Как в импульсном блоке питания изменить напряжение: Моддинг импульсного блока питания ARPV-SC1E-12005T / Хабр

Содержание

Моддинг импульсного блока питания ARPV-SC1E-12005T / Хабр

Купил как-то сей блок питания, долго валялся и решил его приспособить, однако выходные 12В никак не устраивали моим потребностям. Было решено его переделать.



Фото внутренностей:




Ссылка

на документацию по данному блоку питания.

Сначала необходимо было разобраться что он из себя представляет, для этого пришлось нарисовать принципиальную схему. Сложность прозвонки, а без нее очень тяжело отследить куда идет дорожка, заключалась в том, что плата была покрыта лаком, и приходилось скальпелем снимать его. В итоге получилась примерная картина:

Первичную цепь рассматривать в данном случае, имхо, нет смысла…

Итак, напряжение на вторичной цепи напрямую зависит от обратной связи(ОС) на светодиоде оптопары, которая задается делителем на базе транзистора.

Для увеличения напряжения необходимо:
1) Уменьшить сопротивление нижнего резистора делителя R12(3.

9кОм)
2) Иметь ввиду, что фильтрующий конденсатор рассчитан на 16В, а значит при напряжении выше 16В подобать конденсатор соответствующего вольтажа
3) На выходе схемы стоит стабилитрон около 14.8В(было определено эмпирически), значит либо выпаять(он защитный, от перенапряжения) либо заменить большим номиналом

Для уменьшения напряжения:
1) Увеличить сопротивление нижнего резистора делителя R12(3.9кОм)
2) Пропускаем
3) Также заменяем на необходимый стабилитрон или выпаеваем

Стоит иметь ввиду, что при увеличении напряжения, выходной ток уменьшается, в каком соотношении сказать не могу, можно исходить из P=UI, но не уверен, что все так просто… Можно говорить и об увеличении выходного тока при уменьшении напряжения, но опять таки — все на ваш страх и риск.

Мне необходимо было выходное напряжение 14.5В, для этого в параллель резистору 3.9кОм я впаял резистор 15кОм, в итоге сопротивление стало ~2.7кОм а выходное напряжение 14. 5В — профит!

Способы устранения помех в импульсных блоках питания

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600…700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1… 1 мкс) и амплитудой до 3…5А и более.

Поэтому ИБП служит источником интенсивных помех, спектр которых простирается от 16…20 кГц до десятков мегагерц. Эти помехи распространяются в питающую сеть переменного тока и в нагрузку блока питания, создавая интерференционные полосы на экранах телевизоров, мониторов, снижая отношение сигнал-шум в трактах записи-воспроизведения видеозаписывающей аппаратуры и т.

д. Величина этих паразитных сигналов зависит от частоты преобразования, качества входных и выходных фильтрующих цепей, а на частотах свыше 1 МГц — от конструкции и монтажной схемы преобразователя.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники.

Однако, импульсные блоки питания, независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора R

L, сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше).

В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1… 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Рис.2 Возникновение паразитной помехи

Симметричная помеха возникает следующим образом. В преобразователе ключевой транзистор, как правило, устанавливается таким образом, чтобы обеспечивался хороший тепловой контакт между его корпусом и шасси БП (радиатором). С целью обеспечения максимальной теплопередачи толщина электрической изоляции между коллектором или стоком ключевого транзистора и шасси делается как можно меньше. В результате между стоком или коллектором транзистора и шасси образуется паразитная емкость Ср (рис.2). Когда транзисторный ключ замыкается или размыкается, возникает ток помехи, протекающий от переключателя через паразитную емкость Ср, R

L и С, а затем через заземление обратно к шасси.
Этот ток довольно мал, поскольку паразитная емкость невелика (ее типичное значение меньше 10 пф). В то же время, используемый в преобразователе LC фильтр совершенно неэффективен против этого вида тока помехи, поскольку он протекает не через фильтр, а в обход его.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора.

Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие:

уменьшение паразитных емкостных связей между цепями первичного (сетевого) напряжения и вторичными цепями; выбор оптимальных режимов переключения транзисторов и диодов, предотвращающих резкие перепады напряжения; сокращение площади контуров, охватываемых цепями, по которым протекают большие импульсные токи. Важное значение имеет конструкция импульсного трансформатора ИБП. Первичную обмотку, как правило, разбивают на две равные секции, одна из которых наматывается в первых слоях катушки, а другая — в последних.

Таким образом, все остальные области располагаются между этими секциями. Кроме того, первичные и вторичные обмотки обычно разделяются внутренним экраном. Достаточно эффективным является применение общего экрана в виде короткозамкнутого витка из медной фольги, охватывающего импульсный трансформатор.

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5…С8, установленные параллельно диодам Д1…Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Импульсный блок питания на два напряжения 5 и 12 вольт 1,2А для электронных самоделок

Привет Муськовчане! Как я обещал в обзоре милливольтметра, хочу рассказать Вам об импульсном блоке питания, с двумя изолированными (друг от друга) напряжениями 5В и 12В. Потребность в таком блоке питания возникает часто, а учитывая небольшие размеры платы, подобный источник питания легко встроить (найти место) в корпус Вашего электронного устройства, самоделки… Давайте протестируем этот ИИП, что бы определится с его «проф. пригодностью».))) Кому интересно — добро пожаловать под Кат… Внимание много фото!!!!


Почему я выбрал такой источник питания?
1. Изолированные друг от друга каналы — часто это очень важно, к примеру, дать питания 12В на плату управления какого-либо силового устройства, а от 5В «запитать» цифровой индикатор (ампервольметр). Если будет гальваническая связь между каналами 5В и 12В, это может привести к неправильной работе, в лучшем случае и большому «бабаху» в худшем…
2. На фото ИИП я увидел, хотя бы какое-то подобие входного фильтра (синфазный дроссель в том числе), для блоков питания нижнего ценового диапазона это редкость, а мне не хочется «гадить» помехами в сеть, т.к в эту же сеть у меня включен осциллограф, который начинает показывать «чужие» помехи при измерении.
3. Небольшой размер — часто бывает, что в ходе сборки появляются дополнительные блоки, которые требуют свое питание, благодаря небольшим размерам найти место для этого ИИП будет не сложно.
Скрин заказа выкладываю под спойлером:

Скрин заказа


Давайте рассмотрим детали ИИП подробнее. Я буду фонариком выделять те части которые описываю, ибо по другому прочитать маркировку деталей сложно…
1. Высоковольтная часть ИИП
Рассмотрим входной каскад и фильтр. См фото:

Как мы видим на фото, что есть предохранитель, термистор (5D9) и синфазный дроссель. Понятно, что фильтр не полный, не хватает как минимум Х конденсатора, без него возможны помехи в питающую сеть. Попробуем его после тестов впаять куда-нибудь. За дросселем идет электролитический конденсатор на 22мкФ 400В. По «феншую» количество микроФарад на входе равняется количеству Вт выдаваемых блоком питания. Соответственно ИИП рассчитан на 22W. Давайте суммируем заявленную мощность 2-х каналов. 5В 1.2А и 12В 1.2А итого 6W+ 14.4W= 20.4W Таким образом емкости входного конденсатора достаточно.
2. Микросхема -драйвер, широко известная TOP223Y, соответственно это обратноходовый импульсный источник питания.

Зная какая стоит микросхема драйвер, мы можем нарисовать схему импульсного источника питания. Упрощенная схема такая (из даташит), только у нас не один, а два независимых канала на выходе:

Что меня удивило, что микросхема стоит на радиаторе через изолирующую прокладку. Зачем это сделали китайцы вообще не понятно, т.к. сам радиатор не имеет электрического контакта со схемой. Понятно, что с прокладкой охлаждение будет хуже. И по хорошему эту прокладку нужно убрать, и посадить микросхему на термопасту. Давайте также проверим соответствие мощности микросхемы-драйвера, мощности самого блока питания. См таблицу из даташит:

Как видим, при универсальном питании наша микросхема дает мощность до 30W, что соответствует мощности ИИП. Тут все нормально.
3. На фото мы видим клампер первичной обмотки импульсного трансформатора и элементы «самопитания» микросхемы драйвера

Клампер выполнен по классической схеме RCD и особенностей не имеет. Диод D2, электролит С3 и резистор R2 это элементы «самопитания» микросхемы TOP.
4. Элементы обратной связи, трансформатор и два Y конденсатора мы видим на следующем фото

Опять же это классика обратноходовых ИИП. В качестве управляемого стабилитрона использована микросхема TL431, гальваническая развязка осуществляется оптотроном 817 серии. За импульсным трансформатором мы видим два Y конденсатора, которые существенно снижают помехи и соединяют «горячую» и «холодные» земли…
5. Выходной каскад представлен диодами на каждый канал, затем выпрямительные конденсаторы и LC фильтры, которые снижает уровень выходных помех. Китайцы не поставили снаббры на диоды и керамику на ножки электролитических конденсаторов, которые могут заметно удлинить «жизнь» электролитов. Но не сложно поставить эти керамические конденсаторы самостоятельно…


Поглядим так же обратную сторону платы источника питания:

Мы видим диодный мост на входе и видим что китайцы сделали технологическую прорезь под импульсным трансформатором, однако толку он нее мало, т. к под Y конденсаторами есть место, где дорожки «горячей» и «холодной» части проходят довольно близко друг от друга.

В общем, исполнение данного ИИП я могу оценить на Три с плюсом (3+) по Советской пятибалльной школьной системе)))
Поставим плату ИИП на латунные втулки и подпаяем входные провода. Даем напряжение осветительной сети. На плате ИИП загорелся красный светодиод сигнализирующий, что на выходе есть напряжение.

Тут мы видим первые странности. Обратите внимания на выходные контакты. Зачем то там китайцы поставили 3 плюса (+), видать что бы запутать пользователя и дезориентировать))))
Зачем это сделано непонятно, тем более что плюсы нарисованы у катода, а не анода… Потому проверяйте полярность мультиметром. Если смотреть на выходные контакты Минус слева, а Плюс справа!!!

Проверяем напряжение на выходах без нагрузки. Напряжение в норме (соответствует)


Ниже на осциллограмме вы можете увидеть помехи на стабилизированном 5В выходе ИИП без нагрузки на выходе. Как мне кажется помехи в пределах допустимого.

Теперь даем нагрузку 1А на выход 5В См фото…

На осциллографе уже не такая идиллия:

Однако напряжение просело совсем немного всего на 7мВ… Одноамперную нагрузку ИИП держит нормально…
Странность №2 На фото видно, что выпрямительные диоды стоящие после импульсного трансформатора в каналах 5В и 12В разные (хотя 1А способны выдержать оба диода)… Потому у меня возникло подозрение, что ток в 12 вольтовом канале вряд ли будет как заявлен в описании на сайте Banggood…

Догадка мгновенно подтвердилась, когда я начал испытания 12 вольтового канала. См фотографию: (подозрения не подтвердились, что бы не было просадки в 12В канале, нужно нагрузить 5В стабилизированный канал)

Уже при токе чуть выше 300мА просадка напряжения на выходе составило более 1 вольта. Чего уж там говорить про заявленный 1 Ампер… Пульсации тоже явно выше заявленных на сайте Banggood… Проблема, как я думаю, в импульсном трансформаторе, судя по его размеру, 20Вт снять с него довольно сложно… Но менять и перематывать трансформатор, ради того, что бы добиться заявленных продавцом значений, я не буду…
Более серьезно протестировать этот блок питания смогу, после того как мне приедет купленная электронная нагрузка…

Но она еще в дороге…

Выводы: Данный ИИП подходит для нетребовательных к чистоте питания, низкотоковых потребителей, таких как различные панельные ампервольметры, зарядные устройства и другие самоделки.

Да я был не прав, прошу прощения у Banggood… Если нагрузить стабилизированный 5 вольтовый канал (благодаря подсказке Aloha_), то просадка в 12В канале не наблюдается… См фото…


Данный Импульсный блок питания по току соответствует приведенным на сайте параметрам.

UPD: Допилинг, доставил конденсатор на вход, пусть не формата Х, но рассчитанный на 630В, емкость небольшая, ну хоть для самоуспокоения, что на входе что-то есть…

Так же впаял 4 керамических смд конденсатора 100n на ножки электролитов, думаю, что лишними не будут…

После того как приедет нагрузка, еще раз протестирую этот ИИП и добавлю обзор.

Диагностика импульсного блока питания: varyag_nord — LiveJournal

1. Проверяем провод прозвонкой изгибая и тряся провод. Проверяем его прозвонкой поочередно проверяя штыри вилки и вход диодного моста.
2. Если переменка не проходит:
    — Проверяем выключатель если есть.
    — Проверяем предохранитель прозвонкой.
4. Проверяем входной конденсатор на Емкость и ESR. Перед проверкой его необходимо разрядить. Лучше это делать через лампочку. Включаем телевизор и меряем напряжение на конденсаторе. В дежурном режиме должно быть около 300В. В рабочем режиме должно быть больше на 90В — 100В. При замене лучше поставить емкостью побольше, если есть возможность. Если телевизор включается и сразу выключается, это может говорить о неисправности PFC.
5. Отцепляем нагрузку и проверяем:

    2. Диоды выходных цепей.
    В одну сторону они показывают небольшой коэффициент падения напряжения, а в другу сторону, показывают >1 000 и уходят в бесконечность (это происходит потому, что стоящие рядом конденсаторы были немного заряженными и разряжаются). Если есть попискивание при прикладывании щупов, но затем попискивание уходит это происходит заряд конденсаторов.
    3. Проверяем оптопару на короткое с двух сторон.

6. Если предохранитель был целый то во входной части КЗ тоже нету, потому можно включить нагрузку и включить БП.
    — Измеряем напряжение на выходе Шоттки, при этом минусовой щуп цепляем на корпус и меряем напряжения на всех выходных линиях БП после Шоттки.
    — Проверяем пульсацию с выхода Шоттки. Если диод Шоттки находится в утечке, то он может пропускать пульсации, которые приводят к нестабильной работе и излишнему нагреву конденсаторов и некоторых микроконтроллеров. Поэтому при замене конденсаторов, желательно менять и диод Шоттки. При проверке осциллографом пульсации 50мВ и более это многовато и желательно поменять конденсаторы и посмотреть как изменяться пульсации.
    — Меряем напряжения на выходе блока. Проверку напряжений легче производив не держа минусовой щуп в руке а зацепив его на корпус. На выходе блока питания рядом с разъемом могут быть подписаны напряжения.  Там же могут быть надписи: Vamp — питание усилителя, On-Off — включение БП.
    — Проверяем драйвер питания LED-подсветки. Смотрим напряжения на шильдике рядом с драйвером. Там могут быть разные по току 5-вольтовые, 12-вольтовые и еще одно для питания светодиодов оно может быть порядка 200-270В. Измеряем напряжения на выходе диодной подсветки.

7. Если где-то в схеме потребление большого тока, тоесть КЗ, то блок питания может не запускаться. Может не запуститься блокинг-генератор, либо он может встать в режим защиты и не выдавать напряжения. Большое потребление может просаживать выходные напряжения, а из трансформатора могут идти попискивающие звуки.
Потому проверяем КЗ прибором на нагрузке. Обычно наличие КЗ устанавливается прозвонкой в режиме «проверки диодов»
В DVD например часто на короткое встает драйвер. И при отключении его питания схема может может запуститься.

8. Кроме этого заниженными напряжения могут быть из-за высыхающего конденсатора в задающей цепи или второй вариант из-за подсохшего входного конденсатора.

При заниженном напряжении на выходах меняются эти конденсаторы, затем лучше поменять оптопару. Так же возможна неисправность ТЛки и микросхемы ШИМа.

9. По входной части. Когда горит предохранитель, лучше менять ШИМ, проверять диоды, либо менять сразу т.к. у них может быть «запоздалое КЗ». Диоды могут принести сюрприз, прозваниваяь тестером как исправные.

Основные принципы работы импульсного блока питания — Теория начинающим — Каталог статей

Здесь мы поговорим об импульсных блоках питания (ИБП), которые на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.

Прежде всего, эта статья посвящена для начинающих специалистов по ремонту электронной техники, поэтому материал будет изложен в упрощенной форме и поможет понять основные принципы работы ИБП.

Основной принцип, положенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Гц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.

Преобразование осуществляется с помощью мощного транзистора, работающего в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый –выполняется по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров 3 – 4 УСЦТ) и второй – с внешним управлением (используется в большинстве современных радиоэлектронных устройств).

Поскольку частота преобразователя обычно выбирается от 18 до 50 кГц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно компактны, что является немаловажным параметром для современной аппаратуры.


Упрощенная схема импульсного преобразователя с внешним управлением приведена на рисунке 1.

 

 

Рисунок 1.

 

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП. Единственное что для этого необходимо — схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ – широтно – импульсная модуляция. В состав ШИМ контроллера входит задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая и управляет длительностью импульса.

Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора Т1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения – процесс обратный.

В ИБП используются два принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора (рисунок 2).

Рисунок 2

 

 

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.

С цепью слежения я думаю, разобрались, теперь давайте рассмотрим такую ситуацию как короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.

В заключении хотелось более подробно остановиться на достоинствах ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксально звучит, стоимость ИБП меньше традиционного БП т.к. меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 80%. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.

К недостаткам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5В) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 В. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.

 

Виктор Малышев

Как модифицировать SMPS для регулируемого выхода тока и напряжения

В этой статье обсуждается метод, с помощью которого любой готовый SMPS может быть преобразован в схему SMPS переменного тока с помощью нескольких внешних перемычек.

В одной из предыдущих статей мы узнали, как создать схему SMPS с переменным напряжением, используя простой каскад шунтирующих стабилизаторов. В данном случае мы также используем тот же этап схемы для реализации функции переменного тока на выходе.

Что такое SMPS

SMPS расшифровывается как Switch-Mode-Power-Supply, который использует высокочастотный импульсный преобразователь на основе феррита для преобразования 220 В переменного тока в постоянный.Использование высокочастотного ферритового трансформатора делает систему высокоэффективной с точки зрения компактности, потерь мощности и стоимости.

Сегодняшняя концепция SMPS почти полностью заменила традиционные трансформаторы с железным сердечником и превратила эти блоки в гораздо более компактные, легкие и эффективные альтернативы адаптерам питания.

Однако, поскольку блоки SMPS обычно доступны в виде модулей с фиксированным напряжением, достижение предпочтительного напряжения в соответствии с потребностями приложения пользователя становится довольно трудным.

Например, для зарядки аккумулятора 12 В может потребоваться выходное напряжение около 14,5 В, но это значение является довольно странным и нестандартным, поэтому нам может быть чрезвычайно трудно получить на рынке ИИП с такими характеристиками.

Хотя на рынке можно найти схемы с переменным напряжением, они могут быть более дорогостоящими, чем обычные варианты с фиксированным напряжением, поэтому поиск метода преобразования существующего ИИП с фиксированным напряжением в переменный тип выглядит более интересным и желательным.

Немного изучив концепцию, я смог найти очень простой метод ее реализации, давайте узнаем, как проводить эту модификацию.

В моем блоге вы найдете одну популярную схему ИИП на 12 В, 1 ампер, которая на самом деле имеет встроенную функцию переменного напряжения.

Функция оптопары в SMPS

В приведенном выше сообщении мы обсуждали, как оптопара играет важную роль в обеспечении критически важной функции постоянного выхода для любого SMPS.

Функцию оптопары можно понять с помощью следующего краткого объяснения:

Оптопара имеет встроенную схему светодиода / фототранзистора, это устройство интегрировано с выходным каскадом SMPS, так что, когда выход имеет тенденцию подниматься выше при пороге небезопасности светодиод внутри оптического блока загорается, заставляя фототранзистор проводить.

Фототранзистор, в свою очередь, конфигурируется через чувствительную точку «выключения» каскада драйвера SMPS, где проводимость фототранзистора заставляет входной каскад отключаться.

Вышеупомянутое условие приводит к тому, что выход SMPS также мгновенно отключается, однако в тот момент, когда это переключение инициируется, оно корректирует и восстанавливает выход в безопасную зону, а светодиод внутри оптического модуля деактивируется, что снова включает входной каскад модуля SMPS.

Эта операция продолжает быстро переключаться с включения на выключение и наоборот, обеспечивая постоянное напряжение на выходе.

Регулируемый ток Модификация SMPS

Чтобы добиться функции управления током внутри любого SMPS, мы снова обращаемся за помощью к оптопаре.

Мы реализуем простую модификацию, используя конфигурацию транзистора BC547, как показано ниже:

Ссылаясь на приведенную выше конструкцию, мы получаем четкое представление о том, как изменить или сделать схему драйвера SMPS с переменным током.

Оптопара (обозначена красным квадратом) будет присутствовать по умолчанию для всех модулей SMPS, и если предположить, что TL431 нет, нам, возможно, придется настроить всю конфигурацию, связанную со светодиодами оптопары.

Если каскад TL431 уже является частью схемы SMPS, в этом случае нам просто нужно рассмотреть возможность интеграции каскада BC547, который становится единоличным ответственным за предлагаемое управление током цепи.

Видно, что BC547 соединен со своим коллектором / эмиттером через катод / анод TL431 IC, а база BC547 соединена с выходом (-) SMPS через группу выбираемых резисторов Ra, Rb, Rc. , Rd.

Эти резисторы, находящиеся между базой и эмиттером транзистора BC547, начинают работать как датчики тока для схемы.

Они рассчитываются соответствующим образом, так что при перемещении перемычки между соответствующими контактами в линии вводятся различные ограничения по току.

Когда ток имеет тенденцию превышать установленный порог, определяемый значениями соответствующих резисторов, на базе / эмиттере BC547 возникает разность потенциалов, которой становится достаточно для включения транзистора, замыкая TL431 IC между опто-светодиодный и заземленный.

При выполнении вышеуказанного действия немедленно загорается светодиод оптического модуля, посылая сигнал «неисправности» на входную сторону SMPS через встроенный фототранзистор оптического устройства.

Условие немедленно пытается выполнить отключение на выходной стороне, что, в свою очередь, останавливает провод BC547, и ситуация быстро меняется от ВКЛ до ВЫКЛ и ВКЛ, гарантируя, что ток никогда не превысит заданный порог.

Резисторы Ra … Rd можно рассчитать по следующей формуле:

R = 0,7 / порог отключения по току

Например, если предположим, что мы хотим подключить к выходу светодиод с номинальным током 1 усилитель

Мы можем установить значение соответствующего резистора (выбираемого перемычкой) как:

R = 0,7 / 1 = 0,7 Ом

Мощность резистора может быть просто получена путем умножения вариантов, т.е. 0,7 x 1 = 0,7 ватт или просто 1 ватт.

Расчетный резистор гарантирует, что выходной ток светодиода никогда не пересекает отметку в 1 ампер, тем самым предохраняя светодиод от повреждения, другие значения для оставшихся резисторов могут быть соответствующим образом рассчитаны для получения желаемой опции переменного тока в модуле SMPS.

Преобразование фиксированного SMPS в SMPS с переменным напряжением

В этом посте делается попытка определить метод, с помощью которого любой SMPS может быть преобразован в источник переменного тока для достижения любого желаемого уровня напряжения от 0 до максимума.

Что такое шунтирующий регулятор

Мы обнаружили, что в нем используется каскад цепи шунтирующего регулятора для реализации функции переменного напряжения в конструкции.

Еще один интересный аспект заключается в том, что это устройство шунтирующего регулятора реализует эту функцию, регулируя вход оптопары схемы.

Теперь, поскольку каскад оптопары с обратной связью неизменно используется во всех схемах SMPS, путем введения шунтирующего регулятора можно легко преобразовать фиксированный SMPS в переменный аналог.

Фактически, можно также создать переменную схему SMPS, используя тот же принцип, что объяснен выше.

Возможно, вы захотите узнать больше о том, что такое шунтирующий регулятор и как он работает.

Процедуры:

Ссылаясь на следующий пример схемы, мы можем найти точное расположение шунтирующего регулятора и детали его конфигурации:

См. Нижнюю правую часть диаграммы, отмеченной красными пунктирными линиями, она показывает переменную интересующий нас участок схемы.Этот раздел отвечает за предполагаемые действия по регулированию напряжения.

Здесь резистор R6 может быть заменен потенциометром 22 кОм для создания переменной конструкции.

Увеличение этого раздела обеспечивает лучшее представление о задействованных деталях:

Идентификация оптопары

Если у вас есть цепь SMPS с фиксированным напряжением, откройте ее и просто обратите внимание на оптопару в конструкции, она в основном будет расположена поблизости центральный ферритовый трансформатор, как можно увидеть на следующем изображении:

После того, как вы нашли оптопару, очистите ее, удалив все части, связанные на выходной стороне оптопары, то есть поперек контактов, которые могут быть направлены в сторону выходная сторона печатной платы SMPS.

И соедините или интегрируйте эти выводы оптического устройства с собранной схемой с помощью TL431, показанного на предыдущей схеме.

Вы можете собрать секцию TL431 на небольшой части печатной платы общего назначения и приклеить ее к основной плате SMPS.

Если ваша схема SMPS не имеет катушки выходного фильтра, вы можете просто замкнуть два положительных вывода цепи TL431 и присоединить нагрузку к катоду выходного диода SMPS.

Однако предположим, что ваш SMPS уже включает схему TL431 с оптопарой, тогда просто найдите положение резистора R6 и замените его потенциометром (см. Расположение R6 на первой диаграмме выше).

Не забудьте добавить резистор 220 Ом или 470 Ом последовательно с POT, иначе при настройке потенциометра на самый верхний уровень можно мгновенно повредить шунтирующее устройство TL431.

Вот и все, теперь вы точно знаете, как преобразовать или создать схему SMPS с переменным напряжением, используя описанные выше шаги.

Предупреждение: Цепи SMPS не изолированы от сети переменного тока на первичной стороне и могут быть смертельными при прикосновении в открытом и включенном состоянии.

ОБНОВЛЕНИЕ

На следующем изображении показан, пожалуй, самый простой способ настроить схему SMPS для получения функций переменного напряжения и тока. Пожалуйста, посмотрите, как нужно настроить потенциометры или предустановки в оптроне для получения желаемых результатов:

Если у вас есть какие-либо дополнительные сомнения относительно конструкции или объяснения, не стесняйтесь выражать свои комментарии.

Давайте подведем итоги

В этой статье мы быстро попытаемся суммировать основные моменты, касающиеся того, как модифицировать любую схему SMPS с помощью простого взлома, который может помочь нам получить желаемый индивидуальный выходной сигнал от устройства.

Что такое SMPS

SMPS означает импульсный источник питания, и это современный и наиболее компактный / эффективный способ получения низкого напряжения постоянного тока от сетевого источника переменного тока.

Однако создание ИИП в домашних условиях может оказаться не таким простым делом, как изготовление блоков питания с использованием традиционных трансформаторов с железным сердечником.

Также получить SMPS с индивидуальными характеристиками может быть не так просто, фактически невозможно, если характеристики напряжения / тока далеки от обычных значений.

Значит ли это, что мы должны довольствоваться спецификациями SMPS, которые обычно устанавливаются и доступны на рынке?

Например, как найти ИИП с выходным напряжением, скажем, 13 В, 14 В или 17 В, которые определенно не являются обычно принятыми диапазонами напряжения?

Настройка блока SMPS

Поскольку создание такого индивидуального блока может быть непростой задачей (из-за сложной компоновки и конфигурации деталей), было бы намного лучше, если бы мы могли найти способы модификации готового блока с помощью нескольких простых шагов.

Я изучил несколько стандартных блоков SMPS и, надеюсь, нашел способы изменения напряжения и тока в соответствии с индивидуальным выбором. Давайте узнаем это подробнее.

Когда вы откроете любой стандартный SMPS-блок, вы увидите на прилагаемой собранной плате следующее.

Заполненную печатную плату можно в первую очередь разделить на две секции по наличию центрального ферритового трансформатора.
Сторона трансформатора, через которую проходит сетевой шнур, является входной секцией переменного тока, а другая сторона, откуда берется постоянный ток низкого напряжения, — это секция постоянного тока.

Нас не интересует секция переменного тока, потому что мы не хотим изменять входное напряжение, поэтому не обращайте на нее никакого внимания, кроме того, секция переменного тока ПОТЕНЦИАЛЬНО ОЧЕНЬ ОПАСНА ПРИ ВКЛЮЧЕНИИ КОНТРОЛЯ, ПОЭТОМУ СОХРАНЯЕТ ВАШИ РУКИ, ПОТОМУ ТЕСТИРОВАНИЕ.

Секция постоянного тока будет в основном состоять из пары дросселей, пары конденсаторов фильтра, диода и нескольких других компонентов.

Найдите шунтирующий регулятор

Найдите компонент в форме транзистора в этом разделе.Если вы найдете пару из них, один будет фактически транзистором, вероятно, для ограничения выходного тока, однако другой определенно будет ПРОГРАММИРУЕМЫМ РЕГУЛЯТОРОМ ШУНТА.

Этот шунтирующий стабилизатор является компонентом, который фиксирует напряжение обратной связи на МОП-транзистор секции переменного тока и, в свою очередь, определяет выходное напряжение.

Это программируемое шунтирующее устройство настраивается с помощью пары резисторов, изменение которых мгновенно изменяет выходное напряжение по желанию.

Попытайтесь найти резисторы, подключенные к выводам этого шунтирующего устройства.Один из них можно просто изменить для изменения выходного напряжения в соответствии с вашими предпочтениями.

Возьмите внешний резистор любого номинала, может быть 4 к7 1/4 ватта, теперь пошагово подключите этот резистор к резисторам, которые связаны с устройством шунтирующего регулятора.

Проверка и проверка выхода

Проверяйте выходное напряжение каждый раз, когда вы выполняете вышеуказанный шаг.

В тот момент, когда вы обнаружите, что выходное напряжение становится низким или высоким, возможно, вы только что нашли то, что мы ищем.

Теперь, методом проб и ошибок, вы можете узнать точное значение резистора, который можно было бы заменить вместо конкретного шунтирующего резистора.

Вот и все, это так просто, как только вы это сделаете, выходное напряжение будет постоянно настроено на это конкретное значение.

Но не забудьте удалить стабилитрон, если он есть на выходе источника питания, прежде чем выполнять вышеуказанные процедуры.

Руководство по основам импульсного источника питания

Аннотация: Импульсные источники питания — популярный, а иногда и необходимый выбор для преобразования энергии постоянного тока в постоянный.Эти схемы предлагают явные преимущества и недостатки по сравнению с альтернативными методами преобразования энергии постоянного тока. В этой статье представлен краткий обзор преимуществ и недостатков импульсных источников питания, а также предлагается простой обзор их работы и теории.

Эта статья также была опубликована в Maxim’s Engineering Journal, vol. 61 (PDF, 440кБ).

Учитывая, что многие электронные устройства требуют нескольких уровней постоянного напряжения, разработчикам нужен способ преобразования стандартных потенциалов источника питания в напряжения, определяемые нагрузкой.Преобразование напряжения должно быть универсальным, эффективным и надежным процессом. Импульсные источники питания (SMPS) часто используются для обеспечения различных уровней выходной мощности постоянного тока, необходимых для современных приложений, и незаменимы для создания высокоэффективных и надежных систем преобразования мощности постоянного тока в постоянный.

Почему SMPS?

Большинство электронных нагрузок постоянного тока получают питание от стандартных источников питания. К сожалению, стандартные напряжения источника могут не соответствовать уровням, требуемым микропроцессорами, двигателями, светодиодами или другими нагрузками, особенно когда напряжение источника не регулируется.Устройства с батарейным питанием являются яркими примерами проблемы: типичное напряжение стандартной батареи Li + или NiMH либо слишком высокое / низкое, либо слишком сильно падает во время разряда для использования в обычных приложениях.

Универсальность

К счастью, универсальность SMPS решает проблему преобразования стандартного напряжения источника в пригодное для использования заданное выходное напряжение. Существует множество топологий SMPS, которые классифицируются по фундаментальным категориям — эти источники питания повышают, понижают, инвертируют или даже повышают и понижают входное напряжение.В отличие от линейных регуляторов, которые могут только понижать входное напряжение, SMPS привлекательны тем, что можно выбрать топологию, подходящую практически для любого выходного напряжения.

Настройка

Кроме того, современные ИС SMPS спроектированы с различными уровнями интеграции, что позволяет инженеру выбирать среди топологий с более или менее стандартными функциями SMPS, внесенными в ИС. Поступая таким образом, производители облегчают проектирование широко используемых источников питания для конкретных приложений или предлагают инженерам базовые ИС SMPS для индивидуальных проектов, тем самым повышая универсальность этих широко используемых устройств.

КПД

Инженеры также сталкиваются с другой распространенной проблемой — как эффективно преобразовать мощность постоянного тока. Например, часто требуется понизить входное напряжение для достижения более низкого выходного напряжения. Простым решением является использование линейного регулятора, поскольку для этого устройства требуется всего несколько конденсаторов и адекватное управление температурой. Однако там, где такая простота заканчивается, начинается неэффективность — даже до неприемлемых уровней, если разность напряжений велика.

КПД линейного регулятора напрямую зависит от мощности, падающей на его проходной транзистор.Это падение мощности может быть значительным, поскольку рассеиваемая мощность равна I LDO × (V IN — V OUT ). Например, при понижении нагрузки 100 мА от батареи 3,6 В до выхода 1,8 В на линейном регуляторе падает 0,18 Вт. Это падение мощности дает низкий КПД 50%, что сокращает срок службы батареи на 50% (при условии идеальной работы).

Понимая эту потерю эффективности, добросовестный инженер стремится найти улучшенное решение, и именно здесь SMPS выделяется.Хорошо спроектированный SMPS может достичь КПД 90% или более, в зависимости от уровней нагрузки и напряжения. Как и в предыдущем примере, при использовании понижающего ИИП модели Рис. 1 вместо линейного регулятора наблюдается КПД 90%. Это повышение эффективности на 40% по сравнению с линейным регулятором. Преимущество понижающего SMPS очевидно, и аналогичный или более высокий КПД наблюдается в других топологиях SMPS.


Рис. 1. MAX8640Y используется в простой схеме понижающего SMPS.

Хотя высокий КПД является основным преимуществом конструкций SMPS, другие преимущества, естественно, возникают как прямой результат минимизации потерь мощности. Например, в SMPS наблюдается уменьшенный тепловой след по сравнению с его менее эффективными аналогами. Это преимущество означает снижение требований к управлению температурным режимом. Кроме того, что более важно, срок службы увеличивается за счет повышения надежности, поскольку компоненты не подвергаются чрезмерному нагреву, как это было бы в менее эффективной системе.

Топологии SMPS и теория преобразования

Как упоминалось в предыдущем разделе, SMPS могут преобразовывать входное напряжение постоянного тока в другое выходное напряжение постоянного тока в зависимости от топологии схемы. Хотя в мире инженерии используется множество топологий SMPS, три из них являются фундаментальными и встречаются чаще всего. Эти топологии (см. , рис. 2 ) классифицируются в соответствии с их функцией преобразования: понижающие (понижающие), повышающие (повышающие) и повышающие / понижающие (понижающие-повышающие или инверторные).Пути заряда / разряда индуктора, показанные на диаграммах на Рисунке 2, обсуждаются в следующих параграфах.


Рис. 2. Понижающий, повышающий и понижающий-повышающий составляющие составляют основные топологии SMPS.

Все три основные топологии включают переключатель MOSFET, диод, выходной конденсатор и катушку индуктивности. МОП-транзистор, который является активно управляемым компонентом в схеме, подключен к контроллеру (не показан). Этот контроллер подает прямоугольный сигнал с широтно-импульсной модуляцией (ШИМ) на затвор полевого МОП-транзистора, тем самым включая и выключая устройство.Чтобы поддерживать постоянное выходное напряжение, контроллер определяет выходное напряжение SMPS и изменяет рабочий цикл (D) прямоугольного сигнала, определяя, как долго полевой МОП-транзистор остается включенным в течение каждого периода переключения (T S ). Значение D, которое представляет собой отношение времени включения прямоугольной волны к периоду ее переключения (T ON / T S ), напрямую влияет на напряжение, наблюдаемое на выходе SMPS. Эта взаимосвязь проиллюстрирована в уравнениях 4 и 5.

Состояния включения и выключения полевого МОП-транзистора делят схему SMPS на две фазы: фазу заряда и фазу разряда, каждая из которых описывает передачу энергии катушки индуктивности (см. петли на рисунке 2).Энергия, накопленная в катушке индуктивности во время фазы зарядки, передается выходной нагрузке и конденсатору во время фазы разряда. Конденсатор поддерживает нагрузку, пока индуктор заряжается, и поддерживает выходное напряжение. Эта циклическая передача энергии между элементами схемы поддерживает выходное напряжение на должном уровне в соответствии с ее топологией.

Катушка индуктивности играет центральную роль в передаче энергии от источника к нагрузке во время каждого цикла переключения. Без него SMPS не работал бы при переключении MOSFET.Энергия (E), запасенная в катушке индуктивности (L), зависит от ее тока (I):

Таким образом, изменение энергии в катушке индуктивности измеряется по изменению ее тока (ΔI L ), что связано с к напряжению, приложенному к нему (V L ) в течение определенного периода времени (ΔT):

(ΔI L ) является линейным нарастанием, поскольку постоянное напряжение подается на катушку индуктивности во время каждой фазы переключения ( Рисунок 3 ). Напряжение индуктора во время фазы переключения можно определить, выполнив петлю напряжения Кирхгофа, уделяя особое внимание полярности и соотношениям V IN / V OUT .Например, напряжение индуктора повышающего преобразователя во время фазы разряда составляет — (V OUT — V IN ). Поскольку V OUT > V IN , напряжение на катушке индуктивности отрицательное.


Рисунок 3. Характеристики напряжения и тока подробно описаны для установившегося индуктора.

Во время фазы заряда полевой МОП-транзистор включен, диод смещен в обратном направлении, и энергия передается от источника напряжения к катушке индуктивности (рис. 2). Ток в индукторе нарастает, потому что напряжение V L положительное.Кроме того, выходная емкость передает энергию, накопленную в предыдущем цикле, на нагрузку, чтобы поддерживать постоянное выходное напряжение. Во время фазы разряда полевой МОП-транзистор отключается, а диод становится смещенным в прямом направлении и, следовательно, проводит ток. Поскольку источник больше не заряжает катушку индуктивности, клеммы катушки индуктивности меняют полярность, поскольку она разряжает энергию на нагрузку и пополняет выходной конденсатор (рис. 2). Ток катушки индуктивности снижается по мере передачи энергии в соответствии с тем же соотношением передачи, указанным ранее.

Циклы заряда / разряда повторяются и поддерживают установившееся состояние переключения. Во время перехода схемы в установившееся состояние ток индуктора нарастает до своего конечного уровня, который представляет собой суперпозицию постоянного тока и нарастающего переменного тока (или пульсирующего тока индуктора), возникающего во время двух фаз схемы (рисунок 3). Уровень постоянного тока связан с выходным током, но зависит от положения катушки индуктивности в цепи SMPS.

Импульсный ток должен отфильтровываться SMPS, чтобы подавать на выход истинный постоянный ток.Это фильтрующее действие осуществляется выходным конденсатором, который мало противодействует высокочастотному переменному току. Нежелательная пульсация выходного тока проходит через выходной конденсатор и поддерживает заряд конденсатора, пока ток проходит на землю. Таким образом, выходной конденсатор также стабилизирует выходное напряжение. Однако в неидеальных приложениях эквивалентное последовательное сопротивление (ESR) выходного конденсатора вызывает пульсации выходного напряжения, пропорциональные току пульсаций, протекающему через него.

Таким образом, энергия передается между источником, катушкой индуктивности и выходным конденсатором для поддержания постоянного выходного напряжения и питания нагрузки. Но как передача энергии ИИП определяет коэффициент преобразования выходного напряжения? Это соотношение легко вычислить, если понимать установившееся состояние применительно к периодическим сигналам.

Чтобы быть в устойчивом состоянии, переменная, повторяющаяся с периодом T S , должна быть равна в начале и в конце каждого периода.Поскольку ток катушки индуктивности является периодическим из-за фаз заряда и разряда, описанных ранее, ток катушки индуктивности в начале периода ШИМ должен равняться току катушки индуктивности в конце. Это означает, что изменение тока индуктора во время фазы заряда (ΔI CHARGE ) должно соответствовать изменению тока индуктора во время фазы разряда (ΔI DISCHARGE ). Приравнивая изменение тока индуктора для фаз заряда и разряда, достигается интересный результат, который также называют правилом вольт-секунды:

Проще говоря, произведение напряжения индуктора на время в каждой фазе цепи равно .Это означает, что, наблюдая за схемами SMPS на Рисунке 2, можно без особых усилий найти идеальные установившиеся отношения преобразования напряжения / тока. Для понижающей схемы петля напряжения Кирхгофа вокруг цепи фазы заряда показывает, что напряжение индуктора является разницей между V IN и V OUT . Аналогично, напряжение индуктора во время цепи фазы разряда составляет -V OUT . Используя правило вольт-секунды из уравнения 3, определяется следующий коэффициент преобразования напряжения:

Кроме того, входная мощность (P IN ) равна выходной мощности (P OUT ) в идеальной схеме.Таким образом, найден коэффициент преобразования тока:

Из этих результатов видно, что понижающий преобразователь снижает V IN в D раз, в то время как входной ток является D-кратным току нагрузки. В таблице 1 перечислены коэффициенты преобразования для топологий, изображенных на рисунке 2. Как правило, все коэффициенты преобразования SMPS можно найти с помощью метода, используемого для решения уравнений 3 и 5, хотя сложные топологии может быть более трудным для анализа.

Таблица 1.Коэффициенты преобразования SMPS

Топология Коэффициент преобразования напряжения Коэффициент преобразования тока
Понижающий В ВЫХ / V ВХОД = D I IN / I OUT = D
Повышение В ВЫХ / V ВХОД = 1 / (1 — D) I IN / I OUT = 1 / (1 — D)
Повышение / понижение В ВЫХ / V ВХОД = D / (1 — D) I IN / I OUT = D / (1 — D)

Недостатки и недостатки ИИП

Конечно, высокий КПД, обеспечиваемый ИИП, имеет свои недостатки.Возможно, наиболее часто упоминаемая проблема импульсных преобразователей — это их склонность к излучению электромагнитных помех (EMI) и кондуктивным шумам. Электромагнитное излучение вызывается быстрыми переходами сигналов переключения тока и напряжения, которые существуют в цепях SMPS. Быстро меняющиеся напряжения в узле индуктора вызывают излучаемые электрические поля, в то время как токи быстрого переключения в контурах заряда / разряда создают магнитные поля. Однако кондуктивный шум распространяется на входные и выходные цепи, когда входная / выходная емкость SMPS и паразитные характеристики печатной платы представляют более высокие импедансы для коммутирующих токов.К счастью, правильное размещение компонентов и компоновка печатной платы могут успешно бороться с электромагнитными помехами и снижать уровень шума. SMPS

также могут быть довольно сложными и требовать дополнительных внешних компонентов, что может привести к увеличению общей стоимости источника питания. К счастью, большинство производителей ИС SMPS предоставляют подробную литературу не только о работе устройства, но и о правильном выборе внешних компонентов. Кроме того, высокий уровень интеграции в современные ИС SMPS может уменьшить количество требуемых внешних компонентов.

Несмотря на эти проблемы, SMPS широко используются во многих приложениях. С недостатками можно справиться, а эффективность и универсальность, получаемые от их использования, очень желательны и часто требуются.

Модификация китайского блока питания для обеспечения переменного напряжения

Конечный результат: Максимальный выходной ток 33 А, регулируемый от 4,8 В до 15 В

Наличие источника питания 7,5 В

После того, как эта страница была размещена на Hackaday, комментатор указал, что 7.5V — это на самом деле стандартное напряжение питания! Я никогда этого не знал, поэтому искал только источники питания на 5 В, 12 В, 24 В. Конечно, есть много источников питания на 7,5 В — например, TRC Electronics. Кроме того, у большинства из них будет регулировка ± 5%, поэтому для исходного приложения, которое требовало 7,4 В, я мог бы просто использовать вместо него готовый источник питания.

Важное примечание

Почти все китайские источники питания этого типа, с которыми мне приходилось сталкиваться, имели очень плохие радиаторы различных силовых полупроводников — транзисторов, диодов и т. Д.Для обеспечения хорошего теплового контакта с металлическим корпусом уделяется мало внимания, поэтому я всегда снимаю блок питания, проверяю установку радиаторов и наношу дополнительную термопасту.

Кроме того, некоторые гусеницы в этом источнике имеют недостаточный путь утечки / зазор — подробности см. В красном разделе ниже по странице.

Введение

В настоящее время я работаю над продуктом, в котором используется бесщеточный двигатель «hobby» размера 2430 и электронный регулятор скорости (ESC) на 25A. В «предполагаемом» использовании контроллер работает от двух литий-ионных батарей с общим напряжением около 7.4 В, но я хочу, чтобы он работал от сети. Однако готовых источников питания с таким выходным напряжением нет.

К счастью, нет недостатка в недорогих китайских импульсных источниках питания со стандартными выходами 5,12,24 В и т. Д. Большинство (все?) Из них имеют возможность слегка регулировать выходное напряжение, примерно на ± 10%. Я считал, что можно будет модифицировать такой источник питания, чтобы обеспечить полностью регулируемое выходное напряжение, которое можно было бы установить на желаемое значение 7.4В. Это ни в коем случае не новаторская идея — многие люди модифицировали источники питания (обычная модификация заключается в увеличении выхода до 13,8 В для использования радиолюбителей), но я не видел хорошего оперативного анализа этих источников питания, так что это хороший повод поработать детективом и выяснить, что им движет.

Поставка

Схема нумерации моделей для этих источников питания выглядит как S-AAA-BB, где AAA — номинальная мощность в ваттах, а BB — выходное напряжение. Для этого приложения я использовал блок питания S-400-12 (400 Вт, 12 В, 33 А).Вот он:

Вот копия исходного списка на EBay. Это было очень дешево — на самом деле меньше, чем у некоторых доступных расходных материалов на 360 Вт! Из-за относительно высокой номинальной мощности у него есть охлаждающий вентилятор, который включается, когда температура источника питания (измеряемая с помощью термовыключателя, расположенного внутри индуктора выходного фильтра) поднимается выше определенной точки.

Обратный инжиниринг печатной платы

Первая задача — достать главную печатную плату, отсканировать / сфотографировать, отследить и нарисовать схему.Моя процедура была примерно такой (вся обработка производилась в Photoshop):

  1. Отсканируйте нижнюю сторону (дорожки) и вставьте в фотошоп.
  2. На новом слое нарисуйте белые точки над каждой контактной площадкой / переходным отверстием / отверстием. Это поможет как для выравнивания вещей позже, так и для создания красивого изображения.
  3. Сфотографируйте верхнюю сторону (компоненты). Я сфотографировал доску в четырех четвертях и собрал их в Photoshop, чтобы попытаться получить «плоский» вид доски. Белые точки, сделанные на шаге 2, очень помогают выровнять четыре изображения.
  4. Используя инструменты контура, обведите каждую из нижних дорожек.
  5. Используйте пути в качестве областей выбора для заполнения дорожек на отдельном слое — используйте цвета для обозначения основных дорожек, таких как заземление постоянного тока, выход постоянного тока, положительное и отрицательное напряжение высокого напряжения и т. Д.
  6. Просмотрите каждый компонент и отследите, посмотрите, к чему они подключены, и начните заполнять все это схемой. После того, как вы полностью закончите работу с каждым компонентом или дорожкой, сотрите их в фотошопе (или просто нарисуйте на отдельном слое белым цветом), чтобы вы могли сосредоточиться на том, что еще не было отслежено.
  7. Используйте много догадок и артистизма, чтобы составить красивую принципиальную схему!

Вот изображения печатной платы в высоком разрешении:

Важное примечание по пути утечки / зазору: Внимательный читатель (RW) указал на недостаточный зазор / путь утечки между несколькими дорожками на печатной плате. Речь идет о треках [катод ZD2 / коллектор Q3 / TR1] и [верхние концы R5 / R6 / R7]. Расположение и возможное решение выделено на изображении ниже (дорожки видны сверху, просматриваются «сквозь» печатную плату).Он находится справа от L-образного паза под TR1.

Расстояние между дорожками составляет всего около 1,5 мм, что намного меньше безопасного значения (см. Эти таблицы расстояний утечки / зазоров). Как показано, простым решением было бы удалить часть дорожки и повторно подключить ее с помощью перемычки. В идеале слот тоже нужно расширить, но для этого может не хватить места.

В заключение, если вы цените свою безопасность, всегда стоит проверять наличие проблем с утечкой / зазором в источнике и предпринимать некоторые попытки их исправить!

И, чего вы все ждали, полную схему (щелкните изображение, чтобы перейти к PDF-файлу).Схема Eagle также доступна здесь.

Я также снял два трансформатора и измерил их свойства (индуктивность, фазировку, коэффициенты, сопротивление) — щелкните ниже, чтобы увидеть PDF:

Это довольно стандартная поставка — полумостовая топология с одной микросхемой ШИМ-контроллера TL494, на которой все работает. Изоляция обеспечивается трансформатором основного привода, поэтому нет необходимости в обратной связи оптопары.

Я пройдусь по каждой основной части схемы и попытаюсь описать ее работу.Некоторые разделы соответствуют пунктирным прямоугольникам на принципиальной схеме, другие — нет!

Входной фильтр и питание ВН

Это довольно стандартная схема. Предохранитель, синфазный дроссель, конденсаторы фильтра для блокировки / поглощения любых ВЧ помех, двухполупериодный мостовой выпрямитель и два сглаживающих конденсатора. Обратите внимание, что C2 и C3 включены последовательно — это значит, что средняя точка может использоваться как напряжение на половине полного напряжения питания. Один конец первичной обмотки трансформатора идет сюда, другой конец переключается между 0 В и полным напряжением питания, поэтому первичная обмотка видит ± половину полного напряжения питания.

SW1 — это переключатель для выбора режима работы 110/230 В. Для работы 230 В переключатель разомкнут, и напряжение на C2 + C3 является пиковым входным напряжением переменного тока. При работе на 110 В переключатель замкнут, и мост + два конденсатора действуют как удвоитель напряжения, поэтому общее напряжение на C2 + C3 теперь составляет удвоенных пикового входного напряжения переменного тока.

Мостовые транзисторы + базовый привод + главный трансформатор

(TR1 — это трансформатор базового привода, иногда я также называл его «затворным» трансформатором.TR2 — главный трансформатор.)

Два мостовых транзистора (Q4 и Q1) переключают один конец первичной обмотки трансформатора между 0 В и полным напряжением питания постоянного тока. Здесь происходит очень хитрый трюк, который я едва понимаю. Во-первых, дополнительные резисторы, такие как R14, R13, R8, R4, слегка смещают основные транзисторы во время запуска (имейте в виду, что вспомогательный источник питания недоступен во время запуска, поэтому TL494 не работает). Один транзистор включается немного быстрее, чем другой.Если вы присмотритесь, обратите внимание, что нижний конец первичной обмотки основного трансформатора не подключен напрямую к средней точке двух транзисторов — скорее, он проходит через обмотку на базовом приводном трансформаторе. Когда ток начинает течь в первичной обмотке главного трансформатора, он индуцирует ток в обмотках базового трансформатора, одна из которых будет поддерживать уже включенный транзистор, полностью включив его. Благодаря некоторой уловке с резонансом и насыщением (вероятно, с участием C10, включенного последовательно с первичной обмоткой трансформатора), весь этот процесс повторяется для другого транзистора, и весь мост автоколебается.Это обеспечит достаточную мощность для включения вспомогательного источника питания (оно достигает примерно 10 В, но это может варьироваться) и запуска TL494, после чего он берет на себя и управляет переключением транзисторов моста.

Еще одна чрезвычайно интересная особенность этой конфигурации, помимо возможности самозапуска, заключается в том, что TL494 не должен обеспечивать полный базовый ток возбуждения мостовым транзисторам — основной ток возбуждения фактически исходит от первичного тока, связанного через базовый приводной трансформатор.Управляющие транзисторы на первичной обмотке базового трансформатора просто управляют тем, какой из основных транзисторов удерживается первичным током.

Все это очень вольное и неполное объяснение. К счастью, есть фантастическая страница, которая точно описывает, как работает с — у Манфреда Морнхинвега есть страница о создании источника питания 13,8 В, 40 А, и его конструкция использует почти ту же схему (или, скорее, китайский источник питания использует ту же схему, что и он, так как его, вероятно, был первым!).

К счастью (2), понимание фактической работы этой части не является существенным для понимания остальной части поставки, поэтому я бы не стал слишком об этом беспокоиться. Это просто работает ™.

Выходное исправление и сглаживание

Для основного выхода постоянного тока есть вторичная обмотка с центральным отводом и пара силовых диодов Шоттки, выполняющих выпрямление. Несколько сглаживающих колпачков, светодиодный индикатор и большой индуктор фильтра (L1).

J1, J4, J7 — это проволочные перемычки с низким сопротивлением, которые используются в качестве резистора для измерения тока.Поскольку печатная плата разработана с учетом различных конфигураций источника питания (напряжения и выходные токи), предусмотрены положения для шести перемычек — путем изменения количества перемычек уровень ограничения тока может быть изменен в соответствии с различными источниками питания.

Вероятно, можно было бы немного больше сглаживать конденсаторы на выходе, но пульсация не так уж и плоха. Обратите внимание, что конденсаторы составляют всего 16 В, что довольно близко к максимальному отрегулированному напряжению этого источника питания, составляющему почти 15 В. Вероятно, будет лучше выбрать конденсаторы с номинальным напряжением 25 В.

Вспомогательные принадлежности и принадлежности для вентиляторов

Оба они получены от вспомогательной обмотки с центральным ответвлением на главном трансформаторе. Питание вентилятора переключается с помощью термовыключателя для питания вентилятора при перегреве питания. Вспомогательный источник питания обеспечивает питание (Vcc) TL494.

Обратная связь / регулирование / ограничение тока

Делитель измерения напряжения (пунктирная рамка в дальнем левом углу схемы) дает диапазон регулировки примерно 10-15 В со значениями компонентов по умолчанию.Выход делителя (верхняя часть C28) подключен к неинвертирующему входу (контакт 1) операционного усилителя №1 в TL494. Инвертирующий вход (контакт 2) поступает на фиксированное опорное напряжение 2,5 В (половина Vref). TL494 регулирует свой выходной рабочий цикл, чтобы выходной сигнал делителя был равен 2,5 В. Компоненты, помеченные как «компенсация контура напряжения», имеют эффект вуду и уменьшают усиление обратной связи на более высоких частотах. Я лишь смутно понимаю компенсацию петли, но идея состоит в том, чтобы попытаться предотвратить колебания или нестабильность в источнике питания (например,грамм. когда у вас есть ступенчатый переходный процесс в нагрузке, вы хотите, чтобы источник питания реагировал плавно и не колебался в течение некоторого времени). Конденсаторы C31 и C28 в делителе напряжения также выполняют компенсацию контура.

Операционный усилитель №2 TL494 используется для ограничения тока. Неинвертирующий вход (контакт 16) заземлен через R24. Инвертирующий вход (вывод 15) подключен к Vref (5 В) через R21 и к шунту считывания тока (параллельная комбинация J1, J4, J7) через R35. Как это работает — если ток не течет на выходе, токовый шунт не имеет напряжения на нем, поэтому напряжение, появляющееся на выводе 15 TL494, будет (750 / (750 + 68k)) * 5 = 55 мВ.По мере увеличения тока шунт считывания тока будет вытягивать конец R35 все более и более отрицательным, пока, когда напряжение на шунте не достигнет -55 мВ, контакт 15 не достигнет 0 В, и выход операционного усилителя № 2 отключится, уменьшая нагрузку ШИМ на выход. Это происходит с выходным током 55 мВ / (3,9 мР / 3) = 42 А — немного выше заявленного предела в 33 А, но я, вероятно, ошибаюсь в своих измерениях текущих сопротивлений шунта. Несколько компонентов (C29 + R36) также используются для компенсации контура ограничения тока.

Мягкий старт

Контакт 4 TL494 называется входом управления мертвым временем и может использоваться для реализации функции плавного пуска. С24 изначально разряжается, поэтому при подаче питания вывод DTC удерживается в высоком состоянии. Это запрещает вывод. По мере того, как C24 постепенно заряжается (через R19), на контакте 4 падает напряжение, что медленно уменьшает мертвое время, доводя выход до рабочего уровня. На контакте 4 устанавливается около 0,4 В.

Защита от короткого замыкания

Эта часть схемы сначала поставила меня в тупик — я не мог понять, что она должна делать! Это очень умная защита от короткого замыкания.

Предположим, что блок питания работает нормально, с выходом 12 В. База Q5 запитана делителем от выходного постоянного напряжения. Поскольку разделенное напряжение, создаваемое R38 + R31 (которое было бы примерно 2,2 В), значительно превышает падение база-эмиттер Q5 (0,7 В), транзистор остается включенным, понижая напряжение на C30. Учитывая прямое падение D13, это не повлияет на напряжение на входе DTC. Итак, при нормальной работе эта схема ничего не делает.

Предположим, что выход внезапно закорочен.V + падает до нуля (или очень близко), что приводит к выключению Q5. C30 теперь будет заряжаться через R33 и ZD3 от вспомогательного источника питания. (Я не уверен в назначении ZD3). Как только он достигает напряжения, достаточного для проведения D13, он подтягивает вход DTC и вызывает отключение TL494.

Если короткое замыкание на выходе теперь устранено, выход останется отключенным — Q5 остается выключенным, поэтому C30 заряжается, удерживая вывод DTC на высоком уровне. Вы можете задаться вопросом, как еще остается доступный вспомогательный источник питания, когда TL494 выключен — помните поведение при запуске, когда мостовые транзисторы автоколебательны? Источник питания снова переходит в этот режим, которого достаточно для обеспечения вспомогательного питания около 10 В.

Единственный способ восстановить питание — это выключить весь блок питания, подождать и снова включить. Возникает вопрос, почему защита от короткого замыкания не срабатывает при включении питания? Короткий ответ — благодаря схеме плавного пуска на выводе DTC требуется достаточно времени, чтобы опуститься до низкого уровня, чтобы выходное напряжение накопило достаточно, чтобы поддерживать Q5 в проводящем состоянии (следите за некоторыми графиками, на которых это происходит).

Вот некоторые формы сигналов, когда выход закорочен во время нормальной работы. До короткого замыкания Vcc составляет около 20 В, выход (V +) — 12 В, код неисправности — около 0.4 В, а на коллекторе Q5 около 0 В — он поддерживается высоким выходным напряжением. Когда выход закорочен, V + падает до нуля. Q5 выключается, и C30 начинает заряжаться, поэтому напряжение коллектора Q5 начинает расти, что, в свою очередь, вызывает повышение напряжения DTC. По мере его повышения TL494 начинает отключаться (увеличивается время простоя), пока, наконец, микросхема не будет полностью отключена, а DTC достигнет чуть менее 3 В. VCC падает примерно до 10 В, поскольку мост теперь работает в самовозбуждающемся режиме, так как он не получает никаких управляющих сигналов от TL494.

Далее, вот формы сигналов во время запуска с нормальной нагрузкой на выходе (т.е. , а не закорочены). При запуске инвертор переходит в режим самовозбуждения, и напряжение VCC сразу повышается до 10-15 В или около того. Диагностический код неисправности немедленно переходит в высокий уровень, потому что C24 изначально разряжается, а затем начинает медленно снижаться, поскольку он заряжается через R19. Поскольку выходное напряжение изначально равно нулю, C30 (на коллекторе Q5) начинает заряжаться через R33. Однако, как только выходное напряжение достигает 3 или 4 В (опять же, благодаря работе с самовозбуждением), включается Q5, разряжая C30.После этого, как только код DTC упадет до подходящего уровня, начнется нормальная работа. Обратите внимание, что во время обычного запуска напряжение коллектора Q5 никогда не достигает DTC плюс одно падение на диоде (D13), поэтому схема защиты от короткого замыкания никогда не может повлиять на уровень DTC во время нормального запуска.

И, наконец, вот поведение, когда подача питания запускается с закороченным выходом. Выходное напряжение пытается увеличиться, но не может (так как закорочено). Q5 постоянно выключен, поэтому C30 может заряжаться.Как только он достигает достаточного напряжения (DTC + падение одного диода), он удерживает на выводе DTC высокий уровень, предотвращая дальнейшую работу до тех пор, пока питание не будет отключено.

Когда мы здесь, важное замечание относительно защиты от короткого замыкания. Хотя я привел примеры его срабатывания при прямом коротком замыкании на выходе, на самом деле он будет работать всякий раз, когда выходного напряжения недостаточно для поддержания Q5 включенным — это происходит ниже примерно 4 В. Это означает, что при изменении источника питания для получения переменного выходного напряжения невозможно снизить выходное напряжение до уровня ниже 4 В, поскольку сработает защита от короткого замыкания.Чтобы включить выход ниже 4 В, вам нужно отключить защиту от короткого замыкания — проще всего удалить D13. Однако затем вы сталкиваетесь с другой проблемой — напряжение на выводе 2 TL494 поддерживается делителем R30 + R34 на уровне 2,5 В, и поэтому невозможно настроить выход ниже 2,5 В. Если, конечно, вы не изменили номиналы резисторов делителя, чтобы получить другое (более низкое) опорное напряжение на выводе 2, но это становится все более и более вовлеченным.

Итак — о доработках!

Разработка нового делителя обратной связи

Вот новый делитель обратной связи, который я приготовил — он заменяет содержимое пунктирной рамки с пометкой «Voltage sense» на схеме дальше вверх по странице.

[Примечание: нет никакой земной причины для двух последовательно включенных резисторов 1 кОм — у меня просто не было в наличии резисторов 2 кОм!]

Между этим и оригинальным разделителем есть одно важное отличие. В оригинале регулировка была очень нелинейной, потому что VR1 использовался просто как переменный резистор между выводом обратной связи и землей. Новый делитель имеет линейную регулировку благодаря конфигурации заземленного дворника. При указанных значениях корректировка составляет около 4.8-15В; обратите внимание, что я сознательно избегал слишком низкой скорости, чтобы предотвратить срабатывание защиты от короткого замыкания (см. ранее). Дополнительные сведения о преимуществах конфигурации обратной связи с заземленным стеклоочистителем см. На этой странице.

Что с конденсаторами? Помните, что в исходном делителе была пара конденсаторов для компенсации контура. Я действительно не знаю, что я делаю в отношении компенсации петли, но я подумал, что было бы лучше попытаться получить характеристику усиления / фазы нового делителя как можно ближе к характеристике старого делителя, чтобы уменьшить вероятность возникновения нестабильности.Я определил правильные значения компонентов методом проб и ошибок в LTSpice. Вот графики зависимости коэффициента усиления / фазы от частоты как для старых, так и для новых сетей обратной связи во всем диапазоне регулировки — обратите внимание, как, хотя диапазон значений шире для нового делителя (благодаря увеличенному диапазону регулировки), различные угловые частоты о том же самом. Повышение в районе 100 Гц — 10 кГц происходит из-за того, что C1 + R39 связывает большую часть выходного напряжения с контактом обратной связи, а падение на высоких частотах связано с уменьшением импеданса C26.

Модификации оборудования

Сначала удалите некоторые оригинальные компоненты с печатной платы. Снимите C31, R32, R40 и VR1. Вот вид до и после:

Мы будем использовать некоторые из существующих дорожек и пэдов, чтобы соединить компоненты для нового делителя обратной связи. Следите за правильной ориентацией потенциометра 10 кОм. Вот схема (вид сверху, глядя «сквозь» плату):

И что, как говорится, все! Новый делитель обратной связи — единственная модификация, необходимая для обеспечения более широкого диапазона регулировки — я измерил диапазон 4.От 8 В до 15 В, но оно может незначительно отличаться в зависимости от допусков компонентов. Даже при самом низком выходном напряжении 4,8 В не было никаких признаков срабатывания защиты от короткого замыкания.

В дополнение к доработкам делителя напряжения, я решил добавить небольшой модуль цифрового вольтметра для отображения текущего выходного напряжения. Я купил несколько модулей счетчиков некоторое время назад и пока не нашел им применения.

Найдите на AliExpress TK0600 вольтметр 0-30 В или EBay для Новый 1 шт. Цифровой вольтметр постоянного тока 0-30 В Полезный светодиодный индикатор панели Красный .Это наиболее вероятные поисковые запросы для получения результатов, но вам, возможно, придется проявить немного воображения, чтобы найти другие термины. В этих конкретных модулях используются отдельные соединения для источника питания и датчика, поэтому они могут измерять вплоть до 0 В. Другие модули фактически работают от измеряемого напряжения, поэтому они ограничены в том, насколько низкое они могут измерить. Это аккуратные маленькие модули — 3 цифры, автоматическая десятичная точка, диапазон 0-30 В и имеют встроенный микроконтроллер STM800S3F3. Есть даже несколько выводов ввода-вывода, разбитых на заголовок, поэтому, несомненно, его можно перепрограммировать.Вот пара людей, которые проанализировали схему:

Источник питания для модуля вольтметра состоит из пары дополнительных диодов + конденсатора 100 мкФ + индуктивности последовательного фильтра 220 мкГн, прикрепленных к анодам D11 и D12 (см. Фото ниже). Это обеспечивает модуль около 20 В. Согласно сообщению EEVBlog, в модуле используется стабилизатор напряжения Holtek 7130 с максимальным входным напряжением 24 В, так что это вполне допустимо. Я не использовал существующий вспомогательный источник питания, потому что обнаружил, что он немного нестабилен, когда источник питания работает в режиме малой нагрузки / «самовозбуждение».Сенсорное соединение модуля вольтметра подключается к одной из различных больших перемычек, которые используются на выходной стороне для увеличения пропускной способности печатной платы.

Я установил и регулировочный потенциометр, и модуль вольтметра на корпусе источника питания, прямо над выходными клеммами. Немного сжато, но места было как раз достаточно, чтобы их вместить. Я также добавил кусок красного пластикового фильтра перед модулем, чтобы изображение на дисплее было более четким.

Производительность

Источник питания теперь регулируется с 4.От 8 В до 15 В и, похоже, хорошо работает во всем диапазоне. Установленный на 7,4 В, он без проблем управляет бесщеточным двигателем; есть небольшое падение напряжения на максимальной скорости, но этого следовало ожидать. Я использую «серво-тестер», чтобы передать регулируемый сигнал ШИМ на ESC.


Установить на 7,4 В для использования с бесщеточным двигателем

Подключается к регулятору скорости вращения 25A и бесщеточному двигателю размера 2430

Вот видеообзор, охватывающий большинство аспектов модификации:

Научитесь подключать блоки питания последовательно для получения более высокого выходного напряжения.

Два или более источника питания могут быть подключены для подачи более высокого напряжения или тока. Самый простой способ создать более высокое напряжение — это подключить блоки питания последовательно, настроить каждый источник на вывод одинакового напряжения и у каждого источника должен быть одинаковый предел тока. Сумма выходных напряжений источников питания будет приложена к ИУ. Некоторые источники питания оснащены аналоговыми управляющими сигналами, которые обеспечивают автоматическое последовательное или автоматическое отслеживание, что является более элегантным способом управления несколькими источниками питания.Источниками питания Auto-series можно управлять с помощью одного главного источника питания; Второе преимущество состоит в том, что можно использовать все функции основных источников питания. например дистанционное управление, режим CV или CC и даже аналоговое программирование. Автоматическое отслеживание позволяет нескольким источникам питания отслеживать ведущее устройство, а ведомые устройства могут иметь одинаковые выходные характеристики или могут быть сконфигурированы так, чтобы быть пропорциональными ведущему.

1) Последовательное подключение источников питания для получения более высоких напряжений

Последовательная работа двух или более источников питания может выполняться до номинальной выходной изоляции любого одного источника для получения более высокого напряжения, чем напряжение, доступное от одного источника. .Некоторые источники питания, такие как серия E363x, имеют диод обратной полярности, подключенный к выходным клеммам, так что при последовательной работе с другими источниками повреждения не произойдет, если нагрузка будет закорочена или если один источник питания будет включен отдельно от его последовательного. партнеры.

Некоторые меры предосторожности:

  1. Никогда не превышайте номинальное выходное напряжение изоляции любого из источников питания.
  2. Ни в коем случае не подвергайте какие-либо источники отрицательного напряжения.

Рис. 1. Три блока питания, подключенных последовательно для создания дополнительного напряжения.

Установка напряжения и тока. При последовательном подключении выходное напряжение представляет собой сумму напряжений отдельных источников питания. Каждый из отдельных источников питания должен быть отрегулирован для получения общего выходного напряжения

2) Автоматический последовательный режим

Автоматический последовательный режим обеспечивает равное или пропорциональное распределение напряжения и позволяет управлять выходным напряжением с одного ведущего блока. Напряжение ведомых устройств определяется настройкой регулятора НАПРЯЖЕНИЕ на передней панели на ведущем устройстве и резисторе делителя напряжения.Главный блок должен быть самым положительным источником питания в серии. Регуляторы выходного ТОКА всех серийных устройств работают, и предел тока равен минимальному значению. Если какие-либо регуляторы выходного ТОКА установлены на слишком низкое значение, произойдет автоматический переход на режим постоянного тока и выходное напряжение упадет.

Рисунок 2. Настройки переключателя на задней панели и клеммные соединения для автоматической последовательной работы

Смешанные номера моделей могут использоваться в автоматической последовательной комбинации, при условии, что каждое ведомое устройство определено как способное к автоматической последовательной работе.Если главный источник питания настроен на работу с постоянным током, тогда комбинация главный-подчиненный будет действовать как составной источник постоянного тока.

Резисторы определяющие. Внешние резисторы управляют частью (или кратным) уставки напряжения ведущего устройства, которое подается с ведомого устройства. Обратите внимание, что процент от общего выходного напряжения, вносимого каждым источником питания, не зависит от величины общего напряжения. Для двух блоков в автоматическом последовательном соединении отношение R1 к R2 составляет

(R1 + R2) / R1 = (Vo / Vm)
R2 / R1 = (Vs / Vm)

Где Vo = автоматическое последовательное напряжение = Vs + Vm
Vm = выходное напряжение ведущего устройства
Vs = выходное напряжение ведомого устройства

Например, используя E3617A в качестве ведомого устройства и положив R2 = 50 кОм (1/4 Вт), тогда из приведенных выше уравнений
R1 = R2 (Vm / Vs) = 50 (Vm / Vs) кОм

Чтобы поддерживать температурный коэффициент и стабильность работы источника питания, выбирайте стабильные резисторы с низким уровнем шума.Конденсатор емкостью 0,1 мкФ, подключенный параллельно к резисторам R2 и R4 в трех источниках питания, поможет обеспечить стабильную работу.

Установка напряжения и тока. Используйте элементы управления главного устройства, чтобы установить желаемое выходное напряжение и ток. Управление НАПРЯЖЕНИЕМ ведомого устройства отключено. Включение управления напряжением ведущего блока приведет к непрерывному изменению выходного сигнала последовательной комбинации, при этом вклад выходного напряжения ведущего устройства в напряжение ведомого всегда остается в соотношении внешних резисторов.Установите регулятор CURRENT ведомого устройства выше текущего значения ведущего устройства, чтобы ведомый не переключался в режим CC. В режиме CC комбинированный выходной ток совпадает с настройкой тока ведущего устройства, а в режиме CV объединенное выходное напряжение является суммой выходных напряжений ведущего устройства и ведомого устройства.

Защита от перенапряжения. Установите напряжение отключения OVP в каждом блоке так, чтобы он отключался при напряжении выше, чем его выходное напряжение во время автоматической последовательной работы.Когда главный блок выключается, он программирует любые подчиненные блоки на нулевой выход. Когда подчиненное устройство отключается, оно отключает только себя (и все подчиненные устройства ниже него в стеке). Ведущее устройство
(и все ведомые устройства выше отключаемого ведомого) продолжает подавать выходное напряжение.

Дистанционное зондирование. Для дистанционного распознавания с автоматическим последовательным управлением установите переключатель SENSE на главном устройстве и установите переключатель SENSE на подчиненном устройстве в положение «Remote».

Удаленное аналоговое программирование напряжения. Для удаленной аналоговой программы с автоматическим последовательным управлением подключите программные (внешние) напряжения к клемме «CV» или «CC» на главном устройстве и установите переключатель «CV» или «CC» на главном устройстве в положение дистанционного.

3) Работа с автоматическим отслеживанием

Работа с автоматическим отслеживанием источников питания аналогична работе с автоматическим последовательным подключением, за исключением того, что ведущий и ведомый источники питания имеют одинаковую выходную полярность по отношению к общей шине или земле. Эта операция полезна там, где требуется одновременное увеличение, уменьшение или пропорциональное управление всеми источниками питания. На рисунке 3 показаны три источника питания, подключенные с автоматическим отслеживанием, с их отрицательными выходными клеммами, соединенными вместе как общая точка или точка заземления.Для двух устройств с автоматическим отслеживанием часть R2 / (R1 + R2) выхода ведущего источника питания предоставляется в качестве одного из входов для усилителя сравнения ведомого источника, таким образом управляя выходом ведомого. Основным источником питания в режиме автоматического слежения должен быть положительный источник питания с наибольшим выходным напряжением. Повышение и выключение источников питания контролируются главным источником питания. Чтобы поддерживать температурный коэффициент и характеристики стабильности источника питания, внешний резистор должен быть стабильным, с низким уровнем шума и низкой температурой.

Резисторы определяющие. Внешние резисторы управляют частью напряжения ведущего устройства, которое подается от ведомого устройства. Для двух блоков с автоматическим отслеживанием отношение R1 и R2 составляет

R2 / (R1 + R2) = (Vs / Vm)
Где Vm = выходное напряжение главного устройства
Vs = выходное напряжение подчиненного устройства

Конденсатор емкостью 0,1 мкФ, подключенный параллельно с R2 и R4 поможет обеспечить стабильную работу.

Установка напряжения и тока. Используйте регулятор VOLTAGE главного блока, чтобы установить выходное напряжение обоих блоков.Когда ведущий работает в режиме постоянного напряжения, выходное напряжение ведущего (Vm) совпадает с его настройкой напряжения, а выходное напряжение ведомого устройства для работы двух блоков составляет Vm (R2 / (R1 + R2)). Управление НАПРЯЖЕНИЕМ ведомого устройства отключено. Установите регуляторы CURRENT на главном и подчиненном блоках выше требуемых значений тока, чтобы обеспечить работу постоянного напряжения главного и подчиненного блоков.

Защита от перенапряжения. Установите напряжение выключения OVP в каждом блоке так, чтобы оно выключалось при напряжении выше, чем его выходное напряжение во время операции автоматического слежения.Когда главный блок выключается, он программирует любые подчиненные блоки на нулевой выход. Когда ведомое устройство выключается, оно выключается только само.

Дистанционное зондирование. Чтобы включить дистанционное зондирование с автоматическим отслеживанием независимо, настройте каждый блок для дистанционного зондирования в соответствии с инструкциями по дистанционному зондированию, приведенными в предыдущем абзаце.

Повышение энергоэффективности серверов за счет использования высоковольтных источников питания

% PDF-1.4 % 38 0 объект > эндобдж 55 0 объект > поток 11.08.572018-06-26T16: 04: 10.051-04: 00Acrobat Distiller 6.0 (Windows) e0067743145efd59f792af4852ade33be1a0522366472ba0122755PScript5.dll Версия 5.2.22009-04-20T17: 34: 12.000-04: 002009-04-20T17: 34: 12.000-04: 002009-04-20T17: 34: 12.000-04: pdf

  • и
  • 2018-06-26T16: 11: 17.652-04: 00
  • e0067743
  • Повышение энергоэффективности серверов за счет использования источников питания высокого напряжения
  • uuid: 3e7a041d-024a-4547-af0f-59391f58d2fcuuid: 65f5952d-a3ab-49a6-91ee-6ae7f0d1498f Acrobat Distiller 6.0 (Windows)
  • eaton: вкладки поиска / тип-содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: систематика продуктов / backup-power, -ups, -surge — & — it-power-distribution / backup-power- (ups) / eaton-bladeups
  • eaton: language / en-us
  • eaton: ресурсы / маркетинговые ресурсы / официальные документы
  • конечный поток эндобдж 32 0 объект > эндобдж 34 0 объект > эндобдж 40 0 объект > эндобдж 1 0 объект > эндобдж 8 0 объект > эндобдж 11 0 объект > эндобдж 14 0 объект > эндобдж 21 0 объект > эндобдж 25 0 объект > эндобдж 27 0 объект > поток HW] o6} ׯ {ein («C \ lCFcvRR]] ^ J @ $ s9d.ָ? # IpPw »? B3w [lPĎGB + 2fhDž1: pG! D @ =? & Õo0MIDD # Y5 ~ 7 ܡ Qh0Zұ ‘) E

    Ремонт импульсного источника питания

    Внутреннее обозначение блока питания ATX:

    А — выпрямитель мостовой
    В — конденсаторы входного фильтра
    между B и C — Радиатор высоковольтных транзисторов
    C — трансформатор
    между C и D — Радиатор низковольтных сильноточных выпрямителей
    D — катушка выходного фильтра
    E — конденсаторы выходного фильтра

    Выход трансформатора (который теперь представляет собой переменный ток) затем выпрямляется специальными высокоскоростными диодами, чтобы снова переключить его на постоянный ток.Однако этот выход не является чистым постоянным током и требует обширной фильтрации для удаления высокочастотного «шума», который генерируется быстрым переключением транзисторов. Фильтрация осуществляется с помощью комбинации катушек (также известных как «дроссели») и конденсаторов.

    Выходное напряжение источника питания регулируется путем подачи части выходного сигнала обратно на интегральную схему, которая управляет переключающими транзисторами. Если выходное напряжение слишком низкое, ИС позволяет транзисторам оставаться под напряжением в течение более длительного периода времени, повышая напряжение.Слишком высокое выходное напряжение сигнализирует микросхеме о необходимости сократить транзисторы, снижая выходное напряжение.

    Отказ источника питания

    Я обнаружил, что есть лишь небольшая часть компонентов, которые не работают в импульсных источниках питания регуляторов. Чаще всего выходят из строя сами переключающие транзисторы. В транзисторах происходит короткое замыкание, в результате чего через трансформатор протекает большой ток и перегорает предохранитель.

    Отказ транзистора часто вызван неисправными конденсаторами.Чрезвычайно часто встречаются вздутые или протекающие конденсаторы выходного фильтра. Любой неисправный конденсатор следует заменить. Чтобы предотвратить повторение этого общего отказа, конденсаторы выходного фильтра следует заменить специальными конденсаторами с низким ESR (эквивалентным последовательным сопротивлением). Эти конденсаторы специально разработаны для работы в условиях строгой фильтрации в импульсном источнике питания. Большинство производителей источников питания не устанавливают конденсаторы с низким ESR в качестве оригинального оборудования, поскольку они несколько дороже обычных конденсаторов.Однако использование их в качестве запасных компонентов того стоит, поскольку они значительно продлят срок службы источника питания в полевых условиях. Когда я работаю с источником питания, я заменяю все конденсаторы выходного фильтра конденсаторами с низким ESR, независимо от того, хорошие они или плохие. Поскольку сервисный вызов стоит гораздо дороже, чем конденсаторы, это разумный поступок.

    Отказ диода — еще одна распространенная проблема. В импульсном блоке питания довольно много диодов, и выход из строя любого из них приведет к срабатыванию предохранителя или отключению блока питания.Чаще всего выходят из строя диоды из-за короткого замыкания выходных выпрямителей +12 В или -5 В. Выход из строя этих диодов не приведет к срабатыванию предохранителя. Блок питания просто обнаруживает короткое замыкание и отключается. Некоторые из этих отказов могут быть вызваны использованием выходов +12 или -5 В для питания ламп дверцы монетоприемника. Выход -5 В не имеет защиты от перегрузки по току во всех источниках питания. Закороченный патрон лампы может привести к срыву диода из-за слишком большого тока от источника питания. Диоды +12 В могут перегореть, если случайно использовать лампочки на 6 В вместо ламп на 12 В.Также возможно короткое замыкание высоковольтных входных диодов. Это часто сопровождается коротким замыканием коммутирующих транзисторов и перегорает предохранитель.

    Проверка и ремонт

    Все испытания проводятся при выключенном питании. Начнем с тестирования пары переключающих транзисторов. Они будут установлены на радиаторе, который поможет им работать холоднее. Проверьте их с помощью омметра или цифрового мультиметра, настроенного на диапазон проверки диодов. Проверьте каждый транзистор на короткое замыкание между эмиттером и коллектором.Замените все транзисторы, которые вы сочтете неисправными. Хотя некоторые технические специалисты утверждают, что вам следует заменить их оба, даже если только один из них неисправен, я не счел это необходимым.

    Между прочим, эти транзисторы всегда будут казаться закороченными между базой и эмиттером при тестировании «в цепи». Обычно я не утруждаюсь тестированием перехода база-эмиттер транзисторов. Когда переключающие транзисторы выходят из строя, они всегда замыкаются между эмиттером и коллектором. Если вы сомневаетесь, вытащите транзисторы из цепи, чтобы проверить их.Если транзисторы закорочены, предохранитель перегорит. Обязательно проверьте и высоковольтные диоды. Высоковольтные диоды обычно являются частью мостового выпрямителя, хотя могут быть отдельными диодами.

    Затем проверьте выходные выпрямители. Необходимо проверить три пары диодов. Одна пара предназначена для выхода -5 В. Они будут довольно маленькими; примерно такого же размера, как вездесущий 1N4004, с которым все мы знакомы. Диоды на +12 В обычно несколько больше.Два выходных диода +5 В размещены вместе в «двойном диодном» корпусе, который очень похож на транзистор. Как и переключающие транзисторы, этот диодный корпус установлен на радиаторе. Обычно на нем напечатаны символы схемы диодов. Этот диод обычно не тестирует правильно в цепи. Тестирование можно упростить, отпаяв его с помощью «присоски для припоя» вместо того, чтобы полностью снимать его с печатной платы. Я видел очень мало отказов выходных диодов +5 В.Все диоды необходимо заменить быстродействующими диодами, иначе источник питания будет генерировать чрезмерный шум.

    Выполните эти тесты, заменив все выходные конденсаторы на конденсаторы с низким ESR и включите источник питания. Блок питания следует проверить под нагрузкой. Используйте резистор на 1 Ом, 50 Вт или эквивалент в качестве «фиктивной нагрузки», подключенный между выходом +5 В и землей (DC COM). Это потребляет 5 ампер от источника питания, что достаточно для тестирования. Если источник питания все еще не работает, возможно, неисправна интегральная схема.Проверьте микросхему, сняв ее с печатной платы и установив в надежный источник питания. У меня есть запасной блок питания с розеткой, который я использую исключительно для тестирования интегральных схем. Практически все расходные материалы используют одну и ту же микросхему; тип 494. Эквивалентные интегральные схемы: TL494CN, uA494, uPC494C, IR3MO2 и MB3759. Их можно заменить на ECG1729.

    Получение запасных частей

    Одним из главных аргументов в пользу того, чтобы выбросить неисправные блоки питания в мусорное ведро, было то, что стоимость заменяемых компонентов почти равна стоимости нового блока питания.Это просто неправда. Переключающие транзисторы доступны по цене около 0,90 доллара за штуку.

    В большинстве случаев вы можете сказать, что конденсатор плохой, просто взглянув на его верхнюю поверхность. Если он вздувается вверху, это плохо, и его следует немедленно заменить. Иногда конденсаторы, которые выглядят нормально, тоже могут быть плохими, и для их определения вам понадобится измеритель ESR. Конденсаторы, которые вы хотите заказать, произведены Nichicon. Закажите 3300 мкФ при 16 вольт (номер детали UVX1C332M) и 1000 мкФ при 25 вольт (номер детали UVX1E102M.Они подходят для замены конденсаторов выходных фильтров практически во всех моделях источников питания. Помните, что при замене конденсаторов фильтра вы всегда можете заменить конденсатор более высоким напряжением. НАПРИМЕР. Конденсатор на 1000 мкФ, 16 В можно заменить на 1000 мкФ, 25 В.

    Слишком высокий выход минус 5 В

    Большинство источников питания импульсных регуляторов имеют три выхода постоянного тока. Один из них — это основной выход +5 В постоянного тока, который питает компьютерную систему.Остальные — выходы +12 и -5 В. Эти выходы постоянного тока часто используются для питания системы генерации звука и самого аудиоусилителя. Когда вы тестируете источник питания, важно проверить все три выхода. Это особенно верно, когда у вас есть игра, которая в основном работает нормально, но имеет искаженный или отсутствующий звук.

    При отказе источника питания импульсного регулятора все три выхода обычно упадут до нуля вольт. Однако иногда выходное напряжение может повышаться.Если вы обнаружите, что выходы +5 В постоянного тока и +12 В постоянного тока в норме, но выходное напряжение -5 В постоянного тока слишком высокое (более -6 В постоянного тока), попробуйте заменить дроссель выходного фильтра -5.

    Дроссель фильтра -5 В легко найти даже без принципиальной схемы. Просто проследите след на печатной плате от выхода -5 В постоянного тока источника питания. В конечном итоге вы придете к компоненту, который может выглядеть как конденсатор, но будет четко обозначен на плате буквой «L» и, как правило, будет сопровождаться схематическим обозначением катушки.Катушка намотана на ферритовую катушку и покрыта пластиковой гильзой, на которую нанесена термоусадка. Осмотрите катушку. Если термоусадочная крышка расплавилась или отсутствует полностью, змеевик может быть неисправен.

    Есть несколько вариантов получения катушки на замену. Предпочтительный метод — отключить катушку от ненужного источника питания. В качестве альтернативы вы можете снять перегоревший провод с ферритового сердечника и самостоятельно перемотать дроссель, используя провод соответствующего калибра. На нем не так много витков провода, чтобы не перемотать новую катушку за пять минут.

    Замена выходного конденсатора

    Я получил несколько звонков и писем от операторов и технических специалистов, у которых возникли проблемы с получением запасных конденсаторов для источников питания импульсных регуляторов. Рекомендую использовать конденсаторы марки Nichicon. Я использую их почти два года и на сегодняшний день не видел повторного выхода конденсатора из строя.

    Я рекомендую вам заказать только два конденсатора различных марок Nichicon для использования в качестве замены конденсаторов выходного фильтра.Когда у вас есть номера деталей, это очень помогает. Для выхода +5 В постоянного тока используйте конденсаторы емкостью 3300 мкФ, 16 В постоянного тока. Номер детали Nichicon — UVX1C332M. Для каждого блока питания требуется два таких блока.

    Чтобы упростить заказ и хранение, я использую один и тот же конденсатор для выходов +12 В постоянного тока и -5 В постоянного тока. Это конденсатор емкостью 1000 мкФ, 25 вольт. Номер детали Nichicon — UVX1E102M. Хотя в некоторых источниках питания для вывода +12 В постоянного тока используется конденсатор на 2200 мкФ, я считаю, что 1000 мкФ вполне удовлетворительны.В большинстве источников питания используется по одному конденсатору для выходов +12 В постоянного тока и -5 В постоянного тока, поэтому заказывайте такое же количество конденсаторов на 1000 мкФ, как и для конденсаторов на 3300 мкФ. При замене конденсаторов выходного фильтра рекомендуется заменить их все сразу.

    Замена выходного диода

    Выходные диоды — частая неисправность в источниках питания импульсного регулятора. Я бы сказал, что от двадцати пяти до тридцати процентов из них имеют плохие выходные диоды.

    Высокоскоростные диоды

    Имеется три пары выходных диодов; по одной паре для каждого из выходов: +5 В постоянного тока, +12 В постоянного тока и -5 В постоянного тока.Это не обычные диоды. Это специальные быстродействующие диоды с «быстрым восстановлением». Высокоскоростные диоды предназначены для очень быстрого переключения (около 40 тысяч циклов в секунду) источника питания.

    Я редко заменял диодную сборку +5 В в блоке питания импульсного регулятора. Выходные диоды +12 и -5 В являются наиболее частыми отказами. Плохое испытание этих диодов при проверке «в цепи» является нормальным явлением. Обычно на выходе источника питания имеется резистор с низким сопротивлением (обычно около 100 Ом), который вызывает очень низкие показания при проверке выходных диодов +12 или -5 В.Большинство людей распаивают и удаляют один конец каждого диода, чтобы проверить его, но обычно вы можете обойти этот шаг. Когда эти диоды выходят из строя, они обычно полностью замыкаются. Вместо значения около 100 Ом вы получите значение около нуля Ом; тупик!

    Запасные диоды

    Выходные диоды +12 В обычно имеют оригинальный номер детали, например, PXPR302 или FR302. Это диоды на 3 ампера. Выходные диоды -5 В часто имеют тип PXPR1502 или аналогичные. Хорошая инженерная практика диктует, что в этой схеме должны использоваться высокоскоростные диоды с «быстрым восстановлением».Я обнаружил, что нормальные диоды преждевременно выходят из строя и как таковые неприемлемы в качестве замены. Чем больше вы работаете над ремонтом блоков питания, тем легче это становится. Если учесть, что многие ремонты блоков питания производятся с заменой одного диода, то можно заметить, что они совсем не одноразовые!

    Плохие импульсные блоки питания обычно попадают в следующие категории:

    1. Мертвый и бесшумный с перегоревшим предохранителем
    2. Мертвый и тихий с исправным предохранителем
    3.Мертвый и чириканье / щелчок с предохранителем исправен
    4. Выходное напряжение в порядке, но игра ведет себя глупо с этим источником питания.

    # 2 исправить труднее всего.

    Импульсные блоки питания работают следующим образом:

    Сторона высокого напряжения: выпрямление сетевого напряжения методом грубой силы с помощью набора диодов — либо отдельных, либо 4-выводного мостового выпрямителя. Он фильтруется через конденсатор и поступает в схему переключения (после понижения через другие компоненты) и в главный переключающий транзистор.Проблемы здесь относятся к №1 и их довольно легко исправить.

    Регулировка: эта схема запускает питание и обеспечивает правильный выход. Он запускает колебания главного переключающего транзистора и контролирует выход высокочастотного понижающего трансформатора через механизм обратной связи. Проблемы здесь связаны с № 2 — решить эту проблему сложно.

    Сторона низкого напряжения: здесь находятся выпрямительные диоды, дроссельные катушки фильтра и конденсаторы, которые превращают высокочастотный выход переменного тока трансформатора в выход постоянного тока, необходимый для игры.Здесь есть небольшая часть схемы, которая обеспечивает обратную связь с регулирующей схемой, чтобы все работало стабильно. Проблемы здесь связаны с №3 и №4.

    ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: * ВСЕ * перечисленные методы поиска и устранения неисправностей выполняются при выключенном питании. Имейте в виду, что проблемы, перечисленные под номерами №2, №3 и №4, связаны с тем, где предохранитель находится в ХОРОШЕМ порядке, а в секции высокого напряжения платы может быть заряд на больших конденсаторах фильтра. У некоторых источников питания есть резисторы для утечки через них.Другие НЕТ. Используйте резистор 150 кОм 1/2 Вт, чтобы удалить эти колпачки и проверить напряжение своим измерителем, чтобы избежать неприятного электрошока. Постоянный ток заставляет ваши мышцы сокращаться, и если вы возьмете в руки блок питания, вы можете обнаружить, что не можете их отпустить. Да, однажды со мной такое случалось. Соблюдайте соответствующие меры предосторожности. Вот как я узнал, что не все блоки питания имеют резисторы для защиты от утечки основных фильтров на стороне высокого напряжения. Блин блоки питания Apple II …

    Крепление стороны высокого напряжения:

    С помощью омметра проверьте сопротивление во всех комбинациях 4 ножек мостового выпрямителя.Они НЕ должны показывать нулевое сопротивление. Если да, поменяйте местами провода и проверьте еще раз … если есть … замените компонент.

    Проделайте то же самое испытание на выводах главного переключающего транзистора и любого другого полупроводника (диода / транзистора) в секции высокого напряжения. Замените все закороченные компоненты.

    Имейте в виду, что в некоторых импульсных источниках питания вокруг переключающего транзистора используются маломощные резисторы. Если вы читаете около 2 Ом, возможно, вы читаете их. Закороченный компонент обычно составляет 1/2 Ом или меньше.

    Если вы обнаружите закороченные компоненты где-либо в секции высокого напряжения, вам следует проверить резисторы на предмет обрыва и при необходимости заменить. Замените предохранитель, отремонтируйте все потрескавшиеся паяные соединения, соберите заново и проверьте …

    Устранение неполадок со стороны низкого напряжения: Чириканье питания обычно означает проблемы с выходом. Это может быть проблема и с регулирующей частью, но я никогда не видел этого в этом случае. В каждом случае чирикающих источников питания, над которыми я работал, закрывался выпрямительный диод в секции низкого напряжения.

    Некоторые диоды представляют собой сдвоенные диоды, похожие на транзисторы. Посмотрите на печатную плату, поскольку большинство из них помечены как «D #» или «CR #». Проверьте эти компоненты с помощью омметра и найдите тот, который показывает короткое замыкание в обе стороны. Высокоскоростные сдвоенные выпрямители обычно считывают очень низкое сопротивление в одну сторону — выглядят почти закороченными — но они будут считывать высокие значения в другую сторону, если они не закорочены.

    Замените закороченные выпрямители, устраните трещины в паяных соединениях, соберите заново и проверьте.

    Блок питания работает, но игра с ним нестабильна: проверьте конденсаторы фильтра на выходной секции блока питания. Ищите те, у которых верхняя часть разделена, или те, которые наклонились или поднялись из-за того, что резиновая заглушка выскочила из дна. Если все они выглядят нормально, либо стреляйте в них, либо проверьте выходы с помощью осциллографа и поищите на них беспорядочные высокочастотные пульсации переменного тока. При необходимости замените колпачки, чтобы очистить эти выводы, исправить любые потрескавшиеся паяные соединения, собрать и проверить.

    Проблема в разделе регулирования: Ну, это может быть сложно понять. Единственный раз, когда мне удавалось починить их без схемы (что не очень часто, так как вы обычно не можете получить схемы для них), это когда дробовик колпачков в секции регулирования или обнаружение трещин в паяном соединении.

    Что делать, если у меня возникла проблема, связанная с №1 или №3, и я не могу найти закороченный компонент? Что ж, это становится сложнее. Иногда полупроводник не замыкается. Иногда он становится «негерметичным», что означает, что прямое сопротивление низкое, как обычно, но сопротивление обратного пути ниже, чем должно быть.Если вы столкнетесь с подобными ситуациями, внимательно проверьте компоненты. Если вы обнаружите один с низким односторонним сопротивлением и от 500 до 1000 или около того Ом (может быть, немного больше, может немного меньше), то снимите одну ногу детали, поднимите ее из платы и проверьте, что часть вне цепи. . Если он показывает низкий уровень в одном направлении и не высокий в другом (в другом случае должно быть десятки, если не сотни тысяч Ом или выше), замените его, так как он может иметь негерметичность.

    За эти годы я починил сотни коммутационных блоков — Apple II и более старые Mac II, SE, SE / 30 и множество клонов ПК.Я также отремонтировал их для различных сетевых устройств. Помните о мерах безопасности и убедитесь, что колпачки сняты, и вы в безопасности.

    Постоянное напряжение и постоянный ток | Tech

    Источник питания — это устройство, которое подает электрическую энергию на нагрузку, и бывает двух типов: источники напряжения и источники тока. В общем, «источник питания» часто означает источник напряжения, но есть также источники тока, которые подают ток.
    Цепь питания, которая преобразует поступающее электричество в требуемую форму и выдает ее, называется «цепью питания». Цепи питания можно условно разделить на «источник питания постоянного напряжения» и «источник питания постоянного тока».

    Источник постоянного напряжения

    Источник питания постоянного напряжения — это силовая цепь, которая регулирует выходное напряжение до постоянного уровня. Он всегда обеспечивает постоянное напряжение независимо от нагрузки и широко используется в источниках питания для электронных схем.
    Большинство электронных схем предназначены для работы при постоянном напряжении, потому что они не могут работать должным образом, если напряжение колеблется непреднамеренно.

    Источники постоянного тока

    Источник питания постоянного тока, с другой стороны, представляет собой схему источника питания, которая регулирует выходной ток на постоянном уровне. Источники постоянного тока используются для питания светодиодного освещения и зарядки аккумуляторных батарей.
    Яркость светодиодного освещения определяется текущим значением, поэтому, если текущее значение колеблется, яркость изменится соответствующим образом.Это не столько проблема для маленьких светодиодных экранов, сколько для больших огней изменение яркости видно, поэтому требуется стабильный ток.
    Кроме того, при зарядке аккумуляторных батарей напряжение и ток не пропорциональны из-за характеристик аккумуляторных батарей. Следовательно, используется источник питания постоянного тока, так что ток подается независимо от напряжения, приложенного к батарее.

    Преобразование между источником напряжения и источником тока

    Источники напряжения и тока могут быть эквивалентно преобразованы друг в друга.Когда напряжение, приложенное к нагрузке, и ток, протекающий через нагрузку, одинаковы, источник напряжения и источник тока функционируют как имеющие одинаковое значение и функцию.
    Другими словами, источник напряжения может быть эквивалентно преобразован в источник тока, который выполняет ту же работу для нагрузки, а источник тока может быть эквивалентно преобразован в источник напряжения, который выполняет ту же работу для нагрузки.

    Импульсный источник питания с переменным током

    Некоторые блоки питания представляют собой «блоки питания с регулируемым переключением», которые могут переключать режимы для включения различных выходов.В дополнение к режиму постоянного напряжения (CV) и постоянного тока (CC), доступны режим постоянной мощности (CP), режим постоянного сопротивления (CR) и т. Д. Для обеспечения вывода в соответствии с приложением.

    Схема источника постоянного напряжения представлена ​​ниже. Источник напряжения содержит блок питания и внутренние резисторы, которые включены последовательно с блоком питания. Напряжение на клеммах V L выражается следующим уравнением.

    Следовательно, когда внутреннее сопротивление r 0 достаточно мало по сравнению с сопротивлением нагрузки R L , V L ≒ E 0 .Это приводит к постоянному напряжению на клеммах V L независимо от тока нагрузки I L .

    Схема источника постоянного тока показана ниже. Внутреннее сопротивление источника постоянного тока параллельно источнику питания. Выходной ток I L выражается следующим уравнением.

    Когда внутреннее сопротивление r 0 равно ∞, I L ≒ I 0 . Это делает ток нагрузки I L постоянным.

    Источник питания, имеющий такой механизм, как поддержание постоянных значений V L и I L , называется источником питания со стабилизацией постоянного тока.
    Типы источников питания с регулируемым постоянным током включают «последовательно регулируемые источники питания», в которых цепь управления вставляется между входом и выходом для стабилизации напряжения и тока, и «импульсные источники питания», в которых высокая частота создается путем поворота вход отключается и включается, а затем выпрямляется и контролируется для стабилизации. Источники питания с регулируемым постоянным током
    в целом подразделяются на «источники постоянного напряжения с постоянным напряжением», выходное напряжение которых стабильно даже при изменении нагрузки, и «источники постоянного тока с постоянным током», выходной ток которых является стабильным.
    Программируемые источники питания постоянного тока автоматически переключаются в режим постоянного напряжения (CV) или постоянного тока (CC), в зависимости от настроек напряжения и тока и подключенной нагрузки.
    Для получения дополнительной информации о достоинствах и недостатках источников питания постоянного тока в зависимости от метода управления и продуктов, с которыми они работают, перейдите по ссылкам ниже.

    Соответствующие технические знания

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *