Как устроены светодиодные лампы – устройство, принцип работы, драйвер, какая конструкция качественной и дешевой led-лампочки для электрического светильника

Содержание

Как устроена светодиодная лампа и принцип ее работы

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Почему она светит?

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.
Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.
Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.
От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.
Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных ламп – отдельная головная боль, поскольку смешивать их с обычным бытовым мусором нельзя.

Прозрачный колпак

В основном этот элемент играет роль защиты от пыли, влаги и шаловливых ручек. Однако есть у него и утилитарная функция. Большинство колпаков светодиодных ламп выглядят матовыми. Это решение могло бы показаться странным, ведь сила излучения светодиода ослабляется. Но его полезность для специалистов очевидна.
Колпак матовый потому, что на его внутреннюю стороны нанесен слой люминофора – вещества, начинающего светиться под воздействием квантов энергии. Казалось бы, тут, что называется, масло масляное. Но люминофор имеет спектр излучения в несколько раз более широкий, чем у светодиода. Он приближен к естественному солнечному. Если оставить светодиоды без такой «прокладки», то от их свечения глаза начинают уставать и болеть.

В чем выгода таких ламп

Теперь, когда вы уже многое знаете о том, как работает светодиодная лампа, стоит остановиться и на ее преимуществах. Главное и бесспорное – низкое энергопотребление. Десяток светодиодов дает излучение той же силы, что и традиционная лампа накаливания, но при этом полупроводниковые приборы потребляют в несколько раз меньше электричества. Есть и еще одно преимущество, но оно не столь очевидно. Лампы с таким принципом работы более долговечны. Правда, при условии, что питающее напряжение будет максимально стабильно.

Нельзя не упомянуть и о недостатках таких ламп. В первую очередь это касается спектра их излучения. Он значительно отличается от солнечного – того, что человеческий глаз привык воспринимать тысячелетиями. Поэтому для дома выбирайте те лампы, которые светят желтым или красноватым (теплым) и имеют матовые колпаки.

Как устроена светодиодная лампа

Разберём светодиодную лампу на примере «jazzway». Эта лампа потребляет 7 Вт, являясь световым эквивалентом лампы накаливания мощностью 60 Вт.

Корпус лампы изготовлен из пластика. В корпусе предусмотрены вентиляционные отверстия (хотя нагрев устройства при эксплуатации весьма незначителен). Таким образом, это устройство не является герметичным и предназначено исключительно для эксплуатации в помещениях в открытых плафонах.  Верхняя часть — полусферический рассеиватель из матового пластика. Рассеиватель крепится к корпусу на защёлках с добавлением клея.

Светоизлучающим элементом являются 28 светодиодов SMD, расположенных на диске. Питание светодиодов осуществляется напряжением 300 В постоянного тока. Светодиоды соединены последовательно, таким образом каждому светодиоду достаётся по 10,7 В. Чтобы добраться до преобразователя придётся отпаять питающие провода и отвинтить диск (крепится на трёх шурупах). Отделить цоколь от корпуса не удалось — он прочно опрессован.

Между цоколем и диском расположена алюминиевая трубка, скорее всего выполняющая функцию радиатора. Преобразователь напряжения расположен в цоколе и закреплён термоклеем. Как уже было сказано, преобразователь даёт на выходе около 300 вольт постоянного тока.

 


Читайте также: Разветвители для светодиодных ламп


Поделиться новостью в соцсетях

Схема светодиодной лампы: принцип работы и управление

Содержание:
  1. Общие принципы работы светодиодных ламп
  2. Порядок работы электронного управления
  3. Особенности современных светодиодных ламп
  4. Управление светодиодными лампами
  5. Простая схема источника питания светодиодной лампы

Традиционные лампы накаливания, широко применяемые во всех областях жизни и деятельности людей, постепенно заменяются другими источниками света, в том числе и  светодиодными энергосберегающими лампами. Они не только отличаются высокой экономичностью, но и абсолютно новым интеллектуальным уровнем.

Схема светодиодной лампы включает в свой состав специальный электронный блок, управляющий данным источником света. В обычных лампочках накаливания такое управление не нужно. Здесь нить накаливания напрямую подключена к выводам напряжения сети. При прохождении через вольфрамовую нить, электрический ток разогревает ее до высоких температур. В результате, металл раскаляется и производит световой поток. Светодиодные лампы работают совершенно по другому принципу.

Общие принципы работы светодиодных ламп

Свечение, производимое светодиодными лампами, создается полупроводниковым кристаллом, покрытым люминофором. Управление всеми процессами осуществляется с помощью сложного электронного блока. Его основной задачей является обеспечение строго заданных режимов работы лампы. Если же определенные режимы не будут соблюдаться, то светодиоды очень быстро выйдут из строя, а сама лампа перегорит. С помощью электронных регулировок больший расход электрической энергии на световое излучение, а не на выделение тепла. Таким образом, коэффициент полезного действия данного типа ламп поддерживается на высоком уровне.

Электронное управление создает безопасные условия при эксплуатации светодиодных ламп, предотвращает поражение электротоком. Еще одной важной задачей устройства является поддержание яркости на одном и том же уровне при работе в различных условиях. На качество свечения не должны влиять ни жара, ни холод, ни какие-либо сетевые помехи.

За счет электроники стало возможным повысить функциональность ламп. Они могут дистанционно включаться и выключаться, яркость и цветность регулируется в широком диапазоне.Таким образом, электронное управление является основой нормального функционирования всех светодиодных ламп.

Порядок работы электронного управления

Современная светодиодная лампа может в полной мере проявить свои возможности благодаря качественным светодиодам и максимальному отведению тепла. Однако, без электронного блока управления, оптимизирующего все функции, невозможна нормальная работа данных осветительных устройств.

Вся работа блока основана на специальной микросхеме, которая известна, как контроллер светодиодного драйвера. В соответствии со своей основной функцией, этот контроллер формирует постоянный ток, независимый от внешних условий, для его последующей подачи к светодиодам. При помощи микросхемы контроллера производится сравнение тока, протекающего в лампе, с его точно установленным значением. По итогам сравнения выдаются высокочастотные управляющие импульсы, уменьшающие или увеличивающие этот ток.

Стабилизация тока осуществляется импульсным стабилизатором. Его КПД значительно выше, в сравнении с обычными линейными конструкциями. За счет стабильного тока светодиоды начинают светиться с постоянной яркостью, а срок их эксплуатации значительно увеличивается. Ток, предназначенный для светодиода, зависит от мощности и конструкции той или иной лампы. Как правило, диапазон используемой силы тока, очень широкий. Эффективное управление этими токами осуществляется мощными выходными транзисторами, являющимися частью контроллера.

Использование возможностей контроллера позволяет подключать различные сервисные функции, которые совершенно не подходят для ламп накаливания. Управление светодиодными лампочками может осуществляться дистанционно, с помощью пульта, через компьютер и различные виды датчиков.

Электронный блок, управляющий светодиодными лампами, работаем по следующей схеме. К цоколю лампы подключается диодный мост, осуществляющий выпрямление напряжения сети 220 вольт. Роль силового ключа выполняет мощный транзистор, находящийся под управлением контроллера. С помощью транзистора производится переключение тока высокой частоты в первичной обмотке трансформатора. Во вторичной обмотке появляется ток, уже выпрямленный и стабилизированный диодом, который и поступает непосредственно к светодиодам.

Особенности современных светодиодных ламп

Новое поколение светодиодных ламп обладает поистине уникальными свойствами. Прежде всего, они позволяют заранее настроить необходимую яркость и цветовую гамму. Достаточно всего лишь приобрести лампу, вкрутить ее в обычный патрон, после чего, настроить необходимый уровень освещения с помощью регулировок, расположенных на пульте управления. За счет этого, стало возможным создавать любые комфортные условия. В последующем, все заданные настройки сохраняются при каждом включении и выключении лампы. В настоящее время разрабатываются лампочки, которые будут определять наличие или отсутствие людей в помещении и выполнять самостоятельное включение или выключение света.

Безопасную эксплуатацию обеспечивает сама схема светодиодной лампы, где ведущую роль играет ее собственная электронная часть. Кроме того, существуют и дополнительные элементы, например, термодатчик и датчик, встроенные в контроллер. Функцией термодатчика является выключение лампы при сильном перегреве колбы, а датчик выполняет отслеживание предельных значений напряжения в сети. При неисправности колбы, лампа все равно будет безопасной, благодаря специальной изолированной конструкции электронного блока.

В настоящее время, все более широкой популярностью пользуются, так называемые, умные дома. Для таких домов предполагается и специфическая система освещения, с интеллектуальным уклоном. Данная система имеет целый ряд явных преимуществ.

С помощью программирования имеется возможность добиться следующих результатов:

  • Установка необходимых режимов освещения, создающих максимальный комфорт для работы или отдыха.
  • Значительная экономия электроэнергии.
  • Увеличение срока эксплуатации светильников.
  • Специальный режим позволяет имитировать присутствие людей.
  • Возможность построения световых алгоритмов в виде различных фигур, соединенных в одну сеть и управляемых с помощью компьютера.

Таким образом, управление светодиодными светильниками осуществляется через встроенную микросхему, и не требует какого-либо дополнительного оборудования.

Управление светодиодными лампами

Для того, чтобы добиться желаемых результатов при эксплуатации светодиодных ламп, необходимо точно знать, на каких принципах строится управление этими световыми приборами.

Импульсный стабилизатор, согласно своему названию, стабилизирует входное напряжение или ток. Регулировка производится с помощью транзистора, непрерывно функционирующего в активном режиме. В конечном итоге, происходит преобразование высокого входного напряжения в низкое напряжение на выходе.

Широтно-импульсная модуляция позволяет регулировать ширину импульсов, с ее помощью задается необходимый ток для светодиодов.

Высокая частота используется в процессе преобразования напряжения и позволяет значительно уменьшить габаритные размеры дросселей и трансформаторов. Чем выше частота, тем меньше размеры этих устройств.

Изолированные и неизолированные конструкции. Первый вариант используется в трансформаторе, где первичная и вторичная обмотка изолированы между собой. Поэтому, высокое входное сетевое напряжение не может попасть напрямую к выходу, то есть, на светодиоды. Изоляция гарантируется даже при выходе из строя каких-либо электронных элементов управления. Человек останется в безопасности при случайном касании светодиодов. Когда вместо трансформатора используется дроссель, это упрощает конструкцию лампы и удешевляет ее, но, одновременно, снижается безопасность. В этом случае, велика вероятность попадания на выход сетевого напряжения, при поломке электроники.

Коэффициент мощности может корректироваться. В обычных лампах накаливания, наблюдается совпадение фаз тока и напряжения. Это связано с тем, что нить лампы, фактически, играет роль резистора, а коэффициент мощности составляет единицу. При увеличении нагрузки, фазы тока и напряжения сдвигаются, что ведет к снижению коэффициента. Это вызывает дополнительные потери во время передачи энергии. В светодиодных лампах эта проблема решается путем установки дополнительных цепей, корректирующих коэффициент мощности.

Простая схема источника питания светодиодной лампы

Светодиодные лампы. Виды и устройство. Применение и параметры

Светодиодные лампы – это осветительное оборудование, в качестве источника света в котором применяются светодиоды. Они обозначаются аббревиатурой LED. Светодиодные лампочки применяются для освещения улиц, бытовых и промышленных помещений. Они считаются одними из самыми экологически чистых источников света. Светодиодные лампочки не требуют особой утилизации, как а, к примеру, ртутные.

Из чего состоят светодиодные лампы

Данное оборудование излучает видимый свет при пропускании тока за счет электронно-дырочного перехода при протекании электричества. Иными словами, такие лампочки светятся от того, что проходящее через них напряжение преобразуется в фотоны света.

Светодиоды многократно экономичнее традиционных лампочек. Если лампа накаливания светится за счет нагрева встроенной в нее спирали добела, а точнее до температуры более 3000 градусов, то почти все потребление энергии уходит именно на получение тепла, и лишь 3% на выработку света. В случае же со светодиодным освещением ток проходит через полупроводниковый кристалл излучающий фотоны с меньшим нагревом. Этот принцип выработки света позволяет добиться КПД в 10 раз выше, и довести его до уровня 30%. Таким образом, применение светодиодов является намного более экономичным решением для освещения помещений. В их пользу говорит и большой ресурс работы, составляющий от 2 до 5 лет.

Светодиодная лампа состоит из набора светодиодов с полупроводниковыми кристаллами, и миниатюрного блока управления. Сами светодиоды могут быть точечными или филаментными. Точечные являются самыми распространенными. Именно они применяются в другой разновидности светодиодного освещения – лентах. Точки могут располагаться внутри обыкновенных ламп под распространенный бытовой цоколь Е14 и Е27. Внутри их может быть от нескольких штук до нескольких десятков и тысяч. Точка представляет собой мелкую пластину, в которой располагается LED-излучатель. Таким образом, каждый диод имеет свой отдельный корпус. Эта техническая особенность уменьшает угол рассеивание его света. Именно поэтому светодиоды располагаются группами и часто с разным направлением светового потока. Что необходимо для компенсации малого угла рассеивания.

Филаментные светодиодные лампы имеют светодиоды сделанные в форме нити. Они состоят из набора мелких кристаллов соединенных между собой в линию и запаянные в стеклянную трубку с нанесенным слоем люминофора. Также вместо стекла может применяться пластик. Использование трубчатой оболочки позволяет улучшить угол рассеивания изучаемого света, а также его эффективность.

Визуально филаментные лампы практически одинаковы с лампами накаливания. Их стеклянная колба прозрачна. Те же лампы, у которых применяются точечные светодиоды, имеют белую оболочку из окрашенного стекла или пластика. Внутри лампы закачивается гелий.

Филаментные лампы является сравнительно новым продуктом, но в отличие от всего нововведенного изначально их цена не была завышенной, как у прочих типов осветительного оборудования. Это вызвано тем, что такие устройства можно изготовить на классическом производственном оборудовании, которое ранее применялось для производства ламп накаливания. Производственные машины поддаются небольшой модернизации, после чего могут применяться для производства современного LED освещения.

Популярные формы светодиодных ламп

Наличие двух технологий реализация светодиодного освещения позволило изготавливать лампочки разных форм-факторов. Осветительное оборудование отличается между собой по форме, а также количеству имеющихся в них светодиодов. Светящихся кристаллов может быть от пара штук, что характерно для лампочек ручных фонариков, и до нескольких тысяч.

Основными формами светодиодных ламп являются:
  • Груша.
  • Кукуруза.
  • Свеча.

Все они предназначены для установки в стандартные люстры, бра и светильники, в которых применяется цоколь Е14 и Е27. Также встречаются светодиодные лампы со штыревыми разъемами. Это так называемые точечные светильники, применяемые для установки в подвесные и натяжные потолки.

Светодиодные лампы бывают с винтовым (E) и штырьковым (G) цоколем. Цифры после буквы означают либо диаметр, либо расстояние между штырями. Винтовой цоколь подходит для многих светильников, предназначенных для ламп накаливания или энергосберегающих. Штырьковый цоколь подойдет там, где ранее использовались галогенные источники.

Груша

Это самые распространенные светодиодные лампы. Они практически полностью повторяют форму лампы накаливания. В такой форме бывают как классические приборы с точечными светодиодами, так и нитями. Лампочки со светодиодными точками имеют угол свечения 180 градусов. Они могут применяться на люстрах и светильниках, где лампа вкручивается цоколем вверх. В том же случае когда установка происходит наоборот, то весь свет направляется в потолок, а у пола образуются тени. Это нужно учитывать, чтобы избежать подобного эффекта.

Самыми универсальными являются филаментные лампы, поскольку их угол свечения составляет 360 градусов. Такое освещение может совмещаться абсолютно с любыми типами плафонов, люстр и светильников. При их применении если и создадутся участки с тенью, то лишь по причине конструктивных недочетов осветительных электроприборов, в которые закручиваются лампы.

Кукуруза

Столь интересное название присвоено таким лампам благодаря их сходству с початком кукурузы. Такие приборы имеют цилиндрическую форму, по периметру которой располагаются точечные светодиоды. Они установлены как по боковой части цилиндра, так и внизу на противоположной стороне от цоколя. Разнонаправленность светодиодов позволяет добиться эффективного угла рассеивания света, составляющего 300 градусов. Это удачное решение для установки в светильники с горизонтальным позиционированием лампочки. Также их можно использовать для точечных светильников, у которых имеется затеняющий плафон. В том случае если нужно добиться освещения отдельных участков без полного рассеивания света применяются цилиндрические лампы, у которых светодиоды располагается только на боковой части, а торец сделан гладким.

В продаже можно встретить даже филаментные лампы, сделанные в цилиндрической форме, но по эффективности они ничем не отличаются от груш. Цилиндры имеют такой же угол растения в 360 градусов.

Свеча

Такие светодиодные лампы обладают большим углом рассеивания света. Их выбирают для установки в люстры, у которых патроны обращены вниз. В том же случае если ориентация ламп направлена в потолок, то будут образовываться тени. Зачастую свечи устанавливают в ночники. Так же как и в случаях с грушами свечи бывают с филаментными нитями.

Лампочки с формой свечи часто выбираются для установки в осветительные приборы, выполненные в стиле ретро. Они имеют меньший радиус, поэтому располагаются компактно. Это позволяет применять на одной люстре сразу много лампочек. Небольшой размер не позволяет делать свечи с большой мощностью. Их световой поток редко превышает 600 Лм.

Технические параметры

Светодиодные лампы обладают отличными возможностями для того чтобы отдать предпочтение именно им при оборудовании люстр, бра, светильников и прочих приборов. Этому способствует не только экономичность, но и широкий диапазон выбора цветовой температуры. Этот параметр указывает на цвет света излучаемого лампочкой. Он измеряется в Кельвинах. Существуют определенные правила по подборе цветовой температуры под тип помещения, в котором будет применяться лампа. Светодиоды способны светить с цветовой температурой до 7000К.

Лампы с цветовой температурой от 2500 до 3500К имеют «теплый свет». Их стоит выбирать для установки в помещения для отдыха. Считается, что они благоприятно влияют на психический комфорт человека. Лампы имеют мягкий желтый свет, практически идентичный тому, что излучают и лампочки накаливания.

Светодиодные лампы с цветовой температурой от 4000 до 5000К имеют так называемый «дневной свет». Они нейтральные и могут располагаться в рабочих зонах. Это могут быть не только офисы, но и кухня, ванная комната и т.д.

Самые яркие лампы с цветовой температурой более 5500К имеют «холодный свет». Их свечение очень белое с синюшным отливом. Человек весьма чувствительный к такому свету и при его наличии получает чувство бодрствования. При продолжительном нахождении в помещении с такими лампами со временем может испытываться чувство усталости.

Расчет мощности светодиодного освещения для помещения

Для того чтобы в каждой комнате было оптимальное освещение требуется подобрать правильное количество и мощность ламп. Для этого во внимания берется яркость света, измеряемая в Люксах. Эта мера обозначает, какое количество Люмен света приходится на 1 м² площади помещения. К примеру, если мощная лампочка в 1000 Лм устанавливается в небольшое помещение на 10 м², то 1 м площади будет иметь параметр 100 Лк.

Для каждого помещения имеются свои рекомендации по количеству Люмен на м²:
  • Спальня – 100 Лк.
  • Прихожая – 50-100 Лк.
  • Гостиная и столовая – 100-200 Лк.
  • Ванная – 50-200 Лк.
  • Рабочий кабинет – 300 Лк.

Естественно, что у большинства люстр применяется несколько лампочек, поэтому нужно суммировать их яркость, после чего делить на площадь помещения. В том случае, если на корпусе лампы информация о Люменах и Люксах не указана, а ее упаковка не сохранились, тогда оценить яркость можно с помощью обыкновенного смартфона. У современных телефонов имеется датчик освещения. Специальными приложениями для оценки яркости света он может применяться как считывающий прибор. Для этого достаточно установить программу SensorSense или другую подобную. Такое приложение позволяет весьма точно определить фактическую яркость.

Похожие темы:

Сага о светодиодных лампах. Часть 3 — как это устроено / Habr

В прошлой статье мы провели небольшое сравнение параметров светодиодных (и не только) ламп, в ходе которого убедились, что почти одинаковые на вид, на цвет и на ощупь лампы могут иметь самые разные характеристики, простирающиеся от «очень хорошо» до «отвратительно», причем даже лампы одного производителя могут показывать самое разное качество. Теперь наступило время посмотреть, что внутри этих ламп и разобраться, что делает хорошие лампы хорошими, а плохие – плохими.

Разумеется, все манипуляции автор проводил на свой страх и риск, и потому не несет никакой ответственности за какие-либо возможные последствия для желающих повторить его подвиги.

Внимание — много фотографий.

Для удобства продублирую таблицы сравнения из прошлой статьи:

С цоколем E27:

Тип лампы Измеренная мощность, Вт (холодный старт) cos(φ) Kp В целом
ASD 11W 9 0.82 1% Очень хорошо
Gauss 12 W 12 0.62 1% Хорошо
Gauss 6.5 W 6 0.50 1% Приемлемо
SUPRA 11 W 9 0.95 35% Плохо
ASD 7 W 4 0.45 100% Отвратительно

С цоколем E14:

Тип лампы Измеренная мощность, Вт (холодный старт) cos(φ) Kp В целом
Gauss 3W 2 0.60 1% Хорошо
Gauss 6.5W 6 0.95 49% Очень плохо
Wolta 5W 2.2 0.40 68% Отвратительно

Первое, что привлекает внимание – чудесная лампа ASD с коэффициентом пульсаций порядка 100% и измеренной мощностью более чем на 40% меньше заявленной.

При этом она не диммируемая, что могло бы немного извинить такие характеристики. Неужели там внутри стоит… Впрочем нет, давайте разберем и посмотрим.

Ой. Это стекло, что ли? Зачем в светодиодной лампе делать стеклянный баллон? Одна из фишек светодиодов – нечувствительность к ударам. Правильно спроектированной светодиодной лампой практически можно играть в футбол. Стеклянный баллон, разумеется, сводит это преимущество на нет. Неужто стекло дешевле в производстве? Хорошо хоть не порезался. Ну окей, раз оно так, подойдем по-другому.

Стекло тонкое; при механическом повреждении баллон разбивается в малоприятное крошево. Внутри вроде бы есть то ли пленка, то ли напыление, но оно как-то слабо помогает. Да и что мешало сделать баллон из пластика?

Внутри видим плату с алюминиевым основанием (ну хоть это хорошо) с горстью светодиодов на ней. А что там с драйвером?

Да, как я и боялся предположить вначале, внутри стоит классическая схема с гасящим конденсатором. Кто не знает – есть такой способ питания нагрузок от сети, историей уходящий в глубину пятидесятых годов (да-да). Принцип его основывается на том, что конденсатор в цепи переменного тока обладает реактивным сопротивлением, что позволяет использовать оный для ограничения тока. Фактически, это эквивалентно включению резистора последовательно со светодиодом. Плюс у этого способа только один – простота и дешевизна; остальное минусы — абсолютно никакой коэффициент мощности, отсутствие гальванической развязки с сетью (впрочем, это тут не так важно), очень условная стабилизация тока диодов (в нашем случае) и т.д.

Схема лампы спартански проста.

Насчет высокого коэффициента пульсаций не совсем понятно – электролитический конденсатор на выходе вроде как есть (2.2 мкФ, 400 В). Но то ли 2.2 мкФ маловато для такой мощности, то ли конденсатор высох (хотя лампу-то я взял новую), то ли сам конденсатор не особо хорош, но он не помогает – это факт.

Как-то так. Зато стоит дешево, всего около 200 р. в розницу. Но я бы ее и за такие деньги всерьез покупать не стал. Лучше уж купить КЛЛ за ту же цену, скорее всего будет приличнее.

Давайте, однако, расковыряем что-нибудь приличное. Можно было бы взять одиннадцативаттную лампу того же бренда ASD, к слову, лидирующую по всем параметрам, но ASD мы уже разбирали. Потому для разнообразия я предлагаю демонтировать идущую второй лампу от Gauss LED, тем более что отстает она только по коэффициенту мощности, и то ненамного.

Надо сказать, что эта лампа от Gauss непривычно тяжелая, навскидку граммов триста. По ощущениям в руке – этакий солидный кирпичик, что наводит на мысли о каком-то совершенно фантастическом теплоотводе. Вообще, в инструкции обещают, что корпус сделан из керамики и алюминия. Что же, посмотрим.

Наученный горьким опытом с лампой от ASD, к снятию баллона я здесь подходил крайне осторожно. Тем не менее, мои опасения были напрасны – тут он пластиковый, как и должно быть.

Вообще, по колупаемости корпус как-то не похож на керамику. Хотя не знаю, может это я чего-то не понял.

Однако, что мы видим? Алюминиевая плата со светодиодами крепится к корпусу винтами и подключена к драйверу разъемом! Вау. Такого в «одноразовых» приборах вроде лампочек я еще не видел. Не, правда. Неужто она, вопреки предостережениям в инструкции, ремонтопригодна? Если так, то это же просто невероятно!

Упс, увы нет. Схема управления намертво залита компаундом (естесственно, негорючим – я специально проверил), так что о ремонтопригодности можно забыть. К счастью, компаунд оказался не эпоксидной смолой, что свело бы перспективы дальнейшего изучения к нулю, а чем-то вроде пористой резины, которую с некоторым усилием удалось удалить и извлечь драйвер.

Кстати о весе и теплоотводе. Теплоотвод действительно представляет собой достаточно увесистую алюминиевую болванку, запрессованную в то, что, согласно написанному в инструкции, является керамикой.

Однако мы наконец добрались до самого интересного, квинтессенции светодиодной лампочки – ее драйвера.

Как выяснилось, драйвер этой лампочки построен по классической бестрансформаторной понижающей топологии (step-down/buck converter). Так что желтое моточное изделие – дроссель, а не трансформатор обратноходового источника, как могло бы показаться с первого возгляда. В основе решения лежит микросхема MP4050 от Monolithic Power Systems, включенная по практически типовой схеме.

Если говорить об отличиях, инженеры Varton дополнили типовую схему диодным мостом и фильтрующим электролитическим конденсатором на входе, однако сэкономили на конденсаторах, обозначенных на типовой схеме как C1 и C2. Эта экономия, судя по всему, и приводит к не слишком высокому коэффициенту мощности (участок схемы с катушкой является ничем иным, как узлом коррекции коэффициента мощности). Тем не менее, как видно по фотографиям, место под них есть. Сама катушка присутствует и, как видно по замерам параметров, делает свое благое дело.

Итак, что имеем для этой лампы в целом? Прежде всего, отличный коэффициент пульсаций – около 1%, что находится в районе погрешности моего метода измерения. Сам свет на мой вкус очень приятный, без желтизны и синевы, чисто белый. Обстановка в свете этих ламп смотрится очень естесственно, так что заявленному индексу цветопередачи более 92 определенно можно верить. В этом смысле они нравятся мне даже больше КЛЛ, и, разумеется, больше откровенно желтых ламп накаливания.

Очень приличная конструкция. Вообще, намертво залитый компаундом драйвер дает надежду на то, что эту лампу можно использовать во влажных местах вроде ванной комнаты или вовсе в уличных светильниках (к слову, что-то там в инструкции есть про тротуарные светильники). Тем не менее, соединение светодиодной сборки и драйвера, выполненное в виде гламурного разъема, хотя и очень впечатляет, но вселяет некоторые опасения на тему того, как оно поведет себя в условиях систематического присутствия влаги. Было бы однозначно спокойнее, если бы контакты были, например, для верности промазаны чем-то вроде проводящей графитовой смазки или, на худой конец, просто залиты герметиком. Так что насчет этого вопрос.

Баллон пластиковый – слава богу. Как мы видели, это далеко не правило. Так что хорошо, что в случае Gauss здравый смысл возобладал.

Некоторую тревогу вызывает тепловой режим драйвера – он помещен аккурат в самое теплое место, да еще и залит компаундом, что предотвращает всякую конвекцию. Тут имеет смысл вспомнить картинку в ИК-лучах:

Греть электролитические конденсаторы до 60 – 70 градусов (внутри, разумеется, будет теплее, чем на поверхности) – так себе идея. Конечно, надо признать, что в такой конфигурации поместить электронику больше просто некуда. Я уже отмечал, что геометрия лампы накаливания чужда светодиодам – вот одно из проявлений этого тезиса. Впрочем, примененные конденсаторы промаркированы как сертифицированные для температуры до 125 °С, и, вроде бы, судя по малочисленным отзывам в интернете, бренд Aishi, который мы видим тут, не самое плохое, что может быть. Хотя, конечно, Chemi-Con или хотя бы что-то более известное науке, вроде Jamicon, в таком применении внушали бы больше доверия. Тем не менее, гарантийный срок, заявленный в инструкции, составляет три года.

Сам тип драйвера определенно выбран верно. Понижающая бестрансформаторная топология очень хороша в смысле малой величины пульсаций, что мы и наблюдаем.

Если говорить о таком важном факторе, как теплоотвод светодиодов, то видимый на ИК-снимке равномерный прогрев корпуса до достаточно высокой температуры позволяет предположить, что в этом смысле все неплохо.

В целом можно сказать, что бесспорный недостаток у этой лампы только один – цена, которая составляет около 700 р. в розницу по данным Яндекс.Маркета. Тем не менее, как видно, это достаточно качественный прибор, который, хотя и стоит космических для лампочки денег, имеет все шансы оправдать доверие.

На этом на сегодня все. В следующих статьях мы продолжим экспериментальное исследование лампочек.

Как выбрать светодиодную лампу для домашнего освещения

Организации света в дизайне помещения отводится большое значение. При умелом использовании он позволяет создавать оригинальные эффекты, комфортные условия, незаметно подчеркивает имидж и вкус хозяина.

Искусственные осветительные приборы в дизайнерских проектах работают как источники местного освещения, так и общего.

Сейчас большой популярностью пользуется светодиодная люстра с пультом дистанционного управления. Она работает как от ПДУ, так и настенного выключателя, удобна в пользовании, значительно экономит электрическую энергию, красиво вписывается в интерьер квартиры.

Источником света в такой люстре служит сложная электронная схема на полупроводниковых элементах, называемая LED-конструкцией, в которую входят матрицы из светодиодов с блоком питания. Они выпускаются разнообразными моделями с большим диапазоном технических характеристик. Материал этой статьи призван помочь разобраться неискушенному пользователю в их выборе под свои конкретные нужды.


Содержание статьи

Как устроена и работает светодиодная лампа

Основным элементом, испускающим свет под действием приложенного напряжения, является полупроводниковый элемент. Эта технология первоначально стала использоваться для выпуска светодиодов — световых индикаторов протекания электротехнических процессов.

Конструкция светодиода

От положительного вывода корпуса к отрицательному проходит электрический ток, измеряемый в сотых, тысячных долях ампера. Для его создания достаточно приложить напряжение около 1,5 вольта.

Конструкция светодиода
Световые лучи излучаются полупроводником через прозрачную оболочку во внешнюю среду. Часть электрической энергии расходуется на нагрев общей конструкции и излучается теплом в атмосферу. При работе создается тепловой баланс, когда допустимая температура не превышает критичную норму. В противном случае светодиод сгорает.

Работа светодиода

Эти полупроводниковые элементы испускают свет при прохождении через их внутреннюю структуру только постоянного электрического тока строго определенного направления.

Как работает светодиод

Если через светодиод пойдет синусоида переменного тока, которая используется в бытовой домашней сети, то свечение будет происходить периодически и только тогда, когда направление полуволны напряжения соответствует полярности включения светодиода. При противоположной полугармонике света не будет.

Это означает, что свет станет мигать с частотой питающей сети. А это вредно для глаз, хоть при промышленной частоте 50 герц и малозаметно. С этим явлением мирятся в индикаторах и борются в лампах.

Конструкция светодиодной лампы

За основу ее создания взят принцип работы светодиода. Только полупроводники устанавливают большим количеством, подключая по разным схемам при каждом типе модуля.

Конструкция светодиодной лампы
В состав светодиодной лампы производители вводят блок питания, который подает на каждый светодиод порядка 1,5 вольта постоянного напряжения, преобразовывая для этого входную величину бытовой сети амплитудой 220 вольт и частотой 50 герц.

Наиболее распространенная схеме сборки у ламп эконом класса — последовательное подключение каждого светодиода к единой цепочке. Блок питания выдает общее постоянное напряжение, которое делится на каждом элементе равномерно, пропорционально одинаковым электрическим сопротивлениям.

Основной недостаток подобной схемы: при нарушении контакта в любом месте цепочки она вся перестает светить. Неисправность можно устранить восстановлением контакта, а при перегорании единичного полупроводника его вход и выход допустимо зашунтировать, если отсутствует возможность замены исправным.


Характеристики светодиодной лампы

Основными техническими параметрами, влияющими на выбор модели являются:

  • потребляемая мощность электрической энергии;
  • напряжение питания;
  • качество световой отдачи;
  • диапазон цветовой температуры;
  • тип цоколя на колбе;
  • габариты и форма;
  • угол рассеивания светового потока;
  • подтвержденный гарантийными обязательствами производителя ресурс работы;
  • возможности отвода тепла от светодиодных модулей встроенными радиаторами.

Обозначение характеристик светодиодной лампы
Проанализируем их подробнее.

Мощность потребления

Далеко не секрет, что светодиодные лампы позволяют значительно экономить оплату электроэнергии за счет эффективности их конструкции. Они на порядок лучше преобразуют свет чем их аналоги с обычными нитями накала. Даже люминесцентные, энергосберегающие, галогенные и другие газонаполненные источники света значительно проигрывают им в этом вопросе.

Мощность потребления электроэнергии светодиодной лампы является первым основным, но не единственным показателем, на который стоит обращать внимание при выборе подходящей модели.

Для сравнения ориентировочно можно прикинуть, что освещение комнаты от светодиодной лампы мощностью 8-10 ватт мало чем отличается от излучения лампочки накаливания в 75. Экономия от такой замены значительно сказывается при оплате коммунальных услуг с первого же месяца эксплуатации.

Комфортные условия по освещению помещения вполне можно создать заменой устаревших лампочек Ильича в люстре на светодиодные лампы с мощностью 6-8 ватт.

Они же хорошо работают не только в составе светодиодной люстры, но и в качестве точечных источников местного освещения.

Напряжение питания

На вход встроенного в светодиодную лампу блока питания могут подводиться не только обычные 220, но и другие стандартные напряжения промышленной частоты, например, 12, 24,110 вольт. Оно указывается в сопроводительной документации.

Световая отдача

Этим показателем оценивают эффективность преобразования источниками света потребляемой ими мощности Р в световой поток Фи.

Световая отдача источников света
Световая отдача ŋ рассчитывается по формуле ŋ= Фи/Р. Ее размерностью является лм/вт (люмен/ватт).

Для сравнения характеристик работы лампы накаливания в 100 ватт с единичным светодиодом разных конструкций приняты показатели 13,8 и 10÷300 лм/вт соответственно.

Естественно, что в светодиодные лампы для освещения идут модули светодиодов верхнего диапазона светоотдачи, которые максимально эффективно преобразовывают электроэнергию в световой поток.

Цветовая температура

По этому показателю оценивают комфортные условия для человека, находящегося под действием светодиодного освещения.

Цветовая температура светодиодных ламп
Единицей измерения цветовой температуры выбран градус шкалы Кельвина. Условно рабочий диапазон светодиодных источников разделен на 4 группы:

  1. 2700÷3200 K — тепло белый;
  2. 3900÷4500 K — нейтрально белый/дневной;
  3. 4700÷6000 K — белый;
  4. более 6000 K — холодно белый.

Для сравнения: привычные в быту лампы с нитями накаливания обладают цветовой температурой около 2800 K. По этой причине наш глаз уже приспособился к этому показателю источника и воспринимает спектр первого диапазона комфортнее, чем остальных.

На основе экспериментов выявлено, что теплые тона освещения лучше обеспечивают создание атмосферы уюта, располагающей к отдыху, а холодные — к работе.

Тип цоколя колбы

По сложившейся традиции во время массового использования ламп накаливания у людей в быту работают различные источники света с электрическими патронами марок:

  • Е27, работающих в люстрах и настольных лампах;
  • Е14, устанавливаемых в бра, ночных светильниках.

Тип цоколя светодиодной лампы
Производители светодиодных ламп стали выпускать свою продукцию с таким же цоколем, чтобы потребителю было удобно ею пользоваться. Учитывая большой спрос на точечные источники света, применяемые для дизайнерских целей и местного освещения, введен дополнительный стандарт — цоколь типа Е12.

Габариты и форма

По своей величине светодиодные лампы не превышают размеры обычных моделей с нитями накаливания, а часто повторяют их привычную форму в виде груши.

Формы светодиодной лампы
Дизайнеры светодиодной продукции своими творческими решениями стараются привлечь внимание покупателей различными способами.

Угол рассеивания светового потока

Луч единичного светодиода строго направлен в одну сторону. Поскольку лампы состоят из большого их количества, то производители стараются все источники расположить под типовыми углами для создания определённого типа освещения. Такого эффекта, как у аналогов с нитями накала, когда световые потоки равномерно расходятся во все стороны, у этих конструкций добиться сложно.

Угол рассеивания светодиодной лампы
Светодиодные лампы выполняют освещение под углом:

  • 30 градусов — острое фокусное направление, когда светодиоды размещены строго в плоскости. Способ подходит для освещения светильниками настольного рабочего места;
  • 60 градусов — применяется для установки лампы в люстру;
  • 90 градусов — используют внутри помещений с большим пространством, когда других источников мало. У подобных ламп светодиоды ориентируют сложным образом. Им придают повышенную мощность излучения.

Для домашних условий освещения лучше подходит вариант источников, рассеивающих свет под углом в 60 градусов. Их работу в переделанной светодиодной люстре демонстрирует фотография. Световые лучи идут вниз и в стороны. А потолок остается в тени.

Светодиодные лампы в люстре

Ресурс работы

Срок службы относительно дорогих источников освещения интересует всех потребителей. Предоставление гарантий производителем позволяет бесплатно осуществлять ремонт или замену преждевременно повредившихся светодиодных ламп.

Завод определяет гарантийный ресурс источника света исходя из применяемой им технологии и качества используемых материалов с учетом обеспечения номинальных параметров в питающей сети. Однако стоит заметить, что в домашней проводке еще часто возникают скачки и недопустимые перепады напряжения. В этой ситуации светодиодные лампы, имеющие в своей конструкции сложные электронные блоки питания и полупроводниковые элементы для излучения света, могут значительно раньше выйти из строя.

Возьмет ли на себя ремонт производитель, когда обнаружит такую причину поломки светодиодной лампы? А ведь подобную ситуацию легко предупредить. Достаточно просто в защиты квартирного щитка подключить реле контроля напряжения. Оно на даст возможности развиваться аварийным ситуациям в электропроводке, позволит использовать предоставленный ресурс в полном объеме.

Оптимальным выбором считается 50 тысяч часов работы светодиодной лампы. Меньшие показатели обычно говорят о проблемах с качеством их изготовления.

Встроенные радиаторы

Конструкция светодиодной лампы не позволяет при покупке рассмотреть способ отвода тепла от электронной схемы из-за матовой поверхности оболочки корпуса и экрана. Поэтому этот вопрос желательно изучить заранее. А при необходимости использования большой партии — приобрести одну контрольную модель для разборки и изучения. Ее работоспособность при этом не нарушается.

Возможности отвода тепла от светодиодных модулей встроенными радиаторами очень сильно влияют на ресурс работы. Чаще всего их выполняют из алюминия с осеребренной поверхностью, через которую создается циркуляция воздуха.

Если полупроводниковые излучатели размещены на простой пластмассовой подложке, да еще эксплуатируются при высоком нагреве внутри герметичного корпуса колбы или плафона, то рассчитывать на их долгую службу не стоит.


Дополнительные сведения

Температурный диапазон эксплуатации

Светодиод более устойчив к холоду, чем другие источники света. Рабочие пределы для него от —40 до +40 градусов считаются нормальными.

О мерцании светодиодных ламп

Об этом явлении одни люди даже не подозревают, а другие специально умалчивают. Посмотрите кратковременно сбоку на работающую светодиодную лампу через объектив цифрового фотоаппарата, и вы увидите его действие.

Более подробно о нем рассказывает автор видеоролика Данил Чудинов. Его советы вам помогут избежать стандартных ошибок.

Сочетания с диммерами

Устройства плавного включения света, используемые в лампах накаливания не во всех случаях могут создавать нормальные условия для работы электронной схемы блока питания светодиодных конструкций. Использовать обычные диммеры для них не стоит.

Светодиодные лампы для диммера

Но это не означает, что необходимо отказываться от подобной идеи. Она популярна для создания дизайна помещений. В продаже существуют специальные светодиодные лампы с диммером.
Цена их выше, чем у обычных моделей вследствие усложненной схемы.

Как видим, выбрать светодиодную лампу с подходящими для нас параметрами освещения не совсем и просто. Необходимо заранее подготовиться, пополнить знания. Помочь в этом вопросе и закрепить прочитанную информацию поможет видеоролик Анатолия Шириева.

Ждем ваших вопросов в комментариях, а если статья заинтересовала, то передавайте ссылку на нее друзьям в соц сетях через установленные кнопки.

Полезные товары

Лампы на светодиодах. Виды и устройство. Работа и применение

В лампах применяются светодиоды в качестве источника света. Лампы на светодиодах используются для освещения улиц, в промышленности и в быту. Это самые чистые с экологической точки зрения источники освещения.

Их безопасность основана на применении в изготовлении компонентов, не имеющих вредности. Не используется ртуть, поэтому в случае перегорания или разрушения лампы на светодиодах не опасны.

Устройство, принцип действия
Основными составляющими светодиодной лампы являются:
  • Корпус.
  • Цоколь.
  • Драйвер.
  • Светодиоды.

Обозначают светоизлучающий диод буквенным сокращением СИД или СД. На английском языке его обозначение LED. Он является в составе светодиодной лампы источником света.

Схема его принципа работы совпадает с процессом любого полупроводникового диода из германия или кремния с р-n переходом. При подаче к аноду положительной разницы потенциалов, а к катоду отрицательной, происходит движение электронов к аноду, движение дырок к катоду. Ток идет по диоду в одном направлении прямо.

Но, в составе светодиода другие материалы из полупроводников, при бомбардировке которых в прямом направлении дырками и электронами осуществляют рекомбинацию, переводят их на следующий энергетический уровень. В результате выделяются фотоны, которые являются элементарными частицами излучения волн светового диапазона.

В электросхемах светодиоды обозначают как обычные диоды, добавляют к ним стрелки (излучение света).

Полупроводники имеют различные свойства излучения фотонов. Прямозонные проводники – вещества нитрид галлия и арсенид галлия прозрачны для световых волн видимого спектра. Выделение света происходит в результате замены слоев р-n перехода.

В светодиоде слои располагаются:

1 — Анод
2 — Катод
3 — Активный слой на основе In-GaN
4 — Буферный слой на основе GaN
5 — Сапфировая подложка
6 — Токопроводящий слой n-GaN
7 — Токопроводящий слой p-GaN

Имеются площадки контактов в слоях для катода и анода.

При переходе электронов в фотоны теряется энергия по следующим причинам:
  • Световые волны преломляются на выходе из полупроводника в месте кристалл – воздух, длина волны искажается.
  • Внутри слоя часть частиц света теряется, хотя слой очень тонкий.

Световой поток может повыситься, если использовать подложку из сапфира. В лампах такие конструкции нашли применение. В обычных светодиодах для индикаторов подложка не применяется.

Такие диоды имеют линзу из рефлектора, направляющего свет и эпоксидной смолы. Соответственно назначению лампы угол распространения света имеет широкий интервал от 5 до 160 градусов.

Дорогостоящие диоды для ламп производят с ламбертовой диаграммой, то есть в пространстве яркость светодиода постоянная, независимо от угла, направления света.

Размеры кристалла малы, от одного кристалла будет мало света. В лампах содержится группа светодиодов. Сделать освещение равномерным сложно, так как каждый диод – это точечный источник света.

1 — Вывод 1
2 — Корпус
3 — ЧИП
4 — Слой люминофора
5 — Проводник
6 — Рефлектор
7 — Вывод 2
8 — Теплоотвод
9 — Изолятор
10 — Печатная плата

Узкий спектр волн света от полупроводниковых диодов приводит к утомляемости глаз, дискомфорту, в отличие от солнца или ламп накаливания. Чтобы как-то исправить этот недостаток, в конструкцию светодиодов ввели слой люминофора.

Размер потока света, излучаемого полупроводниковым диодом, зависит от силы тока р-п перехода. При большем токе излучение выше, до определенного порога.

Габариты светодиодов малы, поэтому применять большие токи не получается. Ток для индикаторных диодов не превышает 20 мА. Для более мощных ламп освещения делается отвод тепла и защитные меры, которые имеют ограничения.

Поток света в лампе возрастает по мере увеличения тока, затем снижается из-за потери тепла. Выделение тепла не происходит при свечении светодиодной лампы, они считаются холодным светом.

Но, это не значит, что лампа не нагревается. Ток, проходящий через светодиод, в различных контактах проходит через сопротивления участков, что вызывает нагревание лампы. Энергия теряется из-за тепла, при повышении тока тепло может вывести из строя конструкцию лампы на светодиодах.

Кристаллы светодиодов в лампах могут достигать большого количества (более 100). Для подведения тока оптимальной величины сделаны платы из стеклотекстолита с дорожками, проводящими ток, и имеющими разную конфигурацию.

Кристаллы светодиодов припаивают к контактным площадкам по группам, последовательно подают питание, одинаковый ток пропускают по каждой цепочке. Эта схема простая в техническом плане, но имеет серьезный недостаток. Если нарушится какой-либо контакт, то перестают светить все звенья цепи, лампа выходит из строя.

К каждой группе диодов подводится напряжение постоянной величины от устройства – драйвера. Раньше он назывался источником питания. Драйвер преобразовывает напряжение входа сети в питающее напряжение светодиодов. Входное напряжение может быть как 220 В (в квартире), так и 12 В (в автомобиле).

Подключение стабилизированного постоянного тока к каждому светодиоду параллельно выполнить трудно, редко применяется. Драйверы имеют различные схемы: трансформаторная и т.д. Распространенные варианты схем зависят от конфигурации.

Драйверы имеют низкую стоимость при условии, если они подключаются к постоянному напряжению, защищенному от скачков, перепадов и импульсов, не имеют резистора, ограничивающего ток, в цепи выхода питания. Это используется в фонариках на аккумуляторах, в них светодиоды соединены с аккумуляторами.

Они запитаны повышенным током, ярко светят, перегорают довольно часто. Если в драйверах нет защиты от скачков напряжения, то дешевые лампы быстро выгорают, не отработав ресурса по гарантии.

Блоки питания качественного изготовления не нагреваются, перегруженные драйверы нагреваются, энергия расходуется на потерю тепла. Эти потери довольно значительные, они могут превышать энергию выделяемых фотонов (света).

Квартирные лампы на светодиодах имеют цоколь Е27. Он дает возможность применять лампы в обычных патронах. Импортные лампы снабжены другими цоколями, для которых нужны соответствующие патроны, с отличием в шаге резьбы и диаметре. Напряжение питания может быть 110 В. Лампы для автомобилей тоже бывают разными по конструкции цоколей.

Чтобы защитить светодиоды, не нужны герметичные колбы, не требуется выкачивать из них воздух или создавать среду газа. Светодиоды закрыты материалами из пластика, пропускающего свет.

Размещение частей на светодиодах отличается у производителей, для различных целей. Последовательность монтажа у них одинаковая: от драйвера к светодиодной плате, закрывается защитным стеклом. Могут устанавливаться экраны защиты от нагрева, и т.д.

Устройство и конструктивные особенности разных производителей может значительно отличаться в аналогичных лампах, но принципы конструирования у них общие.

Виды и применение лампы на светодиодах
По применяемости лампы на светодиодах делятся:
  • Для дома и офиса.
  • Уличные.
  • Прожекторы.
  • Автомобильные.
  • Лампы на светодиодах для растений (ультрафиолетовые).
  • Светильники для зданий.
По конструкции и световому потоку лампы на светодиодах делятся:
  • Общего назначения, для офисов и жилых помещений, похожи на лампы накаливания, свечи, «кукурузы».
  • Направленного света – для подсветки витрин, площадей.
  • Линейные, в виде трубки, похожи на люминесцентные лампы. Применяются для торговых залов и офисов.
По используемым типам светодиодов на:
  • Индикаторных диодах. К ним относятся лампы на диодах 3 мм и на «Пираньях». Качество света от таких ламп низкое.
  • SMD диодах, распространенные, имеют малый размер, не греются, широкое применение.
  • Диодах 1, 3, 5 Вт, нагрев значительный.
  • СОВ диодах, по новой технологии, преимущество перед другими: более надежны за счет монтажа диодов сразу на плату, равномерный световой поток, разные исполнения формы ламп.
  • Филаментных диодах, освещение на 360 градусов, малая цена, теплоотвод.
Разделение по типу цоколей

 

Широко распространены цоколи «Эдисона» с резьбой и обозначением буковой Е с цифрой. Цифра – это диаметр цоколя в мм (Е27, Е14, Е40). Цоколь G – штыревое соединение. Цифра указывает расстояние между штырями (выводами). Такие лампы подключаются только через блок питания. Цоколь Т используется для замены ламп люминесцентных, измеряется в дюймах.

Достоинства, недостатки, особенности
К достоинствам относятся:
  • Экономия электроэнергии, энергоэффективность, потребляют в 5 раз меньше энергии.
  • Срок эксплуатации, составляет для разных типов 30-50 тысяч часов работы.
  • Механическая прочность.
  • Безопасность, не содержат вредных веществ, нет сильного нагрева, применяют в любых светильниках, для натяжных потолков.
  • Широкий интервал температуры использования, работают до -60 градусов мороза.
  • Быстрый запуск, сразу светят ярко.
  • Надежность при частых выключениях и включениях.
  • Экологически безопасны, можно утилизировать с обычным мусором.
К недостаткам относится:
  • Большие размеры из-за технической стороны устройства.
  • Боятся перегрева, эффективность уменьшается, тускнеют.
  • Не в любую люстру могут поместиться из-за увеличенного размера.
  • Световой поток направленный, по бокам и сзади светит хуже.
  • Стоимость выше других типов ламп, с каждым годом цена снижается.
Особенности

Лампы на светодиодах состоят из платы со светодиодами, цоколя, корпуса, блока питания, колбы матовой. Ток сразу преобразуется в свет, минуя стадию нагрева, как в лампах накаливания. Потери на нагрев наименьшие, светодиоды экономичны, безопасны.

Светодиоды придуманы еще в 70-х годах, но использовались лишь в приборах, индикаторах, экранах. Светодиоды голубого цвета высокояркие изготовлены в 1993 году, белые в 1996 году. Современные светодиоды имеют отдачу света до 170 лм / Вт.

Похожие темы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *