Как увеличить мощность 12 вольт блока питания: cxema.org — Увеличение выходного тока блока питания – Источники питания на 12 Вольт с защитными стабилитронами и диодом Шоттки

Содержание

cxema.org — Увеличение выходного тока блока питания

У многих радиолюбителей частенько возникает необходимость в увеличении выходного тока импульсного блока питания. Как правило источники питания для ноутбуков, принтера, всевозможные адаптеры питания мониторов и так далее выполнены по однотактной обратноходовой схеме, и по строению ничем не отличаются друг от друга. Они отличаются комплектацией, шим контроллером, но схемотехника одна и та же, однотактный шим контроллер, чаще всего из семейства UC38хх, высоковольтный полевой транзистор, который и качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода шоттки, после него дроссель, накопительные конденсаторы и система обратной связи по напряжению. Благодаря обратной связи выходное напряжение стабилизировано и строго держится на заданном уровне. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431, изменение сопротивления резисторов делителя в его обвязке, приводит к изменению выходного напряжения.

Рассмотрим конкретный пример доработки 19В адаптера, который обеспечивает выходной ток 5А, в 5В адаптер с током 20А.

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Имеющийся блок питания имеет мощность около 120 ватт, мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток до 20А. Расчетная мощность получиться около 100Вт.

Увеличение выходного тока блока питания

Увеличение выходного тока блока питания

Входную высоковольтную часть блока мы трогать не будем, все переделки коснуться только выходной части и самого трансформатора.

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Выпаиваем выходной дроссель и импульсный трансформатор.

Увеличение выходного тока блока питания

Увеличение выходного тока блока питания

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Умощняем диодный выпрямитель заменой диода на более мощный или впаиваем дополнительный диод.

Трансформатор, самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течении 15-20-и минут для ослабления клея и аккуратно вынимаем половинки сердечника, и оставляем все это дело минут на 10 для остывания. Далее убираем желтый скотч и разматываем первую обмотку запоминая направление намотки или просто сделайте пару фоток до разборки, в случае чего они вам помогут.

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Второй конец провода я не отпаял со штырька, далее разматываем вторую обмотку, второй конец провода опять же желательно не отпаивать. После этого нам станет доступна вторичная обмотка, эту обмотку полностью удаляем. Она состоит из 4-х витков, намотана жгутом из 8-и проводов, диаметр каждого 0,55мм.

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Новая вторичная обмотка, которую мы намотаем содержит всего полтора витка, так, как нам нужно всего 5 вольт. Мотать будем тем же способом, провод я взял с диаметром 0,35мм, но вот количество жил аж 40-штук, это гораздо больше, чем нужно, ну в прочем сами можете сравнить с заводской обмоткой.

Увеличение выходного тока блока питанияУвеличение выходного тока блока питания

Теперь все обмотки мотаем в том же порядке. Опять же укажу, обязательно соблюдайте направление намотки всех обмоток иначе ничего работать не будет.

Жилы вторичной обмотки желательно залудить еще до начала намотки, для удобства каждый конец обмотки разбил на две группы, чтобы на плате не сверлить гигантские отверстия для установки.

Увеличение выходного тока блока питания

Увеличение выходного тока блока питания

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

Увеличение выходного тока блока питания

После установки трансформатора находим микросхему TL431, как ранее указал именно она задает выходное напряжения.

Увеличение выходного тока блока питания Увеличение выходного тока блока питания

В ее обвязке находим делитель. В моем случае один из резисторов этого делителя в виде пары SMD резисторов включенных последовательно, второй резистор делителя выведен ближе к выходу. В моем случае его сопротивление 20кОм, выпаиваем этот резистор и заменяем его подстроечным, на 10 кОм.

Подключаем блок питания в сеть обязательно через страховочную сетевую лампу с мощностью в 40-60 ватт. На выход блока питания подключаем мультиметр и небольшую нагрузку, в моем случае это пара 5-и ваттных лам накаливания на 28Вольт. Вращаем подстроечный резистор до получения желаемого напряжение на выходе. Далее выпаиваем подстроечный резистор, замеряем его сопротивление и заменяем на постоянный, либо оставляем его.

Усиливаем дорожки по вторичной цепи, желательно их дополнительно армировать проводом, токи тут уже будут в два раза большее, чем раньше.

Увеличение выходного тока блока питания

Осталось собрать плату в корпус и протестировать.

Апгрейд китайского БП с 5 до 12 вольт

В одной из поделок понадобилось питание порядка 12-15 вольт. Как и у многих наверно дома валяется куча блоков питания от старых мобильников. Но все они как правило 5-ти вольтовые. Решил доработать один из таких блоков и поднять ему напряжение до требуемого.

Как правило все современные блоки питания являются импульсными, что с одной стороны уменьшает их размер, но с другой стороны достигается это некоторым усложнением схемотехники.

Не заснял этот блок питания в оригинальном корпусе, да наверно это и не важно — обычный чёрный пластиковый корпус с вилкой.

Снизу плата выглядит вот так

А это вид на монтаж

Невооружённым взглядом виден классический импульсный БП.

Первое что пришло в голову увеличить напряжение в цепи обратной связи регулятора. Для этого как минимум нужно было найти на плате делитель. Вот собственно он.

Нижний резистор делителя 4.9 кОм был заменен на подстроечный номиналом 10 кОм. Монтаж конечно неказистый, но это времянка и с требуемой задачей вполне справляется.

Не прокатило — напряжение удалось поднять максимум до 8 вольт. При этом блок питания начал отчаянно пищать, что как бы намекало нам, что режим работы далёк от оптимального.

Дальнейшее насилие я посчитал бессмысленным и решил копнуть глубже.

Трансформатор был выпаян из платы. Надежда на безболезненное удаление сердечника не оправдалась — легко вышла лишь одна половинка, а вторая была приклеена к катушке с обмотками каким-то компаундом и я не решился её отодрать, т. к. боялся повредить хрупкий сердечник. Тем не менее даже в таком виде удалось довольно легко снять изоляцию обмоток и обнажить первую обмотку. Как оказалось это была регулирующая обмотка, а мне была нужна вторичная.

Пришлось смотать эту обмотку, после чего обнажилась вторичная обмотка, которая состояла из 10 витков медного провода диаметром 0,6 мм, намотанным в 2 жилы.

Т.к. мне требовалось поднять напряжение примерно в 2 раза я домотал еще 12 витков. Хотя как уже подумал позже можно было ничего не доматывать и просто разделить жилы обмотки и таким образом удвоить их число. Мощность-то у нас всё равно не изменилась и ограничивается сечением сердечника трансформатора, а увеличив напряжение в 2 раза максимальный ток соответственно уменьшился в 2 раза и можно было бы обойтись проводом вдвое меньшего сечения. Но как говорится — «хорошая мысля приходит опосля».

Итого в результате после домотки нужного количества витков и возвращения обратно регулирующей обмотки получилась вот такая конструкция.

Ну, а далее трансформатор был возвращён на плату.

Подстроечным резистором регулятора легко удалось получить требуемые 12 вольт. Бонусом получил исчезновение даже того небольшого свиста который был у этого блока питания до переделки. Ну и далее уже всё просто — подстроечник был заменён на постоянный резистор и всё окончательно превратилось в конфетку.

Вот как-то так можно использовать старый хлам в своих поделках.

PS: На самом деле сделано ещё в 2015 году — только дошли руки дописать: )

Разгон блока питания

Автор не несет ответственности за выход из строя каких-то компонент, произошедший в результате разгона. Используя данные материалы в любых целях, конечный пользователь принимает на себя всю ответственность. Материалы сайта представлены «as is».»

Вступление.

Этот эксперимент с частотой я затеял из-за не хватающей мощности БП. 

Когда компьютер покупался его мощности вполне хватало для этой конфигурации:

AMD Duron 750Mhz / RAM DIMM 128 mb / PC Partner KT133 / HDD Samsung 20Gb / S3 Trio 3D/2X 8Mb AGP 

Без монитора — с помощью VGATV  и через самодельный шнур подключался к телевизору 🙂

Постепенно  он оброс устройствами:

FDD Mitsumi 3,5″ 1,44Mb /модем Acorp 56 PML /монитор  LG StudioWork 700b / Gigabyte Geforce 2MX 400 32 Mb 

после покупки видеокарты периодически (от нескольких дней до нескольких месяцев) наблюдался уход монитора в ждущий режим на несколько секунд (не более 5 ). Затем это прекратилось и больше н повторялось.

Наконец после покупки CDRom TEAC 540E — начались первые серьезные проблемы, которые усилились с покупкой CDRW TEAC 540W

Проявлялось в основном в работе жесткого диска — зависанием машины на некоторое время, с сопутствующим щелканьем и перезапуском винта, повреждением FAT и NFTS, с последующей реанимацией данных (NFTS дольше продержался, но вытащить с него мне ничего не удалось). Спровоцировать это могли и CDRom с CDRW, и видеокарта( по  шине +5 вольт  напряжение менялось в зависимости от работы машины и нагрузки — копирование , игра в пределах 4.75-4.9. При запуске игры, напряжение могло уменьшится до 4,75 вольт, после чего игра вылетала в синий экран или в лучшем случае просто закрывалась. Достаточно  настроить программу Mprobe вести log напряжений. Последние записи в логе  фиксируют падение напряжения после запуска игры и до момента когда система вылетает в синий экран)
В борьбе за мощность заменил диоды, конденсаторы, даже пробовал менять трансформатор(этого лучше не делайте, они оказывается не все одинаковые :), хотя есть вроде подходящие —  один подошел по ножкам и БП запустился ) — эффект почти ноль.  Напряжение проседало, и прыгало в зависимости от текущих операций(копирование, игра и т.д.). 
Наконец, решил купить новый блок питания (с него бы надо было начинать :), но тогда бы не было этой статьи), но перед покупкой  решил по экспериментировать.

Теория.

Мощность блока питания пропорциональна частоте тока проходящего через силовой трансформатор. Чем выше частота тока тем меньшим будет трансформатор в блоке питания при той же мощности. Для примера, блок питания ватт на 200 с обыкновенным трансформатором на 50 Гц вполне сможет заменить тренажер или хотя бы пудовую гирю. Частоты на которых работают блоки питания в среднем 30-50 кГц. Верхний диапазон ограничивается граничными частотами силовых транзисторов и критической частотой ферромагнетика трансформатора (примерно 100кГц,  существуют  блоки питания с частотами 500кГц).  

Согласно ШИМ – контроллер. TL494, рабочая частота определяется конденсатором C и резистором R., по формуле:
  , 

где k — коэффициент зависящий от микросхемы, как от конкретной модели, так и от производителя. У TL494 он равен 1,1, у KA7500  — 1,2 .

Для примера две схемы:

Частота f для этой схемы получилась 57 кГц.


А для этой  частота равна 40 кГц.

Практика.

Частоту можно изменить  заменив конденсатор C или(и) резистор R на другой номинал.

Было бы правильно поставить конденсатор с меньшей емкостью, а резистор заменить на последовательно соединенные постоянный резистор и переменный типа СП5 с гибкими выводами.

 Затем,  уменьшая его сопротивление, измерять напряжение, пока напряжение не достигнет 5.0 вольт. Затем впаять постоянный резистор на место переменного, округлив номинал в большую сторону.

Я пошел по более опасному пути - резко изменил частоту впаяв конденсатор меньшей ёмкости.

У меня было:


    R1=12kOm
    C1=1,5nF

По формуле получаем

 f=61,1 кГц

После замены конденсатора 

стало:


    R2=12kOm
    C2=1,0nF

 f=91,6 кГц

Согласно формуле:


частота увеличилась на 50% соответственно и мощность возросла.

Если R не будем менять, то формула упрощается:

 

Или если С не будем менять, то формула :

 

Проследите конденсатор и резистор подключенные к 5 и 6 ножкам микросхемы. и замените конденсатор на конденсатор с меньшей ёмкостью.

Результат 

После разгона блока питания напряжение стало ровно 5.00 (мультиметр может иногда показать 5.01, что скорее всего погрешность), почти не реагируя на выполняемые задачи — при сильной нагрузке на шине +12 вольт (одновременная работа двух CD и двух винтов) — напряжение на шине +5В может кратковременно снизиться 4.98.

Начали сильнее греться ключевые транзисторы. Т.е. если  раньше радиатор был слегка теплый, то теперь он сильно теплый, но не горячий. Радиатор с выпрямительными полумостами сильнее греться не стал. Трансформатор также не греется. С 18.09.2004 г. и по сегодняшний день (15.01.05) к блоку питания нет никаких вопросов. На данный момент следующая конфигурация: 

AMD Duron 750Mhz / RAM DIMM 256 Mb PC133/ PC Partner KT133 / HDD Samsung 20Gb / CD-ROM TEAC 540E/ CD-RW TEAC 540W/ Mobile Rack ATA100 with Fan /FDD Mitsumi 3,5″ 1,44Mb /модем Acorp 56 PML / Gigabyte Geforce 2MX 400 32 Mb / SB Creative Live Valve / LAN Realtek 8139 / ТВ тюнер Manli Home TV (SAA7130) / + 2 вентилятора в корпусе и 2 на процессоре( Mini SuperOrb )

Ссылки

  1.  Двухтактные преобразователи (упрощенный расчет)
  2.  Application Note 9015
    A180W, 100KHz Forward Converter Using QFET
    by I.S. Yang
    July, 2000
    Он же c www.fairchildsemi.com
  3. Блоки питания для системных модулей типа IBM PC-XT/AT. 
  4. Источники питания конструктива АТХ для компьютеров.
  5. Схемы блоков питания.
  6. Маркировка резисторов
  7. ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИБП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА. 
  8. Конденсаторы. (Примечание: С = 0.77 ۰ Сном ۰SQRT( 0,001۰f ), где Сном — номинальная емкость конденсатора.)

Комментарии Renni:То что ты повысил частоту у тебя повысилось количество пилообразных импульсов за определенный промежуток времени, а как следствие повысилась частота с которой отслеживается нестабильности по питанию, так как нестабильности по питанию отслеживаются чаще то и импульсы на закрытие и открытие транзисторов в полумостовом ключе происходит с двойной частотой. Твои транзисторы обладают характеристиками, а конкретно своим быстродействием.: Увеличив частоту ты тем самым уменьшил размер мертвой зоны. Раз ты говоришь что транзисторы не греются значит они входят в той диапазон частот, значит тут казалось бы все хорошо. Но, есть и подводные камни. Перед тобой есть схема электрическая принципиальная? Я тебе сейчас по схеме объясню. Там в схеме посмотри где ключевые транзисторы, к коллектору и эмиттеру включены диоды. Они служат для рассасывания остаточного заряда в транзисторах и перегонке заряда в другое плечо(в конденсатор). Вот, если у этих товарищей скорость переключения низкая у тебя возможны сквозные токи —  это прямой пробой твоих транзисторов. Возможно из за этого они будут греться. Теперь дальше, там дело не этом, там дело в том что после прямого тока, который прошел через диод. Он обладает инерционностью и когда появляется обратный ток,: у него какое то время еще не восстанавливается значение его сопротивления и по этому они характеризуются не частотой работы, а временем восстановления параметров. Если это время больше чем можно, то у тебя будут наблюдаться частичные сквозные токи из за этого возможны всплески как по напряжению так и по току. Во вторично это не так страшно, но в силовой части — это просто пи#дец,: мягко говоря.  Так вот продолжим. Во вторичной цепи эти переключения следующим не желательны, а именно: Там для стабилизации используются диоды Шотки, так вот по 12 вольтам что бы их подпирают напряжением -5 вольт.(прим. у меня кремниевые на 12 вольтах), так вот по 12 вольтам что бы их (диоды Шотки) можно было использовать подпирают напряжением -5 вольт. (Из-за низкого обратного напряжения, невозможно просто поставить диодов Шотки на шине 12 вольт, поэтому так извращаются). Но у кремниевых потери больше чем у диодов Шотки и реакция поменьше, если только они не из числа быстро восстанавливающихся. Так вот, если высокая частота, то у диодов Шотки наблюдается практически тот же эффект что и в силовой части + инерционность обмотки по -5 вольтам по отношению к +12 вольтам, делает невозможным использование диодов ШОТКИ, по этому увеличение частоты может со временем привести к выходу из строя онных. Я рассматриваю общий случай. Так вот едем дальше. Дальше еще один прикол, связанный наконец непосредственно с цепью обратной связи. Когда ты образуешь отрицательную обратную связь, у тебя есть такое понятие как резонансная частота вот этой петли обратной связи. Если ты выйдешь на резонанс, то п#зда всей твоей схеме. Прости за грубое выражение. Потому что эта микросхема ШИМ всем управляет и требуется ее работа в режиме. И на конец «темная лошадка» 😉 Ты понял о чем я? Трансформатор он самый, так вот у этой сцуки ведь тоже есть резонансная частота. Так эта дрянь ведь не унифицированная деталь, трансформатор намоточное изделие в каждом случае изготовляется индивидуально — по этой просто причине ты не знаешь характеристик на него. A если ты введешь своей частотой в резонанс ? Ты спалишь свой транс и БП можешь спокойно выкидывать. Внешне два абсолютно одинаковых трансформатора могут иметь абсолютно разные параметры. Ну факт тот что не правильной подборкой частоты ты мог спокойно спалить БП.При всех прочих условиях как все таки повысить мощность БП. Повышаем мощность блока питания. Первым делом нам надо разобраться что такое мощность. Формула предельно проста — ток на напряжение. Напряжение в силовой части у нас составляет 310 вольт постоянки. Так вот так как на напряжение мы никак не можем влиять. Транс то у нас один. Мы можем увеличить только ток. Величину тока нам диктует две вещи- это транзисторы в полумосте и буферные емкости. Кондеры по больше, транзисторы по мощнее, так вот надо увеличить номинал емкости и поменять транзисторы на такие у которых больше ток цепи коллектор-эмиттер или просто ток коллектора, если не жалко можешь втулть туда на 1000 мкФ и не напрягаться с расчетами. Так вот в этой цепи мы сделали все что могли, тут больше в принципе сделать ничего не возможно, разве что еще учесть напряжение и ток базы этих новых транзисторов. Если трансформатор маленький — это не поможет. Надо еще отрегулировать такую хрень как напряжение и ток при котором у тебя будет открываться и закрываться транзисторы. Теперь вроде как тут все. Поехали во вторичную цепь.Теперь у нас на выходе обмоток тока доху……. Надо немного подправить наши цепи фильтрации, стабилизации и выпрямления. Для этотго мы берем в зависимости от реализации нашего БП и меняем диодные сборки в первую очередь, что бы обеспечивали возможность протекания нашего тока. В принципе все остальное можно оставить так как есть. Вот и все, вроде бы, ну на данный момент Запас прочности должен быть. Тут дело в том что техника импульсная — вот это ее дурная сторона. Тут почти все построено на АЧХ и ФЧХ, на t реакции.: вот и все
Модернизация БП путем повышения частоты преобразования
 Обратно
© 2004 Александр Джулай

Источники питания на 12 Вольт с защитными стабилитронами и диодом Шоттки

Многие читатели знают, как мне нравится писать обзоры о блоках питания. И вот так случайно сложилось, что я дорвался до некоторого количества данных устройств. Все дело в том, что не так давно в одном известном магазине появились разнообразные блоки питания «с разборки», и об одном я сегодня расскажу.

Еще в прошлом году я написал в комментах, что скоро будут обзоры разных блоков питания и я имел в виду именно эти блоки питания. Заказал я их несколько видов, три мелких «БУ» и один новый, довольно мощный. Рассказывать буду «по старшинству», потому начну с самого мелкого.
Так как блоки питания я использую часто, то заказал лотом в три штуки, но есть лоты и 1 и 5 и 10 штук. Данный блок питания не является исключением и будет использован в одном из обзоров, который я планирую подготовить в относительно скором времени.

Поставляются блоки питания в отдельных больших пакетах, а не три в одном пакете, как я изначально подумал. Т.е. фактически на складе просто ставится отметка, сколько позиций положить в корзинку.
К упаковке претензий не было, все обильно замотано вспененным полиэтиленом.

В заголовке я написал ток 0.5 (1) Ампер. По ходу обзора я поясню что это означает.
На странице товара было написано — 12 Вольт, 1 Ампер, что более чем понятно. Также там написано, что блоки питания disassemble, т.е. не новые, а выковыряны откуда-то. Моя практика показывает, что такие БП чаще имеют лучше качество сборки и схемотехники, чем новые.

Блоки питания довольно компактные, реальные размеры составляют примерно 57х35х19мм.

Компоновка платы довольно плотная, частично залита силиконом, который в некоторых местах потом пришлось срезать.
Так как плата БУ, то заметны обрезанные провода.

Платы имеют разный цвет гетинакса, да и выпущены в разное время, но все три в интервале 2007-2008 годов.

Также на платах была обнаружена и маркировка модели — 3A-064WU12, по которой я нашел их реальные характеристики.
12 Вольт, 0.5 Ампера, 6 Ватт, КПД при 115 Вольт — 74%. Там же есть и название фирмы производителя — Eng Electric Co., LTD. Так что блоки питания вполне себе фирменные.

На странице товара также есть упоминание о токе в 0.5 Ампера, но указанное как-то вскользь. Думаю подразумевалось, что 0.5 номинальный, 1.0 кратковременный. Но в любом случае, данные характеристики правильно и указывать в разделе характеристики, а не в названии товара.

Ладно, вернемся к нашим блокам питания.
1. По входу стоит предохранитель на ток в 1 Ампер. Предохранитель замедленный (T- Trage — медленные нем.), это обусловлено импульсным характером тока при включении блока питания.
2. Также по входу присутствует варистор диаметром 7мм и рассчитанный на амплитудное напряжение в 470 Вольт. Рядом с ним виден помехоподавляющий конденсатор Х типа с емкостью 0.1мкФ
3. Дальше синфазный дроссель и диодный мост.
4. Первичная и вторичная стороны соединены через конденсатор Y типа с емкостью 2.2нФ.
По большому счету можно было бы поставить пять баллов за фильтр, если бы не два недостатка:
1. Нет термистора, но возможно здесь в нет особого смысла, емкость входных конденсаторов не очень высокая.
2. Параллельно конденсатору Х типа нет разрядного резистора, без него БП может «щипаться» если вынуть вилку из розетки и сразу схватиться за ее контакты.

При этом плюс производителю за наличие помехоподавляющего фильтра и варистор.

1. По входу БП установлены два конденсатора емкостью 6.8мкФ каждый, суммарная емкость 13.6мкФ, что для заявленной мощности в 6 Ватт вполне нормально.
2. Но конденсаторы соединены не просто параллельно, между ними дополнительно включен дроссель. На фото не видно цветовую маркировку — коричневый-черный-красный-золотой.
3. Управляет работой блока питания довольно известный ШИМ контроллер VIPer-12A.
4. Рядом с контроллером находится конденсатор фильтра питания этого контроллера. Часто эти конденсаторы могут незаметно выйти из строя и «попить крови», так как внешне остаются нормальными. Если БП БУ, то рекомендую заменять их в первую очередь.

Силикон, которым залита плата, имеет небольшой желтый оттенок. Сначала я решил что это из-за нагрева компонентов, но цвет одинаков даже около компонентов, которые не греются.

Как я уже писал выше, применен ШИМ контроллер серии VIPer. Это семейство интегрированных ШИМ контроллеров, внутри корпуса микросхемы находится не только сам ШИМ контроллер, а и высоковольтный транзистор, цепи защиты от перегрузки, перегрева и перенапряжения.
Я обычно пользуюсь подобными контроллерами от другой, не менее известной фирмы — Power Integrations, мне они нравятся больше. Но по большому счету они во многом очень похожи.
Заявлено, что для корпуса DIP-8 мощность составляет 13 Ватт в узком диапазоне (230 Вольт) и 8 Ватт в широком (115-230 Вольт). Так как БП заявлен как 115-230, то получается что реальная мощность до 8 Ватт.

На блок схеме виден выходной транзистор, а также цепи защиты. В принципе я мог бы рассказать обо всем этом подробнее, но на мой взгляд это скорее тема отдельной статьи.

Во вторичной части блока питания находятся:
1. Выходной диод Шоттки на ток 2 Ампера, что опять же говорит о максимальном выходном токе не более 650-700мА. На одном из выводов диода присутствует ферритовая бусина.
2. Выходных конденсаторов два, 470 и 220мкФ, как и в случае входных производитель Samxon. Не скажу что конденсаторы высокого класса, скорее среднего, изначально это OEM от фирмы Matsushita продающийся под своим брендом. Лично меня расстроило то, что они рассчитаны на 16 Вольт, а не 25, как положено при таком напряжении.
3. Между конденсаторами есть место под дроссель для уменьшения пульсаций, но вместо него установлена перемычка.
4. Цепь стабилизации стандартна, регулируемый стабилитрон AZ431 (аналог TL431) и оптрон EL817 (аналог PC817).

По выходной цепи не понравились две вещи:
1. Отсутствие выходного дросселя.
2. Конденсаторы на 16 Вольт, а не 25.

В остальном все сделано довольно неплохо.

Качество пайки вполне терпимое. Снизу расположены остальные компоненты, а также пара стабилитронов, о которых я расскажу ниже.
Расстояние между высоковольтной и низковольтной сторонами вполне достаточное. Отсутствуют защитные прорези, но так как БП изначально проектировался под установку в закрытый корпус, то допустимо делать и так.

Схема блока питания в общем-то стандартна и фактически сделана по даташиту ШИМ контроллера. Из дополнительных мелочей, которые весьма полезны в плане безопасности нагрузки я отмечу пару стабилитронов.
ZD1 — Напряжение 14 Вольт, установлен параллельно выходу, задача — не допустить поднятия выходного напряжения выше 14-14,5 Вольт.
ZD2 — Напряжение 16 Вольт, установлен параллельно транзистору оптрона, задача — ограничить выходное напряжение в случае обрыва или выхода из строя цепи обратной связи.

В комментариях мне несколько раз писали, что я не совсем правильно подхожу к тестам уровня пульсаций. Что же, я принял информацию к сведению и попробую в этот, а также в следующие раз делать это более корректно.

Дело в том, что при измерениях я подключаюсь обычно используя «неправильный» способ, как более удобный. В этом случае земляной провод щупа работает отчасти как антенна, на которую наводятся помехи и искажают осциллограмму. Такой способ для общей оценки большого значения не имеет, но действительно является некорректным.
Картинка ниже взята из описания методики тестирования блоков питания.

Для корректного снятия осциллограмм надо подключать щуп без длинных проводов прямо на выход блока питания.

Как можно увидеть по фото, щуп осциллографа помимо земляного провода с крокодилом имеет возможность подключения сразу около самого щупа.
Используя «палки и веревки» я сделал некое подобие специального щупа для проверки блоков питания, наиболее неудобно было подключаться к центральному контакту, так как он имеет коническую форму.
Параллельно входу подключены два конденсатора, электролитический 1мкФ 63 Вольта и керамический 0.1мкФ.

Конечно то, что я показал выше, можно назвать колхозом, но даже довольно известные фирмы (та же Power Integrations) не чураются делать подобное, правда они использую для этого разъем, но у меня его не было :(.
Фото из описания применения ШИМ контроллеров серии TOP от Power Integrations, номиналы элементов взяты оттуда же.

Щуп осциллографа был подключен прямо на выходные контакты блока питания, нагрузка к дополнительно запаянному проводу.
В процессе подготовки я сравнивал осциллограмму на холостом ходу с подключенной нагрузкой и без, разницы не было.

Первое, что меня удивило при включении, напряжение на выходе 12 Вольт с точностью как минимум до второго знака. По большому счету это не имеет значения и даже если бы напряжение было в диапазоне 11.5-12.5 Вольта, то я бы сказал что нормально, но все равно приятно.
1. Холостой ход.
2. 0.25 Ампера
3. 0.5 Ампера
4. 0.75 Ампера
5. 1 Ампер
6. 1.2 Ампера.

Видно что напряжение на выходе стало падать только при токе нагрузки выше 0.75 Ампера, что в полтора раза выше заявленного. До этого напряжение держалось очень точно и снижалось примерно на 0.001 Вольта на каждые 0.25 Ампера нагрузки.

Уровень пульсаций я бы не назвал маленьким, при номинальном токе 0.5 Ампера они составили 100мВ, но даже при перегрузке не были выше чем 140 мВ.

Исследование показало, что максимальный ток, при котором блок питания стабильно держит выходное напряжение, составляет 0.9 Ампера. И это для не нового БП и при почти двукратном выходном токе.

Также мне писали, что неправильно тестировать блоки питания используя электронную нагрузку. В данном случае я несогласен с таким заключением, так как в линейном режиме полевые транзисторы нагрузки по сути представляют собой те же резисторы, но с обратной связью.
В любом случае я ради эксперимента сравнил поведение блока питания при нагрузке обычным резистором с номиналом в 10 Ом (что было под рукой). На фото видно, что плюсовой щуп нагрузки не подключен.
Напряжение конечно просело, так как ток явно выше расчетного.

Слева осциллограмма нагрузки током 1 Ампер при помощи электронной нагрузки, справа 1.08 Ампера и резистор в качестве нагрузки.
Не сказал бы, что имеется какая-то глобальная разница.

Следующий этап, тест на нагрев. Для этого я закрыл блок питания импровизированным «корпусом» и нагружал последовательно током от 0.25 Ампера до 0.9 Ампера. Ток в 0.9 Ампера был выбран исходя из того, что при этом токе БП еще нормально держит выходное напряжение. Каждый тест занимал 20 минут, общее время теста 1 час 20 минут.

Все данные свел в табличку, попутно ввел новую графу и теперь указано напряжение на начало теста (V1) и в конце (V2). Данное дополнение позволяет отследить уход напряжения от прогрева.
Само напряжение сначала может показаться менее стабильным, чем в тесте выше, но там я подключался прямо к контактам БП, здесь же с использованием куска провода, потому и вышла разница. Но могу сказать, что температурной зависимости выходного напряжения практически нет.
Зато выяснилось, что при токе нагрузки в 0.9 Ампера БП примерно через 5-7 минут снизил выходное напряжение.

Максимальная температура компонентов после завершения теста составила около 100 градусов у трансформатора и 118 у ШИМ контроллера. При токе до 0.75 Ампера (1.5 от номинала), перегрева нет.

Так выглядело ограничение выходной мощности. Я провел повторный тест на уже прогретом БП чтобы было более наглядно.
Старт, через 6 минут постепенное снижение напряжения, на отметке 20 минут я снял крышку, напряжение начало потихоньку расти, еще примерно через 15 минут пришлось несколько раз подуть на плату и напряжение быстро вернулось в норму.

Выше я посетовал на отсутствие выходного дросселя и решил эту недоработку сравнить, а заодно сравнить как изменится результат.
Использовал мелкий самодельный дроссель, буквально что было под рукой. Размер небольшой, намотан проводом 0.68мм.

Результат как говорится — налицо.
1, 2. Ток 0.5 Ампера, слева без дросселя, справа с дросселем.
3, 4. Ток 1.0 Ампера.

Предупрежу сразу, дроссель не должен иметь большую индуктивность, так как при увеличении индуктивности начнут сильно расти пульсации на первом конденсаторе фильтра и это будет вредно как для самого конденсатора, так и для защитного стабилитрона, установленного параллельно ему. Придется менять конденсатор на аналогичный, но с напряжением в 25 Вольт, а стабилитрон переносить на выход БП.

На этом все. Если коротко, то блоки питания хоть и не лишены некоторых недостатков, перечисленных в обзоре, но в целом довольно неплохие и могут быть применены для разных самодельных устройств, где не требуется большая мощность (6-8 Ватт). Блоки питания вполне фирменные и относительно качественные.
Поштучно выходят дороже и потому если покупать, то лотами по 3 или 5 штук.

Надеюсь что обзор был полезен, как всегда буду рад вопросам в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Как узнать и увеличить мощность блока питания компьютера

Блок питания компьютера — это очень важный элемент, представляющий собой источник электропитания. Без него невозможно обеспечение компьютера необходимой ему энергией. Его работа заключается в преобразовании напряжения сети до нужного уровня. Важнейшей составляющей блока питания является мощность, ведь именно от неё зависит, насколько стабильно будет работать ПК. Например, при недостаточном значении мощности, ПК просто выключится. Неисправности подобного рода случаются нечасто, но, если случаются, приносят массу неудобств пользователю. В этой статье подробно рассмотрим, как узнать и увеличить мощность блока питания компьютера. Давайте разбираться. Поехали!

Как узнать мощность блока питания

В этой статье мы расскажем, как узнать и увеличить мощность блока питания вашего ПК

Для начала необходимо узнать: сколько ватт в блоке питания. Как это сделать? Вы можете рассчитать этот показатель самостоятельно либо (что гораздо проще) воспользоваться специальным сервисом на сайте casemods.ru, который всё сделает за вас. Вам же останется только указать нужную для расчёта информацию, а именно:

Таблица расчета мощности БП

Как только все перечисленные параметры будут заданы, сервис автоматически посчитает и выведет на экран значения средней и пиковой мощностей. Помимо casemods.ru, вы можете воспользоваться другими сервисами, которых в интернете немало.

Если перед вами стоит выбор БП для компьютера, то обращайте особое внимание на компанию-производителя. Не стоит приобретать блоки питания малоизвестных марок, так как их продукция, как правило, не отличается высоким качеством, а характеристики могут быть завышены вполовину. Всё это может являться причиной поломок и неисправностей в процессе эксплуатации.

Рекомендуется делать выбор в пользу продукции марок:

  • Termaltake;
  • Zalman;
  • CoolerMaster;
  • PowerMan;
  • Hiper.

К сожалению, так же легко определить мощность уже установленного блока питания нельзя. Но существуют другие способы, позволяющие это сделать. Например, вы можете снять крышку с системного блока и поискать специальную наклейку, содержащую всю необходимую информацию.

Теперь перейдём к тому, как увеличить мощность блока питания. Эта операция поможет вам несколько улучшить работоспособность ПК. Чтобы повысить мощность БП, выполните следующие действия:

  1. Откройте БП.
  2. Измерьте трансформатор. Размеры должны быть не менее чем 3х3х3 см. В противном случае лучше ничего не делать.
  3. Заменить большие высоковольтные конденсаторы. Рекомендуется установить их номиналом не менее 470 микрофарад / 200 вольт. Также обратите внимание, что дроссели ставят исключительно в низковольтную область БП. Изготовить их можно по-разному.
  4. Вы можете сами намотать провод с лаковой изоляцией на ферритовое кольцо. Также можно снять дроссели со старых блоков питания.
  5. Распаять сглаживающие конденсаторы.
  6. Произвести замену диодной сборки.
  7. Снизьте напряжение канала +12, чтобы обезопасить ПК. Для этого нужно впаять диод большой мощности в разрывы жёлтых проводов.
Внутренности блока питания

На иллюстрации показано, из чего состоит БП ПК

Проводить подобные операции стоит только опытным пользователям, понимающим устройство компьютера. Придётся потратить и время, и силы, но, в итоге, вы получите более надёжный и мощный БП, который долго прослужит вам. Пишите в комментариях, была ли полезна для вас эта статья, и задавайте интересующие вопросы по рассмотренной теме.

переделка под усилитель низкой частоты (часть 2)

Продолжение, начало здесь.

Если нужен блок питания для нестандартных условий, можно воспользоваться построением с низкочастотным трансформатором. Такое решение просто в реализации и не требует особо глубоких специальных знаний, но есть у него и ряд недостатков – большие габариты, низкий КПД и качество стабилизации выходных напряжений. Можно изготовить импульсный БП, но это довольно сложная процедура с массой подводных камней – при малейшей ошибке будет «хлопок» и куча ненужных деталей.

Попробуем снизить планку и ограничимся модернизацией обычного компьютерного блока питания ATX под необходимые требования. Гм, а что именно станет предметом рассмотрения? Вообще-то, 300-400 ваттный БП может обеспечить довольно значительную мощность, область применения у него большая. В одной статье трудно объять необъятное, поэтому ограничимся самым распространенным – усилителем низкой частоты, под него и попробуем осуществить переделку.

Блок питания довольно большой мощности, хотелось бы его использовать по максимуму. Из 12 вольт мощный усилитель не сделать, здесь требуется совсем другой подход – двуполярное питание с выходным напряжением явно побольше 12 В. Если БП будет запитывать самодельный усилитель, собранный из дискретных элементов, то его напряжение питания может быть любым (в разумных пределах), а вот интегральные микросхемы довольно придирчивы. Для определенности возьмем усилитель на TDA7294 – напряжение питания до 100 В (+/-50 В) с выходной мощностью 100 Вт. Микросхема обеспечивает ток в динамике до 10 ампер, что определяет максимальный ток нагрузки блока питания.

Вроде всё ясно, остается уточнить уровень выходного напряжения. Допускается работа от источника питания 100 вольт (+/-50 В), но попытка выбора такого значения выходного напряжения оказалась бы большой ошибкой. Микросхемы крайне отрицательно относятся к предельным режимам работы, особенно при одновременном максимальном значении нескольких параметров — напряжения питания и мощности. К тому же, вряд ли в обычной квартире есть смысл обеспечивать столь высокий уровень мощности, даже для низкочастотных динамиков с их низкой эффективностью.

Можно установить напряжение в 90 вольт (+/- 45 В), но это потребовало бы очень точного удержания выходного напряжения – в многоканальных блоках питания весьма затруднительно обеспечить одинаковость напряжений на разных выходах. Поэтому стоит немного снизить планку и установить номинальное напряжение для этой микросхемы 80 вольт (+/-40 В) — мощность усилителя немного упадет, но устройство будет работать с должным запасом прочности, что обеспечит достаточную надежность устройства.

Кроме того, если звуковая колонка будет работать не только в низкочастотной области, но еще содержит средне-высокочастотные каналы усилителей, то стоит получить от БП еще одно напряжение, меньше «+/-40 В». Эффективность работы низкочастотных динамиков большого диаметра существенно ниже более высокочастотных, поэтому запитывание усилителя СЧ-ВЧ канала от тех же «+/-40 В» довольно глупо, основная масса энергии уйдет в тепло. Для второго усилителя хорошо бы обеспечить выход +/-20 вольт.

Итак, спецификация блока питания, который хочется получить:

  • Канал № 1 (основной), напряжение: «+/-40 В».
  • Ток нагрузки от 0.1 А до 10 А.
  • Канал № 2 (дополнительный), напряжение: «+/-20 В».
  • Ток нагрузки от 0 до 5 А.

Характеристики определены, осталось выбрать подходящую модель. Совсем уж старый использовать нет никакого желания, конденсаторы давно уж высохли, да и схемные решения тех времен не внушают оптимизма. Стоит отметить, что часть «современных» блоков питания тоже не блещет качеством работы и надежностью, но с этим можно бороться – достаточно выбирать продукцию известных фирм, к которой есть доверие.

Кроме философского осмысления сущности БП и отбора по внешнему виду, есть вполне осмысленный критерий – их тип. Блок может быть выполнен по технологии «двухтактный полумост» или «однотактный прямоход», содержать в себе какую-то разновидность PFC (активную или пассивную на дросселе). Всё данные факторы оказывают влияние на качество работы и уровень помех. Причем, это не «просто слова», при переходе от трансформаторного БП на «импульсный» довольно часто замечается ухудшение качества звучания.

С одной стороны, «странно», ведь такой БП обеспечивает лучшую стабильность напряжения питания усилителя. С другой, ничего странного нет – «импульсник» производит помеху при переключении силовых транзисторов основного преобразователя (и блока APFC), что выражается в высокочастотных «всплесках» на цепях питания и земли. Чаще всего преобразователь БП работает на частоте 40-80 кГц, что выше звукового диапазона, а потому вроде бы не должно мешать устройству, но помехи распространяются по всему усилителю и сбивают рабочую точку усилительных каскадов, что приводит к интермодуляционным искажениям, звук становится «жестче». В компьютерном блоке питания шины 12 В и 5 В выглядят следующим образом:

320x234  6 KB

Так что, проблема не надуманная и на борьбу с ее негативным проявлением следует потратить некоторые усилия.

450x259  35 KB

Ничего необычного, классическая компоновка, разве что дроссель PFC вносит в картинку некоторый элемент дисгармонии. К слову, измерение характеристик и величины пульсаций на выходе показало, что наличие этого дросселя приводит лишь к тому, что блок питания становится тяжелее и немного «гудит» при мощности нагрузки 250-300 Вт.

Компьютерный блок питания должен формировать массу напряжений большой мощности – 12 В, 5 В, 3.3 В, -5 В, смысл в которых сразу теряется, как только речь заходит об усилителе. Кроме того, БП содержит дежурный источник 5 В, но его лучше не трогать и сохранить в неизменном виде – во-первых, он используется для работы основного преобразователя, во-вторых, можно будет реализовать включение-выключение усилителя от внешнего управления или просто по появлению звукового сигнала на входе усилителя. Это функция потребует изготовления высокочувствительного детектора с питанием от 5 вольт и вряд ли кто-нибудь станет делать этот элемент на начальной стадии сборки усилителя, ну хоть возможность такая останется. Пусть будет, это «бесплатно».

После удаления всех цепей формирования выходных напряжений получилось следующее:

342x450  54 KB. Big one: 400x527  69 KB

Оказалось не так много места, поэтому доработка не должна содержать слишком много деталей – банально не влезет. Фу ты, еще заложили в требования наличие двух выходных каналов.

Компьютерный блок питания формирует два основных выхода: 12 В и 5 В, этим объясняется наличие всего двух пар вторичных обмоток. Каким способом можно получить напряжение больше, чем заложено при проектировании БП?

1. Перемотать трансформатор.
2. Поставить умножитель.
3. Добавить второй трансформатор.

Первый вариант понятен и прост в техническом плане. Одно «но», конструкция импульсного трансформатора не так проста, как может показаться на первый взгляд. Существует масса требований и ограничений, не выполнив которых можно получить либо «крайне посредственный вариант», либо, что гораздо хуже, некачественную изоляцию вплоть до поражения электрическим током. В трансформаторе первичная обмотка выполнена из двух частей. Первая расположена в самом начале, а потому не мешает перемотке, а вот вторая наматывается самой последней.

Трудности умножаются тем, что между первичной и вторичной обмотками присутствует электростатический экран из медной ленты. Чтобы осуществить перемотку придется аккуратно смотать верхнюю часть первичной обмотки, убрать экран и вторичные обмотки. После чего намотать новые вторичные обмотки, восстановить экран и первичную обмотку. Естественно, между обмотками и экраном должна быть надежная изоляция. Дело усугубляется тем, что трансформатор пропитан лаком, а потому его разборка-сборка занятие «увлекательное» и качество выполнения доработки окажется не слишком хорошим. Впрочем, если у вас руки «прямые» и есть желание попробовать – некоторые рекомендации:

  • Число витков обмотки 12 В почти всегда постоянно (семь витков), что определяется не параметрами трансформатора, а единственным целым соотношением числа витков обмоток 12 В и 5 В (четыре и три). Если на семь витков приходится 12.6 вольт, то на «нужное» напряжение приходится 7*(«нужное»/12.6) число витков, с округлением до ближайшего целого.
  • При удалении обмоток 12 В и 5 В посчитайте место, которое они занимали – новая обмотка должна уместиться в эти же габариты.
  • При наличии места лучше использовать провод диаметром 0.8-0.9 мм. Если сечения одного провода недостаточно, то стоит увеличивать количество проводов, а не их сечение (диаметр)
  • Крайне аккуратно наматывайте экранирующий виток ленты (не замыкайте начало с концом) и изоляцию под и над ним – основной дефект самодельных трансформаторов заключается в пробое изоляции или закорачивании экранирующей обмотки. Медная лента жесткая с острой кромкой, легко режет изоляцию. В домашних условиях лучше использовать алюминиевую фольгу – она значительно мягче и и шансов порезать изоляцию меньше. Кроме того, ее проще найти. Увы, у такого подхода есть небольшой недостаток – к алюминиевой фольге труднее подсоединить отвод.

И всё же я бы не рекомендовал этот вариант переделки для тех, у кого нет опыта намотки импульсных трансформаторов. Не стоит, может выйти боком. К слову, если человек разбирается в вопросе, то ему проще намотать трансформатор полностью «с нуля», по крайней мере, не будет путаться под ногами этот «лак», да и число витков во всех обмотках можно будет выбрать оптимальным.

Второй вариант довольно сложен в реализации и обладает рядом серьезных недостатков. Пример такого построения изображен на рисунке:

309x383  4 KB
  • TV1 – обычный трансформатор блока питания, без каких-либо доработок.
  • TV1.1 – первичная обмотка.
  • TV1.3 и TV1.4 – обмотки канала 5 В.
  • TV1.2 и TV1.5 – обмотки, совместно с TV1.3 и TV1.4 формирующие канал 12 В.

Для анализа важен тот факт, что форма импульсов напряжения на выходе трансформатора с гладким верхом, а не «синус», «пила» или другие вариации. Устройство работает следующим образом — на первичной обмотке следуют импульсы напряжения прямоугольной формы с некоторой скважностью. Напряжение импульсов на первичной обмотке составляет половину напряжения питания или около 140 В при номинальном напряжении сети. На вторичной стороне форма импульсов сохраняется, а амплитуда зависит от числа витков и распределяется примерно как 9 В на обмотках «канала 5 В» (TV1.3 и TV1.4) и 21 В на «канале 12 В» (TV1.2+TV1.3 и TV1.4+ TV1.5).

Предположим, что в данный момент поступает импульс положительной полярности и на верхних выводах обмоток следует «+». Расставим напряжения в контрольных точках:

  • A = +21 В.
  • B = +9 В.
  • С = -9 В.
  • D = -21 В.

Отсюда можно сразу вычислить напряжение в токе «F», оно будет чуть меньше цепи «B» на величину падения напряжения на диоде D1.

При данной полярности диод D2 закрыт, поэтому напряжение в точке «E» будет определено при противоположной полярности импульса.

  • Напряжение на конденсаторе C2 = +8.4 – (-21) = 29.4 В.
Сменим полярность импульса, напряжения в контрольных точках поменяют знак:
  • A = -21 В.
  • B = -9 В.
  • С = +9 В.
  • D = +21 В.

Полярность сменилась и открывается диод D2. Напряжение в точке «F» станет чуть меньше цепи «B» или около +8.4 В.

  • E = +8.4 В.
  • Напряжение на конденсаторе C1 = +8.4 – (-21) = 29.4 В.

Схема симметричная, поэтому напряжения конденсаторов обязаны быть одинаковыми. Из анализа предыдущей полярности импульса следует, что

  • Напряжение в точке «F» смещено относительно точки «D» на величину напряжения конденсатора С2 (29.4 В) и равно +21 + 29.4 = +50.4 В.

Нет смысла анализировать аналогичное состояние точки «E» при смене полярности импульса, схема симметричная и там будет столько же, сколько сейчас на точке «F», +50.4 В.

В итоге, может интересовать только «E» и «F», ведь из них получается выходное напряжение. Соберем значения в этих точках в таблицу. Впрочем, забыл еще одно состояние, «пауза» импульса от ШИМ-регулировки. Этот случай очень прост, на всех обмотках нулевое напряжение и в точках «E» и «F» получается одно и то же напряжение +29.4 В, хранимое в конденсаторах. (При анализе не учитывалась конечная емкость конденсаторов и непрямоугольность формы импульсов).

Импульс:«E»«F»
Положительный+50.4 В+8.4 В
Отрицательный+8.4 В+50.4 В
Пауза+29.4 В+29.4 В

Выпрямительная сборка D3 «выбирает» наибольшее напряжение из двух входов («E» и «F»). Это означает, что на входе дросселя L6 будут идти импульсы амплитудой 50 В с паузой 8 В. При скважности ШИМ 70% на выходе сформируется напряжение примерно 37 вольт.

Всё сказанное относилось к получению повышенного напряжения положительной полярности. Если необходимо сформировать и отрицательный выход, то схему следует «удвоить» – добавить конденсаторы C1, С2 и C3, диоды D1 и D2, пару диодов в сборку D3 и намотать вторую обмотку на выходном дросселе. Не забудьте сменить полярность конденсаторов и диодов.

У подобного решения только одно достоинство – не придется что-то делать с трансформатором. Впрочем, есть еще одно — незначительное, девиация напряжения на выходном дросселе небольшой амплитуды, поэтому размеры дросселя и его индуктивность могут быть сниженной величины. Фактически, можно использовать старую обмотку канала 12 В.

Недостатков больше и они серьезные:

  • Весь импульсный ток протекает через повышающие конденсаторы С1 и С2.
  • Очень большой ток заряда конденсаторов в начальный момент времени. Кроме снижения срока службы конденсаторов, высокая величина тока может вызвать срабатывание общей защиты блока питания и он отключится.
  • Низкий диапазон регулирования выходного напряжения.
  • Невозможно получить больше одного канала со стабилизацией выходного напряжения. Выходы «+37 В» и «-37 В» получаются по вышеприведенной схеме, а вот обычные «+/-12 В» придется формировать на отдельном дросселе при повышенном уровне пульсаций с частотой сети и низкой стабильностью.
Основной недостаток схемного решения — весь ток протекает через конденсаторы С1 и С2. Довольно просто найти конденсаторы с подходящей емкостью или ESR, но вот величина импульсного тока у них окажется низка. Чтобы не быть голословным, подберем подходящий конденсатор для рассматриваемого блока питания усилителя (выходное напряжение соответствует заданным условиям, величина тока до 10 А).

Ранее я ссылался на конденсаторы общего применения фирмы Jamicon серии LP, посмотрим, что есть в данном исполнении – 2200 мкФ 50 В. Максимальный ток 2 ампера. Совершенно не подходит, конденсатор выйдет из строя через неделю работы усилителя. Переходим к серьезным сериям, «Low ESR». Например, серия WL:

НоминалДиаметр, ммВысота, ммESR, мОмМакс. ток, А
2200 мкФ 35 В16 (18)32 (25)403.8 (3.5)
1500 мкФ 50 В16 (18)36 (32)514 (3.9)
1000 мкФ 35 В13 (18)25 (15)702.5 (2.1)
1000 мкФ 50 В13 (18)40 (20)703.4 (2.8)
680 мкФ 35 В10 (16)28 (15)103 (86)2 (1.7)
680 мкФ 50 В13 (16)30 (20)862.6 (2.3)

В круглых скобках указывается характеристики альтернативного варианта исполнения корпуса конденсатора.

Хочется отметить интересный момент, для конденсатора «680 мкФ 35 В» первое исполнение, в сравнении со вторым, несет меньшее внутреннее сопротивление и максимальный ток, обычно происходит обратное – снижение ESR повышает величину тока. Видимо, причина в разной площади поверхности корпуса.

Если смотреть на ESR, то все конденсаторы вполне устраивают. Ну, сколько может «упасть» на сопротивлении 40-90 мОм при токе 3-8 ампер? Пустяк. Блок питания работать будет. Вот так и появляются «китайские» поделки. К слову, в Китае производится масса качественной продукции, это местные фарцовщики закупают хлам, отсюда и происходит недоверие к китайской продукции … причем зря.

Ну ладно, собираем для себя, поэтому делать плохо не будем. Конденсатор должен выдерживать ток не менее 10/2=5 А в долговременном режиме и на одном конденсаторе получить такую характеристику не удастся. Остается вариант с установкой пары или тройки конденсаторов параллельно. Два конденсатора «1000 мкФ 35 В» обеспечат ток до 5 (4.2) ампера, что маловато. Можно взять конденсаторы того же номинала, но чуть большего напряжения «1000 мкФ 50 В», предельный ток составит величину 6.4 (5.6) ампера.

С учетом конечной индуктивности выходного дросселя этот вариант может устроить, но не особо хорошо. Перейдем к утроению конденсаторов, «680 мкФ 35 В» обеспечит ток до 6 (5.1) А, или «680 мкФ 50 В» 7.8 (6.9) А. Последний вариант смотрится уже веселее, блок питания сможет работать достаточно долго.

В результате получается, что в блок питания придется установить 3*2*2=12 конденсаторов «680 мкФ 50 В», выйдет не самое компактное устройство, а место в БП ограничено.

Схема моделировалась, но практически не испытывалась, поскольку не лежит у меня душа к таким решениям. Этот вариант доработки дается на ваш страх и риск.

Добавить комментарий

Ваш адрес email не будет опубликован.