и результатом деятельности человека. Солнечное излучение наполовину является инфракрасным излучением. Этот вид лучей невидим для глаза человека. Но существуют различные виды животных, зрение которых восприимчиво к такому излучению, что позволяет им ориентироваться в темноте. Человек же может почувствовать его своей кожей в виде тепла.

Эти электромагнитные волны еще называются тепловыми. Все потому, что при этом излучении выделяется тепло. Именно на основе этого явления работают различные измерители, в том числе и тепловизор. Он измеряет разницу в излучении, которая также соответствует разнице температур различных объектов.

Такое излучение можно разделить на:

  • Длинноволновое;
  • Средневолновое;
  • Коротковолновое.

В данном случае длинна волны зависит от того, какую температуру излучает сам источник. Чем выше температура, тем короче будет волна излучения, но при этом она будет и интенсивнее. Для человеческого организма наиболее опасным считается коротковолновое излучение. Температура такого излучения превышает 800 градусов по Цельсию.

Твердые тела являются источником этого вида излучения и формируют длинноволновое ИК-излучение. Чем выше температура, тем светлее будет казаться предмет. Так при температуре выше 5 тысяч Кельвинов цвет предмета становится совершенно белым, а при более низких показателях он может достигать темно-красного.

Это явление можно заметить при нагревании различных предметов. Например, при нагревании металлической проволоки она меняет свой цвет, что свидетельствует о повышении температуры. Но максимально в домашних условиях можно получить только насыщенный красный цвет, потому что нет подходящих условий для последующего повышения температуры.

Человек часто использует инфракрасное излучение в своих нуждах. Необходимо знать о том, что из себя оно представляет, в каких дозах безопасно для человека и какие последствия может вызывать. Также ИК-лучи могут быть и естественными. Солнечный свет представляет собой такое излучение. В зависимости от дозы он может быть как полезным для человека, так и вызывать многие проблемы, частая из которых солнечные ожоги.

Сферы использования инфракрасного излучения

Прежде чем говорить о том, как влияет инфракрасное излучение на организм человека, необходимо понять, где и для чего его используют. Такое излучение может быть не только вредным, но и наоборот полезным. Именно поэтому человек использует его в различных целях, которые улучшают жизнь человека.

Этот тип излучения часто используется в различных приборах, к ним относятся различные приборы ночного видения. Они работают по принципу фиксации ИК-лучей, которые излучают предметы. Распространено использование инфракрасного излучения в производственных целях. Изготовление телекоммуникационных предметов, пультов дистанционного управления, систем охраны и многого другого не обходится без использования данного вида излучения.


Часто можно встретить использование этого излучения в обогревательных системах и обогревателях. Обогреватели, работающие при помощи ИК-излучения являются экономным и удобным способом обогрева помещения и позволяют осуществлять его максимально быстро. Все потому, что такое излучение выделяет и тепло, которое быстро распространяется по всему помещению.

Так как существует и вред инфракрасного излучения на организм человека, необходимо тщательно выбирать приборы, которые работают с этим видом излучения. Хотя эти приборы являются экономными и качественными, следует обращать внимание на различные характеристики и контролировать чтобы не было превышения норм.

Закажите бесплатно консультацию эколога

Польза инфракрасного излучения

Оно используется не только в производственных и бытовых целях, но и в медицине. При правильном использовании и дозировке излучение способно решать множество проблем, и улучшать качество жизни человека.

О том, чем полезно инфракрасное излучение для человека может сказать медицина. Уже доказано, что излучение способно оказывать лечебное действие на такие проблемы как:

  1. Пневмония;
  2. Бронхиальная астма;
  3. Различные хронические заболевания яичников;
  4. Хронический гастродуоденит;
  5. Гипермоторика желудочно-кишечного тракта;
  6. Полиневропатия нижних конечностей;
  7. Остеохондроз;
  8. Абстинентный синдром;
  9. Холецистит;
  10. Хронический цистит.

Но не только в этом заключается польза инфракрасного излучения для человека. Сейчас распространено применение данного вида излучения для различных профилактических мероприятий. Так часто можно встретить его как способ укрепления иммунной системы, улучшения памяти, улучшения баланса гормонов, восстановления водно-солевого баланса. Для предупреждения грибковых заболеваний или микробов тоже используется этот вид излучения. Длинные волны способны оказывать успокаивающее воздействие на человека и поэтому их используют для уменьшения усталости, стресса и раздражительности. Инфракрасные лучи могут оказывать и обезболивающее действие, а также подавлять раковые клетки в организме.


Из этого видно какое широкое применение в медицинских целях имеет инфракрасное излучение. В правильных дозах оно способно улучшить состояние организма человека и является прекрасным способом профилактики многих проблем. Но тут имеются различные противопоказания, и поэтому для некоторых людей такое излучение даже в медицинских дозах может быть опасно.

Как в медицине, так и при изготовлении различных приборов, человек строго соблюдает нормы допустимого ИК-излучения. Также следует следить и за тем, какой вид лучей используется в той или иной ситуации, потому что не все виды этого излучения одинаково безопасны для человека. Так для отопления помещений необходимо использовать только обогреватели, использующие длинные волны. Короткие волны при близком контакте с человеком представляют для него опасность. Зачастую они провоцируют покраснение кожи и различные заболевания глаз.

Вред инфракрасного излучения

Но такое излучение может приносить не только пользу, но и вред. Чем опасно инфракрасное излучение для человека?

Самое распространенное явление, с которым может столкнуться человек — это солнечные ожоги. Именно инфракрасное излучение становится причиной покраснения кожных покровов или же ожогов, полученных от пребывания на солнце. Использование различных защитных средств предотвращает нанесение вредя инфракрасными лучами.

Негативное действие инфракрасного излучения на организм человека также вызывает различные симптомы. Так человек начинает испытывать проблемы с координацией, потемнение в глазах, учащенное сердцебиение и тошноту. В отдельных случаях он может потерять сознание.


Для глаз большую опасность представляет тип излучения с короткими волнами. Коротковолновое свечение в 0,75-1,5 мкм способно провоцировать не только ухудшение зрения, но и катаракту или боязнь света. Следует избегать длительного контакта с сильными излучениями с такими короткими волнами. Чаще всего его можно встретить в различных обогревателях для улицы. Поэтому жилые помещения должны использовать обогреватели на основе длинных волн, которые не несут такой опасности для человека.

Даже в медицинских целях не всегда можно использовать ИК-излучение. Так не рекомендуется такой тип лечения при злокачественных опухолях, заболеваниях крови и кровотечениях. Поэтому даже при использовании обогревателей, работающих по такой технологии, следует удостовериться о том, какой тип излучения используется, чтобы предотвратить вред для человека. Ведь такие лучи не для всех одинаково полезны.

Мы ежедневно сталкивается с различными источниками такого излучения. Воздействие инфракрасного излучения на человека может быть как положительным, так и отрицательным. Множество приборов используют его для своей работы и также оно широко применяется в медицине. Знание о том, где и как встречается этот тип излучения поможет избежать многих проблем. Ведь даже солнечный свет может нанести вред организму, не говоря уже о различных приборах с инфракрасным излучением, которые используются не по назначению.

Лечебные свойства инфракрасного излучение, польза и вред от инфракрасных теплых полов, лечение инфракрасным теплом.

Тепло для нас всегда означало уют, комфорт и здоровье.

Ведь издревле все знали о целебных свойствах тепла, им лечили от разных болезней, а также согревали помещения.

Инфракрасное (ИК)излучение на столько сильное, что может обжечь, но Вы не сможете его увидеть.

Тепловое излучение ощутимо организмом человека, но оно абсолютно безвредно и не несет в себе опасности, более того при правильном его использовании, оно несет в себе лечебные свойства и абсолютно не похоже на рентгеновские лучи или же радиационное излучение.

Мы всегда радуемся солнцу, когда приходит весна и лето, мы греемся под его инфракрасными лучами и, конечно, если не злоупотреблять его теплом и добротой, то вполне можно получить от солнца заряд бодрости и позитивных эмоций, оно насыщает нашу кожу витамином D, который так необходим для иммунной системы.

Ученые просчитали циркулирующую энергию ИК, которая в своем существовании, например, в системе Солнце-Земля-Человек имеет свои определенные частоты – это ИК, попадающие через атмосферу Земли на планету диапазон их составляет 7-14 мкм.

Прогрев Земли происходит при ИК излучении в 10 мкм, а сам человек может излучать инфракрасную энергию в диапазоне 3-50 мкм.

Если измерить ладони человека, то энергия там будет довольно-таки высокой и составит 8-14 мкм.

Эта сила излучения колеблется от разных причин, самой сильной энергией ладоней обладают экстрасенсы, которые могут прочувствовать теплоту на расстоянии.

Существует такое понятие как «БИОрезонансное поглощение».

Оно объясняется тем, что при нагревании тела человека ИК энергией при частоте 9,3 мкм тело начинает поглощать данную энергию и происходит потрясающий эффект увеличения энергии самого человека.

Происходит активизация клеток, будет испаряться ненужная вода из организма, активизируются клеточные структуры, происходят различные биохимические реакции в организме каждой клетки, активно вырабатываются различные ферменты.

Это происходит на всех клеточных уровнях в организме. При подобных процедурах вырабатываются необходимые иммуноглобулины.

Лечение инфракрасным излучением производится гораздо эффективнее, чем, например, водными процедурами.

Во-первых, преимущество перед водным процедурами заключается в том, что меньше при назначении противопоказаний, во-вторых в меньшей степени реагируют нервные окончания на тепловое излучение.

В-третьих, при тепловых ИК активизируются все клеточки организма, восстанавливается обмен веществ, ускоряется ток крови, открываются и очищаются поры, усиливается потоотделение, а за счет этого происходит восстановление клеток кожи.

Ик излучение благотворно влияет на тех больных, которых беспокоят спазматические боли, у которых какие-либо воспалительные процессы, боли, а также оно показано для тех, у кого имеются проблемы с кожей.

Метаболический обмен очень важен для нашего организма, влияние на него различных неурядиц, болезней и срывов ведет к замедлению этих процессов, но если провести необходимые процедуры с использованием ИК лучей, то оно усилить метаболические процессы и возможно восстановление организма.

Как следствие полезных процедур усиление иммунитета у человека, ткани насыщаются кислородом, недостаток которого приводит к артериальному давлению и других неполадок.

ИК справится и с этой задачей – снизит артериальное давление, напряжение в мышцах, успокоит нервную систему.

Такие процедуры улучшат общее состояние, успокоят человека и хороший сон обеспечен.

Ткани требуют хорошего прогрева для того, чтобы избавить организм от ненужных и скапливающихся веществ, обильное потоотделение избавляет его от жиров, шлаков, токсинов, вредных кислот.

ИК ванны способствуют прогреванию тела до нужной температуры, которая поможет избавится организму от лишнего груза, проявить уход за кожей, главное помогает ее очистить и омолодить.

Происходит прилив новой чистой энергии и ощущение приятного отдыха.

При процедуре возникает повышение температуры тела до 38,5°С , но это естественный процесс и его не нужно остерегаться, вырабатываются защитные свойства организма и таким образом подавляются вирусы и организм сам борется с ненужными ему бактериями.


Если нарушена сердечно сосудистая деятельность организма, то принятие инфракрасных ванн поможет очиститься организму от ненужного холестерина, который закупоривает сосуды и не дает нормально циркулировать крови, ванны помогают снизить риск заболеваний сердца и сосудов, делает их эластичнее и упругими.

Давление при принятии инфракрасных ванн нормализуется и, нет влияния на нормальное давление, что очень важно для организма и по сравнению с водяными банями нет противопоказания по давлению.

Если у Вас повышенное давление, то оно обязательно понизится, а если наоборот, то и действие будет соответствующим.

Ванны ИК восстанавливают нормальное кровообращение, расширяются сосуды, избавляются от шлаков, циркуляция крови производится по всем сосудам организма, даже те, которые ранее были для крови труднодоступны, капилляры также насыщаются кислородом.

Инфракрасное тепло способствует освобождение не только сосудов от шлаков и токсинов, а и всех органов, особенно это касается почек, так как во время ванн происходит обильное потоотделение, которое и выводит вредные, скапливающиеся вещества из них.

Благодаря этим процедурам снижается отечность.

Показано инфракрасное тепло и тем, у кого хронические проблемы с дыхательными путями.

Ванны можно принимать тем, у кого астма, бронхиты, пневмонии, эмфиземы лёгких, задерживание мокроты и тому подобное.

Улучшается состояние таких больных и они меньше ощущают дискомфорт.

Инфракрасное излучение помогает тем, у кого проблемы с пищеварительными органами,  при язве желудка, под воздействием ик лучей исчезают проблемы с двенадцатиперстной кишкой, облегчается протекание гастритов.

Инфракрасные ванны способствуют активизации иммунной системы, сопротивляемость при этом повышается и простудные заболевания уходят на задний план, организм активизирует усиленную борьбу с вирусами, которая заканчивается победой организма.

Соответственно инфракрасным теплом лечат людей страдающими хроническими заболеваниями лор-органов, ИК избавит от проблем с заболеванием среднего уха, горла, справится с различной степенью кровотечений из носа.

Тепло Ик действует расслабляющее на все мышцы и нервные окончания, оно прогревает глубоко и способно таким образом успокоить, достигнув периферийных сосудов, заживляет повреждения мягких тканей.

Если у Вас недавние травмы и еще свежие, то инфракрасные ванны ускорят их заживление. Заживление происходит любых тканей, это могут быть как переломы, ушибы, растяжения мышц, различные гематомы, эффективно лечатся послеоперационные раны, только если они не касаются ранений и имплантации.

Нервная система получит полноценный комфорт в инфракрасной сауне, тепло успокоит Вас и расслабит, Вы получите отдых и комфорт, ничто во время сеанса Вас нее побеспокоит, пропадут различные симптомы раздраженности.

Чувство удовольствия возникает при ваннах тогда, когда у Вас начнет вырабатываться гормон счастья, при этом он укрепляет силы организма и способствует скорейшему улучшению состояния и повышает иммунитет.

После принятие ванн Вы будете спать крепким сном и исчезнет нервозность и стресс. 

Инфракрасные ванны дают полное расслабление и прилив внутренних и внешних новых сил, а также подарят эффект омоложения. Вы сможете в ней расслабиться максимально и позабыть о городской суете.

Вы получите эффект массажа, расслабите свои мышцы и успокоите напряженные нервы.

Такие ванны способствую снятию стресса, хронической усталости и того, что всегда мешает нам хорошо отдохнуть.

При принятии инфракрасного потока Вы ощутите повышение температуры тела на несколько градусов, это будет знаком того, что все силы Вашего организма аккумулировались и готовы к борьбе с различными вирусами и бактериями, которые совершенно не нужны ему.

Тело полностью открывает свои поры и происходит под действием температуры глубокая очистка ее от лишних токсинов, шлаков и прочей закупорки.

Ванны облегчат боли при артритах, судорогах, избавит Вас от различных мышечных болях при миозитах и т.п. также для женщин ванны будут полезны при менструальных болях, ИК успокоит боль и приведет организм к равновесию.

Мышцы получают полное расслабление и Вы полностью расслаблены.

Инфракрасное тепло эффективно борется с целлюлитом.

  1. Ваши ткани расслабляются, расширяются сосуды, открываются поры и эффективно и быстро сжигаются калории, все это происходит пока Вы отдыхаете под приятным теплом инфракрасных лучей.
  2. Вся ненужная вода и жиры, которые накапливаются в организме выводятся и восстанавливается баланс веществ и эластичность кожи. Все это выходит с потом.
  3. Кожа при процедурах ИК приходит в норму, сосуды в кожном покрове активизируются, расширяются под воздействием лучей, очищают кожу от токсинов.
  4. Происходит процесс удаления омертвевших клеток кожи, начинают «дышать» те поры, которые ранее были долгое время находились в бездействии.
  5. Очистка кожи достигает такого эффекта, что после нее можно проводить косметические процедуры.

Если женщину беспокоят боли при менструации, то сауна ИК поможет в этом вопросе, тепло расслабит мышцы, выведет лишнюю воду, снимет спазмы. Беременные женщины также могут посетить сауну, для расслабления и отдыха, а также снять мышечное напряжение.

Двери ИК сауны всегда открыты для активных людей, которые занимаются спортом, это хорошее добавление для активизации всех внутренних сил организма для соревнований или простой пробежки.

Ванны способствуют повышение иммунной системы, поддерживают в тонусе сердечно-сосудистую систему, мышечную и так далее. Подготовка в ИК сауне – это то, что нужно для активно-живущих людей.

Инфракрасное излучение приводит к благотворному косметическому эффекту.

  • Поры тщательно очищены обильным потоотделением.
  • Расширенная и расслабленная кожа, очищается их от токсинов и активизирует каждую клеточку.
  • Кожа после тепловых процедур становится более упругой, обновленной, эластичной.
  • Происходит на столько глубокая очистка, что кожи могут даже скрабы не понадобится.

Активизация циркуляции крови в кожном покрове под воздействием проникающего инфракрасного излучения приводит к расширению и очищению пор кожи.

Удаляются отмершие клетки, кожа становится гладкой, упругой и эластичной.

В результате обильного потоотделения, раскрываются даже те поры, которые не функционировали уже много лет.

Происходит очистка кожи, необходимая для проведения косметических процедур.

 

Вред инфракрасного излучения от обогревателя. Насколько велико?

Системы инфракрасного отопления стали активно продвигаться на рынке. Работают такие системы по принципу инфракрасного излучения, которое по мнению многих может наносить вред здоровью человека.Так ли это? Давайте разбираться.

Принцип работы инфракрасного излучения

Инфракрасное излучение – излучение, которое исходит от любого предмета с температурой выше нуля. Все теплокровные животные, радиаторы отопления, горячие стаканы с водой, нагревательные элементы будут источниками инфракрасного излучения. Оно не имеет ничего общего с микроволновым излучением. Более строгое определение: инфракрасным является электромагнитное излучение с длинной волны, располагающейся в диапазоне от конца области красного видимого света до области микроволнового излучения.

Инфракрасное излучение разделяют на 3 области:

  • ближняя: длина волны равна 0,74—2,5 мкм;
  • средняя: длина волны равна 2,5—50 мкм;
  • дальняя: длина волны равна 50—2000 мкм

При температуре 36,6 °С пик энергии излучения соответствует длине волны 9,6 мкм, для инфракрасного нагревателя 600°С — 3,6 мкм, для Солнца — 0,5 мкм.

Природным источником инфракрасного излучения для нашей планеты является Солнце. Необходимо ежедневно находится на солнце для здоровья. Слишком долгое воздействие может вызвать самые негативные реакции тела: ожоги, тепловые удары. К естественным источникам относятся термальные воды, действующие вулканы. Аналогично существует огромное множество техногенных источников инфракрасного излучения: электронагревательные приборы, кухонные плиты, лазеры. Воздействиям естественных и искусственных процессов нагревания каждый подвергается с самого рождения, что не является существенным опасным фактором для здоровья.

Опыт, доказывающий существование инфракрасного излучения: достаточно расположить кисть на некотором расстоянии (10-15 см) сбоку от радиатора. Через несколько секунд вы почувствуете, что ладонь нагревается. Если бы ладонь была расположена над батареей, то нагревание бы происходило за счет воздуха, но здесь эксперименте она находится сбоку. Следовательно, нагрел руку не воздух, а лучистое тепло.

Три способа передачи тепла

В восьмом классе на уроках физики учителя рассказывали, что существует три вида теплопередачи:

  • Теплопроводность –передача тепла от менее нагретых тел к более нагретым. Для осуществления процесса необходимо соприкосновение тел. Предмет сверху на батарее отопления будет нагреваться за счет теплопроводности.
  • Конвекция – процесс, при котором тепло передается потоками жидкости или газа. На этом эффекте основаны все классические системы отопления. Горячий воздух поднимается вверх, холодный опускается вниз. Поэтому все батареи отопления необходимо располагать внизу, у пола.
  • Излучение (лучистый теплообмен) – тепло передается с помощью волн. Рассмотренное выше инфракрасное излучение относится к этому способу теплопередачи.

Достоинства инфракрасного излучения

Главное достоинство инфракрасных обогревателей – моментальное передача энергии. Электромагнитные волны в воздухе распространяются со скоростью, сравнимой со скоростью света в вакууме. Эффект скорости позволяет практически мгновенно передавать энергию на расстояние. Быстрота нагревания зависит от длины волны. Увеличение мощности обогревателя достигается увеличением частоты (уменьшением длины волны).

При отоплении помещений обогревателями на инфракрасном излучении теплые воздушные массы не скапливаются под потолком, что порой происходит при использовании традиционных конвективных обогревателей. Энергия от прибора достигает предметов, потом от них нагревается воздух в комнате.

Обогрев такими приборами является локальным или узко направленным, то есть тепло ощущается только в пределах доступа инфракрасных лучей. Инфракрасные обогреватели удобно использовать, если необходимо обеспечить обогрев какой-то определенной поверхности или участка помещения. Можно направить инфракрасную лампу на крыльцо или окна с целью защиты от льда. Датские рестораны используют инфракрасные обогреватели на тентах, чтобы обеспечить комфортное времяпрепровождение посетителей в летних кафе холодными вечерами.

Инфракрасные обогреватели обладают высоким коэффициент полезного действия (около 90%) — передача тепло с минимальными потерями.

Недостатки обогревателей с инфракрасным излучением

Перед покупкой обогревателя с инфракрасным излучением необходимо рассмотреть их основные недостатки и возможный вред:

  • Длительное воздействие инфракрасного излучения приводит к сухости кожи. Так как верхний слой кожи достаточно быстро нагревается, то пот, не успевая образоваться, испаряется с поверхности. Вследствие чего на стороне тела, расположенный рядом с ИК обогревателем, от длительного перегрева может достаточно незаметно образоваться ожог. Поэтому стоит внимательно выбирать местоположение обогревателя в комнате и аккуратно настраивает его направление действия.
  • Ученые и врачи уже достаточно долгое время изучают воздействие инфракрасных лучей на живые организмы. В медицине при проведении некоторых физиопроцедур (активизация иммунитета, снятие болевых ощущений, снижение гипертонуса, уничтожение патогенных организмов, лечение гангрены, остеоартроза…) используется инфракрасное излучение, его применение ограниченно по времени. Производство с постоянным инфракрасным излучением является вредным.
  • Сильное воздействие инфракрасных лучей на незащищенные участки кожи вызовет в ней внутренние изменения. В белках происходят процессы, приводящие к потере их естественных свойств. Аналогично при жарке яичницы происходит денатурация белка. Ожог может образоваться на любом участке тела: кожа, сетчатка, хрусталик (последствия – катаракта). Например, если повесить инфракрасный обогреватель в комнате на потолке на небольшой высоте, то происходит нагревание кожи головы. Необходимо соблюдать минимальное расстояние до рабочих мест сотрудников, мест расположения посетителей, избегать прямых лучей.

Основными характеристиками инфракрасных обогревателей является: цена, мощность, длина волны, интенсивность излучения, габаритные размеры, энергопотребление, минимальная высота монтажа, площадь обогрева, материал (керамика, металл, стекло). Конфигурация зависит от производителя. Следует учитывать следующие моменты при оценке вреда рассматриваемых обогревателей:

  • Использование коротковолнового излучения приносит больше вреда для организма, чем длинноволнового, так как короткие волны легче проникают сквозь кожу и оказывают воздействие на внутренние органы.
  • Интенсивность излучения не должна превышать установленную — 150 Вт/м2.
  • Индивидуальные особенности человека. При некоторых заболеваниях не рекомендуется подвергаться воздействию каких-либо инфракрасных лучей.

Как же влияет инфракрасное излучение?

Существует мнение – все обогреватели сжигают кислород, тем самым добавляют факт вреда инфракрасного излучения. Любой нагреватель сушит воздух: влага под действием высоких температур испаряется быстрее. Инфракрасные обогреватели не исключение.

Инфракрасное излучение не наносит вред каким-то особым образом на людей при повседневном применении. Необходимо тщательно проанализировать ассортимент инфракрасных обогревателей перед покупкой. Технико-эксплуатационные характеристики приборов могут значительно отличаться между собой.

Поэтому необходимо выбирать качественные инфракрасные обогреватели, размещать их с соблюдением техники безопасности.

Читайте так же:

«Вредно ли инфракрасное излучение? Длинноволновое?» – Яндекс.Кью

ИК ДВ излучение

Область применения – система отопления для жилых и производственных помещений, там, где люди находятся длительное время. Эффективны при обогреве всей площади в помещении.

Влияние на человека: Науке неизвестны какие-либо негативные влияния длинноволнового инфракрасного излучения на организм человека. Более того, сейчас длинноволновое инфракрасное излучение нашло очень широкое распространение в медицине (хирургия, стоматология, инфракрасные бани), что говорит не только о его безвредности, но и о полезном действии на организм.

Длинные волны наиболее глубоко проникают в организм, вызывая его максимальный прогрев. Именно на этом свойстве основан эффект теплового лечения, широко используемого в физиотерапевтических кабинетах наших и зарубежных клиник. Важная характеристика инфракрасного излучения – длина волны (частота) излучения. По мнению сотрудников НИИ медицины труда при Академии наук России, инфракрасное излучение положительно действует на организм, если длина его волны не превышает длины волны, выделяемой самим человеком. Поэтому можно получить явление, называемое «резонансным поглощением», при котором внешняя энергия будет активно поглощаться телом:Интенсивность излучения человеческого тела в инфракрасном спектре находится в диапазоне от 70 до 200 мкм, максимальное излучение в диапазоне от 90 до 115 мкм.

Современные исследования в области биотехнологий показали, что именно дальнее инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны, но оно само нуждается также и в постоянной подпитке длинноволновым теплом. Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы.

Отопление с использованием ИК-излучения особенно благоприятно воздействует на повышение иммунной системы детей, на здоровье престарелых, и лиц с ослабленным здоровьем. ИК лучи эффективно устраняют воспаления, при простудных заболеваниях подавляется размножение болезнетворных бактерий не только в организме человека, но и в окружающей атмосфере. Имеет хороший косметический эффект, улучшается циркуляция крови в кожном покрове, вследствие чего, улучшается цвет лица, разглаживаются морщины, кожа выглядит моложе. Применение ИК-отопления способствует оздоровлению ряда заболеваний кожи (псориаз, аллергия, нейродермит и т.д.), заживлению ран, порезов. Ионизируя воздушное пространство, такое заболевание, как аллергия на пыль, идет на убыль. В ходе исследования ИК лучей обнаружены эффект: подавления роста раковых клеток, нейтрализация вредного воздействия электромагнитных полей (телевизор, компьютер и т.д.), улучшение здоровья у больных диабетом, нейтрализация последствия радиоактивного облучения, нормализация давления (гипертония, гипотония). Длинноволновое ИК-излучение абсолютно безопасно, оказывает мягкое оздоровительное воздействие на организм здоровых людей.

В заключение хочется сказать следующее: инфракрасное излучение это одна из составляющих частей обычного солнечного света. Практически все живые организмы находятся под воздействием солнца и, следовательно, инфракрасных лучей. Более того, именно без этих лучей наша планета не прогревалась бы до привычных для нас температур, не прогревался бы воздух, на Земле царил бы вечный холод. Инфракрасное излучение – естественный, природный вид передачи тепла. Ничего более.

Инфракрасное тепло

Инфракрасные обогреватели Отопление электрическое КАРТА САЙТА

 

Оглавление

 

Инфракрасное тепло это тот же вид тепла, который получает человек от солнца, русской печи, батарей центрального отопления и других подобных источников.

 

Что такое инфракрасное тепло

Инфракрасное излучение более известно как тепловое излучение или в простонародий инфракрасное тепло. Большая часть Солнечной энергии поступает на Землю в виде инфракрасного излучения. Солнце находящееся в зените обеспечивает освещённость на уровне моря чуть более 1 кВт. на один квадратный метр. При этом 523 Вт приходится на инфракрасное излучение, 445 Вт. — на видимый свет, 32 Вт.- на ультрафиолетовое излучение.

Инфракрасное тепло это электромагнитные волны, излучающиеся в диапазоне меньшем, чем 0,005м, но большем чем 770 нм. Всё пространство вокруг нас заполнено электромагнитными волнами, которые в зависимости от частоты колебаний подразделяются на: рентгеновские лучи, видимый свет, инфракрасное излучение и радиоволны. Такой нескончаемый поток энергии происходит в результате колебаний электрических зарядов атомов и молекул. Излучение видимого света, которое мы воспринимаем глазами, отличается длинной волны от рентгеновского излучения, излучения радио или инфракрасного излучения. Все они имеют одинаковые свойства распространения со скоростью света, то есть около 300000 км/сек. Любое нагретое тело излучает электромагнитные волны. Это излучение получается в результате преобразования энергии теплового движения частиц в электромагнитную волну и называется тепловым излучением или инфракрасным теплом. Инфракрасное излучение отличается от остальных видов тем, что энергия, посылаемая им на необходимое место, в то же время осуществляет и его нагрев. Все объекты с температурой поверхности большей абсолютного нуля (-273 °С) испускают инфракрасное тепло. Любое нагретое твёрдое тело испускает непрерывный инфракрасный спектр с волнами, имеющими все частоты излучения в широком диапазоне длин волн. Поэтому выделить какую-то определённую частоту из данного спектра и организовать работу с её применением на данном этапе практически не возможно. При этом температура объекта, а также его физические свойства определяют эффективность и длину излучаемой инфракрасной волны. Так при температурах ниже 450 °С излучение исходящее от твёрдого тела полностью расположено в инфракрасной области спектра — такое тело не испускает видимых глазом лучей и кажется тёмным. С повышением температуры нагрева повышается, и доля излучения в видимом спектре тело приобретает сначала тёмно-красный свет затем ярко красный, желтый и наконец, белый. При достижении температуры 1000 °С и выше тело испускает ультрафиолетовое излучение.

Закон теплового излучения открытый Планком устанавливает зависимость мощности интенсивности излучения твёрдого тела от длины волны и температуры. График, представляющий данный закон для двух различных длин волн и температур нагрева представлен на рисунке. Из данного графика видно, что поверхность под кривой с определённой температурой нагрева даёт возможность определить интенсивность излучения в зависимости от длинны волны. Отсюда вывод, что площадь интенсивности излучения возрастает с увеличением температуры нагрева тела и уменьшением длинны волны.

Диапазон волны инфракрасного излучения делится на три составляющих: коротковолновая (λ = 0,74-2,5 мкм.), средневолновая (λ = 2,5-50 мкм.), длинноволновая (λ = 50-2000 мкм.). Длинноволновая область излучения инфракрасного тепла не оказывает вредного влияния на организм человека, и являются самым благоприятным диапазоном волн передающих тепловую энергию. Чем выше температура излучателя, тем короче (жёстче) длинна испускаемой волны. Исследования учёных доказали, что лучшим диапазоном волн для человека является средневолновый. Причём не вся его часть, а та, которая лежит в интервале 5 — 15 мкм. Тепловое излучение самого человека составляй 9,6 мкм. то есть оно находится как раз в этом интервале. Средний диапазон волн наиболее перспективен и в промышленном производстве, так как большинство оптимальных процессов сушки материалов находятся в интервале длин волн 2,5 — 10 мкм.

 

Вредно ли инфракрасное тепло

«Инфракрасное излучение« не имеет ничего общего с «Рентгеновским или Ультрафиолетовым излучением», которые находятся за пределами видимой области спектра и ни как не связаны с восприятием тепла в организме человека. Но так как слово «излучение» относится ко всем выше перечисленным видам, то это вызывает у простого человека синдром опасности получения им вредного излучения вызывающего неизлечимые болезни. Инфракрасное тепло это тоже тепло, которое человек получает от солнца, печки, горячей батарей. Мы воспринимаем тепло, когда поглощаем инфракрасное излучение и чувствуем холод при излучении его в окружающее пространство. При этом наше восприятие тепла не имеет ничего общего с окружающей температурой воздуха. Данный вид тепла является для нас естественным и совершенно безопасным видом излучения кроме того он может оказать существенную пользу в лечении многих заболеваний.

Как говорилось выше, в инфракрасном спектре есть область с длинами волн порядка от 5 до 10 мкм. которая способна оказывать на человека общеукрепляющее и оздоравливающе действие. На этой основе строятся инфракрасные сауны, в которых инфракрасная энергия, передаваемая волновым способом, проникает глубоко в ткани организма и эффективно их прогревает. В результате расширяются кровяные сосуды, ускоряется поток крови и других жидкостей, что приводит к снижению давления на сердце, улучшается обмен веществ, повышается процесс доставки питательных веществ и кислорода к клеткам организма.

Инфракрасное тепло может оказывать и вредное влияние на организм. Так если спектр излучения сдвинут в более короткую область (с длиной волны 0,78…1,4 мкм., тепловое излучение мартеновской печи) то проникновение лучей в тело человека может достигать порядка до 4 см. Если же такому излучению подвергаться довольно длительное время, то можно получить тепловой удар. Поэтому при выборе инфракрасного обогревателя следует обращать внимание на частотный спектр его излучения. Чем он короче, тем менее полезным он будет для здоровья. В обычных условиях приобретения такого обогревателя грубо его частотные характеристики можно определить по интенсивности свечения нагревательного элемента. Если он испускает видимый свет даже в затемнённом помещений, то такой обогреватель излучает более короткий диапазон волн и его лучше не приобретать. В тоже время абсолютно тёмный нагревательный элемент говорит о том, что данный обогреватель относится к классу длинноволновых, и выбор его более предпочтителен.

 

Инфракрасное тепло — улучшение экологии в помещениях

Системы конвекционного отопления (центрального отопления) создают идеальные условия для образования конденсата. Это происходит, потому что данная система отопления в первую очередь нагревает воздух и практически не нагревает стеновые панели здания. В таких условиях температура воздуха может составлять +21 ° C при влажности воздуха 70%, а стены прогреты до +15 ° C. Так как тёплый воздух проходит над холодной поверхностью (окна, стены, двери) то возникает точка росы (температура выпадения конденсата) и на стенах либо внутри их (в зависимости от разницы температур на поверхности) появляется конденсат. При этом тёплый, влажный воздух и конденсат создают идеальные условия для размножения бактерий, плесени и грибков. Однако это не все неприятности конвекционного отопления. Воздушный поток, который непременно возникает при данной системы топления, является идеальным транспортным механизмом для разноса этих организмов по всему помещению.

Инфракрасное тепло, создаваемое инфракрасными обогревателями при отоплении бытовых и производственных помещений имеет то преимущество перед конвекционным, что оно прогревает окружающую среду, экономически, без излишнего подогрева воздуха. В тоже время часть инфракрасного тепла попадает на стены и окна, повышая их температуру и значительно сдвигая точку росы. Таким образом, воздух остаётся сухим, но прохладным и люди чувствуют себя более комфортно. Такая технология применения инфракрасного тепла позволяет значительно улучшить экологию в обогреваемых помещениях на производстве. и предотвратить распространение таких неприятных заболеваний как простуды, кашель, озноб, а также появления на стенах плесени.

 

Инфракрасное тепло влияние на человека

Инфракрасное тепло позволяет человеку комфортно чувствовать себя при довольно низких температурах окружающей его среды. Отдача тепловой энергии телом человека в окружающую среду должна по возможности находится в равновесии с образованием её в процессе обмена веществ в самом организме. Организм человека производит в среднем 100 ккал/ч. тепла. Это число увеличивается при увеличении обмена веществ, например при мышечной работе. Сколько тепла вырабатывает организм, столько же он должен и отдать в окружающую среду. Если он отдаёт больше, чем вырабатывает, то возникает опасность замерзания, если он отдаёт слишком мало, то наступает тепловой удар. С помощью одежды и отопления мы стараемся выровнять разницу между производством тепла организмом и отдачей её. Отдача тепла происходит в первую очередь путём излучения и конвекции. Чем больше скорость воздуха и разница температуры между телом человека и окружающим воздухом, тем больше отдача. Во время езды на мотоцикле вследствие большой скорости воздуха излучаемое тепло отдаётся больше, чем во время прогулки пешком, при которой благодаря мышечной работе вырабатывается больше тепла.

Инфракрасное тепло отдаётся в основном путём излучения и определяется изменением температуры окружающих стен и мебели. Мы не находим комфортных условий в квартире с высокой температурой воздуха, когда её стены очень холодные (здание стоящее на открытом месте), потому, что мы отдаём очень много тепла путём излучения. И, наоборот, несмотря на довольно низкую температуру воздуха можно себя чувствовать довольно хорошо при соответственно высокой температуре стен. Задачей отопления является не содержание помещения при определённой температуре, а поддержание теплового равновесия человеческого организма.

На самом деле температура, которую ощущает человек (так называемая температура ощущения То) складывается из температуры воздуха Тв и инфракрасного тепла Ит . То приближенно равна (Тв+Ит)/2. Поэтому одно и то же значение То можно получить при разных значениях Тв, даже отрицательных. Например, на склоне снежной горы под ярким солнцем можно с комфортом загорать.

 

Воздух обладает низкой теплоемкостью, поэтому для нагрева воздуха до нормативной температуры по всему объему помещения требуются большие затраты энергии. Однако, рабочая зона, в которой находятся люди, как правило, располагается на высоте до 2-х метров — все, что выше этой зоны, по существу обогревается впустую. Теплый воздух поднимается вверх, скапливаясь под потолком и увеличивает непроизводительные потери на отопление. Дополнительные потери приходятся на нагретый воздух, удаляемый из производственного помещения системой вентиляции находящейся как правило в его верхней части. Отопление производства инфракрасными обогревателями это не простой процесс, требующий учёта различных нюансов. Поэтому перед установкой системы отопления в обязательном порядке необходимо произвести её расчёт. Что позволит экономно расходовать энергоресурсы и при этом обеспечить комфортную температуру в помещении для человека.

Человек чувствует себя довольно хорошо, когда воспринимает на себя инфракрасные лучи, несмотря на холодные стены и низкую внешнюю температуру, куда он отдаёт много тепла. Кожа человека очень хорошо воспринимает инфракрасное тепло.

 

Данные о восприятии инфракрасного тепла кожей человека

 

Сила облучения в ккал/мин* см2 Ощущения
0,0015 Ощущение боли
0,0002 Горячо, жжёт, напряжение лица
0,00005 Ощущение тепла
0,000015 После некоторого действия лёгкое ощущение тепла

 

Инфракрасное излучение это тот же вид тепла, который мы получаем от солнца, русской печки, батареи центрального отопления и т.д. Это излучение, которое подчинятся тем же законам физики, что и видимый свет. Спектральная область, находится между красным видимым светом и коротковолновым излучением. Оно присуще всем нагретым телам при этом длина волны, излучаемая им, зависит от температуры самого тела, чем она выше, тем короче волна и выше интенсивность самого излучения. Так земная поверхность нагретая солнечными лучами сама является источником излучения с интервалом длин волн 7 — 14 мкм. (микрометров) с максимумом 10 мкм. Человек так же излучает и поглощает инфракрасное излучение с пиком 9,6 мкм. Тепло с такой длинной волн глубоко проникает в тело человека, интенсивно прогревая его благоприятно действуя на внутренние органы.

 

Об этом хорошо знали наши предки и нередко прибегали к лечению теплом определённых заболеваний посредством прогревания тела в парилках. Температура воздуха у потолка парилки достигает порядка +100°С, при этом кожа человека нагревается до +39 — 40°С. Человек начинает интенсивно потеть и дальнейший рост температуры замедляется. Достигнув +41°С градуса, температура кожи опускается. Внутренние органы начинают постепенно прогреваться и достигают температуры +38 — 39°С. В результате чего в организме человека резко возрастают обменные процессы, что соответствует лихорадочному состоянию. При этом значительно повышается сопротивляемость организма действию вирусов и бактерий, улучшается здоровье. Древнегреческий врач Пемендидес писал в своё время «Дайте мне способ вызвать лихорадку, и я излечу любую болезнь».

 

Влияние инфракрасного излучения на человека было изучено японским врачом Тадаши Ишикава в 60-х годах прошлого столетия. Он установил что инфракрасный луч может проникать в тело человека на большую глубину вызывая аналогичный эффект получаемый человеком в парилке. Но в этом случае потоотделение кожи начинается уже при температуре +50 — 60°С и внутренние органы прогреваются значительно глубже, чем в парилке. Инфракрасные волны, проникая вглубь тела человека, прогревают все его органы и усиливают кровообращение. Физическая терморегуляция перестраивается на увеличение теплоотдачи, в тоже время химическая терморегуляция приводит к уменьшению теплопродукции. Что ведёт к расширению сосудов кожи, подкожной клетчатки и органов дыхания которые в свою очередь улучшают питание мышц и резко повышают снабжение тканей кислородом. Результатом этих работ стало создание инфракрасных кабин, в котором основным элементом обогрева были длинноволновые инфракрасные обогреватели.

 

Длительные исследования учёных по влиянию инфракрасного излучения на человека показали, что инфракрасное тепло оказывает положительное воздействие на его здоровье. При этом поглощённое телом излучение согревает человека, преобразуясь в тепло, а излишки тепла отдаются прохладному воздуху, действуя освежающе на него. Но не следует забывать и о том, что длительное пребывание под интенсивным инфракрасным излучением может спровоцировать тепловой удар.

Подведя итоги, приходим к заключению: инфракрасное излучение это естественный природный вид излучения на земле; человек постоянно подвергается действию инфракрасных лучей это его нормальное состоянии; кратковременное воздействие в небольших дозах инфракрасного тепла на человека благотворно влияет на его здоровье; длительное пребывание под мощным источником инфракрасного излучения может привести к тепловому удару.

 

 

 

Обогреватели для дома .  — Инфракрасные обогреватели для дома, принципы их применения, достоинства, преимущество перед другими видами обогрева. Обогреватели для дачи .  — Обогреватели для дачи, принципы их применения, преимущество перед масляными конвекционными обогревателями.

 

 

 

Биологические эффекты и медицинские применения инфракрасного излучения

Реферат

Инфракрасное (ИК) излучение — это электромагнитное излучение с длинами волн от 760 до 100000 нм. Низкоуровневая световая терапия (LLLT) или фотобиомодуляция (PBM) обычно использует свет с длинами волн красного и ближнего инфракрасного (600–100 нм) для модуляции биологической активности. Многие факторы, условия и параметры влияют на терапевтические эффекты инфракрасного излучения, включая плотность энергии, освещенность, время лечения и его повторение, пульсацию и длину волны.Все больше данных свидетельствует о том, что ИК может оказывать эффекты фотостимуляции и фотобиомодуляции, особенно полезные для нервной стимуляции, заживления ран и лечения рака. Нервные клетки особенно хорошо реагируют на ИР, который был предложен для ряда приложений нейростимуляции и нейромодуляции, а недавние успехи в нервной стимуляции и регенерации обсуждаются в этом обзоре.

Применение ИК-терапии в последние годы быстро развивается. Например, была разработана ИК-терапия, которая фактически не требует внешнего источника питания, такого как материалы, излучающие ИК-излучение, и одежда, которая может работать только от тепла тела.Еще одна интересная область — возможное участие солнечного ИК-излучения в фотостарении или фотоомоложении как противоположные стороны медали, и должны ли солнцезащитные кремы защищать от солнечного ИК-излучения? Лучшее понимание новых разработок и биологических последствий ИК может помочь нам повысить терапевтическую эффективность или разработать новые методы PBM с использованием длин волн ИК.

Ключевые слова: Инфракрасная стимуляция нейронов, фотостарение, повреждение ДНК, нейропротекция мозга, АФК, АТФ, молекулы воды, нагревание

1.Введение

Инфракрасное излучение (ИК) — это тип электромагнитного излучения, в том числе с длинами волн от 780 нм до 1000 мкм. ИК разделен на разные диапазоны: ближний инфракрасный (NIR, 0,78 ~ 3,0 мкм), средний инфракрасный (MIR, 3,0 ~ 50,0 мкм) и дальний инфракрасный (FIR, 50,0 ~ 1000,0 мкм), как определено в стандарте ISO 20473: 2007. Оптика и фотоника — Спектральные диапазоны [1]. В нескольких исследованиях сообщалось, что ИК может улучшить заживление кожных ран, фотопрофилактику, облегчить боль, скованность, утомляемость при ревматоидном артрите, анкилозирующем спондилите, потенцировать фотодинамическую терапию, лечить офтальмологические, неврологические и психические расстройства и стимулировать распространение мезенхимальных и сердечных заболеваний. стволовые клетки [1–9].

Низкоуровневая светотерапия (НИЛИ) определяется как «Лечение с использованием облучения светом низкой интенсивности, так что эффекты являются реакцией на свет, а не на тепло. Используются самые разные источники света, особенно маломощные лазеры ». в Дескрипторах медицинских предметных заголовков (MeSH) за 2017 год. Фотобиомодуляционная терапия (PBM) — это «форма световой терапии, в которой используются неионизирующие формы источников света, включая лазеры, светодиоды и широкополосный свет в видимом и инфракрасном спектре.Это нетепловой процесс с участием эндогенных хромофоров, вызывающий фотофизические (то есть линейные и нелинейные) и фотохимические явления на различных биологических масштабах. Этот процесс приводит к положительным терапевтическим результатам, включая, помимо прочего, облегчение боли или воспаления, иммуномодуляцию и ускорение заживления ран и регенерации тканей ». как определено в Anders et al. [10]. Сейчас все согласны с тем, что «PBM-терапия» является более точным и конкретным термином для терапевтического применения света низкого уровня по сравнению с «LLLT».

Все фотобиологические реакции определяются поглощением энергии фотоакцепторными молекулами (хромофорами) во время светового облучения. Важно выяснить молекулярный механизм взаимодействия света с тканью путем идентификации молекул фотоакцепторов. Считается, что физиологические эффекты, индуцированные ИК-излучением, связаны с двумя основными типами фотоакцепторов (т. Е. Цитохром с оксидазой и внутриклеточной водой) [11]. Поглощение фотонов преобразует свет в сигналы, которые могут стимулировать биологические процессы [12].Воздействие ИК-света на динамику воды в мембранах, митохондриях и / или клетках может модулировать сигнальные пути, продукцию активных форм кислорода (АФК), АТФ (аденозинтрифосфат), Ca 2+ , NO и группу инозитолфосфатов [13 –16]. Вторичным эффектам всегда предшествуют первичные эффекты, включая передачу сигналов стресса, метаболические процессы, организацию цитоскелета, пролиферацию / дифференцировку клеток и гомеостаз (в зависимости от повреждения или метаболических окислительно-восстановительных потенциалов) [17, 18].Кроме того, Shapiro et al. продемонстрировали, что ИК-свет может возбуждать клетки за счет поглощения воды, при этом повышение температуры влияет на плазматическую мембрану и изменяет электрическую емкость, тем самым деполяризуя клетки-мишени [19].

Pollack et al. продемонстрировали, что вода в определенных местах внутри клеток существует как более химически / биологически активная молекула [20]. Большая часть внутриклеточной воды динамична и имеет упорядоченную структуру для поддержки жизненных процессов в биологических системах [21].Поскольку спектр электромагнитного поглощения воды в основном находится в ИК-области, поглощение фотонов может привести к быстрому увеличению внутриклеточной температуры [22], что может способствовать нежелательным физиологическим изменениям температуры, pH, осмоса и выхода АТФ [23, 24].

На протяжении миллиардов лет Солнце генерировало ИК-излучение, и живые организмы на Земле эволюционировали, чтобы иметь дело с ИК-излучением как важным фактором окружающей среды в зависимости от среды их обитания. Многие древние методы лечения использовали солнечный свет для заживления ран и облегчения боли.Спектр солнечного света в окружающей среде и соответствующий спектр поглощения воды показаны в [25]. Ясно, что солнечное излучение и полосы сильного поглощения воды почти совпадают. Прежде чем солнечный свет проникает в атмосферу, он имеет более однородный спектр излучения. Пока солнечный свет достигает земли, некоторые полосы поглощаются газом окружающей среды или молекулами воды в атмосфере. Поскольку человеческое тело на 70% состоит из воды, оно потенциально может накапливать большое количество энергии, которая может модулировать биологические процессы, за счет сильного резонансного поглощения инфракрасного излучения солнечного света, опосредованного молекулами воды.

Наложение спектров солнечного излучения и поглощения воды, показывающее, что наиболее значительные области перекрытия находятся в области 800–1300 нм

В последние годы для понимания проблемы стало важным сочетание технических, клинических и фотобиологических принципов. терапевтические эффекты НИЛИ. Например, в последние годы системы доставки оптического волокна стали важной технологией для облегчения LLLT [26]. Волоконная оптика может передавать свет определенной длины волны на большие расстояния за счет использования полного внутреннего отражения, позволяя им изгибаться вдоль своего пути и фокусировать пятно излучения на определенной области.Хотя процедуры доставки света, необходимые для использования НИЛИ при заболеваниях легких и дыхательных путей, сложны, оптические волокна внутри игл могут применяться [27].

Кроме того, была описана неинвазивная доставка энергии на большие расстояния с использованием инфракрасного импульсного лазерного устройства (IPLD) с длиной волны 904 нм, пульсирующего с частотой 3 МГц, который, как утверждается, имеет оригинальный механизм действия, называемый «фото- инфракрасная импульсная биомодуляция »(PIPBM). Устройство применялось в клинических испытаниях пациентов с запущенным раком и в случае возрастной дегенерации желтого пятна (географической атрофии) с ассоциированным неврологическим заболеванием, оно продемонстрировало достаточные доказательства его селективных, удаленных, репаративных и / или регенеративных физиологических эффектов [ 16, 28, 29].

Предыдущие клинические исследования показали, что НИЛИ имеет широкий спектр преимуществ для различных групп пациентов, различных медицинских показаний и состояний без какого-либо серьезного риска побочных эффектов. Адекватная дозиметрия важна для LLLT и PBM терапии; появился основной принцип, названный «двухфазная доза-реакция», когда было обнаружено, что большие дозы света менее эффективны, чем меньшие дозы [30]. Этот феномен проявляется в благоприятных неврологических эффектах транскраниальной НИЛИ при черепно-мозговой травме, где результаты значительно различаются в зависимости от количества процедур и плотности энергии каждого отдельного лечения.

В данной обзорной статье будут обобщены только некоторые ключевые исследования нового приложения и научные открытия, связанные с инфракрасным излучением. Особое внимание будет уделено новым приложениям, включая материалы, излучающие ИК-излучение для одежды, инфракрасную терапию в сауне, терапию Waon и т. Д. Кроме того, мы представляем некоторые недавно появившиеся научные открытия о нервной стимуляции, фотостарении, фотоомоложении, противоопухолевом действии, регенерации нервной системы и жировой ткани. .

2. Новые разработки и применение инфракрасной терапии в биологических областях

2.1. Материалы, излучающие инфракрасное излучение для одежды

В последние годы благодаря развитию нанотехнологий функциональная спортивная одежда приобрела множество свойств, повышающих эффективность занятий спортом, эффективность и комфорт. Например, спортивная одежда должна позволять владельцу оставаться в тепле в холодную погоду и сохранять прохладу в жаркую погоду за счет отвода пота от кожи. В общем, механизм действия материалов, излучающих ИК-излучение, заключается в преобразовании тепловой энергии тела (конвекция и проводимость) в излучение в диапазоне длин волн ИК-излучения от 3 до 20 мкм, чтобы вызвать гомеостаз и фотобиомодуляцию за счет более глубокого проникновения ИК-излучения и молекулы воды. абсорбция в коже [25].Использование материалов, генерирующих ИК-излучение, возможно, помогает улучшить кровообращение и обмен веществ в организме человека.

Предыдущие исследования показали, что эффекты IR могут активировать фибробласты, увеличивать синтез коллагена и экспрессию трансформирующего фактора роста-бета1 (TGF-beta1) в ранах крыс [31]. Предыдущие исследования показали, что включение наноразмерных частиц германия (Ge) и диоксида кремния (SiO 2 ) в композитные волокна дает нановолокна из поливинилового спирта (ПВС).Длина волны излучения этих мембран из нановолокна находилась в диапазоне 5–20 мкм при 37 ° C и демонстрировала значение коэффициента излучения 0,891 (идеальное черное тело имеет максимальный коэффициент излучения 1) и мощность излучения 3,44 × 102 Вт · м — 2 с плотностью перегородки 5,55 г / м2 −2 . Антимикробные свойства, вызванные дальним инфракрасным излучением, могут быть эффективными для уменьшения количества бактерий как против Staphylococcus aureus , так и против Escherichia coli на 99,9%, и показали снижение на Klebsiella pneumoniae на 34.8% [32].

Футболисты использовали одежду, излучающую FIR (плотность 225 г -2 , 88% излучающее дальнее ИК-излучение волокно из полиамида 66 Emana (PA66), 12% спандекс, коэффициент излучения 0,88 и излучаемая мощность 341 Вт / м 2 при 37 ° C в диапазоне длин волн 5–20 мкм). Эта одежда использовалась в течение 10 часов в качестве одежды для сна в течение трех ночей подряд, чтобы уменьшить болезненность мышц с отсроченным началом через 48 часов после интенсивной плиометрической тренировки [33].

Пластырь, излучающий в дальнем инфракрасном диапазоне, применялся для терапевтического лечения остеоартрита коленного сустава.На заднюю поверхность колена пациента накладывали пластырь на 12 часов в день и 5 дней в неделю в течение 4 недель. Пластырь был изготовлен компанией Chongqing Kaifeng Medical Instrument Co. Ltd, Китай, которая предоставила пластину, покрытую запатентованным минеральным образованием, состоящим из 33 элементов, предназначенных для генерации дальнего инфракрасного излучения за счет действия радиатора. В исследовании контролировали продольное ультразвуковое сканирование переднего отдела коленного сустава.Он показал, что у пациентов из группы FIR было меньше суставного выпота (40%) по сравнению с исходным уровнем (80%) [34].

Ting-Kai Leung et al. использовали керамический порошок (производства Bioenergy Development Ltd, Таоюань, Тайвань) для исследований in vitro и in vivo. Его средняя излучательная способность составляла 0,98 на длинах волн 6–14 мкм с нетепловыми эффектами при комнатной температуре. Экспериментальные мишени включали клетки рака молочной железы MCF-7, клетки макрофагов, клетки меланомы, клетки миобластов, линию клеток хондросаркомы, клетки эпителия груди человека MCF-10A и колени кроликов [35].Важнейшим результатом исследований было то, что этот биокерамический препарат может снимать воспалительный артрит коленных суставов кролика [36]. Кроликам вводили внутрисуставные инъекции липополисахарида (ЛПС), чтобы вызвать стерильное воспаление, а затем помещали в клетки, окруженные слоем, содержащим биокерамику, в группе лечения. Позитронно-эмиссионная томография (ПЭТ) показала, что биокерамика способна снимать воспаление в суставах через 7 дней после инъекции ЛПС.

2.2. Инфракрасные сауны и Waon Therapy

Использование инфракрасных саун для лечения основано на глубоком проникновении излучения в кожу для восстановления гомеостаза терморегуляции. У малоподвижных пациентов, страдающих остеоартритом или сердечно-сосудистыми респираторными проблемами, сауны в дальнем инфракрасном диапазоне могут быть использованы в качестве альтернативы умеренным упражнениям. Они оказывают терапевтическое действие без каких-либо побочных эффектов на застойную сердечную недостаточность, преждевременные сокращения желудочков, уровни натрийуретического пептида мозга, функцию эндотелия сосудов, потерю веса, окислительный стресс или хроническую усталость [37].

Waon-терапия означает, что тело предупреждается в инфракрасной камере в течение 15 минут при 60 ° C, затем его заворачивают в тепловые одеяла и кладут для поддержания тепла в течение дополнительных 40 минут, и, наконец, пациент пьет воду, чтобы восполнить потерю влаги. потоотделением. Он может улучшить сердечную функцию и полезен при реабилитации [38].

Терапия Waon проводилась один раз в день 5 дней в неделю в течение 2 недель. Всего было обследовано 76 пациентов, получавших терапию Waon, и 73 пациента из контрольной группы в 19 центрах [39].Значения натрийуретического пептида B-типа в плазме, классификация болезней «New York Heart Association», 6-минутная ходьба и кардиоторакальный коэффициент были значительно улучшены в группе терапии Waon по сравнению с контрольной группой. Испытание продемонстрировало безопасность и эффективность для лечения этой целевой группы пациентов с хронической сердечной недостаточностью.

Waon-терапия оказывает адъювантный эффект при хронической обструктивной болезни легких. Группа Waon показала большую жизненную емкость и пиковую скорость выдоха, чем контрольная группа.Необходимы дальнейшие исследования для изучения механизма действия, в частности, может ли терапия Waon быть связана с увеличением потока NO через дыхательные пути [40].

Хроническая сердечная недостаточность вызывает дисфункцию эндотелия сосудов. Было продемонстрировано, что терапия инфракрасной сауной улучшает сосудистую эндотелиальную дисфункцию у хомяков с экспериментальной кардиомиопатией, которых ежедневно лечили экспериментальной системой сауны с дальней инфракрасной подсветкой в ​​течение 15 минут. Через 4 недели мРНК артериальной эндотелиальной синтазы оксида азота (NO) (eNOS) (а также экспрессия белка) и продукция NO были значительно увеличены по сравнению с нормальным контролем [41].

3. Новые исследования инфракрасной терапии

3.1. Нейронная стимуляция

Инфракрасная нервная стимуляция (ИНС) имеет более высокое пространственное разрешение без электрохимической связи между источником и целевой тканью. Кроме того, инфракрасное излучение можно точно настроить для отражения входящего сигнала; однако потенциальными недостатками INS являются риски теплового повреждения ткани из-за передозировки энергии и ограниченная глубина стимуляции, зависящая от свойств поглощения ИК-излучения тканью [42].

Многие исследователи обнаружили, что применение непрерывного или импульсного света приводит к различным результатам в исследованиях заживления ран и регенерации тканей [43]. Низкочастотный импульсный ИК-лазер значительно стимулировал образование костных узелков в клетках свода черепа крысы in vitro с помощью низкоэнергетического Ga-Al-As-лазера (2 Гц, 830 нм, 500 мВт, 0,48 3,84 Дж / см 2 ) [44 ]. Что касается INS, считается, что порог безопасности включает предотвращение нагрева ткани в зависимости от нейронных целей, длины волны, частоты импульсов, мощности и т. Д. [45, 46].ИНС для кохлеарного имплантата сравнима с электростимуляцией, в то время как другие нейронные мишени могут иметь более низкие пороги безопасности для ИНС. Импульсный диодный лазер с длиной волны 1,844 1,873 мкм м, длительностью импульса 35 ~ 1000 мкс, частотой повторения 2 Гц был использован для выявления составных потенциалов действия. Результаты показали, что длительность импульса 35 мкс была достаточной для выявления сложных потенциалов действия из улитки. Для проведения составного потенциала действия 50 мкм пиковая мощность была постоянной для длительностей импульсов 100 мкс ~ 1000 мкс, но показывала более высокую пиковую мощность при длительности импульса 35 мкс [47].

Одним из возможных механизмов ИНС являются фототермические эффекты, вызванные поглощением энергии водой, а не фотохимическими реакциями, которые могут происходить с излучением, обладающим большей энергией фотонов (более короткой длиной волны), или фотомеханическими волнами давления [48]. Термочувствительный ионный канал, называемый «временный рецепторный потенциал ваниллоида 1» (TRPV1), является возможным рецептором, который стимулируется во время INS. TRPV1 может активироваться термически за счет лучистой энергии, поглощаемой водой, присутствующей в нервной ткани.Поскольку у большинства мышей с нокаутом TRPV1 не было ответа на ИК-оптическую стимуляцию улитки, о чем свидетельствует отсутствие какого-либо потенциала действия, передаваемого в слуховом нерве во время ИК-воздействия (λ = 1,85, 1,86 мкм), это наблюдение поддержало гипотезу о том, что TRPV1 участвует в генерации потенциала действия с помощью ИК-излучения [49]. Кроме того, изолированные клетки сетчатки и вестибулярного ганглия грызунов были использованы для наблюдения реакции, вызванной ИК-лазером. Добавив блокаторы каналов TRPV1 и TRPV4 для идентификации первичных эффекторов, исследование пришло к выводу, что каналы TRPV4 вызывают сенсорный нейрональный ответ, запускаемый облучением ИК-лазером (λ = 1.87 мкм) [50].

Внутриклеточный Ca 2+ является важным вторичным посредником для разнообразных биологических процессов, таких как сокращение гладких мышц, высвобождение нейромедиаторов и регуляция сигнальных путей [51]. После воздействия ИК-излучения (1862 нм) в кардиомиоцитах желудочков новорожденных крыс наблюдалось быстрое повышение уровня внутриклеточного кальция до частоты пульсации в клетках [52]. Используя флуоресцентный анализ, ИК-импульсы 1862 нм (0,2-1 Гц) могут стимулировать как вызванные ИК-излучением, так и спонтанные кальциевые события.Инфекционно-вызванные кальциевые события имели меньшую амплитуду и более короткие временные константы по сравнению со спонтанными кальциевыми событиями. Был использован митохондриальный ингибитор Ca 2+ , который подтвердил гипотезу о том, что импульсное ИК-излучение регулирует Ca 2+ в митохондриях через митохондриальный обменник Na + / Ca 2+ и митохондриальный унипортер Ca 2+ .

В 2016 году Ken Zhao et al. рассмотрел применение INS, сосредоточив внимание на его способности стимулировать различные типы нейронов оптическим излучением, включая лицевой нерв, улитку, вестибулярную систему и кору [53].Они пришли к выводу, что ИК-излучение в основном поглощается водой ».

Периодическое инфракрасное фемтосекундное лазерное излучение (780 нм) было замечено для синхронизации отдельных или небольших групп кардиомиоцитов в качестве «оптического водителя ритма» [54]. В этом исследовании мощность ИК-лазера была адекватно отрегулирована, чтобы вызвать периодическое высвобождение кальция и избежать избыточного производства кальция в цитозоле. Лазер применялся со средней общей мощностью от 15 до 25 мВт. Кальциевый ответ с синхронизацией в изолированных кардиомиоцитах (или конкретной клетке в группе кардиомиоцитов) зависел от средней мощности лазера на целевой клетке.

Предыдущие исследования показали, что импульсное ИК-излучение с длиной волны 1860 нм или 790 ~ 850 нм стимулировало потенциалы действия во многих различных типах нервных клеток, таких как седалищные клетки, слуховые нервы и кардиомиоциты [52, 55, 56]. Полукружный канал crista ampullaris жабы (который функционирует как орган баланса внутреннего уха) был чувствителен к ИК-излучению (1862 нм) [57]. При облучении сенсорного эпителия различными типами ИК-импульсов наблюдалась активация фазовых тормозных и возбуждающих афферентных ответов.Однако при тепловой стимуляции сенсорного эпителия не наблюдалось синхронизированных по фазе потенциалов действия афферентного нерва.

Кроме того, ИК-лазер (λ = 1450 нм и 1860 нм) может временно подавлять распространение потенциалов действия в эндогенных немиелинизированных и миелинизированных аксонах. ИК-лазер, подаваемый с помощью оптического волокна 200 мкм, подавался между электрической стимуляцией, производимой микропипеткой, и нервом. регистратор сигналов. Данные показали, что потенциал действия, индуцированный электростимуляцией, блокировался инфракрасным излучением, включая сокращение мышц при аплизии и проводимость седалищного нерва у крыс.

Кроме того, для оценки пространственной селективности остро поврежденной улитки морской свинки применялся импульсный ИК-лазер (1,86 мкм). Нейронный ответ нижнего холмика был преобразован в кривые пространственной настройки, чтобы сравнить различия между акустически вызванными ответами и реакциями, вызванными ИК-импульсом [58]. Большинство кривых пространственной настройки указывают на то, что оптическая стимуляция может активировать селективные популяции нейронов таким же образом, как и акустическая стимуляция; только 10% профилей невозможно было проанализировать или сопоставить.

Основным недостатком INS является отложение тепла в тканях, что может стать препятствием на пути разработки имплантируемых устройств для таких применений, как искусственная улитка. Недавно был разработан гибридный метод электрооптической стимуляции, сочетающий ИНС с электростимуляцией [59, 60]. Седалищный нерв задней конечности крысы облучали импульсным диодным лазером (λ = 1875 нм) во время электростимуляции. Кроме того, было обнаружено, что повышение температуры нервной ткани, вызванное оптической стимуляцией, может усиливать гибридную электрооптическую стимуляционную реакцию нервов.

3.2. Инфракрасное воздействие на кожу: фотостарение или фотоомоложение

В последние годы фотодерматологические исследования сделали огромный прогресс в понимании молекулярных механизмов, которые составляют основу положительных и отрицательных эффектов, которым кожа человека может подвергаться в ответ на воздействие инфракрасного излучения. В большинстве исследований для освещения ИРА использовались искусственные источники света. Это позволяет определить наиболее эффективную длину волны, мощность и плотность потока энергии для облучения объектов, чем при использовании окружающего инфракрасного излучения солнца, содержащего несколько длин волн, которое может вызывать тепловую индукцию MMP-1 и индуцированную фотозащиту кожи человека [61] .

Поскольку кожа человека постоянно подвергается воздействию инфракрасного излучения окружающей среды, эта энергия может косвенно или прямо стимулировать выработку свободных радикалов или АФК. Многие исследователи обнаружили, что кратковременная вспышка ИК-индуцированных АФК может быть полезной для фотоомоложения. ИК-излучение (8 ~ 12 мкм м), используемое для заживления ран на всю толщину кожи у крыс, показало увеличение высвобождения фактора роста и противовоспалительного цитокинового трансформирующего фактора роста-β1 (TGF-β1), который приводит к активации фибробластов для улучшения заживления ран [31].Кроме того, инфракрасное излучение (λ = 950 нм) использовалось для прямой стимуляции пролиферации фибробластов, что привело к увеличению пролиферации фибробластов in vitro [62].

Предполагается, что молекулярный механизм NIR-излучения (λ = 810 нм) для генерации митохондриальной передачи сигналов в клетках млекопитающих обусловлен активацией фотоакцептора, называемого цитохром с оксидазой (CCO). Световая активация CCO стимулирует митохондриальную респираторную цепную реакцию с образованием ROS и приводит к активации NF-κB в эмбриональных фибробластах [13, 63].Кроме того, поглощение ИК-излучения PBM структурированной внутриклеточной водой может вызывать дополнительные изменения в колебательной энергии молекул и влиять на третичную конформацию ферментов, ионных каналов и других белков. Эти относительно небольшие изменения в структуре белка могут активировать сигнальные пути (например, за счет инозитолфосфатов), что приводит к активации факторов транскрипции и изменениям в экспрессии генов [64, 65].

Кроме того, первичные дермальные фибробласты человека анализировали с помощью микроматричного анализа после облучения ИРА in vitro.Анализ микроматрицы показал, что 599 IRA-регулируемых генов по-разному экспрессируются в первичных дермальных фибробластах человека, которые имеют отношение к метаболическим процессам во внеклеточном матриксе, гомеостазу кальция, передаче сигналов стресса и регуляции апоптоза [17]. Это исследование также показало, что IRA приводит к генерации АФК как внутри, так и вне митохондрий. Авторы предположили, что для активации экспрессии генов могут быть задействованы три основных сигнальных пути, включая митоген-активируемые протеинкиназы (MAPKs), кальций и интерлейкин 6 / сигнальный трансдуктор и активатор транскрипции 3 (STAT3).Кроме того, гены, индуцированные IRA, значительно отличались от генов, индуцированных УФ-излучением. Это открытие означает, что разные длины волн света могут приводить к определенным сигнальным путям в дермальных фибробластах человека.

Однако свободные радикалы и АФК, индуцированные ИК-излучением, могут быть обоюдоострым мечом: в низких дозах они могут активировать защитные реакции, но в высоких дозах АФК могут повреждать органеллы и клетки кожи, что приводит к фотостарению. Многие исследования показали, что ИК-излучение в диапазоне от 760 до 1000 нм участвует в фотостарении и фотоканцерогенезе кожи человека [66].Механизм ИК-излучения, повреждающего кожу, основан на активации матричной металлопротеиназы-1 (MMP-1), которая опосредуется стимуляцией пути p38-MAPK и сигнальных путей киназы 1/2 (ERK1 / 2), регулируемой внеклеточными сигналами. ответ на облучение ИРА. Когда человеческая кожа облучается однократным или многократным нанесением (один раз в неделю в течение 4 недель) ИК-излучения, это может привести к различной экспрессии проколлагена I типа и более высокой экспрессии TGF-β1, -β2 и -β3 [67, 68].

Кроме того, для облучения кожи человека использовалась инфракрасная лампа с максимальным излучением при 1100 ~ 1120 нм.Кровеносные сосуды, окрашенные маркером эндотелиальных клеток CD31, были увеличены инфракрасным излучением, вероятно, за счет повышения регуляции фактора роста эндотелия сосудов (VEGF) и подавления антиангиогенного фактора тромбоспондина-2 (TSP-2) в эпидермисе кожи [69 ].

IRA радиационно-индуцированные свободные радикалы могут снижать содержание антиоксидантов, таких как каротиноиды, в коже человека в различной степени. Особенно каротиноид, ликопин быстро снижается по сравнению с бета-каротином [70]. Для исследования образования свободных радикалов в коже человека во время воздействия ИК-излучения использовались многие неинвазивные измерения, такие как резонансная спектроскопия комбинационного рассеяния, спектроскопия отражения и измерение цвета кожи [71, 72].

Спектроскопия электронного парамагнитного резонанса основана на резонансном поглощении микроволнового излучения путем согласования разности энергий спинов свободного неспаренного электрона в магнитном поле, а также можно измерить обращение спина и поглощение микроволновой энергии [73]. Следует учитывать эффект вращения в тканевой воде со значительным демпфированием, вызванным резонансным поглощением микроволнового излучения, чтобы избежать последствий высокого импеданса на этом частотном уровне (10 9 Гц).В предыдущих исследованиях на коже 17 добровольцев параллельно использовались резонансная рамановская спектроскопия и спектроскопия электронного парамагнитного резонанса. Нитроксидные радикалы (со свободным неспаренным электроном на атоме азота) использовали для определения антиоксидантной способности кожи in vivo. Результаты показали, что скорость уменьшения нитроксида коррелирует с концентрацией кожных каротиноидов [74].

Антиоксидантный механизм каротиноидов заключается в гашении синглетного кислорода его системой двойных связей сопряженного углерода.Концентрация каротиноидов может указывать на полный уровень антиоксидантов в коже человека [75]. Резонансная рамановская спектроскопия — это неинвазивный оптический метод для устранения влияния неоднородностей и измерения концентрации каротиноидов в коже [76].

Кроме того, IRA-индуцированное истощение каротиноидов у десяти добровольцев было проанализировано с помощью резонансной рамановской спектроскопии, а распределение концентрации каротиноидов по глубине на ладонной части предплечья было определено с помощью конфокальной рамановской микроскопии [77].Результаты показали, что после воздействия IRA-излучения концентрация каротиноидов сразу же снижалась и сохранялась до 60 минут после воздействия. Первоначальный уровень исходной концентрации антиоксиданта восстановился через 24 часа после воздействия.

АФК, вызванные высокими дозами ИРА, могут значительно снизить уровень антиоксидантов in vivo. Это следует учитывать, и кожа должна подвергаться воздействию только низких и умеренных доз IRA-излучения, чтобы избежать повреждения тканей и фотостарения. Баролет и др. В статье, озаглавленной (Инфракрасное излучение и кожа: друг или враг?) [3], подчеркнули выраженное двухфазное дозовое воздействие ИК на кожу.Благоприятные эффекты низких доз ИК на кожу включали фотозащиту от повреждений, вызванных УФ-излучением, фотоомоложение, уменьшение пигментных поражений и уменьшение количества тонких линий и морщин. Таким образом, данные в целом подтверждают вывод о том, что оптимальные параметры света имеют решающее значение для различного применения НИЛИ и ПБМ, особенно на коже, но также и на других системах органов [78].

Тепловое воздействие, вызванное инфракрасным излучением, может быть патологическим для кожи. Когда температура кожи превышает 39 ° C во время ИК-облучения, это может вызвать образование АФК и патологические эффекты из-за изменений структурной целостности, вызванных индукцией ферментов в коже [79].Кроме того, регуляция экспрессии белка аквапорина 3 участвует в функциональных механизмах интенсивного импульсного света на длине волны 560 нм, который играет важную роль в гомеостазе кожи для транспортировки отходов и малых молекул растворенных веществ [80].

Как упоминалось выше, высокие температуры кожи могут активировать термочувствительные ионные каналы семейства TRPV1, увеличивая концентрацию внутриклеточного Ca 2+ внутри клетки и последующую активацию сигнальных путей [81, 82].

3.3. Противоопухолевое действие

За последнее десятилетие в ряде исследований было обнаружено, что ИК-излучение может вызывать некоторые повреждения ДНК в раковых клетках [83–85]. Предлагаемый механизм связан с окислительным стрессом. ИК влияет на цепь переноса электронов, генерируя АФК, которые не только стимулируют передачу сигнала на умеренных уровнях, но также могут напрямую повреждать клеточные органеллы при их чрезмерном генерировании. Сообщалось, что IR-индуцированные митохондриальные АФК способны повреждать митохондриальную ДНК человека (мтДНК), которая принимает форму кольцевой двухцепочечной молекулы длиной 16 559 п.н., содержащей 37 генов, что приводит к изменению функции дыхательной цепи [86].Кроме того, мутации мтДНК играют важную роль в патологических отклонениях. К настоящему времени обнаружено более 100 точечных мутаций в мтДНК [87].

Частота мутаций мтДНК значительно выше, чем у ядерной ДНК. Это связано с тем, что механизмы репарации ДНК против вызванного окислительным стрессом повреждения ДНК не так эффективны в митохондриях, как в ядре клетки. Это относится к объемным повреждениям ДНК или фотопродуктам, таким как фотопродукты пиримидин (6–4) пиримидона или димеры циклопиримидина [88].Кроме того, мтДНК расположена в непосредственной близости от цепи переноса электронов, которая имеет наибольшее количество индуцированных ИК-излучением АФК на стороне клетки. Следовательно, высока вероятность того, что АФК вызывают повреждение мтДНК и запускают каскад апоптоза и гибели клеток.

Чтобы уточнить внутриклеточное расположение IRA-индуцированных АФК, для предварительной обработки человеческих фибробластов использовали антиоксиданты [17]. Антиоксидант N-ацетил-цистеин может повышать уровень внутриклеточного глутатиона [89], улавливать активные формы кислорода во всех различных клеточных компартментах и, следовательно, способен ингибировать все изменения в экспрессии генов, индуцированных IRA.Однако IRA по-прежнему активирует гены, связанные с ROS, если MitoQ используется в качестве антиоксиданта, который был разработан для удаления ROS, специфически возникающих внутри митохондрий [90]. Это означает, что другие хромофоры, активируемые IRA в различных клеточных компартментах, могут участвовать в индуцированном IRA образовании ROS, и не ограничиваются исключительно митохондриями. Более того, индуцированная IRA экспрессия фермента MMP-1 в первичных фибробластах кожи человека может быть снижена антиоксидантами, такими как аскорбиновая кислота, (α) -токоферол, эпигаллокатехингаллат, (-) — эпикатехин или фенилпропионовая кислота [91].Вдобавок было предложено, что фермент MMP-1 ведет себя как «храповик броуновского движения», управляемый динамикой воды, которую можно стимулировать инфракрасным светом. Например, активированная коллагеназа (MMP-1) действует как молекулярный храповик, участвуя в ремоделировании тканей и взаимодействиях с клеточным матриксом [92]. Следовательно, можно применять соответствующие антиоксиданты для защиты от преждевременного старения кожи, вызванного излучением IRA. Клеточные линии рака молочной железы человека MDA-MB-231, MCF7, T47D и нормальные эпителиальные клетки молочной железы (184B5) были облучены MIR (λ = 3.0 ~ 5,0 мкм). Количественный протеомный анализ был использован для изучения MIR-регулируемых физиологических реакций клеток рака молочной железы, включая остановку клеточного цикла G 2 / M, ремоделирование сети микротрубочек в соответствии с расположением астрального полюса, изменение цитоскелета актина и уменьшение количества клеток. миграционная активность [85].

Chang et al. продемонстрировали, что ИК-излучение (3 ~ 5 мкм) может вызывать набухание и остановку клеточного цикла в фазе G 2 / M в клетках рака легкого A549 [84].ИК-излучение также может ингибировать фосфорилирование циклин-зависимой киназы 1 (CDK1) и циклина B1, что приводит к остановке прогрессирования клеточного цикла. Кроме того, перинуклеарное распределение актиновых филаментов в клетках рака легкого предполагает, что окислительный стресс, вызванный ИК-излучением, влияет на остановку клеточного цикла, реорганизацию цитоскелета и влияет на баланс антиоксидантов [93]. Это исследование также показало, что ИК-излучение запускает ось ATM / ATR-p53-p21 в ответ на повреждение ДНК, что приводит к образованию ядерных фокусов 53BP1 и c-h3AX и активации пути ATM / ATR-p53-p21, участвующего в Ремонт ДНК.Эти данные предполагают, что ИК-излучение индуцировало систему репарации ДНК в ответ на повреждение ДНК.

FIR (4 ~ 1000 мкм) излучение вызывает молекулярные колебания, приводящие к повышению температуры внутри клеток, и может вызвать локальный тепловой стресс в окружающей среде. Индукция белка теплового шока (HSP) 70 может ингибировать высвобождение цитохрома с из митохондрий, что является предшествующей стадией апоптоза [94]. Предыдущая литература показала, что низкая базальная экспрессия HSP70 и изменения клеточной морфологии наблюдались в FIR-чувствительных клеточных линиях HSC3, Sa3 и A549 [95].

Кроме того, FIR индуцировал клеточную гипертрофию и подавлял пролиферацию раковых клеток A549 (легкие), HSC3 (язык) и Sa3 (десна) за счет остановки клеточного цикла G 2 / M за счет сверхэкспрессии гена ATF3 [96]. Ген ATF3 участвует в реакции на изменения внеклеточного или внутриклеточного микросреды, клеточного гомеостаза, клеточного цикла и гибели клеток [97]. Однако ИК-излучение не влияло на экспрессию гена ATF3 и гипертрофию клеток в раковых клетках A431 (вульва) или MCF7 (груди).Эти результаты показывают, что FIR-излучение подавляет пролиферацию раковых клеток в зависимости от конкретного типа клеток и может быть эффективным средством лечения некоторых видов рака.

Предыдущие исследования показали, что терапия ионизирующим излучением в сочетании с паклитакселом может усиливать терапевтический эффект [98]. Паклитаксел стабилизирует микротрубочки и приводит к гибели клеток, ингибируя сегрегацию хромосом, нарушая сборку веретена во время деления клеток и вызывая остановку клеточного цикла в фазе G 2 / M.Кроме того, паклитаксел также активирует несколько путей митохондриальной цитотоксичности, изменяя проницаемость пор в митохондриях, рассеивая потенциал митохондриальной мембраны, высвобождая цитохром с из межмембранного пространства и формируя АФК [99]. Клетки рака шейки матки человека HeLa, обработанные паклитакселом в сочетании с облучением MIR (3,6, 4,1 и 5,0 мкм), показали улучшенный противоопухолевый эффект [100]. IR может снизить дозировку паклитаксела при клинической противоопухолевой химиотерапии, чтобы избежать тяжелых побочных эффектов, вызванных паклитакселом, таких как снижение количества лейкоцитов, выпадение волос, диарея, язвы во рту и реакции гиперчувствительности.

3.4. Нервная и жировая регенерация

Транскраниальная стимуляция мозга инфракрасным излучением — это использование когерентного или некогерентного света для реабилитации нейродегенеративных заболеваний головного мозга или черепно-мозговых травм, а также для модуляции нейробиологической функции за счет нетеплового эффекта; однако молекулярный механизм ИК-стимуляции мозга до сих пор неясен.

Чтобы прояснить клеточный механизм лечения NIR-лазером у пациентов с острым ишемическим инсультом, модель эмболического инсульта кроличьего тромба была использована для оценки содержания АТФ в кортикальном слое после лазерной обработки с длиной волны 808 нм [101].БИК-лазер в импульсном или непрерывном режиме мог повысить содержание АТФ в коре головного мозга кроликов по сравнению с имитацией эмболии кроликов, особенно импульсный волновой режим дал значительно большее увеличение содержания АТФ в кортикальном слое.

Диодный лазер на основе Ga-Al-As с длиной волны 810 нм, импульсный с частотой 10 Гц, 100 Гц и непрерывный режим, с плотностью мощности 50 мВт / см 2 в течение 12 минут, использовался для освещения головы мыши с экспериментальной черепно-мозговой травмой (ЧМТ). Мышей умерщвляли и анализировали через 2, 15 и 28 дней после TBI.Так же, как размер поражения и количество продукции АТФ, частота импульсов 10 Гц лучше всего влияла на неврологические функции [102]. Это исследование показало, что ритм 4 ~ 10 Гц, возникающий в области гиппокампа в нормальном мозге мышей, может войти в положительный резонанс с частотой лазерного импульса 10 Гц для улучшения нейрореабилитации мышей с ЧМТ.

Лазер с длиной волны 808 нм также может стимулировать церебральный кровоток и повышать уровень оксида азота у мышей [103]. Было высказано предположение, что ИК-лазер может стимулировать мозговое кровообращение за счет высвобождения NO, а также активировать нейропротективные пути для уменьшения количества апоптотических клеток в гиппокампе.

Существует множество гипотез, объясняющих дегенерацию нейронных процессов при болезни Паркинсона, включая снижение уровней дофаминергических нейронов в черной субстанции, наличие цитоплазматических включений и аномальные альфа-синуклеин-положительные аксональные набухания в выживших нейронах [104].

В попытке исследовать снижение аксонального транспорта, вызванное болезнью Паркинсона, скорость митохондриального движения в трансмиссионно-цибридных нейрональных клетках человека была измерена во время лечения диодным лазером с длиной волны 810 нм [105].Кибриды — это нейроны, в которых собственные митохондрии заменены больными митохондриями, полученными из других клеток (например, полученных от пациентов с болезнью Паркинсона). Скорость митохондриального движения в цибридных нейритах при болезни Паркинсона была значительно увеличена после воздействия ИК-излучения в течение двух часов. Было высказано предположение, что лечение ИК-лазером может подавлять нейродегенеративные симптомы у пациентов с болезнью Паркинсона.

Кроме того, трансгенных мышей-предшественников белка амилоида-β (мышиная модель болезни Альцгеймера) лечили 3 раза в неделю различными дозами 808-нм ИК-лазера [106].Уровни пептида амилоида-β головного мозга, пептида β амилоида-β в плазме и пептида β-амилоида-β спинномозговой жидкости, а также количество бляшек β-амилоида в головном мозге были снижены путем обработки ИК-лазером в зависимости от дозы. Кроме того, индуцированная ИК-лазером генерация АТФ может также улучшить сохранение нейронов и ингибировать образование амилоидных бляшек.

Эти данные, вместе взятые, показывают, что ИК-излучение может стимулировать рост жизнеспособности клеток и факторы роста, которые вызывают потенциальные терапевтические эффекты при повреждении или дегенеративном заболевании головного мозга.Заболеваниям головного мозга, включая ЧМТ, болезнь Альцгеймера, болезнь Паркинсона и инсульт, можно улучшить за счет индуцированного ИР синтеза АТФ, продукции фактора роста, противовоспалительных эффектов и антиапоптоза. [107]. Более того, недавнее исследование также указывает на то, что пролиферация и дифференцировка стволовых клеток, полученных из жировой ткани, регулируются инфракрасным излучением 980 нм, которое, как предполагается, воздействует на каналы ионов кальция с регулируемой температурой, в то время как ИК-излучение 810 нм стимулирует выработку АТФ за счет поглощения фотонов CCO [ 108].

Следует отметить, что ИК-излучение 810 нм не только поглощается CCO, но также на малых уровнях поглощается водой. Хотя ИК-спектр с длиной волны 980 нм не сильно поглощается CCO, он в основном поглощается водой [25].

обобщает отчеты об использовании ИК-излучения для взаимодействия с клетками и тканями. В нем также освещаются некоторые медицинские применения ИК-излучения. Предполагается, что длины волн источников света соответствуют спектру поглощения молекул CCO или воды.

Таблица 1

Различные медицинские применения ИК-излучения для различных клеток и тканей.

Мозг Нейронная регенерация
Медицинское применение Автор, ссылка Цель Источник света или материал Длина волны Результаты
Заживление ран Toyokawa et al. [31] Кожная рана у крысы Лист с керамическим покрытием 5,6 ~ 25 мкм (максимальная интенсивность 8 ~ 12 мкм) Способствует заживлению ран и экспрессии TGF-β1
Заживление ран Гупта и другие.[109] Кожные ссадины у мышей Диодный лазер 810 нм Усиленное накопление коллагена и эффекты заживления
Заживление ран Santana-Blank et al. [110, 111] Мягкие ткани крысы Диодный лазер 904 нм Способствует заживлению ран и росту зоны исключения (EZ) (1H-ЯМР 1 / T2)
Заживление ран Santana-Blank et al. al. [111]
Rodríguez-Santana et al.[112]
Мягкие ткани у крысы Диодный лазер 904 нм Способствует заживлению ран, мембранный эффект измеряется тау-методом 1H-ЯМР (c)
Нейронная стимуляция Wells et al. [55] Седалищный нерв крысы Лазер на свободных электронах 2,1, 3,0, 4,0, 4,5, 5,0 и 6,1 мкм Создает пространственно-селективный ответ в небольших пучках седалищного нерва
Нейральная стимуляция Jenkins et al.[113] Сердце взрослого кролика Диодный лазер 1,851 мкм Индуцированная оптическая стимуляция сердца взрослого кролика
Нейронная стимуляция Izzo et al. [56] Слуховой нерв песчанок Гольмий: YA G-лазер 2,12 мкм Оптическое излучение стимулировало амплитуды ответа улитки
Нейральная стимуляция Duke et al. [60] Седалищный нерв крысы Диодный лазер 1.875 мкм Гибридная электрооптическая стимуляция вызвала устойчивые сокращения мышц и снизила требования к мощности лазера
Нейронная стимуляция Shapiro et al. [19] Клетки HEK-293T Диодный лазер 1.889 мкм Временное изменение электрической емкости мембраны во время оптической стимуляции
Фотостарение Darvin et al. [76] Кожа человека Радиатор с фильтром для воды 600 ~ 1500 нм Образованные свободные радикалы и пониженное содержание антиоксидантов β-каротина
Фотостарение Schroeder et al.[91] Кожные фибробласты человека Фильтрованный водой источник ИК-излучения 760 ~ 14 40 нм Повышенная экспрессия MMP-1 в дерме
Antitum or Action Tsai et al. [100] Клетка рака шейки матки HeLa Волноводный термоизлучатель 3,6, 4,1 или 5,0 мкм Вызвал коллапс мембранного потенциала митохондрий и повышение окислительного стресса.
Antitum or Action Chang et al.[84] Клетки рака груди и нормальные эпителиальные клетки груди. Источник черного тела, оснащенный фильтром 3 ~ 5 мкм 3 ~ 5 мкм Вызвал остановку цикла раковых клеток G 2 / M, реконструировал сеть микротрубочек и изменил образование актиновых филаментов
Antitum or Action Tanaka et al. [83] Клетки аденокарциномы легких A549 БИК-излучатель с фильтром для воды 1,1 ~ 1,8 мкм Активировал путь ответа на повреждение ДНК
Antitum or Action Yamashita et al.[96] Раковые клетки A431 (вульва), A549 (легкие), HSC3 (язык), MCF7 (грудь) и Sa3 (десна) Инкубатор излучающей панели FIR путем покрытия углеродом / диоксидом кремния / оксидом алюминия / титаном оксидная керамика 4 ~ 20 мкм (максимум от 7 до 12 мкм) Подавляет пролиферацию раковых клеток за счет усиления экспрессии гена ATF3
Antitum or Action Santana-Blank et al. [114] Солидная опухоль Клиническое исследование Диодный лазер 904 нм 88% противоопухолевый эффект.Десятилетнее наблюдение
Antitum or Action Santana-Blank et al. [115] Цитоморфология солидных опухолей Диодный лазер 904 нм Избирательный апоптоз, некроз, аноикис в опухолевых тканях онкологических больных
Antitum or Action Santana-Blank et al. [116] Солидная опухоль T 2 недели МРТ-микродезитометрия Диодный лазер 904 нм Доказательства наличия межфазной водоизоляционной зоны (EZ) как предиктора противоопухолевого ответа у онкологических больных
Antitum Акция Santana-Blanket al.[117] Уровни цитокинов субпопуляций периферических лейкоцитов в сыворотке крови твердых опухолей Диодный лазер 904 нм Иммуномодуляция TNF-α sIL-2R и CD4 + CD45 RA + и CD25 + активированных
Naeser et al. [118] Легкая черепно-мозговая травма БИК диоды 870 нм Улучшение когнитивных функций, улучшение сна и симптомы посттравматического стрессового расстройства
Регенерация нервной системы головного мозга Lapchak et al.[101] Инсульты у эмболизированных кроликов Лазерный источник 808 нм Повышенное содержание АТФ в кортикальном слое
Регенерация жировой ткани Wang, Y., et al. [108] стволовые клетки, полученные из жировой ткани человека Диодный лазер 810 нм
980 нм
Стимулирование пролиферации и дифференцировки

4 Обсуждение

LLLT и / или PBM были использованы в широком диапазоне различных медицинских показаний в последние годы, а клеточные и молекулярные механизмы действия НИЛИ в настоящее время изучены лучше, чем в прошлые десятилетия.

Большинство исследований предполагают, что хромофоры, ответственные за эффекты PBM, можно в первую очередь классифицировать как митохондриальные хромофоры, такие как CCO.

Предыдущие исследования определили, что хромофор PBM с использованием длин волн красного или ближнего инфракрасного диапазона является митохондриальным CCO. CCO является одним из четырех белковых комплексов (единица IV), составляющих цепь переноса электронов, которая осуществляет транспорт электронов на внутренней митохондриальной мембране, в конечном итоге создавая электрохимический протонный градиент для конечного фермента АТФ-синтазы (единица V) для преобразования АДФ (аденозиндифосфата). ) для производства АТФ [119, 120].НИЛИ может увеличивать активность фермента CCO для облегчения транспорта электронов и увеличения производства АТФ [121]. Кроме того, было обнаружено, что спектр действия биологической реакции в ближнем ИК-диапазоне соответствует спектрам поглощения CCO в ближнем ИК-диапазоне, относящимся к митохондриальным хромофорам [63, 122–124]. Поглощение цитохром с оксидазы в видимой и ближней инфракрасной областях спектра хорошо согласуется со спектром действия по увеличению синтеза ДНК в клетках млекопитающих. CCO имеет два медных центра, Cu A и Cu B , и два гемовых центра, гем A и гем B .Каждый из этих металлических центров может находиться в окисленном или восстановленном состоянии, что дает в общей сложности 16 возможностей. Различные фотоакцепторы были отнесены к разным окислительно-восстановительным состояниям CCO, полоса 820 нм была отнесена к окисленной форме хромофора Cu A CCO, полоса 760 нм — к восстановленной пене Cu B , полоса 680 нм к окисленному Cu B и полосе 620 нм к восстановленному Cu A [13, 63].

С другой стороны, несколько других исследований показали, что другим возможным механизмом PBM, особенно на длинах волн FIR и MIR, является поглощение излучения молекулами воды.Pollack et al. продемонстрировали, что лучистая энергия может генерировать зону отчуждения (EZ) на границе раздела воды, которая обладает правильным типом гидрофильного / гидрофобного баланса [65, 125]. Вода EZ может накапливать электрические заряды и выделять до 70% потребляемой энергии.

Клеточные мембраны характеризуются наличием тонкого (нанометрового) слоя воды, которая накапливается на гидрофобных поверхностях [126]. Очень низкие количества ненагревающего ИК-излучения могут передавать относительно небольшие количества колебательной энергии наноструктурированным слоям воды и могут нарушать ее структуру и структуру соседних молекул, не вызывая какого-либо эффекта объемного нагрева (т.е.е. не вызывая заметного повышения температуры) [127]. Градиенты вязкости внутримитохондриальной воды идентифицированы методом наноиндентирования [128]. Синтез АТФ может уменьшаться и увеличиваться в ответ на модуляцию уровней активных форм кислорода, вызванную нетепловыми уровнями NIR. Возможный механизм управления этим «митохондриальным наномотором» заключается в том, что NIR может увеличивать оборот АТФ за счет снижения вязкости межфазных слоев воды. Недавно Сантана-Бланк и др.предположили, что внешняя электромагнитная (световая) энергия может активировать кислород-зависимые и кислородно-независимые пути, основанные на взаимодействиях воды и света [129]. В результате взаимодействия воды и света и механизмов передачи энергии ИК-излучение создает межфазную EZ-воду в качестве селективной перезаряжаемой электролитической биобатареи [130]. Световая энергия в кислородзависимых путях генерирует высокоэнергетические молекулы, называемые нуклеотид-фосфатами, включая АТФ и ГТФ. Взаимодействие с водой и светом в кислородно-независимом пути приводит к фотоиндуцированным нелинейным колебаниям в воде, которые могут обеспечивать энергией клеточные реакции, включая метаболизм, передачу сигналов и транскрипцию генов.

Недавно Ван и др. Показали [108], что две разные длины волн ближнего ИК-диапазона влияют на стволовые клетки, полученные из жировой ткани, посредством совершенно разных механизмов действия. Лазер с длиной волны 810 нм был предложен для активации CCO, приводящей к продукции АТФ и кратковременной вспышке ROS, но не влиял на внутриклеточный кальций. Напротив, лазер с длиной волны 980 нм также увеличивал АТФ и АФК, но при гораздо более низких плотностях потока (от одной десятой до одной сотой), и увеличивал цитозольный кальций, в то же время снижая митохондриальный кальций. Действия NIR 980 нм, но не действия NIR 810 нм, могут быть отменены ингибиторами кальциевых ионных каналов, такими как TRPV.Нагревание клеток или охлаждение клеток аннулировали эффекты 980 нм, но не 810 нм. Это исследование показало, что 980 нм может работать, воздействуя на наноструктурированные слои воды в ионных каналах TRPV, в то время как 810 может напрямую активировать активность фермента CCO. графически суммирует два наиболее важных предполагаемых биологических механизма действия ИР.

Предлагаемые механизмы действия ИР на молекулярном и клеточном уровне. TRPV = временный рецепторный потенциал ваниллоида; ROS = активные формы кислорода; АТФ = аденозинтрифосфат.

В дополнение к пониманию фотобиологических механизмов LLLT / PBM с использованием длин волн FIR / MIR и NIR, важно разработать параметры света с учетом клинического опыта и желаемой терапевтической цели для достижения оптимальных медицинских и биологических эффектов, как показано на. В клинической практике эффект двухфазной реакции на дозу критически важен для получения оптимальных клинических результатов [30]. Другой руководящий принцип заключается в том, что повторение лечения ежедневно (или даже более или менее часто) до тех пор, пока рана не заживет или не наступит ремиссия заболевания, лучше, чем однократное применение НИЛИ.НИЛИ можно сравнить с питательной пищей для человеческого организма; адекватное ежедневное потребление лучше всего.

Обзор детерминант и факторов, которые следует учитывать при инфракрасной терапии

Вся материя в конечном итоге состоит из заряженных частиц, таких как субатомные частицы, электроны, протоны и т. Д. Когда электромагнитное излучение падает на вещество, заряженные частицы поглощают энергию, что приводит к колебания в зависимости от энергии отдельных фотонов (длины волны). Видимый свет обычно поглощается электронами на молекулярных орбиталях, в то время как инфракрасная энергия обычно поглощается связями внутри молекул, что приводит к усилению колебательных мод, таких как скручивание, растяжение и изгиб.Оба вида энергии могут трансформироваться и рассеиваться в другие молекулярные колебания в виде повышенной тепловой энергии (температуры).

Как нам различать поглощение NIR и FIR, которое взаимодействует с различными элементами структуры ткани (вода, белки, аминокислоты, липиды и т. Д.). Это интересный вопрос, потому что мы не можем предположить, что оптические характеристики излучения останутся прежними, потому что NIR и FIR могут быть поглощены и переизлучены в виде электромагнитных волн различной длины хромофорами ткани в течение очень короткого периода времени.Возможно, что конечный фотобиологический результат происходит из множества источников, включая исходное поглощение фотонов падающего света, различные переизлученные электромагнитные волны, возникающие из структурных молекул клетки, и индукцию электромагнитных полей, которые влияют на энергетический метаболизм внутри клеток.

Тканевая оптика описывает подходы к математическому моделированию для анализа того, как фотоны с разной длиной волны взаимодействуют с тканью. Фотоны могут либо поглощаться, либо рассеиваться (неупруго или упруго).В макроскопическом масштабе инструмент моделирования Монте-Карло применялся для изучения проникновения и поглощения света в коже человека во время НИЛИ. Насури и др. моделировало распространение лазера через трехслойную модель кожи человека в спектральном диапазоне от 1000 до 1900 нм [131]. Этот тип анализа необходим для разработки параметров, позволяющих максимально увеличить глубину проникновения света в ткань без какого-либо риска термического повреждения верхних слоев кожи. Кроме того, профиль луча лазерного пятна, который может быть однородным или гауссовым, может увеличивать локальную объемную дозировку и важен при выборе длины волны и мощности лазера в LLLT.

В целом механизмы действия ИК-излучения можно разделить на две большие группы, перечисленные в. Совершенно очевидно, что необходимы дополнительные исследования для изучения механизмов ИК-излучения в медицинской и биохимической областях.

Таблица 2

Различные аспекты механизмов ИК-излучения

Механизм передачи энергии Механизм прохождения сигнала
  • Электрическая емкость клеток, регулируемая IR

  • Клеточные структуры (вода, белки, аминокислоты, липиды и т. Д.))

  • Зона отчуждения, образующаяся в воде, действует как перезаряжаемая биологическая батарея

  • Взаимодействие между ИК-излучением и молекулами воды

  • ИК-излучение поглощается и повторно излучается хромофорами тканей в виде электромагнитных волн различной длины.

  • IR влияет на окислительно-восстановительное состояние клеток в митохондриях и модулирует активные формы кислорода и производство АТФ.

  • Стимуляция оксида азота, цитохром с оксидазы, факторов транскрипции, цитокинов, факторов роста, медиаторов воспаления и т. Д.

  • Передача сигналов через светочувствительные ионные каналы (ионные насосы и молекулярные двигатели) [132]

  • Передача сигналов через циклические AMP / GMP и рецепторы, связанные с G-белком, и инозитолфосфат [132]

  • IR вызывает в объемной воде высвобождение и транспорт протонов, активируя мембранные сигнальные пути и эффекты трансмембранного ионного канала [133].

Опасности чрезмерного воздействия ультрафиолетового, инфракрасного и высокоэнергетического видимого света | 2013-01-03

В этой статье обсуждаются опасности воздействия на глаза / лицо, связанные со специфическим неионизирующим электромагнитным излучением (ЭМИ), не рассматриваемым OSHA: ультрафиолетом (УФ), инфракрасным (ИК) и высокоэнергетическим видимым светом (HEV).


Ультрафиолетовый свет

УФ обнаруживается в солнечном свете и представляет собой форму ЭМИ с высокочастотными волнами. Биологические эффекты УФ-излучения зависят от длины волн. Неионизирующий УФ-спектр имеет длину волны короче, чем у видимого света, но длиннее, чем рентгеновский (от 100 до 400 нм), и классифицируется в зависимости от интенсивности: УФ-А (от 315 до 400 нм), УФ-В (От 280 до 315 нм) и УФ-С (от 100 до 280 нм).

УФ-С обычно рассеивается в атмосфере и, по-видимому, оказывает незначительное повреждающее действие.Однако УФ-А и УФ-В оказывают повреждающее действие на открытые мягкие ткани, такие как кожа и глаза. Воздействие УФ-излучения является причиной 90% симптомов преждевременного старения кожи. Точно так же радиационное повреждение роговицы может быть вызвано чем-то столь же простым, как отражение солнечного света от воды или снега, или чем-то профессиональным, например, прожекторной лампой фотографа, сварочной горелкой или УФ-лампой. Катаракта, дегенерация желтого пятна и фотокератит (ощущение песка в глазах) могут быть связаны с чрезмерным воздействием ультрафиолета.

Хотя OSHA не имеет конкретного стандарта в отношении воздействия УФ-излучения, несколько других источников предоставляют рекомендации по предельным значениям воздействия. К ним относятся: Национальный институт безопасности и гигиены труда (NIOSH) и Американская конференция государственных специалистов по промышленной гигиене (ACGIH), которые разработали предельно допустимые значения (TLV), которые OSHA считает национальным консенсусом.

Защита от ультрафиолета может быть достигнута за счет сочетания инженерных, административных мер контроля и средств индивидуальной защиты (СИЗ).Всегда уделяйте особое внимание инженерным и административным мерам контроля (таким как использование ограждений, экранов или фильтров для защиты от УФ-излучения; обучение; и ограничение доступа сотрудников и их воздействия), тем самым сводя к минимуму потребность в СИЗ. После выполнения этих действий определите, нужна ли дополнительная защита лица, глаз или кожи, и если да, то какой тип СИЗ необходим. ANSI / ISEA Z87.1-2010 («Стандарт») устанавливает требования к пропусканию для УФ-фильтров для персональных устройств для защиты глаз и лица.Распространенное заблуждение состоит в том, что все линзы из поликарбоната блокируют УФ-излучение. Это не тот случай. Если производитель заявляет об УФ-фильтрации, на продукте должна быть нанесена соответствующая маркировка УФ-фильтрации.

Инфракрасный

Инфракрасное излучение используется во многих промышленных предприятиях, включая сталелитейные заводы, производство текстиля, бумаги и стекла, а также там, где используются лазеры, дуговые лампы или электрические лучистые обогреватели. ИК-волны расположены между микроволнами и видимым светом в спектре ЭМИ.Инфракрасный свет имеет диапазон длин волн, при этом ближний инфракрасный свет является наиболее близким по длине волны к видимому свету, а «дальний инфракрасный свет» — ближе к микроволновому диапазону. Волны в ближнем инфракрасном диапазоне короткие и не горячие — на самом деле вы их даже не чувствуете — что делает их особенно опасными для восприимчивых тканей, таких как кожа и глаза.

Кожа, подвергающаяся воздействию инфракрасного излучения, обеспечивает предупреждающий механизм против теплового воздействия в виде боли. Глаза же не могут. Поскольку глаз не может обнаруживать ИК-излучение, моргание или закрытие глаз для предотвращения или уменьшения повреждений может не произойти.ИК, особенно ИК-А или ближний ИК [700–1400 нм], повышает внутреннюю температуру глаза, по существу «запекая» его. Медицинские исследования показывают, что длительное воздействие ИК-излучения может привести к повреждению хрусталика, роговицы и сетчатки, включая катаракту, язвы роговицы и ожоги сетчатки соответственно. Чтобы защитить себя от длительного воздействия ИК-излучения, рабочие могут носить изделия с ИК-фильтрами или отражающими покрытиями.

Стандарт устанавливает требования к сварочным и инфракрасным фильтрам, включая точную маркировку продуктов, необходимую для конкретных требований к фильтрации.Это упрощает выбор подходящих СИЗ для тех, кто обучен использованию ПДК, например для промышленных гигиенистов.

Однако стандарт не устанавливает требований к отражению инфракрасного излучения. Хотя рынок Северной Америки предлагает изделия с отражающим покрытием, предназначенные для использования при повышенных температурах (ЕТ), во многих случаях их по ошибке используют только для предотвращения теплового стресса у рабочих. К сожалению, условия ET также поддаются вероятному долгосрочному воздействию инфракрасного излучения. Поскольку в Стандарте нет требований к отражению ИК-излучения, в Стандарте нет возможности подтвердить утверждения о том, что такие козырьки отражают ИК-излучение.Однако европейский стандарт (EN166, 7.3.3) предлагает знак «R» для подтверждения заявлений о «повышенной отражательной способности в инфракрасном диапазоне». Знак «R» на козырьке означает, что средняя спектральная отражательная способность ИК-излучения в диапазоне от 780 до 2000 нм (то есть количество, отраженное от защитного устройства) составляет> 60%. Таким образом, было бы разумно проверить продукты на наличие маркировки EN, а также запросить данные сертификации / испытаний для таких заявлений для тех продуктов, которые не имеют маркировки EN166 «R».

Высокоэнергетический видимый свет (HEV)

Высокоэнергетический видимый свет (HEV) или «синий свет», как его еще называют, представляет собой видимый свет с длинами волн от ~ 381 до 500 нм (рядом с УФ в спектре ЭМИ).HEV длиннее УФ, и было показано, что высокие уровни освещения вызывают необратимое повреждение клеток у некоторых людей. Длительное воздействие HEV может увеличить риск заболевания дегенерацией желтого пятна, когда пострадавший теряет центральное зрение. К сожалению, это состояние медленно ухудшается, и его повреждение обычно необратимо.

Люди подвергаются воздействию синего света через компьютеры, телевизоры и мобильные телефоны. Промышленное использование включает лазеры и медицинское диагностическое оборудование.Человек, нуждающийся в защите от синего света, должен использовать линзу, известную как «блокатор синего». Блокаторы синих обычно имеют базовый оттенок желтого, но они бывают и более темных оранжевых оттенков. Как правило, они не уменьшают свет, а скорее изменяют вид синих и зеленых цветов. Поскольку синий свет настолько близок по спектру к УФ-излучению, рекомендуется использовать блокаторы синего цвета, которые также обеспечивают защиту от УФ-излучения.

Хотя OSHA не предлагает руководящих принципов защиты от УФ-, ИК- и HEV-излучения, важно проконсультироваться с другими источниками относительно пределов воздействия и принять превентивные меры прямо сейчас, например, обучить рабочих и предоставить соответствующие СИЗ.

Для получения дополнительной информации о выборе подходящей защиты лица посетите сайт www.MSAsafety.com.

Сноски

Хизер Браннон, доктор медицины, «Воздействие солнца на кожу: клеточные изменения кожи, вызванные УФ-излучением», About.com Dermatology, 23 марта 2007 г.

2 Гэри Хейтинг, OD, «Ультрафиолетовое (УФ) излучение и ваши глаза», All about Vision, июль 2012 г.

3 Облученный человек может моргать, если ИК сопровождается световой вспышкой достаточной интенсивности

4 «Воздействие радиации на глаз, часть 1 — Воздействие инфракрасного излучения на ткань глаза», «Оптометрия сегодня», 1999.

5 Кэрол Дикас, Л.О., ABOC, NCLC, «Как защитить пациентов от вредного солнечного света», журнал 20/20, июнь 2004 г.

Инфракрасная терапия: польза для здоровья и риски

Инфракрасная терапия — это новый инновационный световой метод лечения боли и воспалений в различных частях тела. В отличие от ультрафиолета, который может повредить кожу, инфракрасный свет усиливает регенерацию клеток. Инфракрасный свет на определенных длинах волн доставляется к месту повреждения или воспаления, способствуя восстановлению клеток.

Ключевой характеристикой инфракрасного света является его способность проникать даже в глубокие слои кожи, обеспечивая лучшее обезболивание. Кроме того, инфракрасный свет безопасен, естественен, неинвазивен и безболезненен. Таким образом, он может принести широкий спектр преимуществ для здоровья.

Инфракрасное лечение для реабилитации ортопедической медицинской помощи. Кредит изображения: VP Photo Studio / Shutterstock

Почему сегодня широко используется инфракрасная терапия?

Инфракрасная терапия широко применяется в медицине, стоматологии, ветеринарии, а также при аутоиммунных заболеваниях.Терапия безопасна и естественна, что позволяет предлагать ее в качестве альтернативного лечения различных состояний здоровья, таких как мышечные боли, жесткость суставов и артрит, и многие другие.

Инфракрасная терапия выполняет множество функций в организме человека. К ним относятся детоксикация, обезболивание, снижение мышечного напряжения, расслабление, улучшение кровообращения, потеря веса, очищение кожи, уменьшение побочных эффектов диабета, усиление иммунной системы и снижение артериального давления.

Каковы преимущества инфракрасной терапии для здоровья?

Здоровье сердечно-сосудистой системы

Одним из ключевых преимуществ инфракрасной терапии для здоровья является улучшение здоровья сердечно-сосудистой системы.Инфракрасный свет увеличивает производство оксида азота, жизненно важной сигнальной молекулы, которая важна для здоровья кровеносных сосудов. Эта молекула помогает расслабить артерии и предотвращает свертывание крови и слипание в сосудах. Помимо этого, он также борется со свободными радикалами, чтобы предотвратить окислительный стресс и регулировать кровяное давление.

Оксид азота необходим для улучшения кровообращения, который обеспечивает больше кислорода и питательных веществ для поврежденных тканей. Таким образом, инфракрасный свет ускоряет заживление ран и стимулирует регенерацию поврежденных тканей, уменьшая воспаление и боль.

Боль и воспаление

Инфракрасная терапия — эффективное и безопасное средство от боли и воспалений. Он может проникать глубоко через слои кожи в мышцы и кости. Поскольку инфракрасная терапия усиливает и улучшает кровообращение в коже и других частях тела, она может доставлять кислород и питательные вещества к поврежденным тканям, способствуя заживлению. Он помогает облегчить боль, снять воспаление и защитить от окислительного стресса.

Мышечные травмы

Инфракрасная терапия улучшает действие митохондрий внутри клеток, тем самым вызывая рост и восстановление новых мышечных клеток и тканей.Другими словами, инфракрасный свет может ускорить процесс восстановления после мышечной травмы.

Детоксикация

Инфракрасная терапия может применяться в саунах. Детоксикации важны, поскольку они могут укрепить иммунную систему. В то же время детоксикация способствует правильному функционированию биохимических процессов, улучшая пищеварение. В инфракрасной сауне внутренняя температура тела повышается, что приводит к детоксикации на клеточном уровне.

Потенциальное лекарство от рака

Инфракрасная терапия — потенциально эффективный метод лечения рака.Исследования показывают значительную активацию наночастиц при воздействии инфракрасного излучения, что делает их очень токсичными для окружающих раковых клеток. Одним из таких методов является фотоиммунотерапия с использованием комплекса конъюгированных антител-фотоабсорберов, который связывается с раковыми клетками.

Убийство раковых клеток с помощью инфракрасного света — фотоиммунотерапия Play

Какие риски связаны с инфракрасной терапией?

Каждый день люди погружаются в инфракрасное излучение солнца в виде тепла.На самом деле инфракрасные сауны сегодня востребованы, но специалисты предупреждают о возможных рисках для здоровья. В зависимости от длины волны инфракрасного света могут произойти термические или тепловые травмы. Термическое повреждение может произойти даже без боли. Также беременным женщинам, людям с сердечными заболеваниями и больным никогда не следует проходить инфракрасную терапию.

Кроме того, специалисты предостерегают от использования инфракрасной терапии для лечения хронических заболеваний, пренебрегая использованием лекарств и рекомендуемых лечебных процедур.Хотя инфракрасная терапия обещает много преимуществ для здоровья, ее изучение далеко не завершено. Таким образом, в настоящее время его следует рассматривать как дополнение к лечению, а другие схемы следует продолжать в соответствии с предписаниями.

Дополнительная литература

Взаимодействие излучения с телом человека

Существует много типов электромагнитного излучения: гамма-лучи, рентгеновские лучи, ультрафиолетовый свет, видимый свет, инфракрасный свет, радиоволны и т. Д. Каждый тип излучения по-разному влияет на организм.

Ионизирующее излучение

Ионизирующее излучение, такое как гамма-лучи, рентгеновские лучи и определенная часть ультрафиолетового света (коротковолновое УФС), может ионизировать атомы из-за их большого содержания энергии. В результате ДНК в организме может быть повреждена, а клетки тела могут измениться. Даже небольшая доза ионизирующего излучения опасна для организма. В конечном итоге это может вызвать рак.

Неионизирующее излучение

Неионизирующее излучение, которое будет обсуждаться ниже, инициирует все виды биологических процессов, но представляет опасность только в том случае, если излучение слишком интенсивное.Что это за биологические процессы и когда мы имеем дело с риском?

Ультрафиолетовый свет

Свет UVA и свет UVB являются наиболее энергоемкими формами неионизирующего излучения. УФС еще богаче по энергии, но относится к ионизирующему излучению, которое мы здесь не рассматриваем. Ультрафиолетовый свет легко вызывает фотохимические реакции даже в нашем организме. Вот почему при открытии его когда-то называли «химическим излучением». Эти фотохимические реакции могут быть благоприятными (образование витамина D), но могут вызвать повреждение, если доза будет слишком высокой (катаракта, воспаление глаз, солнечный ожог и даже рак кожи).
Дополнительную информацию о повреждениях кожи, вызванных УФ-излучением, можно найти на сайте www.veiligindezon.be (Нидерланды) / www.soleilmalin.be (Франция).

Видимый свет

Светочувствительные клетки сетчатки поглощают энергию света и преобразуют ее в нервные импульсы, что позволяет нам видеть. Очевидно, что нам нужен свет, но слишком интенсивный свет может быть опасен. Например, лазерный свет может нанести непоправимый вред глазам, потому что светочувствительные клетки в глазах сгорают.Синий свет, который высвобождает максимальную энергию всего видимого света, может вызывать вредные фотохимические реакции в сетчатке, не будучи очень интенсивными. В конечном итоге это может вызвать плохое зрение. Источники синего света включают солнечные лучи и, в меньшей степени, светодиодные лампы.

О рисках оптического излучения можно прочитать в разделе «Лампы и излучение».

Инфракрасный свет и радиоволны

Энергия инфракрасного света и радиоволн преобразуется в теле в тепло.Мы можем чувствовать тепло инфракрасного света, потому что его энергия в основном поглощается кожей. С другой стороны, мы не можем чувствовать радиоволны, потому что они излучают свою энергию глубже в теле, под чувствительными к теплу клетками кожи.

В принципе, преобразование инфракрасного света и радиоволн в тепло не представляет для нашего организма никаких проблем. Человеческое тело способно самостоятельно производить или излучать тепло для поддержания температуры тела. В некоторой степени. Слишком интенсивное инфракрасное излучение или радиоволны вводят в тело столько тепла, что оно не может его отвести.Это подвергнет наше тело давлению, и этого следует избегать.

Само наше тело излучает инфракрасное излучение (и даже некоторые радиоволны), потому что оно теплое.

Подробнее об этом читайте в разделе «Мобильный телефон».

Электромагнитные поля с (чрезвычайно) низкой частотой

В то время как инфракрасный свет и радиоволны преобразуются в тепло, электромагнитные поля с (чрезвычайно) низкой частотой создают электрический ток в теле. Вот почему ученые используют термин наведенный ток.
В нашем теле естественным образом присутствует очень небольшой электрический ток. Нервы могут посылать сигналы с помощью электрических импульсов. Но сильные токи, вызванные внешними источниками, также могут стимулировать нервы и мышцы или вызывать вспышки света в поле зрения.
Подробнее об этом читайте в разделе «Электричество».

Эти биологические процессы не обязательно приводят к повреждению, но они подразумевают риск. В разделе «Пределы воздействия» вы можете прочитать, как разрабатываются стандарты для защиты людей от этих рисков.

Снижение вредного воздействия инфракрасного излучения на кожу с помощью бикосом, содержащих β-каротин — FullText — Skin Pharmacology and Physiology 2016, Vol. 29, № 4

Аннотация

Цель: В данной работе изучается влияние инфракрасного (ИК) излучения при температуре от 25 до 30 ° C на образование свободных радикалов (FR) в коже. Дополнительно оценивается влияние инфракрасного излучения при высоких температурах на деградацию коллагена кожи.В обоих экспериментах также оценивается защитный эффект от ИК-излучения фосфолипидных наноструктур (бикосом), включающих β-каротин (Bcb). Методы: Формирование FR на коже под воздействием ИК-излучения измерялось вблизи физиологических температур (25-30 ° C) с использованием спиновой ловушки 5,5-диметил-1-пирролин-N-оксида и электронного парамагнитного резонанса (ЭПР). спектроскопия. Исследование структуры коллагена проводили методом малоуглового рассеяния рентгеновских лучей с использованием синхротронного излучения. Результаты: Результаты ЭПР показали увеличение гидроксильного радикала в облученной коже по сравнению с нативной кожей. Коллаген кожи разлагался под воздействием инфракрасного излучения при высоких температурах примерно 65 ° C. Обработка Bcb уменьшила образование FR и сохранила структуру коллагена. Выводы: Образование FR под действием ИК-излучения не зависит от повышения температуры кожи. Уменьшение FR и сохранение коллагеновых волокон в коже, обработанной Bcb, указывают на потенциал этой липидной системы для защиты кожи от воздействия инфракрасного излучения.

© 2016 S. Karger AG, Базель


Введение

Кожа предназначена для защиты организма от травм и действует как физический барьер против внешней среды. Солнечный свет повреждает кожу человека, что приводит к образованию свободных радикалов (FR), которые частично ответственны за эритему / отек, воспаление, фотостарение и кожные заболевания [1,2,3,4]. Негативное воздействие солнечного излучения на кожу обычно связано с воздействием ультрафиолетового (УФ) излучения [1,2,3].UVB-излучение в основном отвечает за повреждение ДНК в клетках, и путь, по которому происходит это повреждение ДНК, обсуждается во многих работах [5].

Однако кожа также подвергается воздействию инфракрасного (ИК) излучения. ИК-излучение может генерировать FR в коже, которые, в зависимости от дозы, способны инициировать каскад различных сигнальных путей, вызывая терапевтические или патологические эффекты [4,5,6,7,8,9]. FR, образованные инфракрасным излучением, могут составлять четверть количества FR, созданных дозой UVB / UVA в точке эритемы [10].Некоторые исследования связывают образование FR с повышением температуры под действием ИК-излучения [4,7,8,10]. Вопрос о том, вызывает ли ИК-излучение образование СО напрямую или это результат теплового шока, индуцированного ИК-излучением, все еще остается открытым. Этот вопрос актуален, поскольку кожа ежедневно подвергается воздействию инфракрасного излучения солнечного света при физиологической температуре кожи. Точное измерение FR, индуцированных во время воздействия ИК-излучения при поддержании образца при физиологических температурах, может предоставить интересную информацию о прямом действии этого излучения, избегая температурного эффекта.

ИК-излучение проникает в эпидермальный и дермальный слои кожи и проникает глубже, чем УФ; следовательно, он может повредить оба отдела кожи. Эпидермис содержит роговой слой, который является физическим барьером для тела [11]. Дерма является вторым внутренним слоем и содержит структурные белки, такие как коллаген и эластин. Коллаген составляет около 75% от общей сухой массы кожи и обеспечивает прочность и целостность тканей [12]. Этот белок может быть поврежден действием ИК-излучения за счет сверхэкспрессии матриксных металлопротеиназ (ММП), которая активируется FR [4,5,13].Изменения в структуре или организации коллагена ответственны за изменения морфологии кожи, такие как обесцвечивание, потеря эластичности, морщины или нарушение барьерной функции [12,14,15]. Регулярно ступенчатая структура коллагена вызывает периодические изменения электронной плотности, видимые при рассеянии рентгеновских лучей в виде острых пиков Брэгга. Профиль рентгеновского излучения здоровой кожи показывает характерный d-интервал около 65 нм и несколько отражений, связанных с этим расстоянием [12,15]. Положение, интенсивность и количество отражений типичной осевой периодичности кожного коллагена меняются в зависимости от физиологии ткани или физических условий.Эти изменения указывают на макромолекулярную дезорганизацию коллагена и, следовательно, могут указывать на деградацию белка. Следовательно, изучение организации кожного коллагена после ИК-излучения также может помочь определить потенциальные эффекты ИК-воздействия на кожу.

В данной работе образование FR в коже под воздействием ИК-излучения вблизи физиологических температур оценивалось с использованием спиновой ловушки 5,5-диметил-1-пирролин-N-оксида (ДМПО) и спектроскопии электронного парамагнитного резонанса (ЭПР).Максимальная температура кожи, достигнутая во время эксперимента, составила 30 ° C. Поэтому исследовалось образование FR только под действием ИК-излучения и без повышения температуры. Структурные изменения кожи до и после воздействия ИК-излучения также изучались методом малоуглового рассеяния рентгеновских лучей (МУРР) с использованием синхротронного излучения. Кроме того, была проведена обработка кожи бикосомами, включающими β-каротин (Bcb), чтобы оценить их защитный эффект на образование FR и структуру коллагена кожи от воздействия инфракрасного излучения.

Бикосомы представляют собой фосфолипидные сборки, образованные сферическими везикулами размером приблизительно 150-250 нм и дискоидными структурами размером от 15 до 25 нм (онлайн-приложение, рис. 1; все материалы онлайн-приложений см. На сайте www. Karger.com/doi/10.1159) / 000447015) [16,17]. Комбинация липидного состава и небольшого размера, а также их морфологическая универсальность делают их очень полезными для различного использования кожи в качестве носителей [17,18]. И бикосомы, и β-каротин продемонстрировали способность уменьшать образование FR в коже [9,17,19,20,21].

Материалы и методы

Химические вещества

Химические вещества, использованные в этом исследовании, подробно описаны в дополнительном онлайн-материале.

Приготовление Bcb

Приготовление бикосом объясняется в дополнительном онлайн-материале. Концентрация каждого ингредиента в Bcb была следующей (мас. / Об.%):

DPPC 4,25%, DHPC 0,75%, β-каротин 0,01%, PC: 8% и CHOL 2%.

Динамическое рассеяние света

Гидродинамические диаметры Bcb определяли с помощью динамического светорассеяния с использованием Zetasizer Nano ZS90 (Malvern Instruments, UK).Детали этого метода включены в дополнительный онлайн-материал [см. Также [22]].

Обработка кожи бикосомами

Обработка кожи Bcb описана в дополнительном онлайн-материале.

Электронный парамагнитный резонанс

Образцы нативной и обработанной кожи помещали в кварцевую тканевую ячейку спектрометра ЭПР (спектрометр EMX-Plus 10/12 Brucker BioSpin) с микроволновым мостом X-диапазона (~ 9 ГГц; EMX Premium X ) и 10-дюймовый магнит (ER073) с блоком питания 12 кВт (ER083).Более подробная информация об этой методике и о лечении ДМПО включена в дополнительный онлайн-материал [см. Также [23]].

Малоугловое рассеяние рентгеновских лучей

Эксперименты по дифракции проводились на канале NACD, синхротронном источнике света ALBA (Cerdanyola del Vallès, Испания) с монохроматическим пучком 12,4 кэВ. Картины рассеяния регистрировали с помощью детектора SAXS 2D ADSC 210r (ADSC, Poway, Калифорния, США) с временами однократного экспонирования около 3 с. Расстояние от образца до детектора составляло 6.4 мес. Более подробная информация об этой технике содержится в дополнительном онлайн-материале [см. Также [24]].

ИК-облучение

Образцы кожи подвергали воздействию ИК-излучения с использованием ИК-лампы 250 Вт (Philips Infrared BR I 25). ИК-диапазон, излучаемый лампой, составляет 800–1500 нм (IR-A; см. Онлайн-приложение рис. 2). Подробная информация об облучении кожи включена в дополнительный онлайн-материал.

Результаты

Размер бикосомы

Гидродинамические диаметры, полученные с использованием динамического светорассеяния при 25 ° C для Bcb, показаны в таблице 1.Для сравнения также показан исходный размер бикосом без какой-либо встроенной молекулы.

Таблица 1

Гидродинамические диаметры различных бикосомных систем и доля популяции частиц, анализируемая по интенсивности светорассеяния при 25 ° C

Размер бикосом без β-каротина составлял приблизительно 180 нм с долей света разбросано примерно 85%. Включение β-каротина привело к увеличению размера частиц примерно до 250 нм и к 85% рассеянного света.

Увеличение размера Bcb могло быть связано с расположением этой липофильной молекулы в структуре бикосомы [18]. Принимая во внимание низкую растворимость этого антиоксиданта в воде, ожидается, что эта молекула будет расположена в липофильной области бислоя бикосом. Следовательно, включение этой липофильной молекулы внутрь липидного бислоя бикосом будет способствовать небольшому увеличению размера наноструктур.

Образование FR под воздействием инфракрасного излучения

Генерация FR в образцах кожи свиньи исследовалась методом ЭПР с использованием зонда DMPO, поскольку он улавливает FR, образующиеся в ткани.На рис. 1 представлены спектры нативной свиной кожи до и после 120 мин ИК-излучения. Оба спектра представляют собой симметричную спектральную модель гидроксильного спинового аддукта ДМПО (ДМПО-ОН), и в целом в данной работе спектры, полученные для всех образцов кожи, показали аналогичные картины аддукта ДМПО-ОН [25,26].

Рис. 1

Спектры ЭПР кожи до (черная линия; цвет только в онлайн-версии) и после (красная линия) ИК-воздействия. Доза: 777,6 Дж / см 2 .

Интенсивность спектра кожи после ИК-воздействия была выше, чем интенсивность спектра до ИК-излучения (рис.1). Этот факт был следствием образования FR в коже под воздействием ИК-излучения и продемонстрировал образование FR вблизи физиологических температур.

Известно, что второе интегральное значение спектра ЭПР пропорционально концентрации ФР [23,27]. Следовательно, для количественного определения FR в коже после ИК-излучения были рассчитаны вторые значения интегрирования спектров при разном времени облучения (рис. 2). На этом рисунке представлена ​​кинетическая эволюция концентрации FR на нативной и облученной инфракрасным излучением коже вблизи физиологических температур при воздействии инфракрасного излучения.Стандартное отклонение этих данных составляет от 1 до 2,5. На нативной коже концентрация FR со временем снижалась. Этот распад является типичной тенденцией для этих видов и является следствием разрушения радикалов [28,29]. Концентрация FR в коже, облученной ИК-излучением, была постоянной в течение первых минут, но примерно через 50 минут концентрация FR увеличилась, что привело к заключению, что образуются новые FR. Наконец, примерно через 80 минут облучения концентрация FR поддерживалась.Этот факт продемонстрировал способность ИК-излучения образовывать FR в коже при температуре кожи около 25-30 ° C.

Рис. 2

Концентрация FR для нативной и облученной кожи в разное время. Интенсивность излучения: 0,108 Вт / см 2 .

Разница между начальными значениями FR может быть связана с тем, что кожа является биологическим образцом. Таким образом, даже если все куски кожи принадлежат одному и тому же животному и имеют одинаковые размеры и обработку, эти различия вполне ожидаемы.

Результаты, полученные на образцах кожи, обработанных Bcb, показаны на рис. 3. Стандартное отклонение этих данных составляет от 1 до 2,5. В целом, концентрация FR была ниже в коже, обработанной Bcb. Фактически, концентрация FR в коже, обработанной Bcb, поддерживалась в течение 120 мин. После 75-80 мин ИК-излучения наблюдалась четкая разница в концентрации FR между кожей, облученной ИК-излучением, и кожей, обработанной Bcb, что указывает на эффект поглощения этой липидной системой.Кроме того, важно отметить, что до облучения (время 0 мин) концентрация FR была также ниже в коже, обработанной Bcb, что указывает на нейтрализацию FR даже в отсутствие облучения.

Рис. 3

Концентрация FR при разном времени облучения для облученной кожи и для кожи, обработанной Bcb. Интенсивность излучения: 0,108 Вт / см 2 .

Деградация коллагена под воздействием ИК-излучения

Установление необходимой дозы, вызывающей деградацию кожного коллагена

Известно, что высокие дозы ИК-излучения разрушают коллаген кожи, но на сегодняшний день необходимая доза ИК-излучения, вызывающая это разложение, четко не определена [4,5,13].Следовательно, чтобы оценить возможный эффект защиты или восстановления Bcb от негативных воздействий на коллаген кожи, вызванных ИК-излучением, необходимо установить ИК-условия для разложения белка (см. Материалы и методы).

Регулярная шахматная структура коллагена вызывает периодические изменения электронной плотности, видимые при рассеянии рентгеновских лучей в виде острых пиков Брэгга [12,15]. Изучение этих пиков можно использовать для оценки организации коллагена кожи.

На рис. 4 показан результирующий профиль SAXS коллагена, когда образцы подвергались облучению с регулировкой инфракрасной лампы на различных расстояниях от образца (10, 15 и 30 см) и облучению в течение 30 минут каждый раз.Интенсивности облучения для каждого расстояния соответствуют 0,91, 0,48 и 0,16 Вт / см 2 соответственно.

Рис. 4

Профили SAXS нативной кожи и кожи, облученной ИК-излучением в течение 30 минут на расстоянии 30 см (фиолетовая линия; цвет только в онлайн-версии), 15 см (зеленая линия) и 10 см (красная линия) от источник. Спектры были смещены по вертикальной оси для визуального сравнения. ИК: 800–1500 нм.

Когда кожа облучается на расстоянии от кожи до лампы 30 и 15 см, четко присутствуют пики коллагена, в то время как на 10 см потеря характерных пиков коллагена указывает на нарушение молекулярной дезорганизации белка.Температура кожи составляла 44 ° C, когда расстояние кожа-лампа было установлено равным 30 см, 68 ° C, когда расстояние кожа-лампа составляло 15 см, и 75 ° C, когда расстояние кожа-лампа составляло 10 см. Поэтому, чтобы оценить возможное защитное действие Bcb на кожу, расстояние кожа-лампа было зафиксировано на уровне 10 см. Затем, сохраняя фиксированное расстояние между инфракрасной лампой и образцом на уровне 10 см, на кожу наносили разное время облучения при регистрации профилей SAXS.

На рис. 5 показано постепенное разложение коллагена нативной кожи, подвергнутой ИК-излучению на фиксированном расстоянии между кожей и лампой (10 см) в разные периоды времени.На этом расстоянии интенсивность облучения кожи составляла 0,91 Вт / см 2 , а дозы, соответствующие этим временам облучения, составляли 273, 546 и 819 Дж / см 2 соответственно. После 5 и 10 минут облучения пики коллагена все еще наблюдались, но эти пики были короче по сравнению с пиками, полученными на нативной коже. Этот факт мог быть связан с дезорганизацией коллагена, которая была следствием деградации белка в это время облучения. Температура кожи при применении этих доз находилась в пределах 60-65 ° С.После 15 мин ИК-воздействия пиков коллагена не наблюдалось, что указывает на полную деградацию белка. Температура кожи при этой дозе составляла примерно 70 ° C.

Рис. 5

Профиль SAXS нативной кожи и кожи, облученной ИК-излучением на расстоянии кожа-лампа 10 см в течение 5 мин (фиолетовая линия; цвет только в онлайн-версии), 10 мин (красная линия) и 15 мин. (зеленая линия) показывает постепенную деградацию коллагена. Спектры были смещены по вертикальной оси для визуального сравнения.ИК: 800–1500 нм.

С этими результатами и для оценки возможного эффекта Bcb для защиты коллагена кожи расстояние между кожей и лампой было зафиксировано на уровне 10 см, а время облучения было зафиксировано на уровне 10 минут.

Защита коллагена с помощью Bcb

Образцы кожи обрабатывали системой Bcb, чтобы оценить ее защитный эффект на коллаген кожи от воздействия инфракрасного излучения. На рисунке 6 показано постепенное разложение коллагена нативной кожи и кожи, обработанной Bcb, под воздействием инфракрасного излучения на фиксированном расстоянии кожа-лампа (10 см) в течение 10 мин.Характерные пики коллагена в профилях рентгеновского излучения указывают на изменение молекулярной организации коллагена в образцах кожи, подвергнутых воздействию инфракрасного света, по сравнению с нативной кожей, что демонстрирует повреждение, вызванное этим белком в это время облучения. Образцы кожи, предварительно обработанные Bcb и подвергнутые ИК-излучению, сохранили рентгеновский профиль с характерными чертами коллагена. Этот факт свидетельствовал бы о сохранении коллагеновых волокон кожи, обработанной этой системой, под воздействием инфракрасного излучения, указывая на мощную эффективность Bcb в сохранении коллагена.Температура кожи при этой дозе составляла примерно 60-65 ° C.

Рис. 6

Профили SAXS различных образцов кожи с соответствующими отражениями коллагена. Родная кожа (черный; цвет только в онлайн-версии), кожа, облученная инфракрасным излучением (красная) и кожа, обработанная Bcb (синий). Спектры были смещены по вертикальной оси для визуального сравнения. ИК: 800–1500 нм.

Обсуждение

Влияние ИК-излучения, формирующего FR в коже

Наиболее известным патологическим действием ИК-излучения на кожу (особенно IR-A) является сверхэкспрессия молекул ММП, которые оказывают разрушающее действие на коллаген кожи [4 , 10,13,30,31].До настоящего времени образование FR под действием ИК-излучения объяснялось в основном повышением температуры кожи, вызванным этим излучением [7,8,9,10,31], которое могло повысить температуру поверхности кожи до 43 ° C. Однако вопрос о том, вызывает ли ИК-излучение образование FR в коже напрямую или это результат теплового шока, вызванного ИК-излучением, на сегодняшний день не ясен. Недавнее исследование показало, что прямое тепловое воздействие на кожу не увеличивает экспрессию ММП так же, как это наблюдается с ИК-излучением [4].Это исследование демонстрирует, что воздействие тепла, производимого водяной баней, не вызывает тот же процесс, что и инфракрасное излучение [4]. Следовательно, важно оценить эффект ИК-излучения независимо от тепла, производимого этим типом излучения, и, следовательно, потенциал этого эффекта для инициирования терапевтического или патологического воздействия на кожу. Самодельное устройство, используемое в этом исследовании, обеспечивает оптимальные условия для измерения образования FR in situ вблизи физиологических температур.Аппарат ИВЛ отводил тепло, исходящее от инфракрасной лампы, поэтому температура кожи поддерживалась в пределах 25-30 ° C, что позволяло нам оценить влияние инфракрасного излучения на кожу.

В некоторых исследованиях утверждается, что эти FR могут вызывать терапевтические или патологические эффекты на кожу в зависимости от применяемой дозы облучения. В низких дозах (1-10 Дж / см 2 ) ИК-излучение стимулирует терапевтические эффекты, а в высоких дозах (> 120 Дж / см 2 ) оно стимулирует патологические эффекты (примерно 1.5 часов под прямыми солнечными лучами в летнее время в Мюнхене, Германия) [4]. В наших экспериментах интенсивность облучения составила 0,108 Вт / см 2 ; Таким образом, для достижения дозы 120 Дж / см 2 необходимо 18 мин ИК-воздействия. Как показано в этом исследовании, концентрация FR вблизи физиологических температур аналогична концентрации FR до воздействия ИК в это время облучения (рис. 2, 3). Следовательно, возможность того, что эта концентрация FR вызывает патологические эффекты, может не приниматься во внимание.Вероятно, что в той дозе, которая использовалась при поддержании температуры от 25 до 30 ° C, энергии ИК-излучения недостаточно, чтобы вызвать негативное воздействие на кожу. Увеличение концентрации FR вблизи физиологических температур достигается примерно через 50 мин воздействия ИК-излучения, то есть когда доза составляет около 324 Дж / см 2 .

Дозы, используемые в этой работе, значительно выше, чем в других работах, в которых формируются FR. Например, Zastrow et al. [10] регистрировали FR с использованием меньших доз, чем в нашей работе, но в этих условиях температура кожи была выше 40 ° C.Учитывая важную роль температуры в формировании FR и температуры кожи ниже 30 ° C в наших экспериментах, нам потребовалось увеличить дозу IR для создания FR в коже.

Кроме того, важно учитывать, что минимальная доза для увеличения концентрации FR выше при использовании ИК-излучения, чем при использовании УФ-излучения. Предыдущее исследование показало образование FR на коже, подвергшейся воздействию УФ-излучения в дозах около 25-30 Дж / см 2 [17], что заметно ниже, чем доза ИК-излучения, использованная в этом исследовании.Этот факт связан с разницей в значениях энергии инфракрасного и ультрафиолетового излучения. Энергия УФ-излучения выше, чем ИК-излучения; таким образом, для увеличения концентрации FR в коже могут потребоваться высокие дозы ИК-излучения.

Таким образом, образование FR возможно при близких к физиологическим температурам во время воздействия ИК-излучения и не обязательно происходит при высоких температурах. Следовательно, можно рассматривать инициирование различных сигнальных путей, вызывающих терапевтические или патологические эффекты вблизи физиологических температур.

Стабильность кожного коллагена под действием инфракрасного излучения

Кожный коллаген составляет 75% от сухой массы ткани. Этот белок обеспечивает эластичность кожи и отвечает за целостность тканей [12]. Молекулы коллагена образованы тремя α-полипептидными цепями, сложенными вместе, чтобы сформировать тройную спиральную структуру. Сборка между этими тройными спиральными молекулами формирует фибриллярные группы в кожном коллагене, а сборка между этими фибриллярными группами формирует коллагеновые волокна [12].Этот белок может быть поврежден действием ИК-излучения за счет сверхэкспрессии ММП, которая активируется FR [4,13,31]. Аномалии молекулярной структуры коллагена влияют на упаковку коллагеновых волокон в различных тканях (коже, кости, груди или сухожилиях), что связано с патологическим состоянием ткани [12,32]. Следовательно, состояние коллагена кожи можно оценить, изучая высоту пиков Брэгга, полученных с помощью метода SAXS.

Разложение коллагена кожи происходит при минимальной дозе 273 Дж / см. 2 , когда температура кожи составляет около 60 ° C.Полная деградация происходит при дозе 820 Дж / см 2 , когда температура кожи достигает 70 ° C. Следовательно, чтобы вызвать деградацию коллагена кожи, необходимы жесткие условия окружающей среды, которые обычно не являются частью повседневной жизни. Тем не менее, оптимизация условий для разрушения коллагена кожи помогает оценить эффективность различных агентов, направленных на защиту структуры белка.

В данной работе деградация коллагена инфракрасным излучением при физиологических температурах не оценивалась.Фактически, учитывая, что коллаген имеет прочную структуру, нам необходимо ускорить деградацию этого белка с помощью инфракрасного излучения при высоких температурах. Дарвин и др. [13] показали деградацию коллагена in vivo, поддерживая физиологическое состояние кожи, используя измерения генерации второй гармоники. В этом исследовании добровольцы подвергались воздействию как минимум 2 часа каждый день в течение 4 недель. Эти условия не воспроизводятся для наших экспериментов in vitro. Состояние кусков кожи in vitro не могло сохраняться в течение 4 недель, и, учитывая отсутствие гомеостатического процесса, кожа могла быть повреждена (обезвоживание и возможные сигналы жжения).

В нашем исследовании отражения, полученные на расстоянии 30 см в течение 30 мин облучения, указывают на отсутствие деградации белка (рис. 4), хотя в этих условиях температура кожи составляла 44 ° C. Следовательно, можно предположить сохранение коллагена ниже этой температуры (включая физиологическую температуру) и при этой дозе (288 Дж / см 2 ). В общем, деградация коллагена кожи при физиологической температуре и под действием ИК-излучения будет интересным исследованием в будущем.

Защита кожи от ИК-излучения с помощью Bcb

Нанесение Bcb на кожу снижает образование FR и деградацию коллагена, вызванную ИК-излучением. Этот защитный эффект, обеспечиваемый Bcb, может быть связан со свойствами β-каротина и характеристиками бикосомной системы.

β-Каротин, как было показано, является эффективным антиоксидантом в липидной среде, улавливая FR или подавляя радикалы синглетного кислорода и защищая структуру коллагена [9,13,17,33,34].Этот антиоксидант может действовать как восстанавливающий агент образования FR, вызванного ИК-излучением, и, следовательно, можно избежать деградации коллагена.

В бикосомах липидные молекулы, образующие эту систему, также могут нести ответственность за снижение FR в коже. Молекулы липидов поглощают инфракрасный свет на разных длинах волн [35], а бикосомы образованы исключительно липидами. Таким образом, различные структуры бикосом (дискоидные структуры и сферические пузырьки) поглощают ИК-излучение.Кроме того, в предыдущей работе мы продемонстрировали антирадикальный эффект этой системы без антиоксидантов на коже, подверженной УФ-видимому излучению, как следствие рассеивания света, вызванного липидами, образующими бикосомы [17]. Поэтому мы хотим упомянуть о возможном защитном эффекте бикосом. Вероятно, что синергетический эффект между β-каротином и структурой бикосом может быть ответственным за защитный эффект системы Bcb.

Чтобы понять защитный эффект бикосом, важно понять взаимодействие этой липидной системы с кожей.Внешние везикулы размером примерно 200 нм не могут проникать через поверхностный слой кожи, роговой слой, и, следовательно, они остаются на поверхности кожи таким же образом, как описано для других липидных везикул [36 ]. При контакте с кожей двойной слой внешнего пузырька бикосом лопается, и инкапсулированные диски (называемые бицеллами) высвобождаются. Благодаря небольшому размеру и толщине бицеллы способны проникать в кожу [37]. После включения в роговой слой, двуцеллы увеличиваются в размере в результате содержания воды внутри ткани и, наконец, они удерживаются в ткани [18,37,38].Это увеличение включает переход от бицелл к везикулам, и, следовательно, бицеллы удерживаются в ткани (а также β-каротин) [18,37,38]. Фактически, есть некоторые исследования, связанные с проникновением двуцелл в кожу, которые показывают проникновение этих систем глубже, чем роговой слой (около 30-40 мкм) [37,39]. Следовательно, бикосомы взаимодействуют с кожей на поверхности (с помощью внешнего пузырька) и внутри ткани (с помощью внутренних бицелл), и, таким образом, липиды и β-каротин могут оставаться на поверхности и внутри. кожа как резервуар ткани.

Интенсивность инфракрасного излучения, которое проникает в кожу, будет уменьшена из-за свойств системы Bcb, которая уменьшит образование FR. Кроме того, учитывая, что ИК-излучение может проникать до дермы [4,5,13], проникновение этого излучения, вероятно, будет глубже, чем проникновение бикосом. Тем не менее, компоненты бикосом остаются в коже. Затем, благодаря свойствам поглощения инфракрасного излучения липидов, образующих бикосомы, и антиоксидантным свойствам β-каротина, радиация, которая достигает дермы, будет уменьшена, что может способствовать сохранению кожного коллагена.Таким образом, защитный эффект Bcb на глубоко расположенный коллаген основан на снижении интенсивности ИК-излучения, что позволяет обрабатывать дерму кожи бикосомами.

Выводы

ИК-устройство, присоединенное к спектрометру ЭПР, обеспечивает адекватные условия для выполнения измерений FR в образцах кожи. Образование FR под воздействием инфракрасного излучения не обязательно происходит при высоких температурах кожи — оно также возникает при температурах, близких к физиологическим. Следовательно, инициирование различных сигнальных путей, вызывающих терапевтические или патологические эффекты вблизи физиологических температур, может быть исследовано дополнительно.Для разложения коллагена кожи необходимы высокие температуры примерно 65 ° C, которые обычно не являются частью повседневной жизни.

Обработка Bcb уменьшает образование FR в коже, подвергнутой ИК-излучению, и сохраняет структуру коллагена. Этот факт демонстрирует высокую эффективность бикосомных систем в защите кожи от инфракрасного излучения.

Благодарность

Работа поддержана фондами CTQ 2013-44998-P.

Заявление об этике

Кожа, использованная в этом исследовании, была получена от свиньи, принесенной в жертву для медицинских экспериментов в соответствии с Руководством по уходу и использованию лабораторных животных , опубликованным Национальным институтом здравоохранения США (восьмое издание, 2011 г.).

Заявление о раскрытии информации

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

  1. Биниек К., Леви К., Даускардт Р. Х. Солнечное УФ-излучение снижает барьерную функцию кожи человека. Proc Natl Acad Sci USA 2012; 109: 17111-17116.
  2. Холик М.Ф .: Солнечный свет, УФ-излучение, витамин D и рак кожи: сколько солнечного света нам нужно? Adv Exp Med Biol 2008; 624: 1-15.
  3. Ичихаши М., Уэда М., Будиянто А., Бито Т., Ока М., Фукунага М., Цуру К., Хорикава Т.: повреждение кожи, вызванное ультрафиолетом.Токсикология 2003; 189: 21-39.
  4. Ахалая М.Ю., Максимов Г., Рубин А., Ладеманн Дж., Дарвин М.: Молекулярные механизмы действия солнечного инфракрасного излучения и тепла на кожу человека. Aging Res Rev 2014; 16: 1-11.
  5. Крутманн Дж., Морита А., Чанг Дж. Х .: Воздействие солнца: что молекулярная фотодерматология говорит нам о его хороших и плохих сторонах.Дж. Инвест Дерматол 2012; 132: 976-984.
  6. Чо С., Шин М.Х., Ким Ю.К., Сео Дж-Э, Ли Ю.М., Парк С.-Х, Чунг Дж. Х .: Влияние инфракрасного излучения и тепла на старение кожи человека in vivo. J Investigation Dermatol Symp Proc 2009; 14: 15-19.
  7. Дарвин М.Э., Хааг С.Ф., Ладеманн Дж., Застров Л., Стерри В., Мейнке М.С.: Образование свободных радикалов в коже человека во время облучения инфракрасным светом.Дж. Инвест Дерматол 2010; 130: 629-631.
  8. Дарвин М., Хааг С., Мейнке М., Застров Л., Стерри В., Ладеманн Дж .: Производство радикалов с помощью инфракрасного излучения А в тканях человека. Кожа Pharmacol Physiol 2010; 23: 40-46.
  9. Дарвин М.Э., Флухр Дж. В., Мейнке М.С., Застров Л., Стерри В., Ладеманн Дж .: Актуальный β-каротин защищает от свободных радикалов, индуцированных инфракрасным светом.Эксперимент Дерматол 2011; 20: 125-129.
  10. Застров Л., Грот Н., Кляйн Ф., Кокотт Д., Ладеманн Дж., Реннеберг Р., Ферреро Л. Недостающее звено — индуцированное светом (280–1600 нм) образование свободных радикалов в коже человека. Кожа Pharmacol Physiol 2008; 22: 31-44.
  11. Элиас П.М., Фейнгольд К.Р.: Кожный барьер.Нью-Йорк, Тейлор и Фрэнсис, 2006.
  12. Коста М., Бенсени-Кейз Н., Кочера М., Тейшейра С.В., Альсина М., Кладера Дж., Лопес О., Фернандес М., Сабес М.: Диагностика применения некристаллической дифракции коллагеновых волокон: рак груди и кожные заболевания; in Ezquerra TA, Garcia-Gutierrez MC, Nogales A, Gomez M (eds): Применение синхротронного света к рассеянию и дифракции в материалах и науках о жизни.Берлин / Гейдельберг, Springer, 2009, стр. 265-280.
  13. Darvin ME, Richter H, Ahlberg S, Haag SF, Meinke MC, Le Quintrec D, Doucet O, Lademann J: Влияние солнечного света на кожные коллагеновые / эластиновые волокна и каротиноиды: негативные эффекты можно уменьшить с помощью солнцезащитного крема.Журнал Биофотоника 2014; 7: 735-743.
  14. Nam JJ, Lee KE, Kim YJ: ПММА или тальк, покрывающий оксид металла, в качестве нового блокатора IR ингибирует вызванное IR уменьшение коллагенов в дермальных фибробластах человека. Int J Cosmet Sci 2015; 37: 433-437.
  15. Cocera M, Rodrıguez G, Rubio L, Barbosa-Barros L, Benseny-Cases N, Cladera J, Sabes M, Fauth F, de la Maza A, Lopez O: Характеристика состояний кожи с помощью некристаллической дифракции.Мягкое вещество 2011; 7: 8605-8611.
  16. Родригес Г., Рубио Л., Косера М., Эстельрих Дж., Понс Р., де ла Маза А., Лопес О.: Применение бицеллярных систем на коже: эффекты диффузии и молекулярной организации. Ленгмюр 2010; 26: 10578-10584.
  17. Фернандес Э., Фахари Л., Родригес Г., Лопес-Иглесиас С., Кочера М., Барбоса-Баррос Л., де ла Маса А., Лопес О.: Бицеллы и бикосомы как поглотители свободных радикалов в коже.RSC Adv 2014; 4: 53109-53121.
  18. Fernández E, Rodríguez G, Cócera M, Barbosa-Barros L, Alonso C, López-Iglesias C, Jawhari T., de la Maza A, López O: Продвинутые липидные системы, содержащие β-каротин: стабильность при УФ-видимом излучении и нанесение на свиная кожа in vitro. Phys Chem Chem Phys 2015; 17: 18710-18721.
  19. Дарвин М., Застров Л., Стерри В., Ладеманн Дж .: Влияние добавок и местно применяемых антиоксидантных веществ на ткани человека. Кожа Pharmacol Physiol 2006; 19: 238-247.
  20. Lademann J, Schanzer S, Meinke M, Sterry W., Darvin M: Взаимодействие между каротиноидами и свободными радикалами в коже человека.Кожа Pharmacol Physiol 2011; 24: 238-244.
  21. Lademann J, Patzelt A, Schanzer S, Richter H, Meinke M, Sterry W, Zastrow L, Doucet O, Vergou T., Darvin M: Поглощение антиоксидантов естественным питанием и добавками: плюсы и минусы с дерматологической точки зрения. Кожа Pharmacol Physiol 2011; 24: 269-273.
  22. Шмитц К.С.: Введение в динамическое рассеяние света макромолекулами. Сан-Диего, Academic Press, 1990.
  23. Станковский Дж., Хильцер В. Введение в магнитно-резонансную спектроскопию.Варшава, Wydawnictwo Naukowe PWN, 2005.
  24. Bouwstra JA, Gooris GS, Bras W, Talsma H: Малоугловое рассеяние рентгеновских лучей: возможности и ограничения в характеристике пузырьков. Chem Phys Lipids 1993; 64: 83-98.
  25. Buettner GR: Спиновый захват: параметры ESR спиновых аддуктов.Free Radic Biol Med 1987; 3: 259-303.
  26. Haywood R, Rogge F, Lee M: Белковые, липидные и ДНК-радикалы для измерения повреждения кожи UVA и модуляции меланином. Free Radic Biol Med 2008; 44: 990-1000.
  27. Итон Г.Р., Итон С.С., Барр Д.П., Вебер Р.Т.: Количественный ЭПР.Берлин, Springer Science & Business Media, 2010.
  28. Herrling T, Jung K, Fuchs J: Роль меланина как защитника от свободных радикалов в коже и его роль как индикатора свободных радикалов в волосах. Spectrochim Acta A Mol Biomol Spectrosc 2008; 69: 1429-1435.
  29. Плонка П.М.: Электронный парамагнитный резонанс как уникальный инструмент для исследования кожи и волос.Exp Dermatol 2009; 18: 472-484.
  30. Cho S, Lee MJ, Kim MS, Lee S, Kim YK, Lee DH, Lee CW, Cho KH, Chung JH: Инфракрасное излучение плюс видимый свет и тепло от естественного солнечного света участвуют в экспрессии MMP и проколлагена I типа, а также в инфильтрации. воспалительной клетки в коже человека in vivo.J Dermatol Sci 2008; 50: 123-133.
  31. Schieke SM, Stege H, Kürten V, Grether-Beck S, Sies H, Krutmann J: Экспрессия матриксной металлопротеиназы 1, индуцированная инфракрасным излучением A, опосредуется активацией киназы 1/2, регулируемой внеклеточными сигналами, в дермальных фибробластах человека. Дж. Инвест Дерматол 2002; 119: 1323-1329.
  32. Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S: Пероральный прием определенных пептидов коллагена оказывает благотворное влияние на физиологию кожи человека: двойное слепое плацебо-контролируемое исследование. Кожа Pharmacol Physiol 2014; 27: 47-55.
  33. Tsuchihashi H, Kigoshi M, Iwatsuki M, Niki E: Действие β-каротина как антиоксиданта против перекисного окисления липидов.Arch Biochem Biophys 1995; 323: 137-147.
  34. Мюллер Л., Бем В.: Антиоксидантная активность соединений β-каротина в различных анализах in vitro. Молекулы 2011; 16: 1055-1069.
  35. Тамм Л.К., Татулян С.А.: Инфракрасная спектроскопия белков и пептидов в липидных бислоях.Quart Rev Biophys 1997; 30: 365-429.
  36. Muller RH, Petersen RD, Hommoss A, Pardeike J: Наноструктурированные липидные носители (NLC) в косметических дермальных продуктах. Adv Drug Deliv Rev 2007; 59: 522-530.
  37. Родригес Дж., Барбоса-Баррос Л., Рубио Л., Кочера М., Фернандес-Кампос Ф., Кальпена А., Фернандес Е., Де Ла Маза А., Лопес О. Бицеллы: новые липидные наносистемы для дерматологических применений.Дж. Биомед Нанотех 2015; 11: 282-290.
  38. Родригес Г., Барбоса-Баррос Л., Рубио Л., Косера М., Лопес-Иглесиас С., де ла Маза А., Лопес О. Бицеллярные системы как модификаторы липидной структуры кожи. Colloids Surf B Biointerfaces 2011; 84: 390-394.
  39. Fernández E, Rodríguez G, Hostachy S, Clède S, Cócera M, Sandt C, Lambert F, de la Maza A, Policar C, López O: производное трис-карбонила рения в качестве модельной молекулы для включения в фосфолипидные сборки для кожных аппликаций. .Colloids Surf B Biointerfaces 2015; 131: 102-107.

Автор Контакты

Эстибалиц Фернандес

Институт современной химии Каталонии (IQAC-CSIC)

Хорди Жирона 18-26

ES-08034 Барселона (Испания)

Электронная почта [email protected]


Подробности статьи / публикации

Предварительный просмотр первой страницы

Получено: 13 января 2016 г.
Принято: 19 мая 2016 г.
Опубликовано в Интернете: 6 июля 2016 г.
Дата выпуска: сентябрь 2016 г.

Количество страниц для печати: 9
Количество рисунков: 6
Количество столов: 1

ISSN: 1660-5527 (печатный)
eISSN: 1660-5535 (онлайн)

Для дополнительной информации: https: // www.karger.com/SPP


Авторские права / Дозировка препарата / Заявление об ограничении ответственности

Авторские права: Все права защищены. Никакая часть данной публикации не может быть переведена на другие языки, воспроизведена или использована в любой форме и любыми средствами, электронными или механическими, включая фотокопирование, запись, микрокопирование, или какой-либо системой хранения и поиска информации, без письменного разрешения издателя. .
Дозировка лекарственного средства: авторы и издатель приложили все усилия для обеспечения того, чтобы выбор и дозировка лекарств, указанные в этом тексте, соответствовали текущим рекомендациям и практике на момент публикации.Однако ввиду продолжающихся исследований, изменений в правительственных постановлениях и постоянного потока информации, касающейся лекарственной терапии и реакций на них, читателю настоятельно рекомендуется проверять листок-вкладыш для каждого препарата на предмет любых изменений показаний и дозировки, а также дополнительных предупреждений. и меры предосторожности. Это особенно важно, когда рекомендованным агентом является новый и / или редко применяемый препарат.
Отказ от ответственности: утверждения, мнения и данные, содержащиеся в этой публикации, принадлежат исключительно отдельным авторам и соавторам, а не издателям и редакторам.Появление в публикации рекламы и / или ссылок на продукты не является гарантией, одобрением или одобрением рекламируемых продуктов или услуг или их эффективности, качества или безопасности. Издатель и редактор (-ы) не несут ответственности за любой ущерб, причиненный людям или имуществу в результате любых идей, методов, инструкций или продуктов, упомянутых в контенте или рекламе.

Инфракрасные волны

РАДИО ВОЛНЫ | МИКРОВОЛНЫ | ИНФРАКРАСНЫЙ | ВИДИМЫЙ СВЕТ | УЛЬТРАФИОЛЕТОВЫЙ | РЕНТГЕНОВСКИЕ ИЗЛУЧЕНИЯ | ГАММА ИЗЛУЧЕНИЕ

Инфракрасный свет находится между видимым светом и микроволновым излучением. части электромагнитного спектра.Инфракрасный свет имеет диапазон длины волн, точно так же, как видимый свет имеет длины волн в диапазоне от красного от светлого до фиолетового. «Ближний инфракрасный» свет ближе всего по длине волны к видимый свет и «дальняя инфракрасная область» ближе к микроволновому диапазону электромагнитный спектр. Более длинная, дальняя инфракрасная область длины волн размером с булавочную головку а более короткие, ближние инфракрасные области имеют размер клетки или микроскопический.

Волны в дальнем инфракрасном диапазоне являются тепловыми.Другими словами, мы испытываем такой тип инфракрасное излучение каждый день в виде тепла! Жара, которую мы ощущение от солнечного света, огня, радиатора или теплого тротуара — инфракрасное. Чувствительные к температуре нервные окончания в нашей коже могут обнаруживать разница между внутренней температурой тела и внешней температурой кожи температура.

Инфракрасный свет иногда используется даже для нагрева пищи — специальные лампы, излучающие тепловые инфракрасные волны часто используются в ресторанах быстрого питания!

Более короткие, ближние инфракрасные волны не горячие вообще — на самом деле вы их даже не чувствуете.Эти более короткие длины волн являются единственными используется пультом дистанционного управления вашего телевизора.

Как мы можем «видеть» через инфракрасный порт?

Поскольку первичный источник инфракрасного излучения излучение — это тепло или тепловое излучение, любой объект, имеющий температуру излучает в инфракрасном диапазоне. Даже объекты, которые мы считаем очень холодными, например кубик льда, излучают инфракрасный. Когда объект недостаточно горячий, чтобы излучать видимый свет, он будет излучать большую часть своей энергии в инфракрасном диапазоне.Например, горячий уголь может не испускать свет, но излучает инфракрасное излучение, которое мы чувствуем как нагревать. Чем теплее объект, тем больше инфракрасного излучения он излучает.

Люди при нормальной температуре тела сильнее всего излучают в инфракрасном диапазоне. на длине волны около 10 мкм. (Микрон — это термин, обычно используемый в астрономии для микрометра или одной миллионной метра.) Это изображение ( что любезно Центр обработки и анализа инфракрасного излучения в Калифорнийском технологическом институте), показывает мужчина держит зажженную спичку! Какие части этого изображения как вы думаете, у вас самая теплая температура? Как температура очки этого человека сравнить с температурой его руки?
Чтобы сделать инфракрасные снимки, подобные приведенной выше, мы можем использовать специальные камеры и пленка, которая обнаруживает разницу в температуре, а затем назначает разную яркость или ложные цвета к ним.Это дает картину, которую могут интерпретировать наши глаза.

На изображении слева (любезно предоставлено SE-IR Corporation, Голета, Калифорния) показана кошка в инфракрасный. Оранжевые области самые теплые, а бело-синие области — самые теплые. самый холодный. Это изображение дает нам другое представление о знакомом животном, как о а также информацию, которую мы не смогли получить из изображения в видимом свете.

Люди могут не видеть инфракрасный свет, но знаете ли вы, что змеи из семейства ямовых гадюк, как и гремучие змеи, имеют сенсорные «ямки», которые используются для изображения инфракрасного света? Это позволяет змее обнаруживать теплокровные животные даже в темных норах! Считается, что у змей с двумя сенсорными ямками есть восприятие глубины в инфракрасном диапазоне! (Благодаря Инфракрасный центр обработки и анализа НАСА за помощью с текстом на эта секция.)

Инфракрасный свет излучают многие вещи, помимо людей и животных — Земля, Солнце, а также такие далекие вещи, как звезды и галактики! Для просмотра с орбиты Земли, смотрим ли мы в космос или на Землю, мы можем использовать приборы на борту спутников.

Спутники, такие как GOES 6 и Landsat 7, смотрят на Земля. Специальные датчики, такие как на спутнике Landsat 7, записывать данные о количестве инфракрасного света, отраженного или испускаемого поверхность Земли.
Ландсат 7

Другие спутники, такие как инфракрасная астрономия Спутник (IRAS) смотрит в космос и измеряет приходящий инфракрасный свет. от таких вещей, как большие облака пыли и газа, звезды и галактики!


Что нам показывает инфракрасный порт?

Это инфракрасный снимок Земли, сделанный спутником GOES 6 в г. 1986. Ученый использовал температуру, чтобы определить, какие части изображения были из облаков, и которые были сушей и морем.Исходя из этих температур различия, он раскрасил каждый отдельно 256 цветов, придавая изображению реалистичный внешний вид.

Зачем использовать инфракрасный порт для изображения Земли? Хотя легче отличать облака от земли в видимом диапазоне, в облаках больше деталей в инфракрасном диапазоне. Это отлично подходит для изучения структуры облаков. Для Например, обратите внимание, что более темные облака теплее, а более светлые — холоднее. К юго-востоку от Галапагосских островов, к западу от побережье Южной Америки, есть место, где отчетливо видно несколько слоями облаков, с более теплыми облаками на меньших высотах, ближе к океан, который их согревает.


Центр космической науки и техники, Университет
Висконсин-Мэдисон,
Ричард Корс, дизайнер

Мы знаем, глядя на инфракрасное изображение кошки, что многие вещи излучают инфракрасное излучение. Но многие вещи также отражают инфракрасный свет, особенно ближний инфракрасный свет. Ближнее инфракрасное излучение не связано с температура фотографируемого объекта — если только объект не очень, очень горячо.

Инфракрасная пленка «видит» объект, потому что Солнце (или другой источник света) сияет инфракрасный свет на нем, и он отражается или поглощается объектом.Ты можно сказать, что это отражение или поглощение инфракрасного излучения помогает определить «цвет» объекта — его цвет представляет собой комбинацию красного, зеленого, синего и инфракрасный!

Это изображение здания с деревом и травой показывает, как Хлорофилл в растениях отражает ближний инфракрасный свет волны вместе с видимыми световыми волнами. Хотя мы не может видеть инфракрасные волны, они всегда рядом. Видимый световые волны, нарисованные на этой картинке, имеют зеленый цвет, а инфракрасные — бледно-красный.

Этот снимок был сделан на специальную пленку, которая может обнаруживать невидимые объекты. инфракрасные волны. Это ложный цвет изображение, прямо как у кота. Инфракрасные изображения в ложных цветах Земля часто использует цветовую схему, подобную показанной здесь, где инфракрасный свет отображается в видимый красный цвет. Это означает, что все в это изображение, которое выглядит красным, испускает или отражает инфракрасный свет. Из-за этого растительность, такая как трава, и деревья кажутся красными.Видимые световые волны, нарисованные на этой картинке, имеют зеленый цвет, а инфракрасные — более темно-красные.
Это изображение Феникса, Аризона, показывающее данные в ближней инфракрасной области, собранные спутником Landsat 5. Свет Области — это области с высоким коэффициентом отражения волн ближнего инфракрасного диапазона. В темные области имеют низкую отражательную способность. Как ты думаешь черный линии сетки в правом нижнем углу этого изображения представляют?
На этом изображении показаны инфракрасные данные (в виде красный), составленные с данными видимого света на синей и зеленой длинах волн.Если ближний инфракрасный свет отражается от здоровой растительности, что делать? вы думаете, что области в форме красного квадрата находятся в нижнем левом углу изображение?

Приборы на борту спутников также могут делать снимки в космосе. Изображение ниже центральной области нашей галактики было получено IRAS. В туманная горизонтальная S-образная деталь, пересекающая изображение, — слабое тепло испускается пылью в плоскости Солнечной системы.


Инфракрасный центр обработки и анализа, Калифорнийский технологический институт / Лаборатория реактивного движения [СЛЕДУЮЩАЯ ДЛИНА ВОЛНЫ] [СЛЕДУЮЩАЯ УКРАШЕННАЯ ДЛИНА ВОЛНЫ]


ВОЗВРАЩЕНИЕ К ЭЛЕКТРОМАГНИТНОМУ СПЕКТРУ

Инфракрасные волны | Управление научной миссии

Что такое инфракрасные волны?

Инфракрасные волны или инфракрасный свет являются частью электромагнитного спектра.Люди сталкиваются с инфракрасными волнами каждый день; человеческий глаз не видит его, но люди могут определять его как тепло.

Пульт дистанционного управления использует световые волны, выходящие за пределы видимого спектра света — инфракрасные световые волны — для переключения каналов на вашем телевизоре. Эта область спектра делится на ближнюю, среднюю и дальнюю инфракрасную. Область от 8 до 15 микрон (мкм) называется земными учеными тепловым инфракрасным, поскольку эти длины волн лучше всего подходят для изучения длинноволновой тепловой энергии, излучаемой нашей планетой.

СЛЕВА: Типичный пульт дистанционного управления телевизором использует энергию инфракрасного излучения с длиной волны около 940 нанометров. Хотя вы не можете «видеть» свет, излучаемый пультом дистанционного управления, некоторые цифровые камеры и камеры сотовых телефонов чувствительны к этой длине волны излучения. Попробуйте! СПРАВА: Инфракрасные лампы Нагревательные лампы часто излучают как видимую, так и инфракрасную энергию на длинах волн от 500 до 3000 нм. Их можно использовать для обогрева ванных комнат или для согревания еды. Тепловые лампы также могут согреть мелких животных и рептилий или даже согреть яйца, чтобы они могли вылупиться.

Кредит: Трой Бенеш

ОТКРЫТИЕ ИНФРАКРАСНОЙ ИНФРАКРАСКИ

В 1800 году Уильям Гершель провел эксперимент по измерению разницы температур между цветами в видимом спектре. Он поместил термометры в каждый цвет видимого спектра. Результаты показали повышение температуры от синего до красного. Когда он заметил еще более теплое измерение температуры сразу за красным концом видимого спектра, Гершель открыл инфракрасный свет!

ТЕПЛОВОЕ ИЗОБРАЖЕНИЕ

Мы можем воспринимать инфракрасную энергию как тепло.Некоторые предметы настолько горячие, что излучают видимый свет — например, огонь. Другие объекты, например люди, не такие горячие и излучают только инфракрасные волны. Наши глаза не могут видеть эти инфракрасные волны, но инструменты, которые могут воспринимать инфракрасную энергию, такие как очки ночного видения или инфракрасные камеры, позволяют нам «видеть» инфракрасные волны, излучаемые теплыми объектами, такими как люди и животные. Температуры для изображений ниже указаны в градусах Фаренгейта.

Предоставлено: НАСА / Лаборатория реактивного движения — Калтех

.
ХОЛОДНАЯ АСТРОНОМИЯ

Многие объекты во Вселенной слишком холодные и тусклые, чтобы их можно было обнаружить в видимом свете, но их можно обнаружить в инфракрасном.Ученые начинают открывать тайны более холодных объектов во Вселенной, таких как планеты, холодные звезды, туманности и многие другие, изучая инфракрасные волны, которые они излучают.

Космический аппарат «Кассини» сделал это изображение полярного сияния Сатурна с помощью инфракрасных волн. Полярное сияние показано синим, а нижележащие облака — красным. Эти полярные сияния уникальны, потому что они могут охватывать весь полюс, тогда как полярные сияния вокруг Земли и Юпитера обычно ограничиваются магнитными полями на кольцах, окружающих магнитные полюса.Большой и изменчивый характер этих полярных сияний указывает на то, что заряженные частицы, втекающие от Солнца, испытывают над Сатурном некоторый тип магнетизма, который ранее был неожиданным.

ПРОСМОТРЕТЬ ПЫЛЬ

Инфракрасные волны имеют более длинные волны, чем видимый свет, и могут проходить через плотные области газа и пыли в космосе с меньшим рассеянием и поглощением. Таким образом, инфракрасная энергия может также обнаруживать объекты во Вселенной, которые нельзя увидеть в видимом свете с помощью оптических телескопов.Космический телескоп Джеймса Уэбба (JWST) оснащен тремя инфракрасными приборами, которые помогают изучать происхождение Вселенной и формирование галактик, звезд и планет.

Когда мы смотрим на созвездие Ориона, мы видим только видимый свет. Но космический телескоп НАСА Спитцер смог обнаружить около 2300 планетообразующих дисков в туманности Ориона, почувствовав инфракрасное свечение их теплой пыли. Каждый диск может образовывать планеты и свою собственную солнечную систему Фото: Томас Мегит (Univ.Толедо) и др., Лаборатория реактивного движения, Калифорнийский технологический институт, НАСА

.

Столб, состоящий из газа и пыли в туманности Киля, освещен свечением ближайших массивных звезд, показанных ниже на изображении в видимом свете, полученном космическим телескопом Хаббла. Интенсивное излучение и быстрые потоки заряженных частиц от этих звезд вызывают образование новых звезд внутри столба. Большинство новых звезд невозможно увидеть на изображении в видимом свете (слева), потому что плотные газовые облака блокируют их свет. Однако, когда столб рассматривается в инфракрасной части спектра (справа), он практически исчезает, открывая молодые звезды за столбом газа и пыли.

Предоставлено: НАСА, Европейское космическое агентство и команда телескопа Hubble SM4 ERO

.
МОНИТОРИНГ ЗЕМЛИ

Для астрофизиков, изучающих Вселенную, источники инфракрасного излучения, такие как планеты, относительно холодны по сравнению с энергией, излучаемой горячими звездами и другими небесными объектами. Земляне изучают инфракрасное излучение как тепловое излучение (или тепло) нашей планеты. Когда падающая солнечная радиация попадает на Землю, часть этой энергии поглощается атмосферой и поверхностью, тем самым нагревая планету.Это тепло излучается с Земли в виде инфракрасного излучения. Приборы на борту спутников наблюдения Земли могут определять это излучаемое инфракрасное излучение и использовать полученные измерения для изучения изменений температуры поверхности земли и моря.

Есть и другие источники тепла на поверхности Земли, такие как потоки лавы и лесные пожары. Спектрорадиометр среднего разрешения (MODIS) на борту спутников Aqua и Terra использует инфракрасные данные для отслеживания дыма и определения источников лесных пожаров.Эта информация может иметь важное значение для тушения пожара, когда самолеты-разведчики не могут пролететь сквозь густой дым. Инфракрасные данные также могут помочь ученым отличить пылающий огонь от все еще тлеющих ожоговых шрамов.

Предоставлено: Джефф Шмальц, группа быстрого реагирования MODIS

Глобальное изображение справа — это инфракрасное изображение Земли, полученное спутником GOES 6 в 1986 году. Ученый использовал температуру, чтобы определить, какие части изображения получены из облаков, а какие — из суши и моря.Основываясь на этой разнице температур, он раскрасил каждую отдельно 256 цветами, придав изображению реалистичный вид.

Кредит: Центр космической науки и техники, Университет Висконсин-Мэдисон, Ричард Корс, дизайнер

Зачем использовать инфракрасный порт для изображения Земли? Хотя в видимом диапазоне легче отличить облака от земли, в инфракрасном диапазоне облака более детализированы. Это отлично подходит для изучения структуры облаков. Например, обратите внимание, что темные облака теплее, а светлые — холоднее.К юго-востоку от Галапагосских островов, к западу от побережья Южной Америки, есть место, где вы можете отчетливо увидеть несколько слоев облаков, с более теплыми облаками на меньших высотах, ближе к океану, который их согревает.

Мы знаем, глядя на инфракрасное изображение кошки, что многие вещи излучают инфракрасный свет. Но многие вещи также отражают инфракрасный свет, особенно ближний инфракрасный свет. Узнайте больше об ОТРАЖЕННОМ ближнем инфракрасном излучении.

Начало страницы | Далее: Отраженные волны в ближнем инфракрасном диапазоне


Цитата
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научных миссий.(2010). Инфракрасные волны. Получено [укажите дату — например, 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/07_infraredwaves

MLA

Управление научной миссии. «Инфракрасные волны» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [укажите дату — например, 10 августа 2016 г.] http://science.nasa.gov / ems / 07_infraredwaves

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *